101
|
Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 2013; 12:15-30. [PMID: 23290134 DOI: 10.1016/j.stem.2012.12.007] [Citation(s) in RCA: 717] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sox family transcription factors are well-established regulators of cell fate decisions during development. Accumulating evidence documents that they play additional roles in adult tissue homeostasis and regeneration. Remarkably, forced expression of Sox factors, in combination with other synergistic factors, reprograms differentiated cells into somatic or pluripotent stem cells. Dysregulation of Sox factors has been further implicated in diseases including cancer. Here, we review molecular and functional evidence linking Sox proteins with stem cell biology, cellular reprogramming, and disease with an emphasis on Sox2.
Collapse
Affiliation(s)
- Abby Sarkar
- Howard Hughes Medical Institute at Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA
| | | |
Collapse
|
102
|
Jiang W, Zhang D, Bursac N, Zhang Y. WNT3 is a biomarker capable of predicting the definitive endoderm differentiation potential of hESCs. Stem Cell Reports 2013; 1:46-52. [PMID: 24052941 PMCID: PMC3757741 DOI: 10.1016/j.stemcr.2013.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/14/2022] Open
Abstract
Generation of functional cells from human pluripotent stem cells (PSCs) through in vitro differentiation is a promising approach for drug screening and cell therapy. However, the observed large and unavoidable variation in the differentiation potential of different human embryonic stem cell (hESC)/induced PSC (iPSC) lines makes the selection of an appropriate cell line for the differentiation of a particular cell lineage difficult. Here, we report identification of WNT3 as a biomarker capable of predicting definitive endoderm (DE) differentiation potential of hESCs. We show that the mRNA level of WNT3 in hESCs correlates with their DE differentiation efficiency. In addition, manipulations of hESCs through WNT3 knockdown or overexpression can respectively inhibit or promote DE differentiation in a WNT3 level-dependent manner. Finally, analysis of several hESC lines based on their WNT3 expression levels allowed accurate prediction of their DE differentiation potential. Collectively, our study supports the notion that WNT3 can serve as a biomarker for predicting DE differentiation potential of hESCs.
Collapse
Affiliation(s)
- Wei Jiang
- Howard Hughes Medical Institute, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Donghui Zhang
- Department of Biomedical Engineering, Duke University, 3000 Science Drive, Hudson Hall 136, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, 3000 Science Drive, Hudson Hall 136, Durham, NC 27708, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
103
|
Hayano T, Garg M, Yin D, Sudo M, Kawamata N, Shi S, Chien W, Ding LW, Leong G, Mori S, Xie D, Tan P, Koeffler HP. SOX7 is down-regulated in lung cancer. J Exp Clin Cancer Res 2013; 32:17. [PMID: 23557216 PMCID: PMC3648366 DOI: 10.1186/1756-9966-32-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/06/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND SOX7 is a transcription factor belonging to the SOX family. Its role in lung cancer is unknown. METHODS In this study, whole genomic copy number analysis was performed on a series of non-small cell lung cancer (NSCLC) cell lines and samples from individuals with epidermal growth factor receptor (EGFR) mutations using a SNP-Chip platform. SOX7 was measured in NSCLC samples and cell lines, and forced expressed in one of these lines. RESULTS A notable surprise was that the numerous copy number (CN) changes observed in samples of Asian, non-smoking EGFR mutant NSCLC were nearly the same as those CN alterations seen in a large collection of NSCLC from The Cancer Genome Atlas which is presumably composed of predominantly Caucasians who often smoked. However, four regions had CN changes fairly unique to the Asian EGFR mutant group. We also examined CN changes in NSCLC lines. The SOX7 gene was homozygously deleted in one (HCC2935) of 10 NSCLC cell lines and heterozygously deleted in two other NSCLC lines. Expression of SOX7 was significantly downregulated in NSCLC cell lines (8/10, 80%) and a large collection of NSCLC samples compared to matched normal lung (57/62, 92%, p= 0.0006). Forced-expression of SOX7 in NSCLC cell lines markedly reduced their cell growth and enhanced their apoptosis. CONCLUSION These data suggest that SOX7 is a novel tumor suppressor gene silenced in the majority of NSCLC samples.
Collapse
Affiliation(s)
- Takahide Hayano
- Genomic Oncology Programme, Cancer Science Institute of Singapore, NUS, Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore
| | - Manoj Garg
- Genomic Oncology Programme, Cancer Science Institute of Singapore, NUS, Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore
| | - Dong Yin
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Cedar- Sinai Medical Center, 8700 Beverly Boulevard, Davis 5068, Los Angeles, CA, 90048, USA
| | - Makoto Sudo
- Genomic Oncology Programme, Cancer Science Institute of Singapore, NUS, Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore
| | - Norihiko Kawamata
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Cedar- Sinai Medical Center, 8700 Beverly Boulevard, Davis 5068, Los Angeles, CA, 90048, USA
| | - Shuo Shi
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenwen Chien
- Genomic Oncology Programme, Cancer Science Institute of Singapore, NUS, Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore
| | - Ling-wen Ding
- Genomic Oncology Programme, Cancer Science Institute of Singapore, NUS, Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore
| | - Geraldine Leong
- Genomic Oncology Programme, Cancer Science Institute of Singapore, NUS, Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore
| | - Seiichi Mori
- Division of Cancer Genomics, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo; 3-8-31 Ariake, Koto-ward, Tokyo Post-code 135-8550, Tokyo, Japan
| | - Dong Xie
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Patrick Tan
- Genomic Oncology Programme, Cancer Science Institute of Singapore, NUS, Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore
- Duke-NUS affiliation to Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - H Phillip Koeffler
- Genomic Oncology Programme, Cancer Science Institute of Singapore, NUS, Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Cedar- Sinai Medical Center, 8700 Beverly Boulevard, Davis 5068, Los Angeles, CA, 90048, USA
- National University Cancer Institute, Singapore, National University Hospital, Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 7, Singapore, 119228, Singapore
| |
Collapse
|
104
|
Price FD, Yin H, Jones A, van Ijcken W, Grosveld F, Rudnicki MA. Canonical Wnt Signaling Induces a Primitive Endoderm Metastable State in Mouse Embryonic Stem Cells. Stem Cells 2013; 31:752-64. [DOI: 10.1002/stem.1321] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/09/2012] [Indexed: 11/08/2022]
|
105
|
Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J 2013; 32:938-53. [PMID: 23474895 DOI: 10.1038/emboj.2013.31] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/24/2013] [Indexed: 01/04/2023] Open
Abstract
How regulatory information is encoded in the genome is poorly understood and poses a challenge when studying biological processes. We demonstrate here that genomic redistribution of Oct4 by alternative partnering with Sox2 and Sox17 is a fundamental regulatory event of endodermal specification. We show that Sox17 partners with Oct4 and binds to a unique 'compressed' Sox/Oct motif that earmarks endodermal genes. This is in contrast to the pluripotent state where Oct4 selectively partners with Sox2 at 'canonical' binding sites. The distinct selection of binding sites by alternative Sox/Oct partnering is underscored by our demonstration that rationally point-mutated Sox17 partners with Oct4 on pluripotency genes earmarked by the canonical Sox/Oct motif. In an endodermal differentiation assay, we demonstrate that the compressed motif is required for proper expression of endodermal genes. Evidently, Oct4 drives alternative developmental programs by switching Sox partners that affects enhancer selection, leading to either an endodermal or pluripotent cell fate. This work provides insights in understanding cell fate transcriptional regulation by highlighting the direct link between the DNA sequence of an enhancer and a developmental outcome.
Collapse
|
106
|
Cheng X, Tiyaboonchai A, Gadue P. Endodermal stem cell populations derived from pluripotent stem cells. Curr Opin Cell Biol 2013; 25:265-71. [PMID: 23452824 DOI: 10.1016/j.ceb.2013.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/15/2013] [Accepted: 01/21/2013] [Indexed: 12/31/2022]
Abstract
The generation of functional endodermal lineages, such as hepatocytes and pancreatic endocrine cells, from pluripotent stem cells (PSCs) remains a challenge. One strategy to enhance the purity, yield and maturity of endodermal derivatives is to expand endoderm committed stem or progenitor cell populations derived from PSCs before final differentiation. Recent studies have shown that this is in fact a viable option both for expanding pure populations of endodermal cells as well as for generating more mature derivative tissues, as highlighted in the case of pancreatic beta cells.
Collapse
Affiliation(s)
- Xin Cheng
- Center for Cellular and Molecular Therapeutics, and Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | |
Collapse
|
107
|
Moerkamp AT, Paca A, Goumans MJ, Kunath T, Kruithof BPT, Kruithof-de Julio M. Extraembryonic endoderm cells as a model of endoderm development. Dev Growth Differ 2013; 55:301-8. [PMID: 23414197 DOI: 10.1111/dgd.12036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
In recent years the multipotent extraembryonic endoderm (XEN) stem cells have been the center of much attention. In vivo, XEN cells contribute to the formation of the extraembryonic endoderm, visceral and parietal endoderm and later on, the yolk sac. Recent data have shown that the distinction between embryonic and extraembryonic endoderm is not as strict as previously thought due to the integration, and not the displacement, of the visceral endoderm into the definitive embryonic endoderm. Therefore, cells from the extraembryonic endoderm also contribute to definitive endoderm. Many research groups focused on unraveling the potential and ability of XEN cells to both support differentiation and/or differentiate into endoderm-like tissues as an alternative to embryonic stem (ES) cells. Moreover, the conversion of ES to XEN cells, shown recently without genetic manipulations, uncovers significant and novel molecular mechanisms involved in extraembryonic endoderm and definitive endoderm development. XEN cell lines provide a unique model for an early mammalian lineage that complements the established ES and trophoblast stem cell lines. Through the study of essential genes and signaling requirements for XEN cells in vitro, insights will be gained about the developmental program of the extraembryonic and embryonic endodermal lineage in vivo. This review will provide an overview on the current literature focusing on XEN cells as a model for primitive endoderm and possibly definitive endoderm as well as the potential of using these cells for therapeutic applications.
