101
|
The evolution of a series of behavioral traits is associated with autism-risk genes in cavefish. BMC Evol Biol 2018; 18:89. [PMID: 29909776 PMCID: PMC6004695 DOI: 10.1186/s12862-018-1199-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background An essential question in evolutionary biology is whether shifts in a set of polygenic behaviors share a genetic basis across species. Such a behavioral shift is seen in the cave-dwelling Mexican tetra, Astyanax mexicanus. Relative to surface-dwelling conspecifics, cavefish do not school (asocial), are hyperactive and sleepless, adhere to a particular vibration stimulus (imbalanced attention), behave repetitively, and show elevated stress hormone levels. Interestingly, these traits largely overlap with the core symptoms of human autism spectrum disorder (ASD), raising the possibility that these behavioral traits are underpinned by a similar set of genes (i.e. a repeatedly used suite of genes). Result Here, we explored whether modification of ASD-risk genes underlies cavefish evolution. Transcriptomic analyses revealed that > 58.5% of 3152 cavefish orthologs to ASD-risk genes are significantly up- or down-regulated in the same direction as genes in postmortem brains from ASD patients. Enrichment tests suggest that ASD-risk gene orthologs in A. mexicanus have experienced more positive selection than other genes across the genome. Notably, these positively selected cavefish ASD-risk genes are enriched for pathways involved in gut function, inflammatory diseases, and lipid/energy metabolism, similar to symptoms that frequently coexist in ASD patients. Lastly, ASD drugs mitigated cavefish’s ASD-like behaviors, implying shared aspects of neural processing. Conclusion Overall, our study indicates that ASD-risk genes and associated pathways (especially digestive, immune and metabolic pathways) may be repeatedly used for shifts in polygenic behaviors across evolutionary time. Electronic supplementary material The online version of this article (10.1186/s12862-018-1199-9) contains supplementary material, which is available to authorized users.
Collapse
|
102
|
Soares MC, Cardoso SC, Carvalho TDS, Maximino C. Using model fish to study the biological mechanisms of cooperative behaviour: A future for translational research concerning social anxiety disorders? Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:205-215. [PMID: 29154800 DOI: 10.1016/j.pnpbp.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/03/2017] [Accepted: 11/10/2017] [Indexed: 01/05/2023]
Abstract
Human societies demand of its composing members the development of a wide array of social tools and strategies. A notable example is human outstanding ability to cooperate with others, in all its complex forms, depicting the reality of a highly demanding social framework in which humans need to be integrated as to attain physical and mental benefits. Considering the importance of social engagement, it's not entirely unexpected that most psychiatric disorders involve some disruption of normal social behaviour, ranging from an abnormal absence to a significant increase of social functioning. It is however surprising that knowledge on these social anxiety disorders still remains so limited. Here we review the literature focusing on the social and cooperative toolbox of 3 fish model species (cleaner fishes, guppies and zebrafish) which are amenable systems to test for social disorders. We build on current knowledge based on ethological information, arising from studies on cooperative behaviour in cleanerfishes and guppies, while profiting from the advantages of the intense use of zebrafish, to create novel paradigms aiming at the major socio-cognitive modules/dimensions in fish species. This focus may enable the discovery of putative conserved endpoints which are relevant for research into social disorders. We suggest that cross-species, cross-domain, functional and genetic approaches could provide a wider array of information on the neurobiological bases of social and cooperative behaviour, crucial to understanding the neural bases of social disorders and key to finding novel avenues towards treatment.
Collapse
Affiliation(s)
- Marta C Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | - Sónia C Cardoso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Tamires Dos Santos Carvalho
- IESB, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Unidade III, Marabá, Brazil
| | - Caio Maximino
- IESB, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Unidade III, Marabá, Brazil
| |
Collapse
|
103
|
Rosengren M, Thörnqvist PO, Winberg S, Sundell K. The brain-gut axis of fish: Rainbow trout with low and high cortisol response show innate differences in intestinal integrity and brain gene expression. Gen Comp Endocrinol 2018; 257:235-245. [PMID: 28947388 DOI: 10.1016/j.ygcen.2017.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
In fish, the stress hormone cortisol is released through the action of the hypothalamic pituitary interrenal axis (HPI-axis). The reactivity of this axis differs between individuals and previous studies have linked this to different behavioural characteristics and stress coping styles. In the current study, low and high responding (LR and HR) rainbow trout in terms of cortisol release during stress were identified, using a repeated confinements stress test. The expression of stress related genes in the forebrain and the integrity of the stress sensitive primary barrier of the intestine was examined. The HR trout displayed higher expression levels of mineralocorticoid and serotonergic receptors and serotonergic re-uptake pumps in the telencephalon during both basal and stressed conditions. This confirms that HPI-axis reactivity is linked also to other neuronal behavioural modulators, as both the serotonergic and the corticoid system in the telencephalon are involved in behavioural reactivity and cognitive processes. Involvement of the HPI-axis in the brain-gut-axis was also found. LR trout displayed a lower integrity in the primary barrier of the intestine during basal conditions compared to the HR trout. However, following stress exposure, LR trout showed an unexpected increase in intestinal integrity whereas the HR trout instead suffered a reduction. This could make the LR individuals more susceptible to pathogens during basal conditions where instead HR individuals would be more vulnerable during stressed conditions. We hypothesize that these barrier differences are caused by regulation/effects on tight junction proteins possibly controlled by secondary effects of cortisol on the intestinal immune barrier or differences in parasympathetic reactivity.
Collapse
Affiliation(s)
- Malin Rosengren
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box: 463, SE-405 31 Gothenburg, Sweden.
| | - Per-Ove Thörnqvist
- Department of Neuroscience, Uppsala University, PO Box: 593, SE-75124 Uppsala, Sweden.
| | - Svante Winberg
- Department of Neuroscience, Uppsala University, PO Box: 593, SE-75124 Uppsala, Sweden.
| | - Kristina Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box: 463, SE-405 31 Gothenburg, Sweden.
| |
Collapse
|
104
|
Rosa LV, Ardais AP, Costa FV, Fontana BD, Quadros VA, Porciúncula LO, Rosemberg DB. Different effects of caffeine on behavioral neurophenotypes of two zebrafish populations. Pharmacol Biochem Behav 2018; 165:1-8. [DOI: 10.1016/j.pbb.2017.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/18/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023]
|
105
|
Effect of novelty stress on behavioral responses of Danio rerio and assessment of dose-dependent effects of anxiolytics of benzodiazepine structure with phenazepam as an example. ACTA ACUST UNITED AC 2017. [DOI: 10.17816/rcf15357-63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of benzodiazepine anxiolytic phenazepam in Danio rerio was investigated. Previously, Danio rerio showed the effects of other anxiolytics, dia_zepam and chlordiazepoxide. The analysis of the anxiolytic effect of phenazepam in Danio rerio was carried out for the first time.
Methods. A stress test on novelty situation was used: a fish was placed first in a beaker with a dissolved pharmacological substance (or water) and then into a novel tank for 6 min, where the trajectory, the path length, the number of movements to the upper part of the novel tank, the number and time of the pattern of “freezing” for each min of the experiment were measured.
Results. In response to the novelty of tank, the fish was shown to react by submerging to the bottom, increasing the freezing, and reducing the number of movements to the upper half of the novel tank. After phenazepam exposure (administration), the fish was not only in the lower, but also in the upper part of the novel tank. The average path length did not change significantly in the range of the doses used. The number and time of the freezing, as well as the time spent in the lower part of the novel tank, 2-fold decreased compared to the control group of animals and showed a dose-dependent effect. The number of movements to the upper part of the novel tank for the experiment increased significantly from 1 in the control to 57 after phenazepam in a dose of 1 mg/l. When analyzing the dynamics of the parameters for each min, it was shown that the time of the fish in the lower part of the novel tank decreased from 3th min of the experiment with the use of phenazepam in a dose of 0.5 mg/l. At the same time, the number of movements of fish to the upper part of the novel tank significantly increased more than 2 times from 3th min of the experiment with the use of phenazepam in a dose of 1 mg/l.
Conclusion. The described method to study behavioral responses of Danio rerio on novelty stress is high sensitive in comparison with traditional behavioral methods of studing tranquilizers. The prospect of using Danio rerio as animal model in behavioral pharmacology is significant and does not concede research on rodents.
Collapse
|
106
|
Understanding taurine CNS activity using alternative zebrafish models. Neurosci Biobehav Rev 2017; 83:525-539. [PMID: 28916270 DOI: 10.1016/j.neubiorev.2017.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Taurine is a highly abundant "amino acid" in the brain. Despite the potential neuroactive role of taurine in vertebrates has long been recognized, the underlying molecular mechanisms related to its pleiotropic effects in the brain remain poorly understood. Due to the genetic tractability, rich behavioral repertoire, neurochemical conservation, and small size, the zebrafish (Danio rerio) has emerged as a powerful candidate for neuropsychopharmacology investigation and in vivo drug screening. Here, we summarize the main physiological roles of taurine in mammals, including neuromodulation, osmoregulation, membrane stabilization, and antioxidant action. In this context, we also highlight how zebrafish models of brain disorders may present interesting approaches to assess molecular mechanisms underlying positive effects of taurine in the brain. Finally, we outline recent advances in zebrafish drug screening that significantly improve neuropsychiatric translational researches and small molecule screens.
