101
|
Castillo JC, Creasy T, Kumari P, Shetty A, Shokal U, Tallon LJ, Eleftherianos I. Drosophila anti-nematode and antibacterial immune regulators revealed by RNA-Seq. BMC Genomics 2015; 16:519. [PMID: 26162375 PMCID: PMC4499211 DOI: 10.1186/s12864-015-1690-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 06/05/2015] [Indexed: 12/27/2022] Open
Abstract
Background Drosophila melanogaster activates a variety of immune responses against microbial infections. However, information on the Drosophila immune response to entomopathogenic nematode infections is currently limited. The nematode Heterorhabditis bacteriophora is an insect parasite that forms a mutualistic relationship with the gram-negative bacteria Photorhabdus luminescens. Following infection, the nematodes release the bacteria that quickly multiply within the insect and produce several toxins that eventually kill the host. Although we currently know that the insect immune system interacts with Photorhabdus, information on interaction with the nematode vector is scarce. Results Here we have used next generation RNA-sequencing to analyze the transcriptional profile of wild-type adult flies infected by axenic Heterorhabditis nematodes (lacking Photorhabdus bacteria), symbiotic Heterorhabditis nematodes (carrying Photorhabdus bacteria), and Photorhabdus bacteria alone. We have obtained approximately 54 million reads from the different infection treatments. Bioinformatic analysis shows that infection with Photorhabdus alters the transcription of a large number of Drosophila genes involved in translational repression as well in response to stress. However, Heterorhabditis infection alters the transcription of several genes that participate in lipidhomeostasis and metabolism, stress responses, DNA/protein sythesis and neuronal functions. We have also identified genes in the fly with potential roles in nematode recognition, anti-nematode activity and nociception. Conclusions These findings provide fundamental information on the molecular events that take place in Drosophila upon infection with the two pathogens, either separately or together. Such large-scale transcriptomic analyses set the stage for future functional studies aimed at identifying the exact role of key factors in the Drosophila immune response against nematode-bacteria complexes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1690-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julio C Castillo
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC, 20052, USA. .,Laboratory of Malaria and Vector Research, National Institutes of Health, Rockville, MD, 20852, USA.
| | - Todd Creasy
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Priti Kumari
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Amol Shetty
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Upasana Shokal
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC, 20052, USA.
| | - Luke J Tallon
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Ioannis Eleftherianos
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC, 20052, USA.
| |
Collapse
|
102
|
Xu YJ, Luo F, Gao Q, Shang Y, Wang C. Metabolomics reveals insect metabolic responses associated with fungal infection. Anal Bioanal Chem 2015; 407:4815-21. [PMID: 25895944 DOI: 10.1007/s00216-015-8648-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 12/19/2022]
Abstract
The interactions between insects and pathogenic fungi are complex. We employed metabolomic techniques to profile insect metabolic dynamics upon infection by the pathogenic fungus Beauveria bassiana. Silkworm larvae were infected with fungal spores and microscopic observations demonstrated that the exhaustion of insect hemocytes was coupled with fungal propagation in the insect body cavity. Metabolomic analyses revealed that fungal infection could significantly alter insect energy and nutrient metabolisms as well as the immune defense responses, including the upregulation of carbohydrates, amino acids, fatty acids, and lipids, but the downregulation of eicosanoids and amines. The insect antifeedant effect of the fungal infection was evident with the reduced level of maclurin (a component of mulberry leaves) in infected insects but elevated accumulations in control insects. Insecticidal and cytotoxic mycotoxins like oosporein and beauveriolides were also detected in insects at the later stages of infection. Taken together, the metabolomics data suggest that insect immune responses are energy-cost reactions and the strategies of nutrient deprivation, inhibition of host immune responses, and toxin production would be jointly employed by the fungus to kill insects. The data obtained in this study will facilitate future functional studies of genes and pathways associated with insect-fungus interactions.
Collapse
Affiliation(s)
- Yong-Jiang Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | | | | | |
Collapse
|
103
|
Juneja P, Ariani CV, Ho YS, Akorli J, Palmer WJ, Pain A, Jiggins FM. Exome and transcriptome sequencing of Aedes aegypti identifies a locus that confers resistance to Brugia malayi and alters the immune response. PLoS Pathog 2015; 11:e1004765. [PMID: 25815506 PMCID: PMC4376896 DOI: 10.1371/journal.ppat.1004765] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/25/2015] [Indexed: 11/18/2022] Open
Abstract
Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait.