Collapse
Affiliation(s)
- Asja T Moerkamp
- Department of Molecular and Cell Biology, Centre of Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
108
|
Wongtrakoongate P, Jones M, Gokhale PJ, Andrews PW. STELLA facilitates differentiation of germ cell and endodermal lineages of human embryonic stem cells. PLoS One 2013; 8:e56893. [PMID: 23457636 PMCID: PMC3573007 DOI: 10.1371/journal.pone.0056893] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 01/18/2013] [Indexed: 12/13/2022] Open
Abstract
Stella is a developmentally regulated gene highly expressed in mouse embryonic stem (ES) cells and in primordial germ cells (PGCs). In human, the gene encoding the STELLA homologue lies on chromosome 12p, which is frequently amplified in long-term cultured human ES cells. However, the role played by STELLA in human ES cells has not been reported. In the present study, we show that during retinoic acid (RA)-induced differentiation of human ES cells, expression of STELLA follows that of VASA, a marker of germline differentiation. By contrast, human embryonal carcinoma cells express STELLA at a higher level compared with both karyotypically normal and abnormal human ES cell lines. We found that over-expression of STELLA does not interfere with maintenance of the stem cell state of human ES cells, but following retinoic acid induction it leads to up-regulation of germline- and endodermal-associated genes, whereas neural markers PAX6 and NEUROD1 are down-regulated. Further, STELLA over-expression facilitates the differentiation of human ES cells into BE12-positive cells, in which the expression of germline- and endodermal-associated genes is enriched, and suppresses differentiation of the neural lineage. Taken together, this finding suggests a role for STELLA in facilitating germline and endodermal differentiation of human ES cells.
Collapse
Affiliation(s)
- Patompon Wongtrakoongate
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (PW); (PWA)
| | - Mark Jones
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Paul J. Gokhale
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Peter W. Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (PW); (PWA)
| |
Collapse
|
109
|
Zhu Y, Li Y, Wei J, Liu X. The role of Sox genes in lung morphogenesis and cancer. Int J Mol Sci 2012; 13:15767-83. [PMID: 23443092 PMCID: PMC3546660 DOI: 10.3390/ijms131215767] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/26/2012] [Accepted: 11/14/2012] [Indexed: 12/17/2022] Open
Abstract
The human lung consists of multiple cell types derived from early embryonic compartments. The morphogenesis of the lung, as well as the injury repair of the adult lung, is tightly controlled by a network of signaling pathways with key transcriptional factors. Lung cancer is the third most cancer-related death in the world, which may be developed due to the failure of regulating the signaling pathways. Sox (sex-determining region Y (Sry) box-containing) family transcriptional factors have emerged as potent modulators in embryonic development, stem cells maintenance, tissue homeostasis, and cancerogenesis in multiple processes. Recent studies demonstrated that the members of the Sox gene family played important roles in the development and maintenance of lung and development of lung cancer. In this context, we summarize our current understanding of the role of Sox family transcriptional factors in the morphogenesis of lung, their oncogenic potential in lung cancer, and their potential impact in the diagnosis, prognosis, and targeted therapy of lung cancer.
Collapse
Affiliation(s)
- Yongzhao Zhu
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life science, Ningxia University, Yinchuan 750021, China; E-Mails: (Y.Z.); (Y.L.)
- Institute of Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yong Li
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life science, Ningxia University, Yinchuan 750021, China; E-Mails: (Y.Z.); (Y.L.)
| | - Jun Wei
- Institute of Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan 750004, China
- Authors to whom correspondence should be addressed; E-Mails: (J.W.); or (X.L.); Tel.: +86-951-674-3751 (J.W.); +86-951-206-2037 (X.L); Fax: +86-951-206-2699 (X.L.)
| | - Xiaoming Liu
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life science, Ningxia University, Yinchuan 750021, China; E-Mails: (Y.Z.); (Y.L.)
- Authors to whom correspondence should be addressed; E-Mails: (J.W.); or (X.L.); Tel.: +86-951-674-3751 (J.W.); +86-951-206-2037 (X.L); Fax: +86-951-206-2699 (X.L.)
| |
Collapse
|
110
|
Hughes C, Radan L, Chang WY, Stanford WL, Betts DH, Postovit LM, Lajoie GA. Mass spectrometry-based proteomic analysis of the matrix microenvironment in pluripotent stem cell culture. Mol Cell Proteomics 2012; 11:1924-36. [PMID: 23023296 DOI: 10.1074/mcp.m112.020057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cellular microenvironment comprises soluble factors, support cells, and components of the extracellular matrix (ECM) that combine to regulate cellular behavior. Pluripotent stem cells utilize interactions between support cells and soluble factors in the microenvironment to assist in the maintenance of self-renewal and the process of differentiation. However, the ECM also plays a significant role in shaping the behavior of human pluripotent stem cells, including embryonic stem cells (hESCs) and induced pluripotent stem cells. Moreover, it has recently been observed that deposited factors in a hESC-conditioned matrix have the potential to contribute to the reprogramming of metastatic melanoma cells. Therefore, the ECM component of the pluripotent stem cell microenvironment necessitates further analysis. In this study we first compared the self-renewal and differentiation properties of hESCs grown on Matrigel™ pre-conditioned by hESCs to those on unconditioned Matrigel™. We determined that culture on conditioned Matrigel™ prevents differentiation when supportive growth factors are removed from the culture medium. To investigate and identify factors potentially responsible for this beneficial effect, we performed a defined SILAC MS-based proteomics screen of hESC-conditioned Matrigel™. From this proteomics screen, we identified over 80 extracellular proteins in matrix conditioned by hESCs and induced pluripotent stem cells. These included matrix-associated factors that participate in key stem cell pluripotency regulatory pathways, such as Nodal/Activin and canonical Wnt signaling. This work represents the first investigation of stem-cell-derived matrices from human pluripotent stem cells using a defined SILAC MS-based proteomics approach.
Collapse
Affiliation(s)
- Chris Hughes
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
111
|
Histone modifications of lineage-specific genesin human embryonic stem cellsduring in vitro differentiation. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
112
|
Cheng X, Ying L, Lu L, Galvão AM, Mills JA, Lin HC, Kotton DN, Shen SS, Nostro MC, Choi JK, Weiss MJ, French DL, Gadue P. Self-renewing endodermal progenitor lines generated from human pluripotent stem cells. Cell Stem Cell 2012; 10:371-84. [PMID: 22482503 DOI: 10.1016/j.stem.2012.02.024] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 02/02/2012] [Accepted: 02/27/2012] [Indexed: 02/06/2023]
Abstract
The use of human pluripotent stem cells for laboratory studies and cell-based therapies is hampered by their tumor-forming potential and limited ability to generate pure populations of differentiated cell types in vitro. To address these issues, we established endodermal progenitor (EP) cell lines from human embryonic and induced pluripotent stem cells. Optimized growth conditions were established that allow near unlimited (>10(16)) EP cell self-renewal in which they display a morphology and gene expression pattern characteristic of definitive endoderm. Upon manipulation of their culture conditions in vitro or transplantation into mice, clonally derived EP cells differentiate into numerous endodermal lineages, including monohormonal glucose-responsive pancreatic β-cells, hepatocytes, and intestinal epithelia. Importantly, EP cells are nontumorigenic in vivo. Thus, EP cells represent a powerful tool to study endoderm specification and offer a potentially safe source of endodermal-derived tissues for transplantation therapies.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 2012; 10:440-54. [PMID: 22482508 DOI: 10.1016/j.stem.2012.02.016] [Citation(s) in RCA: 411] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/12/2011] [Accepted: 02/16/2012] [Indexed: 01/03/2023]
Abstract
Nanog, Oct4, and Sox2 are the core regulators of mouse (m)ESC pluripotency. Although their basic importance in human (h)ESCs has been demonstrated, the mechanistic functions are not well defined. Here, we identify general and cell-line-specific requirements for NANOG, OCT4, and SOX2 in hESCs. We show that OCT4 regulates, and interacts with, the BMP4 pathway to specify four developmental fates. High levels of OCT4 enable self-renewal in the absence of BMP4 but specify mesendoderm in the presence of BMP4. Low levels of OCT4 induce embryonic ectoderm differentiation in the absence of BMP4 but specify extraembryonic lineages in the presence of BMP4. NANOG represses embryonic ectoderm differentiation but has little effect on other lineages, whereas SOX2 and SOX3 are redundant and repress mesendoderm differentiation. Thus, instead of being panrepressors of differentiation, each factor controls specific cell fates. Our study revises the view of how self-renewal is orchestrated in hESCs.
Collapse
|
114
|
Wat MJ, Beck TF, Hernández-García A, Yu Z, Veenma D, Garcia M, Holder AM, Wat JJ, Chen Y, Mohila CA, Lally KP, Dickinson M, Tibboel D, de Klein A, Lee B, Scott DA. Mouse model reveals the role of SOX7 in the development of congenital diaphragmatic hernia associated with recurrent deletions of 8p23.1. Hum Mol Genet 2012; 21:4115-25. [PMID: 22723016 DOI: 10.1093/hmg/dds241] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recurrent microdeletions of 8p23.1 that include GATA4 and SOX7 confer a high risk of both congenital diaphragmatic hernia (CDH) and cardiac defects. Although GATA4-deficient mice have both CDH and cardiac defects, no humans with cardiac defects attributed to GATA4 mutations have been reported to have CDH. We were also unable to identify deleterious GATA4 sequence changes in a CDH cohort. This suggested that haploinsufficiency of another 8p23.1 gene may contribute, along with GATA4, to the development of CDH. To determine if haploinsufficiency of SOX7-another transcription factor encoding gene-contributes to the development of CDH, we generated mice with a deletion of the second exon of Sox7. A portion of these Sox7(Δex2/+) mice developed retrosternal diaphragmatic hernias located in the anterior muscular portion of the diaphragm. Anterior CDH is also seen in Gata4(+/-) mice and has been described in association with 8p23.1 deletions in humans. Immunohistochemistry revealed that SOX7 is expressed in the vascular endothelial cells of the developing diaphragm and may be weakly expressed in some diaphragmatic muscle cells. Sox7(Δex2/Δex2) embryos die prior to diaphragm development with dilated pericardial sacs and failure of yolk sac remodeling suggestive of cardiovascular failure. Similar to our experience screening GATA4, no clearly deleterious SOX7 sequence changes were identified in our CDH cohort. We conclude that haploinsufficiency of Sox7 or Gata4 is sufficient to produce anterior CDH in mice and that haploinsufficiency of SOX7 and GATA4 may each contribute to the development of CDH in individuals with 8p23.1 deletions.