Collapse
|
107
|
Bossé GD, Peterson RT. Development of an opioid self-administration assay to study drug seeking in zebrafish. Behav Brain Res 2017; 335:158-166. [PMID: 28811180 DOI: 10.1016/j.bbr.2017.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/21/2023]
Abstract
The zebrafish (Danio rerio) has become an excellent tool to study mental health disorders, due to its physiological and genetic similarity to humans, ease of genetic manipulation, and feasibility of small molecule screening. Zebrafish have been shown to exhibit characteristics of addiction to drugs of abuse in non-contingent assays, including conditioned place preference, but contingent assays have been limited to a single assay for alcohol consumption. Using inexpensive electronic, mechanical, and optical components, we developed an automated opioid self-administration assay for zebrafish, enabling us to measure drug seeking and gain insight into the underlying biological pathways. Zebrafish trained in the assay for five days exhibited robust self-administration, which was dependent on the function of the μ-opioid receptor. In addition, a progressive ratio protocol was used to test conditioned animals for motivation. Furthermore, conditioned fish continued to seek the drug despite an adverse consequence and showed signs of stress and anxiety upon withdrawal of the drug. Finally, we validated our assay by confirming that self-administration in zebrafish is dependent on several of the same molecular pathways as in other animal models. Given the ease and throughput of this assay, it will enable identification of important biological pathways regulating drug seeking and could lead to the development of new therapeutic molecules to treat addiction.
Collapse
Affiliation(s)
- Gabriel D Bossé
- Department of Pharmacology and Toxicology,University of Utah, Salt Lake City, UT 84112, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology,University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
108
|
Acute effects of amitriptyline on adult zebrafish: Potential relevance to antidepressant drug screening and modeling human toxidromes. Neurotoxicol Teratol 2017; 62:27-33. [DOI: 10.1016/j.ntt.2017.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
|
109
|
Kwan GT, Hamilton TJ, Tresguerres M. CO 2-induced ocean acidification does not affect individual or group behaviour in a temperate damselfish. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170283. [PMID: 28791154 PMCID: PMC5541549 DOI: 10.1098/rsos.170283] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/07/2017] [Indexed: 05/22/2023]
Abstract
Open ocean surface CO2 levels are projected to reach approximately 800 µatm, and ocean pH to decrease by approximately 0.3 units by the year 2100 due to anthropogenic CO2 emissions and the subsequent process of ocean acidification (OA). When exposed to these CO2/pH values, several fish species display abnormal behaviour in laboratory tests, an effect proposed to be linked to altered neuronal GABAA- receptor function. Juvenile blacksmith (Chromis punctipinnis) are social fish that regularly experience CO2/pH fluctuations through kelp forest diurnal primary production and upwelling events, so we hypothesized that they might be resilient to OA. Blacksmiths were exposed to control conditions (pH ∼ 7.92; pCO2 ∼ 540 µatm), constant acidification (pH ∼ 7.71; pCO2 ∼ 921 µatm) and oscillating acidification (pH ∼ 7.91, pCO2 ∼ 560 µatm (day), pH ∼ 7.70, pCO2 ∼ 955 µatm (night)), and caught and tested in two seasons of the year when the ocean temperature was different: winter (16.5 ± 0.1°C) and summer (23.1 ± 0.1°C). Neither constant nor oscillating CO2-induced acidification affected blacksmith individual light/dark preference, inter-individual distance in a shoal or the shoal's response to a novel object, suggesting that blacksmiths are tolerant to projected future OA conditions. However, blacksmiths tested during the winter demonstrated significantly higher dark preference in the individual light/dark preference test, thus confirming season and/or water temperature as relevant factors to consider in behavioural tests.
Collapse
Affiliation(s)
- Garfield Tsz Kwan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Trevor James Hamilton
- Department of Psychology, MacEwan University, Edmonton, Alberta, CanadaT5 J 4S2
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, CanadaT6G 2H7
- Authors for correspondence: Trevor James Hamilton e-mail:
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Authors for correspondence: Martin Tresguerres e-mail:
| |
Collapse
|
110
|
Theodoridi A, Tsalafouta A, Pavlidis M. Acute Exposure to Fluoxetine Alters Aggressive Behavior of Zebrafish and Expression of Genes Involved in Serotonergic System Regulation. Front Neurosci 2017; 11:223. [PMID: 28487628 PMCID: PMC5403945 DOI: 10.3389/fnins.2017.00223] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/04/2017] [Indexed: 11/13/2022] Open
Abstract
Zebrafish, Danio rerio, is an emerging model organism in stress and neurobehavioral studies. In nature, the species forms shoals, yet when kept in pairs it exhibits an agonistic and anxiety-like behavior that leads to the establishment of dominant-subordinate relationships. Fluoxetine, a selective serotonin reuptake inhibitor, is used as an anxiolytic tool to alter aggressive behavior in several vertebrates and as an antidepressant drug in humans. Pairs of male zebrafish were held overnight to develop dominant-subordinate behavior, either treated or non-treated for 2 h with fluoxetine (5 mg L-1), and allowed to interact once more for 1 h. Behavior was recorded both prior and after fluoxetine administration. At the end of the experiment, trunk and brain samples were also taken for cortisol determination and mRNA expression studies, respectively. Fluoxetine treatment significantly affected zebrafish behavior and the expression levels of several genes, by decreasing offensive aggression in dominants and by eliminating freezing in the subordinates. There was no statistically significant difference in whole-trunk cortisol concentrations between dominant and subordinate fish, while fluoxetine treatment resulted in higher (P = 0.004) cortisol concentrations in both groups. There were statistically significant differences between dominant and subordinate fish in brain mRNA expression levels of genes involved in stress axis (gr, mr), neural activity (bdnf, c-fos), and the serotonergic system (htr2b, slc6a4b). The significant decrease in the offensive and defensive aggression following fluoxetine treatment was concomitant with a reversed pattern in c-fos expression levels. Overall, an acute administration of a selective serotonin reuptake inhibitor alters aggressive behavior in male zebrafish in association with changes in the neuroendocrine mediators of coping styles.
Collapse
Affiliation(s)
- Antonia Theodoridi
- Laboratory of Fish Physiology, Department of Biology, University of CreteHeraklion, Greece
| | - Aleka Tsalafouta
- Laboratory of Fish Physiology, Department of Biology, University of CreteHeraklion, Greece
| | - Michail Pavlidis
- Laboratory of Fish Physiology, Department of Biology, University of CreteHeraklion, Greece
| |
Collapse
|
111
|
Vignet C, Trenkel VM, Vouillarmet A, Bricca G, Bégout ML, Cousin X. Changes in Brain Monoamines Underlie Behavioural Disruptions after Zebrafish Diet Exposure to Polycyclic Aromatic Hydrocarbons Environmental Mixtures. Int J Mol Sci 2017; 18:ijms18030560. [PMID: 28273853 PMCID: PMC5372576 DOI: 10.3390/ijms18030560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/17/2017] [Accepted: 02/26/2017] [Indexed: 01/03/2023] Open
Abstract
Zebrafish were exposed through diet to two environmentally relevant polycyclic aromatic hydrocarbons (PAHs) mixtures of contrasted compositions, one of pyrolytic (PY) origin and one from light crude oil (LO). Monoamine concentrations were quantified in the brains of the fish after six month of exposure. A significant decrease in noradrenaline (NA) was observed in fish exposed to both mixtures, while a decrease in serotonin (5HT) and dopamine (DA) was observed only in LO-exposed fish. A decrease in metabolites of 5HT and DA was observed in fish exposed to both mixtures. Several behavioural disruptions were observed that depended on mixtures, and parallels were made with changes in monoamine concentrations. Indeed, we observed an increase in anxiety in fish exposed to both mixtures, which could be related to the decrease in 5HT and/or NA, while disruptions of daily activity rhythms were observed in LO fish, which could be related to the decrease in DA. Taken together, these results showed that (i) chronic exposures to PAHs mixtures disrupted brain monoamine contents, which could underlie behavioural disruptions, and that (ii) the biological responses depended on mixture compositions.
Collapse
Affiliation(s)
- Caroline Vignet
- Laboratoire Ressources Halieutiques, Ifremer, Place Gaby Coll, 17137 L’Houmeau, France; (C.V.); (M.-L.B.)
| | - Verena M. Trenkel
- Unité Écologie et Modèles pour l’Halieutique, Ifremer, B.P. 21105, 44311 Nantes CEDEX 03, France;
| | - Annick Vouillarmet
- Génomique Fonctionnelle de l'Hypertension Artérielle, EA 4173, University Lyon 1, 8 Avenue Rockefeller, 69373 Lyon CEDEX 08, France;
| | - Giampiero Bricca
- Génomique Fonctionnelle de l'Hypertension Artérielle, EA 4173, University Lyon 1, 8 Avenue Rockefeller, 69373 Lyon CEDEX 08, France;
| | - Marie-Laure Bégout
- Laboratoire Ressources Halieutiques, Ifremer, Place Gaby Coll, 17137 L’Houmeau, France; (C.V.); (M.-L.B.)
| | - Xavier Cousin
- Laboratoire Ressources Halieutiques, Ifremer, Place Gaby Coll, 17137 L’Houmeau, France; (C.V.); (M.-L.B.)
- Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, UMR MARBEC, Ifremer, Route de Maguelone, 34250 Palavas, France
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
- Correspondence: ; Tel.: +33-5-46-50-06-21
| |
Collapse
|
112
|
Faillace MP, Pisera-Fuster A, Medrano MP, Bejarano AC, Bernabeu RO. Short- and long-term effects of nicotine and the histone deacetylase inhibitor phenylbutyrate on novel object recognition in zebrafish. Psychopharmacology (Berl) 2017; 234:943-955. [PMID: 28130648 DOI: 10.1007/s00213-017-4532-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022]
Abstract
RATIONALE Zebrafish have a sophisticated color- and shape-sensitive visual system, so we examined color cue-based novel object recognition in zebrafish. We evaluated preference in the absence or presence of drugs that affect attention and memory retention in rodents: nicotine and the histone deacetylase inhibitor (HDACi) phenylbutyrate (PhB). OBJECTIVES The objective of this study was to evaluate whether nicotine and PhB affect innate preferences of zebrafish for familiar and novel objects after short- and long-retention intervals. METHODS We developed modified object recognition (OR) tasks using neutral novel and familiar objects in different colors. We also tested objects which differed with respect to the exploratory behavior they elicited from naïve zebrafish. RESULTS Zebrafish showed an innate preference for exploring red or green objects rather than yellow or blue objects. Zebrafish were better at discriminating color changes than changes in object shape or size. Nicotine significantly enhanced or changed short-term innate novel object preference whereas PhB had similar effects when preference was assessed 24 h after training. Analysis of other zebrafish behaviors corroborated these results. CONCLUSIONS Zebrafish were innately reluctant or prone to explore colored novel objects, so drug effects on innate preference for objects can be evaluated changing the color of objects with a simple geometry. Zebrafish exhibited recognition memory for novel objects with similar innate significance. Interestingly, nicotine and PhB significantly modified innate object preference.