Collapse
Affiliation(s)
- Punita Juneja
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Cristina V. Ariani
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Yung Shwen Ho
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
| | - Jewelna Akorli
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - William J. Palmer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
104
|
Peña JM, Carrillo MA, Hallem EA. Variation in the susceptibility of Drosophila to different entomopathogenic nematodes. Infect Immun 2015; 83:1130-8. [PMID: 25561714 PMCID: PMC4333445 DOI: 10.1128/iai.02740-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/29/2014] [Indexed: 12/11/2022] Open
Abstract
Entomopathogenic nematodes (EPNs) in the genera Heterorhabditis and Steinernema are lethal parasites of insects that are of interest as models for understanding parasite-host interactions and as biocontrol agents for insect pests. EPNs harbor a bacterial endosymbiont in their gut that assists in insect killing. EPNs are capable of infecting and killing a wide range of insects, yet how the nematodes and their bacterial endosymbionts interact with the insect immune system is poorly understood. Here, we develop a versatile model system for understanding the insect immune response to parasitic nematode infection that consists of seven species of EPNs as model parasites and five species of Drosophila fruit flies as model hosts. We show that the EPN Steinernema carpocapsae, which is widely used for insect control, is capable of infecting and killing D. melanogaster larvae. S. carpocapsae is associated with the bacterium Xenorhabdus nematophila, and we show that X. nematophila induces expression of a subset of antimicrobial peptide genes and suppresses the melanization response to the nematode. We further show that EPNs vary in their virulence toward D. melanogaster and that Drosophila species vary in their susceptibilities to EPN infection. Differences in virulence among different EPN-host combinations result from differences in both rates of infection and rates of postinfection survival. Our results establish a powerful model system for understanding mechanisms of host-parasite interactions and the insect immune response to parasitic nematode infection.
Collapse
Affiliation(s)
- Jennifer M Peña
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Mayra A Carrillo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
105
|
Breaux JA, Schumacher MK, Juliano SA. What does not kill them makes them stronger: larval environment and infectious dose alter mosquito potential to transmit filarial worms. Proc Biol Sci 2015; 281:rspb.2014.0459. [PMID: 24827444 DOI: 10.1098/rspb.2014.0459] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
For organisms with complex life cycles, larval environments can modify adult phenotypes. For mosquitoes and other vectors, when physiological impacts of stressors acting on larvae carry over into the adult stage they may interact with infectious dose of a vector-borne pathogen, producing a range of phenotypes for vector potential. Investigation of impacts of a common source of stress, larval crowding and intraspecific competition, on adult vector interactions with pathogens may increase our understanding of the dynamics of pathogen transmission by mosquito vectors. Using Aedes aegypti and the nematode parasite Brugia pahangi, we demonstrate dose dependency of fitness effects of B. pahangi infection on the mosquito, as well as interactions between competitive stress among larvae and infectious dose for resulting adults that affect the physiological and functional ability of mosquitoes to act as vectors. Contrary to results from studies on mosquito-arbovirus interactions, our results suggest that adults from crowded larvae may limit infection better than do adults from uncrowded controls, and that mosquitoes from high-quality larval environments are more physiologically and functionally capable vectors of B. pahangi. Our results provide another example of how the larval environment can have profound effects on vector potential of resulting adults.
Collapse
Affiliation(s)
- Jennifer A Breaux
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Molly K Schumacher
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Steven A Juliano
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| |
Collapse
|
106
|
Bartholomay LC. Infection barriers and responses in mosquito-filarial worm interactions. CURRENT OPINION IN INSECT SCIENCE 2014; 3:37-42. [PMID: 32846673 DOI: 10.1016/j.cois.2014.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 06/11/2023]
Abstract
As a function of size, migration trajectory through the body and developmental site, filarial worm parasites inflict significant damage on the mosquito host. Some mosquitoes are equipped with physical and physiological barriers that confer a refractory state to parasite infection. In a susceptible host, parasites migrate to a developmental site and achieve an intracellular existence; during this process, worms elicit canonical mosquito immune response elements, particularly melanization and antimicrobial peptide (AMP) production. It is clear now that the response to infection also involves mitigating stress and manipulation of host cell machinery to delay necrosis. This review focuses on mechanisms of refractoriness and resistance to Brugia malayi, Brugia pahangi, and Dirofilaria immitis, with emphasis on infection in the mosquito, Aedes aegypti.