Collapse
Affiliation(s)
- Margaret J Wat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Feng X, Zhang J, Smuga-Otto K, Tian S, Yu J, Stewart R, Thomson JA. Protein kinase C mediated extraembryonic endoderm differentiation of human embryonic stem cells. Stem Cells 2012; 30:461-70. [PMID: 22213079 DOI: 10.1002/stem.1018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Unlike mouse embryonic stem cells (ESCs), which are closely related to the inner cell mass, human ESCs appear to be more closely related to the later primitive ectoderm. For example, human ESCs and primitive ectoderm share a common epithelial morphology, growth factor requirements, and the potential to differentiate to all three embryonic germ layers. However, it has previously been shown that human ESCs can also differentiate to cells expressing markers of trophoblast, an extraembryonic lineage formed before the formation of primitive ectoderm. Here, we show that phorbol ester 12-O-tetradecanoylphorbol 13-acetate causes human ESCs to undergo an epithelial mesenchymal transition and to differentiate into cells expressing markers of parietal endoderm, another extraembryonic lineage. We further confirmed that this differentiation is through the activation of protein kinase C (PKC) pathway and demonstrated that a particular PKC subtype, PKC-δ, is most responsible for this transition.
Collapse
Affiliation(s)
- Xuezhu Feng
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Sharivkin R, Walker MD, Soen Y. Proteomics-based dissection of human endoderm progenitors by differential cell capture on antibody array. Mol Cell Proteomics 2012; 11:586-95. [PMID: 22580589 DOI: 10.1074/mcp.m111.016840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterogeneity, shortage of material, and lack of progenitor-specific cell surface markers are major obstacles to elucidating the mechanisms underlying developmental processes. Here we report a proteomics platform that alleviates these difficulties and demonstrate its effectiveness in fractionating heterogeneous cultures of early endoderm derived from human embryonic stem cells. The approach, designated differential cell-capture antibody array, is based on highly parallel, comparative screening of live cell populations using hundreds of antibodies directed against cell-surface antigens. We used this platform to fractionate the hitherto unresolved early endoderm compartment of CXCR4+ cells and identify several endoderm (CD61+ and CD63+) and non-endoderm (CD271+, CD49F+, CD44+ and B2M+) sub-populations. We provide evidence that one of these sub-populations, CD61+, is directly derived from CXCR4+ cells, displays characteristic kinetics of emergence, and exhibits a distinct gene expression profile. The results demonstrate the potential of the cell-capture antibody array as a powerful proteomics tool for detailed dissection of heterogeneous cellular systems.
Collapse
Affiliation(s)
- Revital Sharivkin
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
117
|
Wu DT, Seita Y, Zhang X, Lu CW, Roth MJ. Antibody-directed lentiviral gene transduction for live-cell monitoring and selection of human iPS and hES cells. PLoS One 2012; 7:e34778. [PMID: 22536330 PMCID: PMC3334894 DOI: 10.1371/journal.pone.0034778] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 03/09/2012] [Indexed: 12/21/2022] Open
Abstract
The identification of stem cells within a mixed population of cells is a major hurdle for stem cell biology--in particular, in the identification of induced pluripotent stem (iPS) cells during the reprogramming process. Based on the selective expression of stem cell surface markers, a method to specifically infect stem cells through antibody-conjugated lentiviral particles has been developed that can deliver both visual markers for live-cell imaging as well as selectable markers to enrich for iPS cells. Antibodies recognizing SSEA4 and CD24 mediated the selective infection of the iPS cells over the parental human fibroblasts, allowing for rapid expansion of these cells by puromycin selection. Adaptation of the vector allows for the selective marking of human embryonic stem (hES) cells for their removal from a population of differentiated cells. This method has the benefit that it not only identifies stem cells, but that specific genes, including positive and negative selection markers, regulatory genes or miRNA can be delivered to the targeted stem cells. The ability to specifically target gene delivery to human pluripotent stem cells has broad applications in tissue engineering and stem cell therapies.
Collapse
Affiliation(s)
- Dai-tze Wu
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yasunari Seita
- Deptartment of Ob/Gyn, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Xia Zhang
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Chi-Wei Lu
- Deptartment of Ob/Gyn, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Monica J. Roth
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
118
|
Kumar A, Declercq J, Eggermont K, Agirre X, Prosper F, Verfaillie CM. Zic3 induces conversion of human fibroblasts to stable neural progenitor-like cells. J Mol Cell Biol 2012; 4:252-5. [PMID: 22508949 DOI: 10.1093/jmcb/mjs015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
119
|
Parsons JF, Smotrich DB, Gonzalez R, Snyder EY, Moore DA, Parsons XH. Defining Conditions for Sustaining Epiblast Pluripotence Enables Direct Induction of Clinically-Suitable Human Myocardial Grafts from Biologics-Free Human Embryonic Stem Cells. ACTA ACUST UNITED AC 2012; S9. [PMID: 22905333 DOI: 10.4172/2155-9880.s9-001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To date, lacking of a clinically-suitable human cardiac cell source with adequate myocardium regenerative potential has been the major setback in regenerating the damaged human myocardium. Pluripotent Human Embryonic Stem Cells (hESCs) proffer unique revenue to generate a large supply of cardiac lineage-committed cells as human myocardial grafts for cell-based therapy. Due to the prevalence of heart disease worldwide and acute shortage of donor organs or human myocardial grafts, there is intense interest in developing hESC-based therapy for heart disease and failure. However, realizing the potential of hESCs has been hindered by the inefficiency and instability of generating cardiac cells from pluripotent cells through uncontrollable multi-lineage differentiation. In addition, the need for foreign biologics for derivation, maintenance, and differentiation of hESCs may make direct use of such cells and their derivatives in patients problematic. Understanding the requirements for sustaining pluripotentce and self-renewal of hESCs will provide the foundation for de novo derivation and long-term maintenance of biologics-free hESCs under optimal yet well-defined culture conditions from which they can be efficiently directed towards clinically-relevant lineages for therapies. We previously reported the resolving of the elements of a defined culture system, serving as a platform for effectively directing pluripotent hESCs uniformly towards a cardiac lineage-specific fate by small molecule induction. In this study, we found that, under the defined culture conditions, primitive endoderm-like (PEL) cells constitutively emerged and acted through the activin-A-SMAD pathway in a paracrine fashion to sustain the epiblast pluripotence of hESCs. Such defined conditions enable the spontaneous unfolding of inherent early embryogenesis processes that, in turn, aid efficient clonal propagation and de novo derivation of stable biologics-free hESCs from blastocysts that can be directly differentiated into a large supply of clinically-suitable human myocardial grafts across the spectrum of developmental stages using small molecule induction for cardiovascular repair.
Collapse
Affiliation(s)
- James F Parsons
- San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA
| | | | | | | | | | | |
Collapse
|
120
|
Jauch R, Aksoy I, Hutchins AP, Ng CKL, Tian XF, Chen J, Palasingam P, Robson P, Stanton LW, Kolatkar PR. Conversion of Sox17 into a pluripotency reprogramming factor by reengineering its association with Oct4 on DNA. Stem Cells 2011; 29:940-51. [PMID: 21472822 DOI: 10.1002/stem.639] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Very few proteins are capable to induce pluripotent stem (iPS) cells and their biochemical uniqueness remains unexplained. For example, Sox2 cooperates with other transcription factors to generate iPS cells, but Sox17, despite binding to similar DNA sequences, cannot. Here, we show that Sox2 and Sox17 exhibit inverse heterodimerization preferences with Oct4 on the canonical versus a newly identified compressed sox/oct motif. We can swap the cooperativity profiles of Sox2 and Sox17 by exchanging single amino acids at the Oct4 interaction interface resulting in Sox2KE and Sox17EK proteins. The reengineered Sox17EK now promotes reprogramming of somatic cells to iPS, whereas Sox2KE has lost this potential. Consistently, when Sox2KE is overexpressed in embryonic stem cells it forces endoderm differentiation similar to wild-type Sox17. Together, we demonstrate that strategic point mutations that facilitate Sox/Oct4 dimer formation on variant DNA motifs lead to a dramatic swap of the bioactivities of Sox2 and Sox17.
Collapse
Affiliation(s)
- Ralf Jauch
- Laboratory for Structural Biochemistry and Genome Institute of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Hughes CS, Radan L, Betts D, Postovit LM, Lajoie GA. Proteomic analysis of extracellular matrices used in stem cell culture. Proteomics 2011; 11:3983-91. [PMID: 21834137 DOI: 10.1002/pmic.201100030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/26/2011] [Accepted: 06/08/2011] [Indexed: 01/02/2023]
Abstract
Numerous matrices for the growth of human embryonic stem cells (hESC) in vitro have been described. However, their exact composition is typically unknown. Information on the components of these matrices will aid in the development of a fully defined growth surface for hESCs. These matrices typically consist of mixture of proteins present in a wide range of abundance making their characterization challenging. In this study, we performed the proteomic analysis of five previously uncharacterized matrices: CellStart, Human Basement Membrane Extract (Human BME), StemXVivo, Bridge Human Extracellular Matrix (BridgeECM), and mouse embryonic fibroblast conditioned matrix (MEF-CMTX). Based on a proteomics protocol optimized using lysates from HeLa cells, we undertook the analysis of the five complex extracellular matrix (ECM) samples using a combination of strong anion and cation exchange chromatography and SDS-PAGE. For each of these matrices, we identify numerous proteins, indicating their complex nature. We also compared these results with a similar proteomics analysis of the growth matrix, Matrigel™. From these analyses, we observed that fibronectin is a primary component of nearly all hESC supportive matrices. This observation led to the investigation of the suitability of fibronectin as a defined ECM for the growth of hESCs. We found that fibronectin promotes the maintenance of pluripotent H9 and CA1 hESCs in an undifferentiated state using mTeSR1 medium. This finding validates the utility of characterizing matrices used for hESC growth in revealing ECM components required for culturing hESCs in a universally applicable defined system.