Collapse
Affiliation(s)
- M P Faillace
- Department of Physiology and Institute of Physiology and Biophysics (IFIBIO), School of Medicine, University of Buenos Aires, Paraguay 2155 7th floor, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina
| | - A Pisera-Fuster
- Department of Physiology and Institute of Physiology and Biophysics (IFIBIO), School of Medicine, University of Buenos Aires, Paraguay 2155 7th floor, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina
| | - M P Medrano
- Department of Physiology and Institute of Physiology and Biophysics (IFIBIO), School of Medicine, University of Buenos Aires, Paraguay 2155 7th floor, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina
| | - A C Bejarano
- Department of Physiology and Institute of Physiology and Biophysics (IFIBIO), School of Medicine, University of Buenos Aires, Paraguay 2155 7th floor, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina
| | - R O Bernabeu
- Department of Physiology and Institute of Physiology and Biophysics (IFIBIO), School of Medicine, University of Buenos Aires, Paraguay 2155 7th floor, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
113
|
Pisera-Fuster A, Otero S, Talevi A, Bruno-Blanch L, Bernabeu R. Anticonvulsant effect of sodium cyclamate and propylparaben on pentylenetetrazol-induced seizures in zebrafish. Synapse 2017; 71. [DOI: 10.1002/syn.21961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Antonella Pisera-Fuster
- Instituto de Fisiología y Biofísica (IFIBIO-Houssay); Facultad de Medicina, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Sofía Otero
- Instituto de Fisiología y Biofísica (IFIBIO-Houssay); Facultad de Medicina, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Alan Talevi
- Departamento de Ciencias Biológicas; Facultad de Ciencias Exactas, Universidad Nacional de La Plata; La Plata Argentina
| | - Luis Bruno-Blanch
- Departamento de Ciencias Biológicas; Facultad de Ciencias Exactas, Universidad Nacional de La Plata; La Plata Argentina
| | - Ramón Bernabeu
- Instituto de Fisiología y Biofísica (IFIBIO-Houssay); Facultad de Medicina, Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
114
|
Fulcher N, Tran S, Shams S, Chatterjee D, Gerlai R. Neurochemical and Behavioral Responses to Unpredictable Chronic Mild Stress Following Developmental Isolation: The Zebrafish as a Model for Major Depression. Zebrafish 2017; 14:23-34. [DOI: 10.1089/zeb.2016.1295] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Niveen Fulcher
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Steven Tran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Soaleha Shams
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Diptendu Chatterjee
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
115
|
Cannabinoid modulation of zebrafish fear learning and its functional analysis investigated by c-Fos expression. Pharmacol Biochem Behav 2016; 153:18-31. [PMID: 27965084 DOI: 10.1016/j.pbb.2016.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 12/31/2022]
Abstract
It has been shown that zebrafish fear learning proceeds in the same way as reported for rodents. However, in zebrafish fear learning it is possible to substitute the use of electric shocks as unconditioned stimulus and utilize the inborn fear responses to the alarm substance Schreckstoff, instead. The skin extract Schreckstoff elicits typical fear reactions such as preferred bottom dwelling, swimming in a tighter shoal, erratic movements and freezing. This natural fear behavior can be transferred from Schreckstoff to any other sensory stimulus by associative conditioning (fear learning). We presented Schreckstoff simultaneously with a red light stimulus and tested the effectiveness of fear learning during memory retrieval. The two brain regions known to be relevant for learning in zebrafish are the medial and the lateral pallium of the dorsal telencephalon, both containing rich expressions of the endocannabinoid receptor CB1. To test the influence of the zebrafish endocannabinoid system on fear acquisition learning, an experimental group of ten fish was pretreated with the CB1 receptor agonist THC (Δ9-tetrahydrocannabinol; 100nM for 1h). We found that CB1 activation significantly inhibited acquisition of fear learning, possibly by impairing stimulus encoding processes in pallial areas. This was supported by analyzes of c-Fos expression in the brains of experimental animals. Schreckstoff exposure during fear acquisition learning and memory retrieval during red light presentation increased the number of labelled cells in pallial structures, but in no other brain region investigated (e.g. striatum, thalamus, and habenula). THC administration before fear conditioning significantly decreased c-Fos expression in these structures to a level similar to the control group without Schreckstoff experience, suggesting that Schreckstoff induced fear learning requires brain circuits restricted mainly to pallial regions of the dorsal telencephalon.
Collapse
|
116
|
Huerta B, Margiotta-Casaluci L, Rodríguez-Mozaz S, Scholze M, Winter MJ, Barceló D, Sumpter JP. Anti-anxiety drugs and fish behavior: Establishing the link between internal concentrations of oxazepam and behavioral effects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2782-2790. [PMID: 27061599 DOI: 10.1002/etc.3448] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/22/2015] [Accepted: 04/02/2016] [Indexed: 06/05/2023]
Abstract
Psychoactive drugs are frequently detected in the aquatic environment. The evolutionary conservation of the molecular targets of these drugs in fish suggests that they may elicit mode of action-mediated effects in fish as they do in humans, and the key open question is at what exposure concentrations these effects might occur. In the present study, the authors investigated the uptake and tissue distribution of the benzodiazepine oxazepam in the fathead minnow (Pimephales promelas) after 28 d of waterborne exposure to 0.8 μg L-1 , 4.7 μg L-1 , and 30.6 μg L-1 . Successively, they explored the relationship between the internal concentrations of oxazepam and the effects on fish exploratory behavior quantified by performing 2 types of behavioral tests, the novel tank diving test and the shelter-seeking test. The highest internal concentrations of oxazepam were found in brain, followed by plasma and liver, whereas muscle presented the lowest values. Average concentrations measured in the plasma of fish from the 3 exposure groups were, respectively, 8.7 ± 5.7 μg L-1 , 30.3 ± 16.1 μg L-1 , and 98.8 ± 72.9 μg L-1 . Significant correlations between plasma and tissue concentrations of oxazepam were found in all 3 groups. Exposure of fish to 30.6 µg L-1 in water produced plasma concentrations within or just below the human therapeutic plasma concentration (HT PC) range in many individuals. Statistically significant behavioral effects in the novel tank diving test were observed in fish exposed to 4.7 μg L-1 . In this group, plasma concentrations of oxazepam were approximately one-third of the lowest HT PC value. No significant effects were observed in fish exposed to the lowest and highest concentrations. The significance of these results is discussed in the context of the species-specific behavior of fathead minnow and existing knowledge of oxazepam pharmacology. Environ Toxicol Chem 2016;35:2782-2790. © 2016 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Belinda Huerta
- Catalan Institute for Water Research, H2O Building, Scientific and Technological Park of the University of Girona, Girona, Spain.
- London Institute of Environment, Health and Societies, Brunel University, London, United Kingdom.
| | - Luigi Margiotta-Casaluci
- London Institute of Environment, Health and Societies, Brunel University, London, United Kingdom
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research, H2O Building, Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Martin Scholze
- London Institute of Environment, Health and Societies, Brunel University, London, United Kingdom
| | - Matthew J Winter
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Damià Barceló
- Catalan Institute for Water Research, H2O Building, Scientific and Technological Park of the University of Girona, Girona, Spain
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA CSIC, Jordi Girona, Barcelona, Spain
| | - John P Sumpter
- London Institute of Environment, Health and Societies, Brunel University, London, United Kingdom
| |
Collapse
|
117
|
Building neurophenomics in zebrafish: Effects of prior testing stress and test batteries. Behav Brain Res 2016; 311:24-30. [DOI: 10.1016/j.bbr.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 01/02/2023]
|
118
|
Peng X, Lin J, Zhu Y, Liu X, Zhang Y, Ji Y, Yang X, Zhang Y, Guo N, Li Q. Anxiety-related behavioral responses of pentylenetetrazole-treated zebrafish larvae to light-dark transitions. Pharmacol Biochem Behav 2016; 145:55-65. [PMID: 27019459 DOI: 10.1016/j.pbb.2016.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/19/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Pentylenetetrazole (PTZ), γ-aminobutyrate (GABA) antagonist, is a convulsant drug, known to induce anxiety and seizures in zebrafish. Changes in the mobility of zebrafish under light-dark transitions reflect anxiety level, serving as a useful behavioral readout. The effects of PTZ treatment have yet to be assayed in this manner. Zebrafish larvae (AB strain) at both 5dpf (days post-fertilization) and 7dpf were treated with different concentrations of PTZ. General locomotor activity and thigmotaxis were analyzed under continuous illumination (normal conditions) or alternating light-dark cycles (stressful conditions). Zebrafish larvae of 5dpf and 7dpf exhibited different sensitivities to PTZ. Anxiety level, measured in terms of response to illumination transitions under the influence of PTZ, demonstrated contrasting tendencies. Dark-light transitions dramatically increased the locomotor activity of zebrafish larvae receiving 8mM PTZ which was indicative of anxiety. This study suggests that PTZ increases the susceptibility by activating the neuron, which perhaps makes light change easier to influence the anxiety level of larvae. We provide useful evidence for putative anti-anxiety drug screening.