Collapse
Affiliation(s)
- Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
107
|
Kramarz PE, Mordarska A, Mroczka M. Response of Tribolium castaneum to elevated copper concentrations is influenced by history of metal exposure, sex-specific defences, and infection by the parasite Steinernema feltiae. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:757-766. [PMID: 24563382 DOI: 10.1007/s10646-014-1212-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
We studied how copper toxicity in the red flour beetle, Tribolium castaneum changed as a result of infection by the entomopathogenic nematode Steinernema feltiae. Measured traits were: respiration, growth and survival, as well as the concentrations of copper within beetle tissues and in its diet. By comparing F1 and F5 generation we were able to answer how long-term metal exposure changed the responses to both copper and the parasite. The beetles did accumulate copper; however, the results indicated that copper concentrations in beetle tissues were affected by nematode infection, the sex of the experimental animals, and the number of generations of exposure. Five generations of exposure to copper resulted in the highest dry body mass of infected beetles of both sexes; additionally, this group also had the lowest copper concentrations in their tissues. The only factor that had a significant effect on respiration was infection by nematodes: infected beetles of both sexes in both generational groups had significantly decreased respiration rates. Survival was lowest in nematode-infected animals of both sexes from both generations, regardless of exposure to copper. Our results confirm that an organism's response to metal pollution is dependent on its health status and sex. We also found that the history of exposure to metal was equally important-we found enhanced resistance to copper intoxication after only five generations of exposure.
Collapse
Affiliation(s)
- Paulina E Kramarz
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland,
| | | | | |
Collapse
|
108
|
Li Y, Hu X, Zhang X, Liu Z, Ding X, Xia L, Hu S. Photorhabdus luminescensPirAB-fusion protein exhibits both cytotoxicity and insecticidal activity. FEMS Microbiol Lett 2014; 356:23-31. [DOI: 10.1111/1574-6968.12474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/29/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022] Open
Affiliation(s)
- Yusheng Li
- College of Life Sciences; Hunan Provincial Key Laboratory of Microbial Molecular Biology - State Key Laboratory Breeding Base of Microbial Molecular Biology; Hunan Normal University; Changsha China
| | - Xiaofeng Hu
- College of Life Sciences; Hunan Provincial Key Laboratory of Microbial Molecular Biology - State Key Laboratory Breeding Base of Microbial Molecular Biology; Hunan Normal University; Changsha China
| | - Xu Zhang
- College of Life Sciences; Hunan Provincial Key Laboratory of Microbial Molecular Biology - State Key Laboratory Breeding Base of Microbial Molecular Biology; Hunan Normal University; Changsha China
| | - Zhengqiang Liu
- College of Life Sciences; Hunan Provincial Key Laboratory of Microbial Molecular Biology - State Key Laboratory Breeding Base of Microbial Molecular Biology; Hunan Normal University; Changsha China
| | - Xuezhi Ding
- College of Life Sciences; Hunan Provincial Key Laboratory of Microbial Molecular Biology - State Key Laboratory Breeding Base of Microbial Molecular Biology; Hunan Normal University; Changsha China
| | - Liqiu Xia
- College of Life Sciences; Hunan Provincial Key Laboratory of Microbial Molecular Biology - State Key Laboratory Breeding Base of Microbial Molecular Biology; Hunan Normal University; Changsha China
| | - Shengbiao Hu
- College of Life Sciences; Hunan Provincial Key Laboratory of Microbial Molecular Biology - State Key Laboratory Breeding Base of Microbial Molecular Biology; Hunan Normal University; Changsha China
| |
Collapse
|
109
|
Choi YJ, Aliota MT, Mayhew GF, Erickson SM, Christensen BM. Dual RNA-seq of parasite and host reveals gene expression dynamics during filarial worm-mosquito interactions. PLoS Negl Trop Dis 2014; 8:e2905. [PMID: 24853112 PMCID: PMC4031193 DOI: 10.1371/journal.pntd.0002905] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/14/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parasite biology, by its very nature, cannot be understood without integrating it with that of the host, nor can the host response be adequately explained without considering the activity of the parasite. However, due to experimental limitations, molecular studies of parasite-host systems have been predominantly one-sided investigations focusing on either of the partners involved. Here, we conducted a dual RNA-seq time course analysis of filarial worm parasite and host mosquito to better understand the parasite processes underlying development in and interaction with the host tissue, from the establishment of infection to