Collapse
Affiliation(s)
- Chris S Hughes
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | | | | | | | | |
Collapse
|
122
|
Liu Z, Scannell DR, Eisen MB, Tjian R. Control of embryonic stem cell lineage commitment by core promoter factor, TAF3. Cell 2011; 146:720-31. [PMID: 21884934 PMCID: PMC3191068 DOI: 10.1016/j.cell.2011.08.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/06/2011] [Accepted: 08/03/2011] [Indexed: 11/26/2022]
Abstract
Deciphering the molecular basis of pluripotency is fundamental to our understanding of development and embryonic stem cell function. Here, we report that TAF3, a TBP-associated core promoter factor, is highly enriched in ES cells. In this context, TAF3 is required for endoderm lineage differentiation and prevents premature specification of neuroectoderm and mesoderm. In addition to its role in the core promoter recognition complex TFIID, genome-wide binding studies reveal that TAF3 localizes to a subset of chromosomal regions bound by CTCF/cohesin that are selectively associated with genes upregulated by TAF3. Notably, CTCF directly recruits TAF3 to promoter distal sites and TAF3-dependent DNA looping is observed between the promoter distal sites and core promoters occupied by TAF3/CTCF/cohesin. Together, our findings support a new role of TAF3 in mediating long-range chromatin regulatory interactions that safeguard the finely-balanced transcriptional programs underlying pluripotency.
Collapse
Affiliation(s)
- Zhe Liu
- Howard Hughes Medical Institute, Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Devin R. Scannell
- Howard Hughes Medical Institute, Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael B. Eisen
- Howard Hughes Medical Institute, Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert Tjian
- Howard Hughes Medical Institute, Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720, USA
- LKS Bio-medical and Health Sciences Center, CIRM Center of Excellence, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
123
|
Takayama K, Inamura M, Kawabata K, Tashiro K, Katayama K, Sakurai F, Hayakawa T, Furue MK, Mizuguchi H. Efficient and directive generation of two distinct endoderm lineages from human ESCs and iPSCs by differentiation stage-specific SOX17 transduction. PLoS One 2011; 6:e21780. [PMID: 21760905 PMCID: PMC3131299 DOI: 10.1371/journal.pone.0021780] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 06/08/2011] [Indexed: 02/07/2023] Open
Abstract
The establishment of methods for directive differentiation from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is important for regenerative medicine. Although Sry-related HMG box 17 (SOX17) overexpression in ESCs leads to differentiation of either extraembryonic or definitive endoderm cells, respectively, the mechanism of these distinct results remains unknown. Therefore, we utilized a transient adenovirus vector-mediated overexpression system to mimic the SOX17 expression pattern of embryogenesis. The number of alpha-fetoprotein-positive extraembryonic endoderm (ExEn) cells was increased by transient SOX17 transduction in human ESC- and iPSC-derived primitive endoderm cells. In contrast, the number of hematopoietically expressed homeobox (HEX)-positive definitive endoderm (DE) cells, which correspond to the anterior DE in vivo, was increased by transient adenovirus vector-mediated SOX17 expression in human ESC- and iPSC-derived mesendoderm cells. Moreover, hepatocyte-like cells were efficiently generated by sequential transduction of SOX17 and HEX. Our findings show that a stage-specific transduction of SOX17 in the primitive endoderm or mesendoderm promotes directive ExEn or DE differentiation by SOX17 transduction, respectively.
Collapse
Affiliation(s)
- Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Mitsuru Inamura
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
- Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Katsuhisa Tashiro
- Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Kazufumi Katayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takao Hayakawa
- Pharmaceutics and Medical Devices Agency, Chiyoda-ku, Tokyo, Japan
- Pharmaceutical Research and Technology Institute, Kinki University, Higashiosaka, Osaka, Japan
| | - Miho Kusuda Furue
- JCRB Cell Bank, Division of Bioresources, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
- Laboratory of Cell Processing, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
124
|
Chung MIS, Ma ACH, Fung TK, Leung AYH. Characterization of Sry-related HMG box group F genes in zebrafish hematopoiesis. Exp Hematol 2011; 39:986-998.e5. [PMID: 21726513 DOI: 10.1016/j.exphem.2011.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 06/18/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The roles of Sry-related HMG box (Sox) genes in zebrafish hematopoiesis are not clearly defined. In this study, we have characterized the sequence homology, gene expression, hematopoietic functions, and regulation of sox genes in F group (SoxF) in zebrafish embryos. MATERIALS AND METHODS Expression of zebrafish SoxF genes were analyzed by whole-mount in situ hybridization, reverse transcription polymerase chain reaction, and real-time reverse transcription polymerase chain reaction of erythroid cells obtained from Tg(gata1:GFP) embryos by fluorescence-activated cell sorting. Roles of SoxF genes were analyzed in zebrafish embryos using morpholino knockdown and analyzed by whole-mount in situ hybridization and real-time reverse transcription polymerase chain reaction. Embryo patterning and vascular development were analyzed. RESULTS All members, except sox17, contained a putative β-catenin binding site. sox7 and 18 expressed primarily in the vasculature. sox17 expressed in the intermediate cell mass and its knockdown significantly reduced primitive erythropoiesis at 18 hours post-fertilization (hpf). Definitive hematopoiesis was unaffected. Concomitant sox7 and sox18 knockdown disrupted vasculogenesis and angiogenesis, but not hematopoiesis. sox32 knockdown delayed medial migration of hematopoietic and endothelial progenitors at 18 hpf and abolished cmyb expression at the caudal hematopoietic tissue at 48 hpf. These defects could be prevented by delaying its knockdown using a caged sox32 morpholino uncaged at 10 hpf. Knockdown of SoxF genes significantly upregulated their own expression and that of sox32 also upregulated sox18 expression. CONCLUSIONS sox17 helped to maintain primitive hematopoiesis, whereas sox7 and sox18 regulated angiogenesis and vasculogenesis. sox32 affected both vascular and hematopoietic development through its effects on medial migration of the hematopoietic and endothelial progenitors.
Collapse
Affiliation(s)
- Martin In Shing Chung
- Division of Haematology and Bone Marrow Transplantation, Department of Medicine, Queen Mary Hospital, University of Hong Kong, China
| | | | | | | |
Collapse
|
125
|
Fukamachi H, Shimada S, Ito K, Ito Y, Yuasa Y. CD133 is a marker of gland-forming cells in gastric tumors and Sox17 is involved in its regulation. Cancer Sci 2011; 102:1313-21. [PMID: 21457403 PMCID: PMC11158885 DOI: 10.1111/j.1349-7006.2011.01947.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CD133 is a universal marker of tissue stem/progenitor cells as well as cancer stem cells, but its physiological significance remains to be elucidated. Here we examined the relationship between expression of CD133 and features of gastric epithelial cells, and found that CD133-positive (CD133[+]) tumor cell lines formed well-differentiated tumors while CD133-negative (CD133[-]) lines formed poorly differentiated ones when subcutaneously injected into nude mice. We also found that CD133(+) and CD133(-) cell populations co-existed in some cell lines. FACS analysis showed that CD133(+) cells were mother cells because CD133(+) cells formed both CD133(+) and CD133(-) cells, but CD133(-) cells did not form CD133(+) cells. In these cell lines, CD133(+) cells formed well-differentiated tumors while CD133(-) cells formed poorly differentiated ones. In human gastric cancers, CD133 was exclusively expressed on the luminal surface membrane of gland-forming cells, and it was never found on poorly differentiated diffuse-type cells. Considering that poorly differentiated tumors often develop from well-differentiated tumors during tumor progression, these results suggest that loss of expression of CD133 might be related to gastric tumor progression. Microarray analysis showed that CD133(+) cells specifically expressed Sox17, a tumor suppressor in gastric carcinogenesis. Forced expression of SOX17 induced expression of CD133 in CD133(-) cells, and reduction of SOX17 caused by siRNA in CD133(+) cells induced a reduction in the level of CD133. These results indicate that Sox17 might be a key transcription factor controlling CD133 expression, and that it might also play a role in the control of gastric tumor progression.
Collapse
Affiliation(s)
- Hiroshi Fukamachi
- Department of Molecular Oncology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
126
|
Criscimanna A, Zito G, Taddeo A, Richiusa P, Pitrone M, Morreale D, Lodato G, Pizzolanti G, Citarrella R, Galluzzo A, Giordano C. In vitro generation of pancreatic endocrine cells from human adult fibroblast-like limbal stem cells. Cell Transplant 2011; 21:73-90. [PMID: 21669045 DOI: 10.3727/096368911x580635] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cells might provide unlimited supply of transplantable cells for β-cell replacement therapy in diabetes. The human limbus is a highly specialized region hosting a well-recognized population of epithelial stem cells, which sustain the continuous renewal of the cornea, and the recently identified stromal fibroblast-like stem cells (f-LSCs), with apparent broader plasticity. However, the lack of specific molecular markers for the identification of the multipotent limbal subpopulation has so far limited the investigation of their differentiation potential. In this study we show that the human limbus contains uncommitted cells that could be potentially harnessed for the treatment of diabetes. Fourteen limbal biopsies were obtained from patients undergoing surgery for ocular diseases not involving the conjunctiva or corneal surface. We identified a subpopulation of f-LSCs characterized by robust proliferative capacity, expressing several pluripotent stem cell markers and exhibiting self-renewal ability. We then demonstrated the potential of f-LSCs to differentiate in vitro into functional insulin-secreting cells by developing a four-step differentiation protocol that efficiently directed f-LSCs towards the pancreatic endocrine cell fate. The expression of specific endodermal, pancreatic, islet, and β-cell markers, as well as functional properties of f-LSC-derived insulin-producing cells, were evaluated during differentiation. With our stage-specific approach, up to 77% of f-LSCs eventually differentiated into cells expressing insulin (also assessed as C-peptide) and exhibited phenotypic features of mature β-cells, such as expression of critical transcription factors and presence of secretory granules. Although insulin content was about 160-fold lower than what observed in adult islets, differentiated cells processed ∼98% of their proinsulin content, similar to mature β-cells. Moreover, they responded in vitro in a regulated manner to multiple secretory stimuli, including glucose. In conclusion, f-LSCs represent a possible relevant source of autologous, transplantable, insulin-producing cells that could be tested for the reversal of diabetes.