Collapse
Affiliation(s)
- Xiaolan Peng
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Jia Lin
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Yingdong Zhu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Xiuyun Liu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Yinglan Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Yongxia Ji
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Xue Yang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Yan Zhang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, China
| | - Ning Guo
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China.
| |
Collapse
|
119
|
Kyzar EJ, Kalueff AV. Exploring Hallucinogen Pharmacology and Psychedelic Medicine with Zebrafish Models. Zebrafish 2016; 13:379-90. [PMID: 27002655 DOI: 10.1089/zeb.2016.1251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After decades of sociopolitical obstacles, the field of psychiatry is experiencing a revived interest in the use of hallucinogenic agents to treat brain disorders. Along with the use of ketamine for depression, recent pilot studies have highlighted the efficacy of classic serotonergic hallucinogens, such as lysergic acid diethylamide and psilocybin, in treating addiction, post-traumatic stress disorder, and anxiety. However, many basic pharmacological and toxicological questions remain unanswered with regard to these compounds. In this study, we discuss psychedelic medicine as well as the behavioral and toxicological effects of hallucinogenic drugs in zebrafish. We emphasize this aquatic organism as a model ideally suited to assess both the potential toxic and therapeutic effects of major known classes of hallucinogenic compounds. In addition, novel drugs with hallucinogenic properties can be efficiently screened using zebrafish models. Well-designed preclinical studies utilizing zebrafish can contribute to the reemerging treatment paradigm of psychedelic medicine, leading to new avenues of clinical exploration for psychiatric disorders.
Collapse
Affiliation(s)
- Evan J Kyzar
- 1 Department of Psychiatry, College of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Allan V Kalueff
- 2 Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University (GDOU) , Zhanjiang, China .,3 ZENEREI Institute , Slidell, Louisiana.,4 Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg, Russia .,5 Institutes of Chemical Technology and Natural Sciences, Ural Federal University , Ekaterinburg, Russia .,6 The International Zebrafish Neuroscience Research Consortium (ZNRC) , Slidell, Louisiana
| |
Collapse
|
120
|
Calcagno E, Durando P, Valdés ME, Franchioni L, Bistoni MDLÁ. Effects of carbamazepine on cortisol levels and behavioral responses to stress in the fish Jenynsia multidentata. Physiol Behav 2016; 158:68-75. [PMID: 26907956 DOI: 10.1016/j.physbeh.2016.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 01/04/2023]
Abstract
Carbamazepine (CBZ) is an anticonvulsant drug, prescribed worldwide for the treatment of epilepsy, bipolar disorder and trigeminal neuralgia, which has been frequently detected in aquatic environments. The objective of this study was to analyze if CBZ modifies scototaxis and shoaling behaviors and/or whole-body cortisol levels of the one-sided livebearing fish Jenynsia multidentata under stress condition. Female adults of J. multidentata were exposed to 0, 10, 50 and 200μgCBZ/L during 14days. After CBZ exposure, fish were subjected to restraint stress during 15min. Control animals were not exposed to CBZ or stress. In the light/dark preference test (scototaxis), the individuals under acute restraint stress (without CBZ) exhibited a significant increase in the mean speed and in the time spent both in the light compartment and in the bottom of the tank with respect to controls. They also showed a tendency to stay longer frozen in the light compartment. Fish exposed to 10 and 50μgCBZ/L showed a significant reduction in mean speed compared to stressed fish without CBZ. A reduction in the time spent in the bottom of the tank was also observed in fish exposed to 10μgCBZ/L. Fish exposed to 200μgCBZ/L showed a decreasing tendency in all behavioral endpoints (time spent in the light compartment, mean speed, time spent at the bottom and freezing) in comparison to stressed fish not exposed to CBZ. Considering whole-body cortisol results, fish under acute restraint stress (without CBZ) significantly increased their hormone levels with respect to the control group, while fish exposed to CBZ and acute restraint stress, significantly decreased their whole-body cortisol levels. There were no significant changes in shoaling behavior due to either stress or CBZ exposure and no significant differences in whole-body cortisol levels between experimental groups. Considering that the light/dark and shoaling tests measure different stress response behaviors regulated by different neuroendocrine systems, these results could indicate that CBZ has a differential effect on fish behavioral stress response and cortisol levels, depending on the behavioral test used and stressor applied.
Collapse
Affiliation(s)
- Emilia Calcagno
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, X2500HUA Córdoba, Argentina
| | - Patricia Durando
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Ing. Agr. Félix Aldo Marrone 746, X2500HUA Córdoba, Argentina.
| | - M Eugenia Valdés
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET-UNC, Medina Allende y Haya de la Torre, Ciudad Universitaria, X2500HUA Córdoba, Argentina
| | - Liliana Franchioni
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, X2500HUA Córdoba, Argentina
| | - María de los Ángeles Bistoni
- IDEA-Instituto de Diversidad y Ecología Animal, CONICET, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, X2500HUA Córdoba, Argentina.
| |
Collapse
|
121
|
Baiamonte M, Parker MO, Vinson GP, Brennan CH. Sustained Effects of Developmental Exposure to Ethanol on Zebrafish Anxiety-Like Behaviour. PLoS One 2016; 11:e0148425. [PMID: 26862749 PMCID: PMC4749633 DOI: 10.1371/journal.pone.0148425] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/18/2016] [Indexed: 11/24/2022] Open
Abstract
In zebrafish developmentally exposed to ambient ethanol (20mM-50mM) 1–9 days post fertilization (dpf), the cortisol response to stress has been shown to be significantly attenuated in larvae, juveniles and 6 month old adults. These data are somewhat at variance with similar studies in mammals, which often show heightened stress responses. To test whether these cortisol data correlate with behavioural changes in treated animals, anxiety-like behaviour of zebrafish larvae (9dpf and 10dpf) and juveniles (23dpf) was tested in locomotor assays designed to this end. In open field tests treated animals were more exploratory, spending significantly less time at the periphery of the arena. Behavioural effects of developmental exposure to ethanol were sustained in 6-month-old adults, as judged by assessment of thigmotaxis, novel tank diving and scototaxis. Like larvae and juveniles, developmentally treated adults were generally more exploratory, and spent less time at the periphery of the arena in thigmotaxis tests, less time at the bottom of the tank in the novel tank diving tests, and less time in the dark area in scototaxis tests. The conclusion that ethanol-exposed animals showed less anxiety-like behaviour was validated by comparison with the effects of diazepam treatment, which in thigmotaxis and novel tank diving tests had similar effects to ethanol pretreatment. There is thus a possible link between the hypophyseal-pituitary-interrenal axis and the behavioural actions of developmental ethanol exposure. The mechanisms require further elucidation.
Collapse
Affiliation(s)
- Matteo Baiamonte
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Matthew O. Parker
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, United Kingdom
| | - Gavin P. Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Caroline H. Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
122
|
Wang X, Zheng Y, Zhang Y, Li J, Zhang H, Wang H. Effects of β-diketone antibiotic mixtures on behavior of zebrafish (Danio rerio). CHEMOSPHERE 2016; 144:2195-2205. [PMID: 26595314 DOI: 10.1016/j.chemosphere.2015.10.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
To date, few data are available on neurotoxicity of β-diketone antibiotics (DKAs) from the perspective of animal behavior. Herein, the effects of long-term DKAs exposure on zebrafish (Danio rerio) behavior were assessed for locomotor activity, anxiety, social interaction and their related molecular mechanisms. DKAs exposure to zebrafish consisted of six DKA species, including ofloxacin, ciprofloxacin, enrofloxacin, doxycycline, chlortetracycline and oxytetracycline, with equal weight concentration and equal volume. DKAs at 6.25 mg/L significantly increased the time spent in the upper portion of the test tank (+40%) and the number of line crossings (±42%), indicating occurrence of anxiolytic behavior. For conditioned place preference test, long-term DKAs exposure at 6.25 mg/L increased the number of motionless positions in the non-preferred white side (+31%), number of transitions to the white side (+221%) and time spent in the white side (+35%) in relation to the control. DKAs at 6.25 mg/L significantly increased zebrafish shoaling behavior (+38%) resulting from an anxiety-like state, but 25 mg/L DKAs exposure decreased zebrafish social cohesion (-41%) possibly due to an autism-like state. With increasing DKAs-exposure concentration, the signal intensity of (1)O2 gradually decreased, leading to insufficient energy supply and movement functional disorders. Based on GO functional annotation and metabolic pathway analysis, 11 genes closely associated with locomotor behavior were identified. Using qRT-PCR, we confirmed that DKAs exposure led to changes in the transcriptional levels of 11 locomotor-related genes. These results suggest that behavior is a potential strategy for evaluating mechanisms underlying the neurochemical basis triggered by stress in zebrafish.
Collapse
Affiliation(s)
- Xuedong Wang
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuansi Zheng
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuna Zhang
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Jieyi Li
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongqin Zhang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
123
|
Wang Y, Li S, Liu W, Wang F, Hu LF, Zhong ZM, Wang H, Liu CF. Vesicular monoamine transporter 2 (Vmat2) knockdown elicits anxiety-like behavior in zebrafish. Biochem Biophys Res Commun 2016; 470:792-7. [PMID: 26801555 DOI: 10.1016/j.bbrc.2016.01.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 01/30/2023]
Abstract
Vesicular monoamine transporter 2 (Vmat2) is widely distributed in the central nervous system, and responsible for uptaking transmitters into the vesicles. However, whether Vmat2-deficiency is related to the anxiety is rarely investigated, especially in zebrafish. Here, we reported Vmat2 heterzygous mutant zebrafish displayed anxiety-like behavior. The mutants spent less time in the top area and took longer latency to the top in the novel tank test. Consistently, they showed dark avoidance in the light/dark box test, with longer duration in the light zone and increased number of crossing between the two zones. Monoamine concentration analysis showed that the levels of monoamine neurotransmitters including dopamine (DA), 5-hydroxy tryptamine (5-HT) and norepinephrine (NE), as well as their metabolites were decreased in VMAT mutants. Taken together, these findings suggest that Vmat2 heterzygous mutant zebrafish may serve as a new model of anxiety, which may be related with the low level of DA, 5-HT and NE.