the development of infective-stage larva. METHODOLOGY/PRINCIPAL FINDINGS Using the Brugia malayi-Aedes aegypti system, we report parasite gene transcription dynamics, which exhibited a highly ordered developmental program consisting of a series of cyclical and state-transitioning temporal patterns. In addition, we contextualized these parasite data in relation to the concurrent dynamics of the host transcriptome. Comparative analyses using uninfected tissues and different host strains revealed the influence of parasite development on host gene transcription as well as the influence of the host environment on parasite gene transcription. We also critically evaluated the life-cycle transcriptome of B. malayi by comparing developmental stages in the mosquito relative to those in the mammalian host, providing insight into gene expression changes underpinning the mosquito-borne parasitic lifestyle of this heteroxenous parasite. CONCLUSIONS/SIGNIFICANCE The data presented herein provide the research community with information to design wet lab experiments and select candidates for future study to more fully dissect the whole set of molecular interactions of both organisms in this mosquito-filarial worm symbiotic relationship. Furthermore, characterization of the transcriptional program over the complete life cycle of the parasite, including stages within the mosquito, could help devise novel targets for control strategies.
Collapse
Affiliation(s)
- Young-Jun Choi
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - George F. Mayhew
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sara M. Erickson
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bruce M. Christensen
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
110
|
Koshel EI, Aleshin VV, Eroshenko GA, Kutyrev VV. Phylogenetic analysis of entomoparasitic nematodes, potential control agents of flea populations in natural foci of plague. BIOMED RESEARCH INTERNATIONAL 2014; 2014:135218. [PMID: 24804197 PMCID: PMC3996313 DOI: 10.1155/2014/135218] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/05/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
Abstract
Entomoparasitic nematodes are natural control agents for many insect pests, including fleas that transmit Yersinia pestis, a causative agent of plague, in the natural foci of this extremely dangerous zoonosis. We examined the flea samples from the Volga-Ural natural focus of plague for their infestation with nematodes. Among the six flea species feeding on different rodent hosts (Citellus pygmaeus, Microtus socialis, and Allactaga major), the rate of infestation varied from 0 to 21%. The propagation rate of parasitic nematodes in the haemocoel of infected fleas was very high; in some cases, we observed up to 1,000 juveniles per flea specimen. Our study of morphology, life cycle, and rDNA sequences of these parasites revealed that they belong to three distinct species differing in the host specificity. On SSU and LSU rRNA phylogenies, these species representing three genera (Rubzovinema, Psyllotylenchus, and Spilotylenchus), constitute a monophyletic group close to Allantonema and Parasitylenchus, the type genera of the families Allantonematidae and Parasitylenchidae (Nematoda: Tylenchida). We discuss the SSU-ITS1-5.8S-LSU rDNA phylogeny of the Tylenchida with a special emphasis on the suborder Hexatylina.
Collapse
Affiliation(s)
- E. I. Koshel
- Russian Research Anti-Plague Institute “Microbe”, Saratov 410005, Russia
| | - V. V. Aleshin
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
- National Research Institute of Physiology, Biochemistry, and Nutrition of Farm Animals, Russian Academy of Agricultural Sciences, Kaluga Region, Borovsk 249013, Russia
| | - G. A. Eroshenko
- Russian Research Anti-Plague Institute “Microbe”, Saratov 410005, Russia
| | - V. V. Kutyrev
- Russian Research Anti-Plague Institute “Microbe”, Saratov 410005, Russia
| |
Collapse
|
111
|
Theopold U, Krautz R, Dushay MS. The Drosophila clotting system and its messages for mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:42-46. [PMID: 23545286 DOI: 10.1016/j.dci.2013.03.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/07/2013] [Accepted: 03/24/2013] [Indexed: 06/02/2023]
Abstract
Drosophila has been increasingly used as a model to study hemolymph clotting. Proteomics and bioinformatics identified candidate clotting-factors, several of which were tested using genetics. Mutants and lines with reduced expression of clotting-factors show subtle effects after wounding, indicating that sealing wounds may rely on redundant mechanisms. More striking effects are observed after infection, in particular when a natural infection model involving entomopathogenic nematodes is used. When translated into mammalian models these results reveal that mammalian blood clots serve a similar immune function, thus providing a new example of the usefulness of studying invertebrate models.