Collapse
Affiliation(s)
- Angela Criscimanna
- Sezione di Endocrinologia, Dipartimento Biomedico di Medicina Interna e Specialistica, Università degli Studi di Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Adamo A, Sesé B, Boue S, Castaño J, Paramonov I, Barrero MJ, Izpisua Belmonte JC. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol 2011; 13:652-9. [PMID: 21602794 DOI: 10.1038/ncb2246] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/30/2011] [Indexed: 12/14/2022]
Abstract
We identify LSD1 (lysine-specific demethylase 1; also known as KDM1A and AOF2) as a key histone modifier that participates in the maintenance of pluripotency through the regulation of bivalent domains, a chromatin environment present at the regulatory regions of developmental genes that contains both H3K4 di/trimethylation and H3K27 trimethylation marks. LSD1 occupies the promoters of a subset of developmental genes that contain bivalent domains and are co-occupied by OCT4 and NANOG in human embryonic stem cells, where it controls the levels of H3K4 methylation through its demethylase activity. Thus, LSD1 has a role in maintaining the silencing of several developmental genes in human embryonic stem cells by regulating the critical balance between H3K4 and H3K27 methylation at their regulatory regions.
Collapse
Affiliation(s)
- Antonio Adamo
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
128
|
Bauwens CL, Song H, Thavandiran N, Ungrin M, Massé S, Nanthakumar K, Seguin C, Zandstra PW. Geometric control of cardiomyogenic induction in human pluripotent stem cells. Tissue Eng Part A 2011; 17:1901-9. [PMID: 21417693 DOI: 10.1089/ten.tea.2010.0563] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although it has been observed that aggregate size affects cardiac development, an incomplete understanding of the cellular mechanisms underlying human pluripotent stem cell-derived cardiomyogenesis has limited the development of robust defined-condition cardiac cell generation protocols. Our objective was thus to elucidate cellular and molecular mechanisms underlying the endogenous control of human embryonic stem cell (hESC) cardiac tissue development, and to test the hypothesis that hESC aggregate size influences extraembryonic endoderm (ExE) commitment and cardiac inductive properties. hESC aggregates were generated with 100, 1000, or 4000 cells per aggregate using microwells. The frequency of endoderm marker (FoxA2 and GATA6)-expressing cells decreased with increasing aggregate size during early differentiation. Cardiogenesis was maximized in aggregates initiated from 1000 cells, with frequencies of 0.49±0.06 cells exhibiting a cardiac progenitor phenotype (KDR(low)/C-KIT(neg)) on day 5 and 0.24±0.06 expressing cardiac Troponin T on day 16. A direct relationship between ExE and cardiac differentiation efficiency was established by forming aggregates with varying ratios of SOX7 (a transcription factor required for ExE development) overexpressing or knockdown hESCs to unmanipulated hESCs. We demonstrate, in a defined, serum-free cardiac induction system, that robust and efficient cardiac differentiation is a function of endogenous ExE cell concentration, a parameter that can be directly modulated by controlling hESC aggregate size.
Collapse
Affiliation(s)
- Celine L Bauwens
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Gracz AD, Magness ST. Sry-box (Sox) transcription factors in gastrointestinal physiology and disease. Am J Physiol Gastrointest Liver Physiol 2011; 300:G503-15. [PMID: 21292996 PMCID: PMC3302185 DOI: 10.1152/ajpgi.00489.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The genetic mechanisms underlying tissue maintenance of the gastrointestinal tract are critical for the proper function of the digestive system under normal physiological stress. The identification of transcription factors and related signal transduction pathways that regulate stem cell maintenance and lineage allocation is attractive from a clinical standpoint in that it may provide targets for novel cell- or drug-based therapies. Sox [sex-determining region Y (Sry) box-containing] factors are a family of transcription factors that are emerging as potent regulators of stem cell maintenance and cell fate decisions in multiple organ systems and might provide valuable insight toward the understanding of these processes in endodermally derived tissues of the gastrointestinal tract. In this review, we focus on the known genetic functions of Sox factors and their roles in epithelial tissues of the esophagus, stomach, intestine, colon, pancreas, and liver. Additionally, we discuss pathological conditions in the gastrointestinal tract that are associated with a dysregulation of Sox factors. Further study of Sox factors and their role in gastrointestinal physiology and pathophysiology may lead to advances that facilitate control of tissue maintenance and development of advanced clinical therapies.
Collapse
Affiliation(s)
- A. D. Gracz
- 1Department of Medicine, Division of Gastroenterology and Hepatology, and ,2Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - S. T. Magness
- 1Department of Medicine, Division of Gastroenterology and Hepatology, and
| |
Collapse
|
130
|
Chen C, Chai J, Singh L, Kuo CY, Jin L, Feng T, Marzano S, Galeni S, Zhang N, Iacovino M, Qin L, Hara M, Stein R, Bromberg JS, Kyba M, Ku HT. Characterization of an in vitro differentiation assay for pancreatic-like cell development from murine embryonic stem cells: detailed gene expression analysis. Assay Drug Dev Technol 2011; 9:403-19. [PMID: 21395400 DOI: 10.1089/adt.2010.0314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Embryonic stem (ES) cell technology may serve as a platform for the discovery of drugs to treat diseases such as diabetes. However, because of difficulties in establishing reliable ES cell differentiation methods and in creating cost-effective plating conditions for the high-throughput format, screening for molecules that regulate pancreatic beta cells and their immediate progenitors has been limited. A relatively simple and inexpensive differentiation protocol that allows efficient generation of insulin-expressing cells from murine ES cells was previously established in our laboratories. In this report, this system is characterized in greater detail to map developmental cell stages for future screening experiments. Our results show that sequential activation of multiple gene markers for undifferentiated ES cells, epiblast, definitive endoderm, foregut, and pancreatic lineages was found to follow the sequence of events that mimics pancreatic ontogeny. Cells that expressed enhanced green fluorescent protein, driven by pancreatic and duodenal homeobox 1 or insulin 1 promoter, correctly expressed known beta cell lineage markers. Overexpression of Sox17, an endoderm fate-determining transcription factor, at a very early stage of differentiation (days 2-3) enhanced pancreatic gene expression. Overexpression of neurogenin3, an endocrine progenitor cell marker, induced glucagon expression at stages when pancreatic and duodenal homeobox 1 message was present (days 10-16). Forced expression (between days 16 and 25) of MafA, a pancreatic maturation factor, resulted in enhanced expression of insulin genes, glucose transporter 2 and glucokinase, and glucose-responsive insulin secretion. Day 20 cells implanted in vivo resulted in pancreatic-like cells. Together, our differentiation assay recapitulates the proceedings and behaviors of pancreatic development and will be valuable for future screening of beta cell effectors.
Collapse
Affiliation(s)
- Chialin Chen
- Department of Diabetes, Endocrinology, and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Pan Y, Ouyang Z, Wong WH, Baker JC. A new FACS approach isolates hESC derived endoderm using transcription factors. PLoS One 2011; 6:e17536. [PMID: 21408072 PMCID: PMC3052315 DOI: 10.1371/journal.pone.0017536] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 02/08/2011] [Indexed: 01/18/2023] Open
Abstract
We show that high quality microarray gene expression profiles can be obtained following FACS sorting of cells using combinations of transcription factors. We use this transcription factor FACS (tfFACS) methodology to perform a genomic analysis of hESC-derived endodermal lineages marked by combinations of SOX17, GATA4, and CXCR4, and find that triple positive cells have a much stronger definitive endoderm signature than other combinations of these markers. Additionally, SOX17(+) GATA4(+) cells can be obtained at a much earlier stage of differentiation, prior to expression of CXCR4(+) cells, providing an important new tool to isolate this earlier definitive endoderm subtype. Overall, tfFACS represents an advancement in FACS technology which broadly crosses multiple disciplines, most notably in regenerative medicine to redefine cellular populations.
Collapse
Affiliation(s)
- Yuqiong Pan
- Departments of Statistics, Genetics, and Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Zhengqing Ouyang
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Wing Hung Wong
- Departments of Statistics, Health Research and Policy, and Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (WHW); (JCB)
| | - Julie C. Baker
- Department of Genetics, Stanford University, Stanford, California, United States of America
- * E-mail: (WHW); (JCB)
| |
Collapse
|
132
|
Proteomic identification of overexpressed adenomatous polyposis coli and cyclin B3 during endoderm differentiation from human embryonic stem cells. Pancreas 2011; 40:271-80. [PMID: 21404461 DOI: 10.1097/mpa.0b013e3182003335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES This study was aimed to investigate important proteins associated with endoderm differentiation by pancreatic derivation protocol from human embryonic stem cells (hESCs). METHODS Comparative proteomic analysis of endoderm cells differentiated from hESCs by activin A and low serum was performed. Proteins with altered expression levels during endoderm differentiation were investigated by 2-dimensional gel electrophoresis (2-DE) with mass spectrometric analysis. RESULTS Thirty-four protein spots with significantly changed intensities were identified. These were functionally annotated based on gene ontology. The messenger RNA expression levels of 5 genes, APC, CCNB3, HSPA9, CCT2, and YWHAE, were correlated with 2-DE analysis. We further validated the protein expression levels of adenomatous polyposis coli (APC) and cyclin B3 (CCNB3) by using Western blot analysis and immunocytochemistry. They are involved in the regulation of cell cycle, thus, cyclins and cyclin-dependent kinases, which regulate the cell cycle, were examined. Cyclin A1, cyclin D2, and cyclin E2 were upregulated, and other cyclins and cyclin-dependent kinases were downregulated in endoderm cells. CONCLUSIONS The increase in expression of APC and CCNB3 suggests that these proteins will be important markers for identifying endoderm cells differentiated from hESCs, and they can play important roles in the differentiation of endoderm cells from hESCs or in human endoderm development for pancreas.