Collapse
Affiliation(s)
- Yali Wang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Siyue Li
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Wenwen Liu
- Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fen Wang
- Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Li-Fang Hu
- Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Zhao-Min Zhong
- Center for Circadian Clock, Soochow University, Suzhou, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Han Wang
- Center for Circadian Clock, Soochow University, Suzhou, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institutes of Neuroscience, Soochow University, Suzhou 215123, China; Beijing Key Laboratory for Parkinson's Disease, Beijing 100053, China.
| |
Collapse
|
124
|
Kalueff AV, Echevarria DJ, Homechaudhuri S, Stewart AM, Collier AD, Kaluyeva AA, Li S, Liu Y, Chen P, Wang J, Yang L, Mitra A, Pal S, Chaudhuri A, Roy A, Biswas M, Roy D, Podder A, Poudel MK, Katare DP, Mani RJ, Kyzar EJ, Gaikwad S, Nguyen M, Song C. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:297-309. [PMID: 26372090 DOI: 10.1016/j.aquatox.2015.08.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 05/25/2023]
Abstract
Zebrafish (Danio rerio) are rapidly emerging as an important model organism for aquatic neuropharmacology and toxicology research. The behavioral/phenotypic complexity of zebrafish allows for thorough dissection of complex human brain disorders and drug-evoked pathological states. As numerous zebrafish models become available with a wide spectrum of behavioral, genetic, and environmental methods to test novel drugs, here we discuss recent zebrafish phenomics methods to facilitate drug discovery, particularly in the field of biological psychiatry. Additionally, behavioral, neurological, and endocrine endpoints are becoming increasingly well-characterized in zebrafish, making them an inexpensive, robust and effective model for toxicology research and pharmacological screening. We also discuss zebrafish behavioral phenotypes, experimental considerations, pharmacological candidates and relevance of zebrafish neurophenomics to other 'omics' (e.g., genomic, proteomic) approaches. Finally, we critically evaluate the limitations of utilizing this model organism, and outline future strategies of research in the field of zebrafish phenomics.
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia; Chemical-Technological Institute and Institute of Natural Sciences, Ural Federal University, Ekaterinburg 620002, Russia.
| | - David J Echevarria
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Sumit Homechaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Adam Michael Stewart
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Adam D Collier
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | | | - Shaomin Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Yingcong Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Peirong Chen
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - JiaJia Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Lei Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Anisa Mitra
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Subharthi Pal
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Adwitiya Chaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anwesha Roy
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Missidona Biswas
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Dola Roy
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anupam Podder
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Manoj K Poudel
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Deepshikha P Katare
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, UP, India
| | - Ruchi J Mani
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, UP, India
| | - Evan J Kyzar
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, 1601 W Taylor St., Chicago, IL 60612, USA
| | - Siddharth Gaikwad
- Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung 40402, Taiwan
| | - Michael Nguyen
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
125
|
Gonzalez ST, Remick D, Creton R, Colwill RM. Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on anxiety-related behaviors in larval zebrafish. Neurotoxicology 2015; 53:93-101. [PMID: 26748073 DOI: 10.1016/j.neuro.2015.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 12/14/2022]
Abstract
The zebrafish (Danio rerio) is an excellent model system for assessing the effects of toxicant exposure on behavior and neurodevelopment. In the present study, we examined the effects of sub-chronic embryonic exposure to polychlorinated biphenyls (PCBs), a ubiquitous anthropogenic pollutant, on anxiety-related behaviors. We found that exposure to the PCB mixture, Aroclor (A) 1254, from 2 to 26h post-fertilization (hpf) induced two statistically significant behavioral defects in larvae at 7 days post-fertilization (dpf). First, during 135min of free swimming, larvae that had been exposed to 2ppm, 5ppm or 10ppm A1254 exhibited enhanced thigmotaxis (edge preference) relative to control larvae. Second, during the immediately ensuing 15-min visual startle assay, the 5ppm and 10ppm PCB-exposed larvae reacted differently to a visual threat, a red 'bouncing' disk, relative to control larvae. These results are consistent with the anxiogenic and attention-disrupting effects of PCB exposure documented in children, monkeys and rodents and merit further investigation.
Collapse
Affiliation(s)
- Sarah T Gonzalez
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States
| | - Dylan Remick
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Ruth M Colwill
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States.
| |
Collapse
|
126
|
Reprint of "Pharmacological study of the light/dark preference test in zebrafish (Danio rerio): Waterborne administration". Pharmacol Biochem Behav 2015; 139 Pt B:141-8. [DOI: 10.1016/j.pbb.2015.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/07/2015] [Accepted: 05/25/2015] [Indexed: 01/23/2023]
|
127
|
Stewart AM, Grossman L, Collier AD, Echevarria DJ, Kalueff AV. Anxiogenic-like effects of chronic nicotine exposure in zebrafish. Pharmacol Biochem Behav 2015; 139 Pt B:112-20. [DOI: 10.1016/j.pbb.2015.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 01/28/2023]
|
128
|
Volkova K, Reyhanian Caspillo N, Porseryd T, Hallgren S, Dinnetz P, Olsén H, Porsch Hällström I. Transgenerational effects of 17α-ethinyl estradiol on anxiety behavior in the guppy, Poecilia reticulata. Gen Comp Endocrinol 2015; 223:66-72. [PMID: 26431611 DOI: 10.1016/j.ygcen.2015.09.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 02/07/2023]
Abstract
Environmental contaminants can cause alterations that can be transgenerationally transmitted to subsequent generations. Estrogens are among those contaminants shown to induce heritable changes that persist over generations in mammals. Results in other vertebrates are few. We have analyzed the effects on anxiety of 17α-ethinyl estradiol (EE2) in the F1 and F2 generations in guppies, Poecilia reticulata, obtained from F0 fish maternally exposed to 0 or 20ng/L EE2 until birth. F0 males and females were bred with fish of the same treatment but different families producing F1 offspring. Behavior in the novel tank test at 6months revealed that males with EE2-exposed parents had significantly longer latency to the upper half of the tank than control males, while no EE2 effects were observed in females. Also in F2, obtained from F1 as above, males in the EE2 group had longer latency time compared to control males, with no differences due to EE2-exposure of F0 observed in females. In the scototaxis (light/dark preference) test, latency to first transition to black compartment and total transitions to black were significantly altered in females due to EE2 exposure of F0 while the total time in black was higher in males with EE2-exposed F0 compared with controls. The increased anxiety in the F2 generation demonstrates a transgenerational anxiety phenotype and shows that non-reproductive behavior can be transgenerationally modified by estrogens in fish.
Collapse
Affiliation(s)
- Kristina Volkova
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 86 Huddinge, Sweden; Örebro Life Science Centre, School of Science and Technology, Örebro University, SE-170 82 Örebro, Sweden
| | - Nasim Reyhanian Caspillo
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 86 Huddinge, Sweden; Örebro Life Science Centre, School of Science and Technology, Örebro University, SE-170 82 Örebro, Sweden
| | - Tove Porseryd
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 86 Huddinge, Sweden
| | - Stefan Hallgren
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 86 Huddinge, Sweden; Department of Organism Biology, Uppsala University, SE-75 236 Uppsala, Sweden
| | - Patrik Dinnetz
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 86 Huddinge, Sweden
| | - Håkan Olsén
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 86 Huddinge, Sweden
| | - Inger Porsch Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 86 Huddinge, Sweden.
| |
Collapse
|
129
|
Stewart AM, Grieco F, Tegelenbosch RA, Kyzar EJ, Nguyen M, Kaluyeva A, Song C, Noldus LP, Kalueff AV. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. J Neurosci Methods 2015; 255:66-74. [DOI: 10.1016/j.jneumeth.2015.07.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 01/16/2023]
|
130
|
Stewart AM, Kaluyeva AA, Poudel MK, Nguyen M, Song C, Kalueff AV. Building Zebrafish Neurobehavioral Phenomics: Effects of Common Environmental Factors on Anxiety and Locomotor Activity. Zebrafish 2015; 12:339-48. [DOI: 10.1089/zeb.2015.1106] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Adam Michael Stewart
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
| | - Alexandra A. Kaluyeva
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
| | - Manoj K. Poudel
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
| | - Michael Nguyen
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University (GDOU), Zhanjiang, China
| | - Allan V. Kalueff
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University (GDOU), Zhanjiang, China
- Institute of Translational Biomedicine, St. Petersburg State University (SPSU), St. Petersburg, Russia
| |
Collapse
|
131
|
Lundegaard PR, Anastasaki C, Grant NJ, Sillito RR, Zich J, Zeng Z, Paranthaman K, Larsen AP, Armstrong JD, Porteous DJ, Patton EE. MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish. ACTA ACUST UNITED AC 2015; 22:1335-46. [PMID: 26388333 PMCID: PMC4623357 DOI: 10.1016/j.chembiol.2015.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 12/14/2022]
Abstract
Altered phosphodiesterase (PDE)-cyclic AMP (cAMP) activity is frequently associated with anxiety disorders, but current therapies act by reducing neuronal excitability rather than targeting PDE-cAMP-mediated signaling pathways. Here, we report the novel repositioning of anti-cancer MEK inhibitors as anxiolytics in a zebrafish model of anxiety-like behaviors. PDE inhibitors or activators of adenylate cyclase cause behaviors consistent with anxiety in larvae and adult zebrafish. Small-molecule screening identifies MEK inhibitors as potent suppressors of cAMP anxiety behaviors in both larvae and adult zebrafish, while causing no anxiolytic behavioral effects on their own. The mechanism underlying cAMP-induced anxiety is via crosstalk to activation of the RAS-MAPK signaling pathway. We propose that targeting crosstalk signaling pathways can be an effective strategy for mental health disorders, and advance the repositioning of MEK inhibitors as behavior stabilizers in the context of increased cAMP.