Collapse
Affiliation(s)
- Ulrich Theopold
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden.
| | | | | |
Collapse
|
112
|
Hamilton PT, Leong JS, Koop BF, Perlman SJ. Transcriptional responses in a Drosophila defensive symbiosis. Mol Ecol 2013; 23:1558-1570. [PMID: 24274471 DOI: 10.1111/mec.12603] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/29/2022]
Abstract
Inherited symbionts are ubiquitous in insects and can have important consequences for the fitness of their hosts. Many inherited symbionts defend their hosts against parasites or other natural enemies; however, the means by which most symbionts confer protection is virtually unknown. We examine the mechanisms of defence in a recently discovered case of symbiont-mediated protection, where the bacterial symbiont Spiroplasma defends the fly Drosophila neotestacea from a virulent nematode parasite, Howardula aoronymphium. Using quantitative PCR of Spiroplasma infection intensities and whole transcriptome sequencing, we attempt to distinguish between the following modes of defence: symbiont-parasite competition, host immune priming and the production of toxic factors by Spiroplasma. Our findings do not support a model of exploitative competition between Howardula and Spiroplasma to mediate defence, nor do we find strong support for host immune priming during Spiroplasma infection. Interestingly, we recovered sequence for putative toxins encoded by Spiroplasma, including a novel putative ribosome-inactivating protein, transcripts of which are up-regulated in response to nematode exposure. Protection via the production of toxins may be a widely used and important mechanism in heritable defensive symbioses in insects.
Collapse
Affiliation(s)
- Phineas T Hamilton
- Department of Biology, University of Victoria, PO Box 1800, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | | | | | | |
Collapse
|
113
|
Toubarro D, Avila MM, Montiel R, Simões N. A pathogenic nematode targets recognition proteins to avoid insect defenses. PLoS One 2013; 8:e75691. [PMID: 24098715 PMCID: PMC3787073 DOI: 10.1371/journal.pone.0075691] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/20/2013] [Indexed: 01/18/2023] Open
Abstract
Steinernemacarpocapsae is a nematode pathogenic in a wide variety of insect species. The great pathogenicity of this nematode has been ascribed to its ability to overcome the host immune response; however, little is known about the mechanisms involved in this process. The analysis of an expressed sequence tags (EST) library in the nematode during the infective phase was performed and a highly abundant contig homologous to serine protease inhibitors was identified. In this work, we show that this contig is part of a 641-bp cDNA that encodes a BPTI-Kunitz family inhibitor (Sc-KU-4), which is up-regulated in the parasite during invasion and installation. Recombinant Sc-KU-4 protein was produced in Escherichia coli and shown to inhibit chymotrypsin and elastase activities in a dose-dependent manner by a competitive mechanism with Ki values of 1.8 nM and 2.6 nM, respectively. Sc-KU-4 also inhibited trypsin and thrombin activities to a lesser extent. Studies of the mode of action of Sc-KU-4 and its effects on insect defenses suggest that although Sc-KU-4 did not inhibit the activation of hemocytes or the formation of clotting fibers, it did inhibit hemocyte aggregation and the entrapment of foreign particles by fibers. Moreover, Sc-KU-4 avoided encapsulation and the deposition of clotting materials, which usually occurs in response to foreign particles. We show by protein-protein interaction that Sc-KU-4 targets recognition proteins of insect immune system such as masquerade-like and serine protease-like homologs. The interaction of Sc-KU-4 with these proteins explains the ability of the nematode to overcome host reactions and its large pathogenic spectrum, once these immune proteins are well conserved in insects. The discovery of this inhibitor targeting insect recognition proteins opens new avenues for the development of S. carpocapsae as a biological control agent and provides a new tool to study host-pathogen interactions.