Collapse
|
133
|
Maximum parsimony analysis of gene expression profiles permits the reconstruction of developmental cell lineage trees. Dev Biol 2011; 353:440-7. [PMID: 21354129 DOI: 10.1016/j.ydbio.2011.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/07/2011] [Accepted: 02/16/2011] [Indexed: 12/13/2022]
Abstract
Spatiotemporal control of gene expression lies at the heart of generating several hundred distinct cell types required for the development of higher order animals. Different cell types within complex organs are often characterised by means of genome-wide gene expression profiling, but analogous information for early developmental as well as adult stem and progenitor cells is largely missing because their identity is commonly unknown or they are present in prohibitively small numbers. Here we show that maximum parsimony approaches previously used to reconstruct evolutionary trees from gene content of extant species can be adapted to reconstruct cellular hierarchies both during development and steady state homeostasis of complex mammalian tissues. Using haematopoiesis as a model, we show that developmental trees reconstructed from expression profiles of mature cells are not only consistent with current experimentally validated trees but also have predictive value in determining progenitor cell specific transcriptional programmes and lineage determining transcription factors. Subsequent analysis across diverse developmental systems such as neuronal development and endoderm organogenesis demonstrated that maximum parsimony-based reconstruction of developmental trees represents a widely applicable approach to infer developmental pathways as well as the transcriptional control mechanisms underlying cell fate specification.
Collapse
|
134
|
Mtango NR, VandeVoort CA, Latham KE. Ontological aspects of pluripotency and stemness gene expression pattern in the rhesus monkey. Gene Expr Patterns 2011; 11:285-98. [PMID: 21329766 DOI: 10.1016/j.gep.2011.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 11/24/2022]
Abstract
Two essential aspects of mammalian development are the progressive specialization of cells toward different lineages, and the maintenance of progenitor cells that will give rise to the differentiated components of each tissue and also contribute new cells as older cells die or become injured. The transition from totipotentiality to pluripotentiality, to multipotentiality, to monopotentiality, and then to differentiation is a continuous process during development. The ontological relationship between these different stages is not well understood. We report for the first time an ontological survey of expression of 45 putative "stemness" and "pluripotency" genes in rhesus monkey oocytes and preimplantation stage embryos, and comparison to the expression in the inner cell mass, trophoblast stem cells, and a rhesus monkey (ORMES6) embryonic stem cell line. Our results reveal that some of these genes are not highly expressed in all totipotent or pluripotent cell types. Some are predominantly maternal mRNAs present in oocytes and embryos before transcriptional activation, and diminishing before the blastocyst stage. Others are well expressed in morulae or early blastocysts, but are poorly expressed in later blastocysts or ICMs. Also, some of the genes employed to induce pluripotent stem cells from somatic cells (iPS genes) appear unlikely to play major roles as stemness or pluripotency genes in normal embryos.
Collapse
Affiliation(s)
- Namdori R Mtango
- The Fels Institute for Cancer Research & Molecular Biology, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
135
|
Sancho-Bru P, Roelandt P, Narain N, Pauwelyn K, Notelaers T, Shimizu T, Ott M, Verfaillie C. Directed differentiation of murine-induced pluripotent stem cells to functional hepatocyte-like cells. J Hepatol 2011; 54:98-107. [PMID: 20933294 DOI: 10.1016/j.jhep.2010.06.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 05/11/2010] [Accepted: 06/09/2010] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Induced pluripotent stem (iPS) cells exert phenotypic and functional characteristics of embryonic stem cells even though the gene expression pattern is not completely identical. Therefore, it is important to develop procedures which are specifically oriented to induce iPS cell differentiation. METHODS In this study, we describe the differentiation of mouse iPS cells to hepatocyte-like cells, following a directed differentiation procedure that mimics embryonic and fetal liver development. The sequential differentiation was monitored by real-time PCR, immunostaining, and functional assays. RESULTS By sequential stimulation with cytokines known to play a role in liver development, iPS cells were specified to primitive streak/mesendoderm/definitive endoderm. They were then differentiated into two types of cells: those with hepatoblast features and those with hepatocyte characteristics. Differentiated hepatocyte-like cells showed functional properties of hepatocytes, such as albumin secretion, glycogen storage, urea production, and inducible cytochrome activity. Aside from hepatocyte-like cells, mesodermal cells displaying some characteristics of liver sinusoidal endothelium and stellate cells were also detected. CONCLUSIONS These data demonstrate that a protocol, modeled on embryonic liver development, can induce hepatic differentiation of mouse iPS cells, generating a population of cells with mature hepatic phenotype.
Collapse
Affiliation(s)
- Pau Sancho-Bru
- Interdepartmental Stem Cell Institute Leuven, Catholic University Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Ma Z, Swigut T, Valouev A, Rada-Iglesias A, Wysocka J. Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates. Nat Struct Mol Biol 2010; 18:120-7. [PMID: 21183938 DOI: 10.1038/nsmb.2000] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 12/10/2010] [Indexed: 12/12/2022]
Abstract
Prdm14 is a PR-domain and zinc-finger protein whose expression is restricted to the pluripotent cells of the early embryo, embryonic stem cells (ESCs), and germ cells. Here, we show that Prdm14 safeguards mouse ESC (mESC) maintenance by preventing induction of extraembryonic endoderm (ExEn) fates. Conversely, Prdm14 overexpression impairs ExEn differentiation during embryoid body formation. Prdm14 occupies and represses genomic loci encoding ExEn differentiation factors, while also binding to and promoting expression of genes associated with mESC self-renewal. Prdm14-associated genomic regions substantially overlap those occupied by Nanog and Oct4, are enriched in a chromatin signature associated with distal regulatory elements and contain a unique DNA-sequence motif recognized by Prdm14 in vitro. Our work identifies a new member of the mESC transcriptional network, Prdm14, which plays a dual role as a context-dependent transcriptional repressor or activator.
Collapse
Affiliation(s)
- Ziyang Ma
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
137
|
Artus J, Piliszek A, Hadjantonakis AK. The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17. Dev Biol 2010; 350:393-404. [PMID: 21146513 DOI: 10.1016/j.ydbio.2010.12.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 01/06/2023]
Abstract
Cells of the primitive endoderm (PrE) and the pluripotent epiblast (EPI), the two lineages specified within the inner cell mass (ICM) of the mouse blastocyst stage embryo, are segregated into adjacent tissue layers by the end of the preimplantation period. The PrE layer which emerges as a polarized epithelium adjacent to the blastocoel, with a basement membrane separating it from the EPI, has two derivatives, the visceral and parietal endoderm. In this study we have investigated the localization of two transcriptional regulators of the SOX family, SOX17 and SOX7, within the PrE and its derivatives. We noted that SOX17 was first detected in a salt-and-pepper distribution within the ICM, subsequently becoming restricted to the nascent PrE epithelium. This dynamic distribution of SOX17 resembled the localization of GATA6 and GATA4, two other PrE lineage-specific transcription factors. By contrast, SOX7 was only detected in PrE cells positioned in contact with the blastocoel, raising the possibility that these cells are molecularly distinct. Our observations support a model of sequential GATA6 > SOX17 > GATA4 > SOX7 transcription factor activation within the PrE lineage, perhaps correlating with the consecutive periods of cell lineage 'naïvete', commitment and sorting. Furthermore our data suggest that co-expression of SOX17 and SOX7 within sorted PrE cells could account for the absence of a detectable phenotype of Sox17 mutant blastocysts. However, analysis of implantation-delayed blastocysts, revealed a role for SOX17 in the maintenance of PrE epithelial integrity, with the absence of SOX17 leading to premature delamination and migration of parietal endoderm.
Collapse
Affiliation(s)
- Jérôme Artus
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|
138
|
Kim H, Jang MJ, Kang MJ, Han YM. Epigenetic signatures and temporal expression of lineage-specific genes in hESCs during differentiation to hepatocytes in vitro. Hum Mol Genet 2010; 20:401-12. [DOI: 10.1093/hmg/ddq476] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
139
|
Elimination of tumorigenic stem cells from differentiated progeny and selection of definitive endoderm reveals a Pdx1+ foregut endoderm stem cell lineage. Stem Cell Res 2010; 6:143-57. [PMID: 21130058 DOI: 10.1016/j.scr.2010.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 09/21/2010] [Accepted: 10/23/2010] [Indexed: 01/23/2023] Open
Abstract
Embryonic stem cell (ESC) derivatives offer promise for generating clinically useful tissues for transplantation, yet the specter of producing tumors in patients remains a significant concern. We have developed a simple method that eliminates the tumorigenic potential from differentiated ESC cultures of murine and human origin while purifying lineage-restricted, definitive endoderm-committed cells. A three-stage scheme utilizing magnetic bead sorting and specific antibodies to remove undifferentiated ESCs and extraembryonic endoderm cells, followed by positive selection of definitive endoderm cells on the basis of epithelial cell adhesion molecule (EpCAM) expression, was used to isolate a population of EpCAM(+)SSEA1(-)SSEA3(-) cells. Sorted cells do not form teratomas after transplantation into immunodeficient mice, but display gene and protein expression profiles indicative of definitive endoderm cells. Sorted cells could be subsequently expanded in vitro and further differentiated to express key pancreas specification proteins. In vivo transplantation of sorted cells resulted in small, benign tissues that uniformly express PDX1. These studies describe a straightforward method without genetic manipulation that eliminates the risk of teratoma formation from ESC differentiated derivatives. Significantly, enriched populations isolated by this method appear to be lineage-restricted definitive endoderm cells with limited proliferation capacity.
