101
|
Gender differences in fat distribution and inflammatory markers among Arabs. Mediators Inflamm 2013; 2013:497324. [PMID: 24227909 PMCID: PMC3818915 DOI: 10.1155/2013/497324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 11/22/2022] Open
Abstract
Recent studies from the Gulf region suggest that compared to men, women have a greater risk of developing metabolic syndrome (MeS). Objective. To investigate gender differences in body composition, adipokines, inflammatory markers, and aerobic fitness in a cohort of healthy Qatari adults. Participants. Healthy Qatari (n = 58) were matched for age, gender, and body mass index. Methods. Body composition and regional fat distribution were determined by dual-energy X-ray absorptiometry and computerized tomography. Laboratory assessments included serum levels of fasting glucose, insulin, lipid profile analysis, adipokines, and inflammatory markers. Subjects were also evaluated for aerobic fitness. Results. Women had more adipose tissue in the total abdominal (P = 0.04) and abdominal subcutaneous (P = 0.07) regions compared to men. Waist circumference and indices of insulin sensitivity were similar; however, women had a more favourable lipid profile than men. Serum adiponectin and leptin levels were significantly higher in women, whereas inflammatory profiles were not different between men and women. Aerobic fitness was lower in women and was associated with abdominal fat accumulation. Conclusion. In premenopausal women, higher levels of adiponectin may support maintenance of insulin sensitivity and normolipidemia despite greater adiposity. However, poor aerobic fitness combined with abdominal fat accumulation may explain their greater future risk of MeS compared with men.
Collapse
|
102
|
Catalán V, Gómez-Ambrosi J, Rodríguez A, Frühbeck G. Adipose tissue immunity and cancer. Front Physiol 2013; 4:275. [PMID: 24106481 PMCID: PMC3788329 DOI: 10.3389/fphys.2013.00275] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/12/2013] [Indexed: 01/04/2023] Open
Abstract
Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete pro-inflammatory adipokines and cytokines providing a microenvironment favorable for tumor growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching toward M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumor growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumor cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumor microenvironment with more sophisticated and selective anti-tumoral drugs.
Collapse
Affiliation(s)
- Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra Pamplona, Spain ; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III Pamplona, Spain
| | | | | | | |
Collapse
|
103
|
Fuentes E, Fuentes F, Vilahur G, Badimon L, Palomo I. Mechanisms of chronic state of inflammation as mediators that link obese adipose tissue and metabolic syndrome. Mediators Inflamm 2013. [PMID: 23843680 DOI: 10.1115/2013/136584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The metabolic syndrome is a cluster of cardiometabolic alterations that include the presence of arterial hypertension, insulin resistance, dyslipidemia, and abdominal obesity. Obesity is associated with a chronic inflammatory response, characterized by abnormal adipokine production, and the activation of proinflammatory signalling pathways resulting in the induction of several biological markers of inflammation. Macrophage and lymphocyte infiltration in adipose tissue may contribute to the pathogenesis of obesity-mediated metabolic disorders. Adiponectin can either act directly on macrophages to shift polarization and/or prime human monocytes into alternative M2-macrophages with anti-inflammatory properties. Meanwhile, the chronic inflammation in adipose tissue is regulated by a series of transcription factors, mainly PPARs and C/EBPs, that in conjunction regulate the expression of hundreds of proteins that participate in the metabolism and storage of lipids and, as such, the secretion by adipocytes. Therefore, the management of the metabolic syndrome requires the development of new therapeutic strategies aimed to alter the main genetic pathways involved in the regulation of adipose tissue metabolism.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Immunology and Haematology Laboratory, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging, Universidad de Talca, Talca, Chile
| | | | | | | | | |
Collapse
|
104
|
Stuber EF, Verpeut J, Horvat-Gordon M, Ramachandran R, Bartell PA. Differential regulation of adipokines may influence migratory behavior in the white-throated sparrow (Zonotrichia albicollis). PLoS One 2013; 8:e59097. [PMID: 23785393 PMCID: PMC3681758 DOI: 10.1371/journal.pone.0059097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 02/12/2013] [Indexed: 11/19/2022] Open