Collapse
Affiliation(s)
- Duarte Toubarro
- IBB/CBA and CIRN/Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Mónica Martinez Avila
- IBB/CBA and CIRN/Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Rafael Montiel
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Nelson Simões
- IBB/CBA and CIRN/Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Portugal
- * E-mail:
| |
Collapse
|
114
|
Fitness cost of Litomosoides sigmodontis filarial infection in mite vectors; implications of infected haematophagous arthropod excretory products in host-vector interactions. BIOMED RESEARCH INTERNATIONAL 2013; 2013:584105. [PMID: 24089685 PMCID: PMC3781844 DOI: 10.1155/2013/584105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 11/18/2022]
Abstract
Filariae are a leading cause of infections which are responsible for serious dermatological, ocular, and vascular lesions. Infective third stage larvae (L3) are transmitted through the bite of a haematophagous vector. Litomosoides sigmodontis is a well-established model of filariasis in the mouse, with the vector being the mite Ornithonyssus bacoti. The aim of the study was to analyse the filarial infection in mites to determine the consequences of filarial infection in the blood-feeding and the reproduction of mites as well as in the regulation of vector-induced inflammation in the mouse skin. Firstly, L3 are unevenly distributed throughout the host population and the majority of the population harbours a moderate infection (1 to 6 L3). Filarial infection does not significantly affect the probing delay for blood feeding. The number of released protonymphs is lower in infected mites but is not correlated with the L3 burden. Finally, induced excreted proteins from infected mites but not from uninfected mites stimulate TNF- α and the neutrophil-chemoattractant KC production by antigen-presenting cells (APCs). Altogether, these results describe the modification of the mite behavior under filarial infection and suggest that the immunomodulatory capacity of the mite may be modified by the presence of the parasite, hindering its defensive ability towards the vertebrate host.
Collapse
|
115
|
Arefin B, Kucerova L, Dobes P, Markus R, Strnad H, Wang Z, Hyrsl P, Zurovec M, Theopold U. Genome-wide transcriptional analysis of Drosophila larvae infected by entomopathogenic nematodes shows involvement of complement, recognition and extracellular matrix proteins. J Innate Immun 2013; 6:192-204. [PMID: 23988573 DOI: 10.1159/000353734] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/13/2013] [Indexed: 01/28/2023] Open
Abstract
Heterorhabditis bacteriophora is an entomopathogenic nematode (EPN) which infects its host by accessing the hemolymph where it releases endosymbiotic bacteria of the species Photorhabdus luminescens. We performed a genome-wide transcriptional analysis of the Drosophila response to EPN infection at the time point at which the nematodes reached the hemolymph either via the cuticle or the gut and the bacteria had started to multiply. Many of the most strongly induced genes have been implicated in immune responses in other infection models. Mapping of the complete set of differentially regulated genes showed the hallmarks of a wound response, but also identified a large fraction of EPN-specific transcripts. Several genes identified by transcriptome profiling or their homologues play protective roles during nematode infections. Genes that positively contribute to controlling nematobacterial infections encode: a homolog of thioester-containing complement protein 3, a basement membrane component (glutactin), a recognition protein (GNBP-like 3) and possibly several small peptides. Of note is that several of these genes have not previously been implicated in immune responses.