Collapse
|
140
|
Lin SCJ, Wani MA, Whitsett JA, Wells JM. Klf5 regulates lineage formation in the pre-implantation mouse embryo. Development 2010; 137:3953-63. [PMID: 20980403 DOI: 10.1242/dev.054775] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kruppel-like transcription factors (Klfs) are essential for the induction and maintenance of pluripotency of embryonic stem cells (ESCs), yet little is known about their roles in establishing the three lineages of the pre-implantation embryo. Here, we show that Klf5 is required for the formation of the trophectoderm (TE) and the inner cell mass (ICM), and for repressing primitive endoderm (PE) development. Although cell polarity appeared normal, Klf5 mutant embryos arrested at the blastocyst stage and failed to hatch due to defective TE development. Klf5 acted cell-autonomously in the TE, downstream of Fgf4 and upstream of Cdx2, Eomes and Krt8. In the ICM, loss of Klf5 resulted in reduced expression of pluripotency markers Oct4 and Nanog, but led to increased Sox17 expression in the PE, suggesting that Klf5 suppresses the PE lineage. Consistent with this, overexpression of Klf5 in transgenic embryos was sufficient to suppress the Sox17(+) PE lineage in the ICM. Klf5 overexpression led to a dose-dependent decrease in Sox17 promoter activity in reporter assays in cultured cells. Moreover, in chimeric embryos, Klf5(-/-) cells preferentially contributed to the Sox17(+) PE lineage and Cdx2 expression was not rescued in Klf5(-/-) outer cells. Finally, outgrowths from Klf5(-/-) embryos failed to form an ICM/pluripotent colony, had very few Oct4(+) or Cdx2(+) cells, but showed an increase in the percentage of Sox17(+) PE cells. These findings demonstrate that Klf5 is a dynamic regulator of all three lineages in the pre-implantation embryo by promoting the TE and epiblast lineages while suppressing the PE lineage.
Collapse
Affiliation(s)
- Suh-Chin J Lin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
141
|
Abstract
The past few years have witnessed remarkable advances in stem cell biology and human genetics, and we have arrived at an era in which patient-specific cell and tissue models are now practical. The recent identification of cardiovascular progenitor cells, as well as the identification of genetic variants underlying congenital heart disorders and adult disease, opens the door to the development of human models of human cardiovascular disease. We review the current understanding of the contribution of progenitor cells to cardiogenesis and outline how pluripotent stem cells can be applied to the modeling of cardiovascular disorders of genetic origin. A key challenge will be to implement these models in an efficient manner to develop a molecular understanding of how genes lead to disease and to screen for genes and drugs that modify the disease process.
Collapse
Affiliation(s)
- Kiran Musunuru
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
142
|
Mathews LA, Hurt EM, Zhang X, Farrar WL. Epigenetic regulation of CpG promoter methylation in invasive prostate cancer cells. Mol Cancer 2010; 9:267. [PMID: 20929579 PMCID: PMC2958982 DOI: 10.1186/1476-4598-9-267] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 10/07/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recently, much attention has been focused on gaining a better understanding of the different populations of cells within a tumor and their contribution to cancer progression. One of the most commonly used methods to isolate a more aggressive sub-population of cells utilizes cell sorting based on expression of certain cell adhesion molecules. A recently established method we developed is to isolate these more aggressive cells based on their properties of increased invasive ability. These more invasive cells have been previously characterized as tumor initiating cells (TICs) that have a stem-like genomic signature and express a number of stem cell genes including Oct3/4 and Nanog and are more tumorigenic compared to their 'non-invasive' counterpart. They also have a profile reminiscent of cells undergoing a classic pattern of epithelial to mesenchymal transition or EMT. Using this model of invasion, we sought to investigate which genes are under epigenetic control in this rare population of cells. Epigenetic modifications, specifically DNA methylation, are key events regulating the process of normal human development. To determine the specific methylation pattern in these invasive prostate cells, and if any developmental genes were being differentially regulated, we analyzed differences in global CpG promoter methylation. RESULTS Differentially methylated genes were determined and select genes were chosen for additional analyses. The non-receptor tyrosine kinase BMX and transcription factor SOX1 were found to play a significant role in invasion. Ingenuity pathway analysis revealed the methylated gene list frequently displayed genes from the IL-6/STAT3 pathway. Cells which have decreased levels of the targets BMX and SOX1 also display loss of STAT3 activity. Finally, using Oncomine, it was determined that more aggressive metastatic prostate cancers in humans also have higher levels of both Stat3 and Sox1. CONCLUSIONS Using this method we can begin to understand which genes are epigenetically regulated in the invasive population compared to the bulk tumor cells. These aggressive sub-populations of cells may be linked to the cancer stem cell hypothesis, making their patterns of epigenetic regulation very attractive for biomarker analysis.
Collapse
Affiliation(s)
- Lesley A Mathews
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
143
|
Kibschull M, Mileikovsky M, Michael IP, Lye SJ, Nagy A. Human embryonic fibroblasts support single cell enzymatic expansion of human embryonic stem cells in xeno-free cultures. Stem Cell Res 2010; 6:70-82. [PMID: 20934930 DOI: 10.1016/j.scr.2010.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 07/07/2010] [Accepted: 08/19/2010] [Indexed: 12/01/2022] Open
Abstract
The future application of human embryonic stem cells (hESC) for therapeutic approaches requires the development of xeno-free culture conditions to prevent the potential transmission of animal pathogens or xenobiotic substances to hESC. An important component of the majority of hESC culture systems developed is the requirement for fibroblasts to serve as feeders. For this purpose, several studies have used human foreskin fibroblasts established under xeno-free conditions. In this study we report xeno-free establishment and maintenance of human embryonic fibroblasts (XHEF) and demonstrate their ability to support long-term self-renewal of hESC under xeno-free culture conditions, using a commercially available complete medium. Importantly, our culture conditions allow enzymatic passaging of hESC. In contrast, hESC cultured on human foreskin fibroblasts (XHFF) under the same conditions were poorly maintained and rapidly subject to differentiation. Our study clearly shows that the source of human fibroblasts is essential for long-term xeno-free hESC maintenance.
Collapse
Affiliation(s)
- Mark Kibschull
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, M5T 3H7, Canada.
| | | | | | | | | |
Collapse
|
144
|
Norrman K, Fischer Y, Bonnamy B, Wolfhagen Sand F, Ravassard P, Semb H. Quantitative comparison of constitutive promoters in human ES cells. PLoS One 2010; 5:e12413. [PMID: 20865032 PMCID: PMC2928720 DOI: 10.1371/journal.pone.0012413] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 07/26/2010] [Indexed: 12/20/2022] Open
Abstract
Background Constitutive promoters that ensure sustained and high level gene expression are basic research tools that have a wide range of applications, including studies of human embryology and drug discovery in human embryonic stem cells (hESCs). Numerous cellular/viral promoters that ensure sustained gene expression in various cell types have been identified but systematic comparison of their activities in hESCs is still lacking. Methodology/Principal Findings We have quantitatively compared promoter activities of five commonly used constitutive promoters, including the human β-actin promoter (ACTB), cytomegalovirus (CMV), elongation factor-1α, (EF1α), phosphoglycerate kinase (PGK) and ubiquitinC (UbC) in hESCs. Lentiviral gene transfer was used to ensure stable integration of promoter-eGFP constructs into the hESCs genome. Promoter activities were quantitatively compared in long term culture of undifferentiated hESCs and in their differentiated progenies. Conclusion/Significance The ACTB, EF1α and PGK promoters showed stable activities during long term culture of undifferentiated hESCs. The ACTB promoter was superior by maintaining expression in 75–80% of the cells after 50 days in culture. During embryoid body (EB) differentiation, promoter activities of all five promoters decreased. Although the EF1α promoter was downregulated in approximately 50% of the cells, it was the most stable promoter during differentiation. Gene expression analysis of differentiated eGFP+ and eGFP- cells indicate that promoter activities might be restricted to specific cell lineages, suggesting the need to carefully select optimal promoters for constitutive gene expression in differentiated hESCs.
Collapse
Affiliation(s)
- Karin Norrman
- Department of Laboratory Medicine, Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | - Yvonne Fischer
- Department of Laboratory Medicine, Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | - Blandine Bonnamy
- Biotechnology and Biotherapy Laboratory, Centre de Recherche de l'Institut du Cerveau et de la Moelle, CNRS UMR 7225, INSERM UMRS 975, University Pierre et Marie Curie, Hôpital Pitié Salpêtrière, Paris, France
| | - Fredrik Wolfhagen Sand
- Department of Laboratory Medicine, Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | - Philippe Ravassard
- Biotechnology and Biotherapy Laboratory, Centre de Recherche de l'Institut du Cerveau et de la Moelle, CNRS UMR 7225, INSERM UMRS 975, University Pierre et Marie Curie, Hôpital Pitié Salpêtrière, Paris, France
| | - Henrik Semb
- Department of Laboratory Medicine, Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
145
|
Roelandt P, Pauwelyn KA, Sancho-Bru P, Subramanian K, Bose B, Ordovas L, Vanuytsel K, Geraerts M, Firpo M, De Vos R, Fevery J, Nevens F, Hu WS, Verfaillie CM. Human embryonic and rat adult stem cells with primitive endoderm-like phenotype can be fated to definitive endoderm, and finally hepatocyte-like cells. PLoS One 2010; 5:e12101. [PMID: 20711405 PMCID: PMC2920330 DOI: 10.1371/journal.pone.0012101] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 07/13/2010] [Indexed: 01/29/2023] Open
Abstract
Stem cell-derived hepatocytes may be an alternative cell source to treat liver diseases or to be used for pharmacological purposes. We developed a protocol that mimics mammalian liver development, to differentiate cells with pluripotent characteristics to hepatocyte-like cells. The protocol supports the stepwise differentiation of human embryonic stem cells (ESC) to cells with characteristics of primitive streak (PS)/mesendoderm (ME)/definitive endoderm (DE), hepatoblasts, and finally cells with phenotypic and functional characteristics of hepatocytes. Remarkably, the same protocol can also differentiate rat multipotent adult progenitor cells (rMAPCs) to hepatocyte-like cells, even though rMAPC are isolated clonally from cultured rat bone marrow (BM) and have characteristics of primitive endoderm cells. A fraction of rMAPCs can be fated to cells expressing genes consistent with a PS/ME/DE phenotype, preceding the acquisition of phenotypic and functional characteristics of hepatocytes. Although the hepatocyte-like progeny derived from both cell types is mixed, between 10-20% of cells are developmentally consistent with late fetal hepatocytes that have attained synthetic, storage and detoxifying functions near those of adult hepatocytes. This differentiation protocol will be useful for generating hepatocyte-like cells from rodent and human stem cells, and to gain insight into the early stages of liver development.