Collapse
Affiliation(s)
- Pia R Lundegaard
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Department of Biomedical Sciences, Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Corina Anastasaki
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Nicola J Grant
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Rowland R Sillito
- Actual Analytics Ltd, 2.05 Wilkie Building, 22-23 Teviot Row, Edinburgh EH8 9AG, UK
| | - Judith Zich
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Zhiqiang Zeng
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Karthika Paranthaman
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Anders Peter Larsen
- Department of Biomedical Sciences, Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, 2200 Copenhagen, Denmark
| | - J Douglas Armstrong
- Actual Analytics Ltd, 2.05 Wilkie Building, 22-23 Teviot Row, Edinburgh EH8 9AG, UK; School of Informatics, Institute for Adaptive and Neural Computation, Informatics Forum, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - E Elizabeth Patton
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
132
|
Maximino C, Silva RXDC, da Silva SDNS, Rodrigues LDSDS, Barbosa H, de Carvalho TS, Leão LKDR, Lima MG, Oliveira KRM, Herculano AM. Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry. Front Behav Neurosci 2015; 9:233. [PMID: 26441567 PMCID: PMC4561806 DOI: 10.3389/fnbeh.2015.00233] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/18/2015] [Indexed: 01/04/2023] Open
Abstract
Current models in biological psychiatry focus on a handful of model species, and the majority of work relies on data generated in rodents. However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry. Specifically, this approach could help to identify conserved features of brain structure and behavior, as well as to understand how variation in gene expression or developmental trajectories relates to variation in brain and behavior pertinent to psychiatric disorders. To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa. In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.
Collapse
Affiliation(s)
- Caio Maximino
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Rhayra Xavier do Carmo Silva
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Suéllen de Nazaré Santos da Silva
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Laís do Socorro dos Santos Rodrigues
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Hellen Barbosa
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Tayana Silva de Carvalho
- Universität Duisburg-EssenEssen, Germany
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Luana Ketlen dos Reis Leão
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Monica Gomes Lima
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Karen Renata Matos Oliveira
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Anderson Manoel Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| |
Collapse
|
133
|
Magno LDP, Fontes A, Gonçalves BMN, Gouveia A. Pharmacological study of the light/dark preference test in zebrafish (Danio rerio): Waterborne administration. Pharmacol Biochem Behav 2015; 135:169-76. [DOI: 10.1016/j.pbb.2015.05.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/07/2015] [Accepted: 05/25/2015] [Indexed: 12/01/2022]
|
134
|
Acute caffeine administration affects zebrafish response to a robotic stimulus. Behav Brain Res 2015; 289:48-54. [DOI: 10.1016/j.bbr.2015.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 11/22/2022]
|
135
|
Volkova K, Reyhanian Caspillo N, Porseryd T, Hallgren S, Dinnétz P, Porsch-Hällström I. Developmental exposure of zebrafish (Danio rerio) to 17α-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny. Horm Behav 2015; 73:30-8. [PMID: 26072466 DOI: 10.1016/j.yhbeh.2015.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 12/28/2022]
Abstract
Exposure to estrogenic endocrine disruptors (EDCs) during development affects fertility, reproductive and non-reproductive behavior in mammals and fish. These effects can also be transferred to coming generations. In fish, the effects of developmental EDC exposure on non-reproductive behavior are less well studied. Here, we analyze the effects of 17α-ethinylestradiol (EE2) on anxiety, shoaling behavior and fertility in zebrafish after developmental treatment and remediation in clean water until adulthood. Zebrafish embryos were exposed from day 1 to day 80 post fertilization to actual concentrations of 1.2 and 1.6ng/L EE2. After remediation for 82days non-reproductive behavior and fertilization success were analyzed in both sexes. Males and females from the 1.2ng/L group, as well as control males and females, were bred, and behavior of the untreated F1 offspring was tested as adults. Developmental treatment with 1.2 and 1.6ng/L EE2 significantly increased anxiety in the novel tank test and increased shoaling intensity in both sexes. Fertilization success was significantly reduced by EE2 in both sexes when mated with untreated fish of opposite sex. Progeny of fish treated with 1.2ng/L EE2 showed increased anxiety in the novel tank test and increased light avoidance in the scototaxis test compared to control offspring. In conclusion, developmental exposure of zebrafish to low doses of EE2 resulted in persistent changes in behavior and fertility. The behavior of unexposed progeny was affected by their parents' exposure, which might suggest transgenerational effects.
Collapse
Affiliation(s)
- Kristina Volkova
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| | - Nasim Reyhanian Caspillo
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Tove Porseryd
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - Stefan Hallgren
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - Patrik Dinnétz
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - Inger Porsch-Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| |
Collapse
|
136
|
Wong RY, Lamm MS, Godwin J. Characterizing the neurotranscriptomic states in alternative stress coping styles. BMC Genomics 2015; 16:425. [PMID: 26032017 PMCID: PMC4450845 DOI: 10.1186/s12864-015-1626-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/08/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Animals experience stress in many contexts and often successfully cope. Individuals exhibiting the proactive versus reactive stress coping styles display qualitatively different behavioral and neuroendocrine responses to stressors. The predisposition to exhibiting a particular coping style is due to genetic and environmental factors. In this study we explore the neurotranscriptomic and gene network biases that are associated with differences between zebrafish (Danio rerio) lines selected for proactive and reactive coping styles and reared in a common garden environment. RESULTS Using RNA-sequencing we quantified the basal transcriptomes from the brains of wild-derived zebrafish lines selectively bred to exhibit the proactive or reactive stress coping style. We identified 1953 genes that differed in baseline gene expression levels. Weighted gene coexpression network analyses identified one gene module associated with line differences. Together with our previous pharmacological experiment, we identified a core set of 62 genes associated with line differences. Gene ontology analyses reveal that many of these core genes are implicated in neurometabolism (e.g. organic acid biosynthetic and fatty acid metabolic processes). CONCLUSIONS Our results show that proactive and reactive stress coping individuals display distinct basal neurotranscriptomic states. Differences in baseline expression of select genes or regulation of specific gene modules are linked to the magnitude of the behavioral response and the display of a coping style, respectively. Our results expand the molecular mechanisms of stress coping from one focused on the neurotransmitter systems to a more complex system that involves an organism's capability to handle neurometabolic loads and allows for comparisons with other animal taxa to uncover potential conserved mechanisms.
Collapse
Affiliation(s)
- Ryan Y Wong
- Department of Biological Sciences, W.M. Keck Center for Behavioral Biology, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA.
- Current Address: Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | - Melissa S Lamm
- Department of Biological Sciences, W.M. Keck Center for Behavioral Biology, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA.
| | - John Godwin
- Department of Biological Sciences, W.M. Keck Center for Behavioral Biology, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA.
| |
Collapse
|
137
|
Stewart AM, Nguyen M, Poudel MK, Warnick JE, Echevarria DJ, Beaton EA, Song C, Kalueff AV. The failure of anxiolytic therapies in early clinical trials: what needs to be done. Expert Opin Investig Drugs 2015; 24:543-56. [PMID: 25727478 DOI: 10.1517/13543784.2015.1019063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Anxiety spectrum disorders (ASDs) are highly prevalent psychiatric illnesses that affect millions of people worldwide. Strongly associated with stress, common ASDs include generalized anxiety disorder, panic, social anxiety, phobias and drug-abuse-related anxiety. In addition to ASDs, several other prevalent psychiatric illnesses represent trauma/stressor-related disorders, such as post-traumatic stress disorder and acute stress disorder. Anxiolytic drugs, commonly prescribed to treat ASDs and trauma/stressor-related disorders, form a highly heterogenous group, modulating multiple neurotransmitters and physiological mechanisms. However, overt individual differences in efficacy and the potential for serious side-effects (including addiction and drug interaction) indicate a need for further drug development. Yet, over the past 50 years, there has been relatively little progress in the development of novel anxiolytic medications, especially when promising candidate drugs often fail in early clinical trials. AREAS COVERED Herein, the authors present recommendations of the Task Force on Anxiolytic Drugs of the International Stress and Behavior Society on how to improve anxiolytic drug discovery. These recommendations cover a wide spectrum of aspects, ranging from methodological improvements to conceptual insights and innovation. EXPERT OPINION In order to improve the success of anxiolytic drugs in early clinical trials, the goals of preclinical trials may need to be adjusted from a clinical perspective and better synchronized with those of clinical studies. Indeed, it is important to realize that the strategic goals and approaches must be similar if we want to have a smoother transition between phases.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute , 309 Palmer Court, Slidell, LA , USA +1 240 328 2275 ; +1 240 328 2275 ;
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Herculano AM, Maximino C. Serotonergic modulation of zebrafish behavior: towards a paradox. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:50-66. [PMID: 24681196 DOI: 10.1016/j.pnpbp.2014.03.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 12/22/2022]
Abstract
Due to the fish-specific genome duplication event (~320-350 mya), some genes which code for serotonin proteins were duplicated in teleosts; this duplication event was preceded by a reorganization of the serotonergic system, with the appearance of the raphe nuclei (dependent on the isthmus organizer) and prosencephalic nuclei, including the paraventricular and pretectal complexes. With the appearance of amniotes, duplicated genes were lost, and the serotonergic system was reduced to a more complex raphe system. From a comparative point of view, then, the serotonergic system of zebrafish and that of mammals shows many important differences. However, many different behavioral functions of serotonin, as well as the effects of drugs which affect the serotonergic system, seem to be conserved among species. For example, in both zebrafish and rodents acute serotonin reuptake inhibitors (SSRIs) seem to increase anxiety-like behavior, while chronic SSRIs decrease it; drugs which act at the 5-HT1A receptor seem to decrease anxiety-like behavior in both zebrafish and rodents. In this article, we will expose this paradox, reviewing the chemical neuroanatomy of the zebrafish serotonergic system, followed by an analysis of the role of serotonin in zebrafish fear/anxiety, stress, aggression and the effects of psychedelic drugs.