Abstract
White-throated sparrows increase fat deposits during pre-migratory periods and rely on these fat stores to fuel migration. Adipose tissue produces hormones and signaling factors in a rhythmic fashion and may be controlled by a clock in adipose tissue or driven by a master clock in the brain. The master clock may convey photoperiodic information from the environment to adipose tissue to facilitate pre-migratory fattening, and adipose tissue may, in turn, release adipokines to indicate the extent of fat energy stores. Here, we present evidence that a change in signal from the adipokines adiponectin and visfatin may act to indicate body condition, thereby influencing an individual's decision to commence migratory flight, or to delay until adequate fat stores are acquired. We quantified plasma adiponectin and visfatin levels across the day in captive birds held under constant photoperiod. The circadian profiles of plasma adiponectin in non-migrating birds were approximately inverse the profiles from migrating birds. Adiponectin levels were positively correlated to body fat, and body fat was inversely related to the appearance of nocturnal migratory restlessness. Visfatin levels were constant across the day and did not correlate with fat deposits; however, a reduction in plasma visfatin concentration occurred during the migratory period. The data suggest that a significant change in the biological control of adipokine expression exists between the two migratory conditions and we propose a role for adiponectin, visfatin and adipose clocks in the regulation of migratory behaviors.
Collapse
Affiliation(s)
- Erica F. Stuber
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Ecology Graduate Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jessica Verpeut
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Maria Horvat-Gordon
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ramesh Ramachandran
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Paul A. Bartell
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Ecology Graduate Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
105
|
Fuentes E, Fuentes F, Vilahur G, Badimon L, Palomo I. Mechanisms of chronic state of inflammation as mediators that link obese adipose tissue and metabolic syndrome. Mediators Inflamm 2013; 2013:136584. [PMID: 23843680 PMCID: PMC3697419 DOI: 10.1155/2013/136584] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/31/2013] [Indexed: 12/31/2022] Open
Abstract
The metabolic syndrome is a cluster of cardiometabolic alterations that include the presence of arterial hypertension, insulin resistance, dyslipidemia, and abdominal obesity. Obesity is associated with a chronic inflammatory response, characterized by abnormal adipokine production, and the activation of proinflammatory signalling pathways resulting in the induction of several biological markers of inflammation. Macrophage and lymphocyte infiltration in adipose tissue may contribute to the pathogenesis of obesity-mediated metabolic disorders. Adiponectin can either act directly on macrophages to shift polarization and/or prime human monocytes into alternative M2-macrophages with anti-inflammatory properties. Meanwhile, the chronic inflammation in adipose tissue is regulated by a series of transcription factors, mainly PPARs and C/EBPs, that in conjunction regulate the expression of hundreds of proteins that participate in the metabolism and storage of lipids and, as such, the secretion by adipocytes. Therefore, the management of the metabolic syndrome requires the development of new therapeutic strategies aimed to alter the main genetic pathways involved in the regulation of adipose tissue metabolism.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Immunology and Haematology Laboratory, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging, Universidad de Talca, Talca, Chile
- Centro de Estudios en Alimentos Procesados (CEAP), Conicyt-Regional, Gore Maule, R09I2001 Talca, Chile
| | - Francisco Fuentes
- Interno Sexto Año, Escuela de Medicina, Facultad de Medicina, Universidad Católica del Maule, Chile
| | - Gemma Vilahur
- Centro de Investigación Cardiovascular, ICCC-CSIC, Hospital de la Santa Creu i Sant Pau, CiberOBN, Instituto Carlos III, Barcelona, Spain
| | - Lina Badimon
- Centro de Investigación Cardiovascular, ICCC-CSIC, Hospital de la Santa Creu i Sant Pau, CiberOBN, Instituto Carlos III, Barcelona, Spain
| | - Iván Palomo
- Immunology and Haematology Laboratory, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging, Universidad de Talca, Talca, Chile