Collapse
Affiliation(s)
- Badrul Arefin
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Toubarro D, Avila MM, Hao Y, Balasubramanian N, Jing Y, Montiel R, Faria TQ, Brito RM, Simões N. A serpin released by an entomopathogen impairs clot formation in insect defense system. PLoS One 2013; 8:e69161. [PMID: 23874900 PMCID: PMC3712955 DOI: 10.1371/journal.pone.0069161] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/07/2013] [Indexed: 11/18/2022] Open
Abstract
Steinernema carpocapsae is an entomopathogenic nematode widely used for the control of insect pests due to its virulence, which is mainly attributed to the ability the parasitic stage has to overcome insect defences. To identify the mechanisms underlying such a characteristic, we studied a novel serpin-like inhibitor (sc-srp-6) that was detected in a transcriptome analysis. Recombinant Sc-SRP-6 produced in Escherichia coli had a native fold of serpins belonging to the α-1-peptidase family and exhibited inhibitory activity against trypsin and α-chymotrypsin with Ki of 0.42×10−7 M and 1.22×10−7 M, respectively. Functional analysis revealed that Sc-SRP-6 inhibits insect digestive enzymes, thus preventing the hydrolysis of ingested particles. Moreover, Sc-SRP-6 impaired the formation of hard clots at the injury site, a major insect defence mechanism against invasive pathogens. Sc-SRP-6 does not prevent the formation of clot fibres and the activation of prophenoloxidases but impairs the incorporation of the melanin into the clot. Binding assays showed a complex formation between Sc-SRP-6 and three proteins in the hemolymph of lepidopteran required for clotting, apolipophorin, hexamerin and trypsin-like, although the catalytic inhibition occurred exclusively in trypsin-like. This data allowed the conclusion that Sc-SRP-6 promotes nematode virulence by inhibiting insect gut juices and by impairing immune clot reaction.
Collapse
Affiliation(s)
- Duarte Toubarro
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - Mónica M. Avila
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - YouJin Hao
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - Natesan Balasubramanian
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - Yingjun Jing
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - Rafael Montiel
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| | - Tiago Q. Faria
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rui M. Brito
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nelson Simões
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
- * E-mail:
| |
Collapse
|
117
|
Castillo JC, Shokal U, Eleftherianos I. Immune gene transcription in Drosophila adult flies infected by entomopathogenic nematodes and their mutualistic bacteria. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:179-85. [PMID: 22902989 DOI: 10.1016/j.jinsphys.2012.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 05/08/2023]
Abstract
Despite impressive advances in the broad field of insect innate immunity, our understanding of the molecular basis of insect immune responses to nematode infections remains incomplete. Here we have investigated the transcriptional induction of immune pathway genes in the fruit fly Drosophila melanogaster upon infection with the entomopathogenic (or insect pathogenic) nematodes Heterorhabditis bacteriophora and their mutualistic bacteria Photorhabdus luminescens, either collectively or separately. We show that in most cases, infection of wild-type adult flies with Heterorhabditis nematodes carrying or lacking mutualistic Photorhabdus bacteria results in the up-regulation of genes in the Toll, Imd, JAK/STAT, JNK and TGF-beta pathways. We also find that direct injection of Photorhabdus bacteria into flies fails to induce the transcription of antimicrobial peptide genes and stress-related genes in Drosophila. These results suggest that Heterorhabditis nematodes and their associated Photorhabdus bacteria employ distinct strategies to evade the Drosophila immune response and establish infection.
Collapse
Affiliation(s)
- J C Castillo
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, Columbian College of Arts and Sciences, The George Washington University, Washington, DC 20052, USA
| | | | | |
Collapse
|
118
|
Simón F, Siles-Lucas M, Morchón R, González-Miguel J, Mellado I, Carretón E, Montoya-Alonso JA. Human and animal dirofilariasis: the emergence of a zoonotic mosaic. Clin Microbiol Rev 2012; 25:507-44. [PMID: 22763636 PMCID: PMC3416488 DOI: 10.1128/cmr.00012-12] [Citation(s) in RCA: 541] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dirofilariasis represents a zoonotic mosaic, which includes two main filarial species (Dirofilaria immitis and D. repens) that have adapted to canine, feline, and human hosts with distinct biological and clinical implications. At the same time, both D. immitis and D. repens are themselves hosts to symbiotic bacteria of the genus Wolbachia, the study of which has resulted in a profound shift in the understanding of filarial biology, the mechanisms of the pathologies that they produce in their hosts, and issues related to dirofilariasis treatment. Moreover, because dirofilariasis is a vector-borne transmitted disease, their distribution and infection rates have undergone significant modifications influenced by global climate change. Despite advances in our knowledge of D. immitis and D. repens and the pathologies that they inflict on different hosts, there are still many unknown aspects of dirofilariasis. This review is focused on human and animal dirofilariasis, including the basic morphology, biology, protein composition, and metabolism of Dirofilaria species; the climate and human behavioral factors that influence distribution dynamics; the disease pathology; the host-parasite relationship; the mechanisms involved in parasite survival; the immune response and pathogenesis; and the clinical management of human and animal infections.