Collapse
Affiliation(s)
- Philip Roelandt
- Interdepartmental Stem Cell Institute Leuven, Catholic University Leuven, Belgium
- Hepatology Department, University Hospitals Leuven, Belgium
| | - Karen Ann Pauwelyn
- Interdepartmental Stem Cell Institute Leuven, Catholic University Leuven, Belgium
- Hepatology Department, University Hospitals Leuven, Belgium
| | - Pau Sancho-Bru
- Interdepartmental Stem Cell Institute Leuven, Catholic University Leuven, Belgium
| | - Kartik Subramanian
- Stem Cell Institute Minnesota, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bipasha Bose
- Interdepartmental Stem Cell Institute Leuven, Catholic University Leuven, Belgium
| | - Laura Ordovas
- Interdepartmental Stem Cell Institute Leuven, Catholic University Leuven, Belgium
| | - Kim Vanuytsel
- Interdepartmental Stem Cell Institute Leuven, Catholic University Leuven, Belgium
| | - Martine Geraerts
- Interdepartmental Stem Cell Institute Leuven, Catholic University Leuven, Belgium
| | - Meri Firpo
- Stem Cell Institute Minnesota, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rita De Vos
- Pathology Department, University Hospitals Leuven, Leuven, Belgium
| | - Johan Fevery
- Hepatology Department, University Hospitals Leuven, Belgium
| | | | - Wei-Shou Hu
- Stem Cell Institute Minnesota, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | |
Collapse
|
146
|
Liew CG. Generation of insulin-producing cells from pluripotent stem cells: from the selection of cell sources to the optimization of protocols. Rev Diabet Stud 2010; 7:82-92. [PMID: 21060967 DOI: 10.1900/rds.2010.7.82] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The pancreas arises from Pdx1-expressing progenitors in developing foregut endoderm in early embryo. Expression of Ngn3 and NeuroD1 commits the cells to form endocrine pancreas, and to differentiate into subsets of cells that constitute islets of Langerhans. β-cells in the islets transcribe gene-encoding insulin, and subsequently process and secrete insulin, in response to circulating glucose. Dysfunction of β-cells has profound metabolic consequences leading to hyperglycemia and diabetes mellitus. β-cells are destroyed via autoimmune reaction in type 1 diabetes (T1D). Type 2 diabetes (T2D), characterized by impaired β-cell functions and reduced insulin sensitivity, accounts for 90% of all diabetic patients. Islet transplantation is a promising treatment for T1D. Pluripotent stem cells provide an unlimited cell source to generate new β-cells for patients with T1D. Furthermore, derivation of induced pluripotent stem cells (iPSCs) from patients captures "disease-in-a-dish" for autologous cell replacement therapy, disease modeling, and drug screening for both types of diabetes. This review highlights essential steps in pancreas development, and potential stem cell applications in cell regeneration therapy for diabetes mellitus.
Collapse
Affiliation(s)
- Chee-Gee Liew
- UCR Stem Cell Center, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
147
|
Lue J, Lin G, Ning H, Xiong A, Lin CS, Glenn JS. Transdifferentiation of adipose-derived stem cells into hepatocytes: a new approach. Liver Int 2010; 30:913-22. [PMID: 20353420 DOI: 10.1111/j.1478-3231.2010.02231.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Several studies have demonstrated techniques in differentiating human adipose-derived stem cells (hADSCs) into hepatocytes. Unfortunately, transdifferentiation is inefficient, and the function of these induced hepatocyte-like cells (which we termed 'iHeps') is low compared with that of real hepatocytes. AIMS We aimed to identify transcriptional deficiencies in iHeps that are critical to hepatocyte development, which may provide insights into improving the efficiency of transdifferentiation. METHODS hADSCs were differentiated into iHeps, and iHeps were assayed for hepatocyte-like activity. iHeps were then screened for expression of several growth factors, receptors and transcription factors (TFs) critical to liver development using reverse transcription-polymerase chain reaction (RT-PCR). Deficient TFs were transduced into hADSCs and hepatocyte function was reassessed after hepatic differentiation. RESULTS Differentiation of hADSCs into iHeps resulted in the upregulation of hepatic proteins. However, the levels of expression of hepatocyte-specific proteins in these iHeps were well below those of Huh 7.5 hepatoma cells, used in comparison. Five developmental TFs were notably absent on the RT-PCR screen. Lentiviral transduction of these TFs into hADSCs followed by culture in hepatocyte induction medium resulted in increased albumin expression compared with untransduced hADSCs treated in a parallel fashion. CONCLUSIONS These five missing TFs are known to regulate hepatocyte differentiation and some are required to establish the competence of the foregut endoderm. Presumably due to their mesenchymal lineage, hADSCs do not express these endodermal TFs and are not fully competent to respond to critical developmental signals. Supplementation of these TFs may induce competency and enhance the differentiation of hADSCs into hepatocytes.
Collapse
Affiliation(s)
- James Lue
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Stanford University, Palo Alto, CA, USA.
| | | | | | | | | | | |
Collapse
|
148
|
Serrano AG, Gandillet A, Pearson S, Lacaud G, Kouskoff V. Contrasting effects of Sox17- and Sox18-sustained expression at the onset of blood specification. Blood 2010; 115:3895-8. [PMID: 20228271 DOI: 10.1182/blood-2009-10-247395] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that Sox7 was transiently expressed at the onset of blood specification and was implicated in the regulation of cell survival, proliferation, and maturation of hematopoietic precursors. Here, we assessed, using embryonic stem cell differentiation as a model system, whether Sox17 and Sox18, 2 close homologs of Sox7, may act similarly to Sox7 at the onset of hematopoietic development. Sox18-enforced expression led to the enhanced proliferation of early hematopoietic precursors while blocking their maturation, phenotype highly reminiscent of Sox7-enforced expression. In striking contrast, Sox17-enforced expression dramatically increased the apoptosis of these early precursors. Similarly to Sox7, Sox18 was transiently expressed during early hematopoiesis, but its expression was predominantly observed in CD41(+) cells, contrasting with Sox7, mostly expressed in Flk1(+) cells. Conversely, Sox17 remained marginally expressed during blood specification. Overall, our data uncover contrasting effect and expression pattern for Sox18 and Sox17 at the onset of hematopoiesis specification.
Collapse
|
149
|
Tang F, Barbacioru C, Bao S, Lee C, Nordman E, Wang X, Lao K, Surani MA. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 2010; 6:468-78. [PMID: 20452321 PMCID: PMC2954317 DOI: 10.1016/j.stem.2010.03.015] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/05/2010] [Accepted: 03/10/2010] [Indexed: 12/15/2022]
Abstract
During the transition from the inner cell mass (ICM) cells of blastocysts to pluripotent embryonic stem cells (ESCs) in vitro, a normal developmental program is replaced in cells that acquire a capacity for infinite self-renewal and pluripotency. We explored the underlying mechanism of this switch by using RNA-Seq transcriptome analysis at the resolution of single cells. We detected significant molecular transitions and major changes in transcript variants, which include genes for general metabolism. Furthermore, the expression of repressive epigenetic regulators increased with a concomitant decrease in gene activators that might be necessary to sustain the inherent plasticity of ESCs. Furthermore, we detected changes in microRNAs (miRNAs), with one set that targets early differentiation genes while another set targets pluripotency genes to maintain the unique ESC epigenotype. Such genetic and epigenetic events may contribute to a switch from a normal developmental program in adult cells during the formation of diseased tissues, including cancers.
Collapse
Affiliation(s)
- Fuchou Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Catalin Barbacioru
- Genetic Systems, Applied Biosystems, part of Life Technologies, 850 Lincoln Centre Drive, Foster City, CA 94404, USA
| | - Siqin Bao
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Caroline Lee
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Ellen Nordman
- Genetic Systems, Applied Biosystems, part of Life Technologies, 850 Lincoln Centre Drive, Foster City, CA 94404, USA
| | - Xiaohui Wang
- Genetic Systems, Applied Biosystems, part of Life Technologies, 850 Lincoln Centre Drive, Foster City, CA 94404, USA
| | - Kaiqin Lao
- Genetic Systems, Applied Biosystems, part of Life Technologies, 850 Lincoln Centre Drive, Foster City, CA 94404, USA
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
150
|
Adachi K, Suemori H, Yasuda SY, Nakatsuji N, Kawase E. Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes Cells 2010; 15:455-70. [PMID: 20384793 DOI: 10.1111/j.1365-2443.2010.01400.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human embryonic stem cell (ESC) pluripotency is thought to be regulated by several key transcription factors including OCT4, NANOG, and SOX2. Although the functions of OCT4 and NANOG in human ESCs are well defined, that of SOX2 has not been fully characterized. To investigate the role of SOX2, we modulated the level of SOX2 expression in human ESCs. Reduction of SOX2 expression in human ESCs induced trophectodermal and partial endodermal differentiation. Interestingly, CDX2, a typical trophectoderm-associated gene, was not up-regulated. In contrast, using the Tet-on gene inducible system, SOX2 over-expression in human ESCs induced trophectoderm differentiation accompanied by increased CDX2 expression. Additionally, SOX2 over-expression resulted in an increase in CGalpha-positive cells, which marks later stage trophectoderm development, rather than placental lactogen-positive cells. Thus, over-expression as well as repression of SOX2 expression in human ESCs resulted in their differentiation into the trophectoderm lineage. Our data show that SOX2 plays an important role in the maintenance of pluripotency of human ESCs and possibly, trophoblast development.
Collapse
Affiliation(s)
- Keiko Adachi
- Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shougoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|