Collapse
Affiliation(s)
- Anderson Manoel Herculano
- Neuroendocrinology Laboratory, Biological Sciences Institute, Federal University of Pará, Belém, PA, Brazil; "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil
| | - Caio Maximino
- "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil; International Zebrafish Neuroscience Research Consortium, United States.
| |
Collapse
|
139
|
Nguyen M, Stewart AM, Kalueff AV. Aquatic blues: modeling depression and antidepressant action in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:26-39. [PMID: 24657522 DOI: 10.1016/j.pnpbp.2014.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 12/20/2022]
Abstract
Depression is a serious psychiatric condition affecting millions of patients worldwide. Unipolar depression is characterized by low mood, anhedonia, social withdrawal and other severely debilitating psychiatric symptoms. Bipolar disorder manifests in alternating depressed mood and 'hyperactive' manic/hypomanic states. Animal experimental models are an invaluable tool for research into the pathogenesis of bipolar/unipolar depression, and for the development of potential treatments. Due to their high throughput value, genetic tractability, low cost and quick reproductive cycle, zebrafish (Danio rerio) have emerged as a promising new model species for studying brain disorders. Here, we discuss the developing utility of zebrafish for studying depression disorders, and outline future areas of research in this field. We argue that zebrafish represent a useful model organism for studying depression and its behavioral, genetic and physiological mechanisms, as well as for anti-depressant drug discovery.
Collapse
Affiliation(s)
- Michael Nguyen
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA.
| | - Allan V Kalueff
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
| |
Collapse
|
140
|
Developing zebrafish models relevant to PTSD and other trauma- and stressor-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:67-79. [PMID: 25138994 DOI: 10.1016/j.pnpbp.2014.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 11/20/2022]
Abstract
While post-traumatic stress disorder (PTSD) and other trauma- and stress-related disorders (TSRDs) represent a serious societal and public health concern, their pathogenesis is largely unknown. Given the clinical complexity of TSRD development and susceptibility, greater investigation into candidate biomarkers and specific genetic pathways implicated in both risk and resilience to trauma becomes critical. In line with this, numerous animal models have been extensively used to better understand the pathogenic mechanisms of PTSD and related TSRD. Here, we discuss the rapidly increasing potential of zebrafish as models of these disorders, and how their use may aid researchers in uncovering novel treatments and therapies in this field.
Collapse
|
141
|
Vignet C, Le Menach K, Lyphout L, Guionnet T, Frère L, Leguay D, Budzinski H, Cousin X, Bégout ML. Chronic dietary exposure to pyrolytic and petrogenic mixtures of PAHs causes physiological disruption in zebrafish--part II: behavior. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13818-32. [PMID: 24671398 DOI: 10.1007/s11356-014-2762-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/10/2014] [Indexed: 05/20/2023]
Abstract
In the last 10 years, behavior assessment has been developed as an indicator of neurotoxicity and an integrated indicator of physiological disruption. Polycyclic aromatic hydrocarbon (PAH) release into the environment has increased in recent decades resulting in high concentrations of these compounds in the sediment of contaminated areas. We evaluated the behavioral consequences of long-term chronic exposure to PAHs, by exposing zebrafish to diets spiked with three PAH fractions at environmentally relevant concentrations. Fish were exposed to these chemicals from their first meal (5 days postfertilization) until they became reproducing adults (at 6 months old). The fractions used were representative of PAHs of pyrolytic (PY) origin and of two oils differing in composition (a heavy fuel oil (HO) and a light crude oil (LO)). Several tests were carried out to evaluate circadian spontaneous swimming activity, responses to a challenge (photomotor response), exploratory tendencies, and anxiety levels. We found that dietary PAH exposure was associated with greater mobility, lower levels of exploratory activity, and higher levels of anxiety, particularly in fish exposed to the HO fraction and, to a lesser extent, the LO fraction. Finally, our results indicate that PAH mixtures of different compositions, representative of situations encountered in the wild, can induce behavioral disruptions resulting in poorer fish performance.
Collapse
Affiliation(s)
- Caroline Vignet
- Laboratoire d'Ecotoxicologie, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Stewart AM, Grossman L, Nguyen M, Maximino C, Rosemberg DB, Echevarria DJ, Kalueff AV. Aquatic toxicology of fluoxetine: understanding the knowns and the unknowns. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:269-273. [PMID: 25245382 DOI: 10.1016/j.aquatox.2014.08.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 08/23/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
Fluoxetine is one of the most prescribed psychotropic medications, and is an agent of increasing interest for environmental toxicology. Fish and other aquatic organisms are excellent models to study neuroactive small molecules like fluoxetine. However, prone to variance due to experimental factors, data obtained in these models need to be interpreted with caution, using proper experimental protocols, study designs, validated endpoints as well as well-established models and tests. Choosing the treatment protocol and dose range for fluoxetine and other serotonergic drugs is critical for obtaining valid test results and correct data interpretation. Here we discuss the value of aquatic models to study fluoxetine effects, based on prior high-quality research, and outline the directions of future translational studies in the field. We review fluoxetine-evoked phenotypes in acute vs. chronic protocols, discussing them in the contact of complex role of serotonin in behavioral regulation. We conclude that zebrafish and other aquatic models represent a useful in-vivo tool for fluoxetine pharmacology and (eco)toxicology research.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
| | - Leah Grossman
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; St. George's University School of Medicine, Grenada, WI, USA
| | - Michael Nguyen
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
| | - Caio Maximino
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Center for Biological and Health Sciences, State University of Para, Maraba, Para, Brazil
| | - Denis Broock Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Ave, Santa Maria, Brazil
| | - David J Echevarria
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Allan V Kalueff
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China.
| |
Collapse
|
143
|
Ibrahim M, Mussulini BHM, Moro L, de Assis AM, Rosemberg DB, de Oliveira DL, Rocha JBT, Schwab RS, Schneider PH, Souza DO, Rico EP. Anxiolytic effects of diphenyl diselenide on adult zebrafish in a novelty paradigm. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:187-94. [PMID: 24936773 DOI: 10.1016/j.pnpbp.2014.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022]
Abstract
Anxiety-related disorders are frequently observed in the population. Because the available pharmacotherapies for anxiety can cause side effects, new anxiolytic compounds have been screened using behavioral tasks. For example, diphenyl diselenide (PhSe)2, a simple organoselenium compound with neuroprotective effects, has demonstrated anxiolytic effects in rodents. However, this compound has not yet been tested in a novelty-based paradigm in non-mammalian animal models. In this study, we assessed the potential anxiolytic effects of (PhSe)2 on the behavior of adult zebrafish under novelty-induced stress. The animals were pretreated with 0.1, 0.25, 0.5, and 1μM (PhSe)2 in the aquarium water for 30min. The fish were then exposed to a novel tank, and their behavior was quantified during a 6-min trial. (PhSe)2 treatment altered fish behavior in a concentration-dependent manner. At 0.01 and 0.25μM, (PhSe)2 did not elicit effects on fish behavior. At 0.5μM, moderate behavioral side effects (e.g., lethargy and short episodic immobility) were noted. At the highest concentration tested (1μM), dramatic side effects were observed, such as burst behavior and longer periods of immobility. The results were confirmed by spatiotemporal analysis of each group. Occupancy plot data showed dispersed homebase formation in the 0.25μM (PhSe)2-treated group compared with the control group (treated with 0.04% DMSO). Furthermore, animals treated with 0.25μM (PhSe)2 showed a reduction in latency to enter the top and spent more time in the upper area of the tank. These data suggest that (PhSe)2 may induce an anxiolytic-like effect in situations of anxiety evoked by novelty.
Collapse
Affiliation(s)
- Mohammad Ibrahim
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil; Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Ben Hur M Mussulini
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil.
| | - Luana Moro
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - Adriano M de Assis
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN), 90035-003 Porto Alegre, RS, Brazil
| | - Denis B Rosemberg
- Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN), 90035-003 Porto Alegre, RS, Brazil; Programa de Pós Graduação em Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS CEP 97105-900, Brazil
| | - Diogo L de Oliveira
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - Joao B T Rocha
- Programa de Pós Graduação em Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS CEP 97105-900, Brazil
| | - Ricardo S Schwab
- Departamento de Química, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Paulo Henrique Schneider
- Instituto de Química, Universidade Federal do Rio Grande do Sul, P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Diogo O Souza
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN), 90035-003 Porto Alegre, RS, Brazil
| | - Eduardo P Rico
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN), 90035-003 Porto Alegre, RS, Brazil
| |
Collapse
|
144
|
Maximino C, Lima MG, Costa CC, Guedes IML, Herculano AM. Fluoxetine and WAY 100,635 dissociate increases in scototaxis and analgesia induced by conspecific alarm substance in zebrafish (Danio rerio Hamilton 1822). Pharmacol Biochem Behav 2014; 124:425-33. [DOI: 10.1016/j.pbb.2014.07.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 06/30/2014] [Accepted: 07/06/2014] [Indexed: 10/25/2022]
|
145
|
Fingerprinting of psychoactive drugs in zebrafish anxiety-like behaviors. PLoS One 2014; 9:e103943. [PMID: 25079766 PMCID: PMC4117595 DOI: 10.1371/journal.pone.0103943] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 07/04/2014] [Indexed: 11/19/2022] Open
Abstract
A major hindrance for the development of psychiatric drugs is the prediction of how treatments can alter complex behaviors in assays which have good throughput and physiological complexity. Here we report the development of a medium-throughput screen for drugs which alter anxiety-like behavior in adult zebrafish. The observed phenotypes were clustered according to shared behavioral effects. This barcoding procedure revealed conserved functions of anxiolytic, anxiogenic and psychomotor stimulating drugs and predicted effects of poorly characterized compounds on anxiety. Moreover, anxiolytic drugs all decreased, while anxiogenic drugs increased, serotonin turnover. These results underscore the power of behavioral profiling in adult zebrafish as an approach which combines throughput and physiological complexity in the pharmacological dissection of complex behaviors.