Collapse
Affiliation(s)
- Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy and IBSAL, University of Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|
119
|
Nielsen-LeRoux C, Gaudriault S, Ramarao N, Lereclus D, Givaudan A. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr Opin Microbiol 2012; 15:220-31. [PMID: 22633889 DOI: 10.1016/j.mib.2012.04.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
Insects are the largest group of animals on earth. Like mammals, virus, fungi, bacteria and parasites infect them. Several tissue barriers and defense mechanisms are common for vertebrates and invertebrates. Therefore some insects, notably the fly Drosophila and the caterpillar Galleria mellonella, have been used as models to study host-pathogen interactions for several insect and mammal pathogens. They are excellent tools to identify pathogen determinants and host tissue cell responses. We focus here on the comparison of effectors used by two different groups of bacterial insect pathogens to accomplish the infection process in their lepidopteran larval host: Bacillus thuringiensis and the nematode-associated bacteria, Photorhabdus and Xenorhabdus. The comparison reveals similarities in function and expression profiles for some genes, which suggest that such factors are conserved during evolution in order to attack the tissue encountered during the infection process.
Collapse
Affiliation(s)
- Christina Nielsen-LeRoux
- INRA, UMR1319, Micalis, Génétique microbienne et Environnement, La Minière, F-78280 Guyancourt, France.
| | | | | | | | | |
Collapse
|
120
|
Castillo JC, Shokal U, Eleftherianos I. A novel method for infecting Drosophila adult flies with insect pathogenic nematodes. Virulence 2012; 3:339-47. [PMID: 22546901 DOI: 10.4161/viru.20244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Drosophila has been established as an excellent genetic and genomic model to investigate host-pathogen interactions and innate immune defense mechanisms. To date, most information on the Drosophila immune response derives from studies that involve bacterial, fungal or viral pathogens. However, immune reactions to insect parasitic nematodes are still not well characterized. The nematodes Heterorhabditis bacteriophora live in symbiosis with the entomopathogenic bacteria Photorhabdus luminescens, and they are able to invade and kill insects. Interestingly, Heterorhabditis nematodes are viable in the absence of Photorhabdus. Techniques for infecting Drosophila larvae with these nematodes have been previously reported. Here, we have developed a method for infecting Drosophila adult flies with Heterorhabditis nematodes carrying (symbiotic worms) or lacking (axenic worms) their associated bacteria. The protocol we present can be readily adapted for studying parasitic strategies of other insect nematodes using Drosophila as the host infection model.
Collapse
Affiliation(s)
- Julio Cesar Castillo
- Insect Infection and Immunity Lab, Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | | | | |
Collapse
|
121
|
Dobes P, Wang Z, Markus R, Theopold U, Hyrsl P. An improved method for nematode infection assays in Drosophila larvae. Fly (Austin) 2012; 6:75-9. [PMID: 22614785 PMCID: PMC3397922 DOI: 10.4161/fly.19553] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The infective juveniles (IJs) of entomopathogenic nematodes (EPNs) seek out host insects and release their symbiotic bacteria into their body cavity causing septicaemia, which eventually leads to host death. The interaction between EPNs and their hosts are only partially understood, in particular the host immune responses appears to involve pathways other than phagocytosis and the canonical transcriptional induction pathways. These pathways are genetically tractable and include for example clotting factors and lipid mediators. The aim of this study was to optimize the nematode infections in Drosophila melanogaster larvae, a well-studied and genetically tractable model organism. Here we show that two nematode species namely Steinernema feltiae and Heterorhabditis bacteriophora display different infectivity toward Drosophila larvae with the latter being less pathogenic. The effects of supporting media and IJ dosage on the mortality of the hosts were assessed and optimized. Using optimum conditions, a faster and efficient setup for nematode infections was developed. This newly established infection model in Drosophila larvae will be applicable in large scale screens aimed at identifying novel genes/pathways involved in innate immune responses.
Collapse
Affiliation(s)
- Pavel Dobes
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | | | | | |
Collapse
|