Collapse
|
146
|
Siebel AM, Vianna MR, Bonan CD. Pharmacological and toxicological effects of lithium in zebrafish. ACS Chem Neurosci 2014; 5:468-76. [PMID: 24798681 DOI: 10.1021/cn500046h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lithium is the paradigmatic treatment for bipolar disorder and has been widely used as a mood stabilizer due to its ability to reduce manic and depressive episodes, efficiency in long-term mood stabilization, and effectiveness in reducing suicide risks. Despite many decades of clinical use, the molecular targets of lithium are not completely understood. However, they are credited at least partially to glycogen synthase kinase 3 (GSK3) inhibition, mimicking and exacerbating Wnt signaling pathway activation. There has been a great effort to characterize lithium cellular and system actions, aiming to improve treatment effectiveness and reduce side effects. There is also a growing concern about lithium's impact as an environmental contaminant and its effects on development. In this scenario, zebrafish is a helpful model organism to gather more information on lithium's effects in different systems and developmental stages. The rapid external development, initial transparency, capacity to easily absorb substances, and little space required for maintenance and experimentation, among other advantages, make zebrafish a suitable model. In addition, zebrafish has been established as an effective model organism in behavioral and neuropharmacological studies, reacting to a wide range of psychoactive drugs, including lithium. So far only a limited number of studies evaluated the toxicological impact of lithium on zebrafish development and demonstrated morphological, physiological, and behavioral effects that may be informative regarding human findings. Further studies dedicated to characterize and evaluate the underlying mechanisms of the toxic effects and the potential impact of exposure on developing and adult individuals are necessary to establish safe clinical management guidelines for women with bipolar disorder of childbearing age and safety disposal guidelines for pharmaceutical neuroactive compounds.
Collapse
Affiliation(s)
- Anna M. Siebel
- Laboratório
de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av.
Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
- ZebLab,
Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
| | - Monica R. Vianna
- ZebLab,
Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
- Laboratório
de Biologia e Desenvolvimento do Sistema Nervoso, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av.
Ipiranga 6681, Prédio 12 D, sala 301, 90619-900, Porto Alegre, RS Brazil
| | - Carla D. Bonan
- Laboratório
de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av.
Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
- ZebLab,
Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS Brazil
| |
Collapse
|
147
|
Olsén KH, Ask K, Olsén H, Porsch-Hällström I, Hallgren S. Reprint of "Effects of the SSRI citalopram on behaviours connected to stress and reproduction in Endler guppy, Poecilia wingei". AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 151:97-104. [PMID: 24630159 DOI: 10.1016/j.aquatox.2014.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Psychoactive drugs, such as selective serotonin reuptake inhibitors (SSRI) have been identified in high levels in effluents from Swedish sewage treatment plants (STP) at concentrations high enough to give pharmacological effects in fish. In humans SSRIs are used in the treatment of depression and they have anxiolytic effects. In the present study we exposed Endler guppy (Poecilia wingei) of both sexes to citalopram that showed the highest concentrations of SSRIs in STP effluents and studied reproductive and non-reproductive behaviour. Male courting behaviours were not affected compared to control fish after 14-28 days exposure to 1 μgL(-1). In two experiments exposing both sexes to 0.2, 2.3 or 15 μgL(-1) for 21 days, fish exposed to the two highest doses showed anxiolytic effects when placed in a novel environment (novel tank diving test, NT). Males were only affected by exposure to 15 μgL(-1). They had significantly longer latency to explore the upper half of the aquarium, more visits and longer time spent in the upper half, and showed less bottom freezing behaviour, all markers of anxiolytic behaviour. In females exposure to 2.3 or 15 μgL(-1) significantly increased freezing behaviour, while no effects on other behaviour variables were observed. No effects on shoaling behaviour could be discerned. These results show that citalopram have anxiolytic effects on guppy fish and thus affect ecologically relevant behaviours of importance to survival of fish.
Collapse
Affiliation(s)
- K Håkan Olsén
- Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Alfred Nobel's allé 7, SE-14 189 Huddinge, Sweden.
| | - Katarina Ask
- Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Alfred Nobel's allé 7, SE-14 189 Huddinge, Sweden
| | - Hanna Olsén
- Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Alfred Nobel's allé 7, SE-14 189 Huddinge, Sweden
| | - Inger Porsch-Hällström
- Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Alfred Nobel's allé 7, SE-14 189 Huddinge, Sweden
| | - Stefan Hallgren
- Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Alfred Nobel's allé 7, SE-14 189 Huddinge, Sweden
| |
Collapse
|
148
|
Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 2014; 37:264-78. [PMID: 24726051 DOI: 10.1016/j.tins.2014.02.011] [Citation(s) in RCA: 477] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 01/23/2023]
Abstract
The zebrafish (Danio rerio) is emerging as a new important species for studying mechanisms of brain function and dysfunction. Focusing on selected central nervous system (CNS) disorders (brain cancer, epilepsy, and anxiety) and using them as examples, we discuss the value of zebrafish models in translational neuroscience. We further evaluate the contribution of zebrafish to neuroimaging, circuit level, and drug discovery research. Outlining the role of zebrafish in modeling a wide range of human brain disorders, we also summarize recent applications and existing challenges in this field. Finally, we emphasize the potential of zebrafish models in behavioral phenomics and high-throughput genetic/small molecule screening, which is critical for CNS drug discovery and identifying novel candidate genes.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Oliver Braubach
- Center for Functional Connectomics, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoul, 136791, Republic of Korea
| | - Jan Spitsbergen
- Department of Microbiology, Oregon State University, Nash Hall 220 Corvallis, OR 97331, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, N Mississauga, Ontario L5L 1C6, Canada
| | - Allan V Kalueff
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
149
|
Olsén KH, Ask K, Olsén H, Porsch-Hällström I, Hallgren S. Effects of the SSRI citalopram on behaviours connected to stress and reproduction in Endler guppy, Poecilia wingei. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 148:113-21. [PMID: 24473162 DOI: 10.1016/j.aquatox.2013.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/22/2013] [Accepted: 12/27/2013] [Indexed: 05/25/2023]
Abstract
Psychoactive drugs, such as selective serotonin reuptake inhibitors (SSRI) have been identified in high levels in effluents from Swedish sewage treatment plants (STP) at concentrations high enough to give pharmacological effects in fish. In humans SSRIs are used in the treatment of depression and they have anxiolytic effects. In the present study we exposed Endler guppy (Poecilia wingei) of both sexes to citalopram that showed the highest concentrations of SSRIs in STP effluents and studied reproductive and non-reproductive behaviour. Male courting behaviours were not affected compared to control fish after 14-28 days exposure to 1 μg L(-1). In two experiments exposing both sexes to 0.2, 2.3 or 15 μg L(-1) for 21 days, fish exposed to the two highest doses showed anxiolytic effects when placed in a novel environment (novel tank diving test, NT). Males were only affected by exposure to 15 μg L(-1). They had significantly longer latency to explore the upper half of the aquarium, more visits and longer time spent in the upper half, and showed less bottom freezing behaviour, all markers of anxiolytic behaviour. In females exposure to 2.3 or 15 μg L(-1) significantly increased freezing behaviour, while no effects on other behaviour variables were observed. No effects on shoaling behaviour could be discerned. These results show that citalopram have anxiolytic effects on guppy fish and thus affect ecologically relevant behaviours of importance to survival of fish.
Collapse
Affiliation(s)
- K Håkan Olsén
- Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Alfred Nobel's allé 7, SE-14 189 Huddinge, Sweden.
| | - Katarina Ask
- Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Alfred Nobel's allé 7, SE-14 189 Huddinge, Sweden
| | - Hanna Olsén
- Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Alfred Nobel's allé 7, SE-14 189 Huddinge, Sweden
| | - Inger Porsch-Hällström
- Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Alfred Nobel's allé 7, SE-14 189 Huddinge, Sweden
| | - Stefan Hallgren
- Södertörn University, School of Natural Sciences, Technology and Environmental Studies, Alfred Nobel's allé 7, SE-14 189 Huddinge, Sweden
| |
Collapse
|
150
|
Hamilton TJ, Holcombe A, Tresguerres M. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proc Biol Sci 2014; 281:20132509. [PMID: 24285203 DOI: 10.1098/rspb.2013.2509] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The average surface pH of the ocean is dropping at a rapid rate due to the dissolution of anthropogenic CO2, raising concerns for marine life. Additionally, some coastal areas periodically experience upwelling of CO2-enriched water with reduced pH. Previous research has demonstrated ocean acidification (OA)-induced changes in behavioural and sensory systems including olfaction, which is due to altered function of neural gamma-aminobutyric acid type A (GABAA) receptors. Here, we used a camera-based tracking software system to examine whether OA-dependent changes in GABAA receptors affect anxiety in juvenile Californian rockfish (Sebastes diploproa). Anxiety was estimated using behavioural tests that measure light/dark preference (scototaxis) and proximity to an object. After one week in OA conditions projected for the next century in the California shore (1125 ± 100 µatm, pH 7.75), anxiety was significantly increased relative to controls (483 ± 40 µatm CO2, pH 8.1). The GABAA-receptor agonist muscimol, but not the antagonist gabazine, caused a significant increase in anxiety consistent with altered Cl(-) flux in OA-exposed fish. OA-exposed fish remained more anxious even after 7 days back in control seawater; however, they resumed their normal behaviour by day 12. These results show that OA could severely alter rockfish behaviour; however, this effect is reversible.
Collapse
Affiliation(s)
- Trevor James Hamilton
- Department of Psychology, MacEwan University, , Edmonton, Alberta, Canada, Marine Biology Research Division, Scripps Institution of Oceanography, University of California, , San Diego, CA, USA
| | | | | |
Collapse
|