- Centro de Estudios en Alimentos Procesados (CEAP), Conicyt-Regional, Gore Maule, R09I2001 Talca, Chile
| |
Collapse
|
106
|
Lai X, Zhang C, Wang J, Wang C, Lan X, Zhang C, Lei C, Chen H. mRNA expression pattern and association study with growth traits of bovine vaspin gene. Mol Biol Rep 2013; 40:4499-505. [PMID: 23657594 DOI: 10.1007/s11033-013-2542-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 04/29/2013] [Indexed: 02/01/2023]
Abstract
Visceral adipose tissue-derived serine protease inhibitor (vaspin) is an interesting novel adipocytokine with insulin-sensitizing effects. Some studies have suggested that vaspin could play an important role in the development of obesity and metabolic disorders. However, the tissue expression patterns in cattle and impact of vaspin gene variants on the growth traits has not been determined yet. Herein, we firstly investigated the tissue expression patterns of vaspin gene in new born and adult cattle. The results showed that vaspin was ubiquitously expressed in most tissues and strongly expressed in the heart, skeletal muscle and fat. Then, genetic variants within bovine vaspin gene were screened in 1235 individuals from five Chinese indigenous cattle breeds. Two novel mutations in coding region (NW_001494061: g.1124477 G>A and g.1118561 T>C) of bovine vaspin gene were identified using MspI PCR-RFLP and HhaI ACRS PCR-RFLP detection. Association analysis revealed both two mutations were significantly associated with bodyweight and chest girth at 24 months in cattle (P < 0.05). Therefore, the MspI and HhaI genetic variants of bovine vaspin gene were recommended as DNA markers related to growth traits through marker-assisted selection for genetics and breeding in cattle.
Collapse
Affiliation(s)
- Xinsheng Lai
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Bulló M, Casas R, Portillo MP, Basora J, Estruch R, García-Arellano A, Lasa A, Juanola-Falgarona M, Arós F, Salas-Salvadó J. Dietary glycemic index/load and peripheral adipokines and inflammatory markers in elderly subjects at high cardiovascular risk. Nutr Metab Cardiovasc Dis 2013; 23:443-450. [PMID: 22209741 DOI: 10.1016/j.numecd.2011.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Epidemiological and clinical studies suggest that low-glycemic index diets could protect against weight gain. However, the relationship between these diets and adipokines or inflammatory markers is unclear. In the present study we examine how the dietary glycemic index (GI) and dietary glycemic load (GL) are associated with several adipokines and related metabolic risk markers of obesity and diabetes in a cross-sectional and longitudinal manner. METHODS AND RESULTS 511 elderly community-dwelling men and women at high cardiovascular risk were recruited for the PREDIMED trial. Dietary data were collected at baseline and after 1 year of follow-up. The GI and GL were calculated. Plasma leptin, adiponectin and other metabolic risk markers were measured at baseline and after 1 year. At baseline, subjects in the highest quartiles of GI showed significantly higher levels of TNF and IL-6 than those in the lowest quartiles. Dietary GI index was negatively related to plasma leptin and adiponectin levels. After 1 year of follow-up, subjects with a higher increase in dietary GI or GL showed a greater reduction in leptin and adiponectin plasma levels. There was no association between GI or GL and the other metabolic markers measured. CONCLUSION Our results suggest that the consumption of high-GI or high-GL diets may modulate plasma concentrations of leptin and adiponectin, both adipostatic molecules implicated in energy balance and cardiometabolic risk.
Collapse
Affiliation(s)
- M Bulló
- Human Nutrition Unit, Hospital Universitari de Sant Joan, Facultat de Medicina i Ciències de la Salut, IISPV, URV, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Wang Q, Yin J, Xu L, Cheng H, Zhao X, Xiang H, Lam HS, Mi J, Li M. Prevalence of metabolic syndrome in a cohort of Chinese schoolchildren: comparison of two definitions and assessment of adipokines as components by factor analysis. BMC Public Health 2013; 13:249. [PMID: 23514611 PMCID: PMC3608951 DOI: 10.1186/1471-2458-13-249] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 03/13/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although attention to metabolic syndrome (MetS) in children has increased, there is still no universally accepted definition and its pathogenesis remains unclear. Our aim was to compare the current definitions of childhood MetS in a Chinese cohort and to examine the clustering pattern of MetS risk factors, particularly inclusion of leptin and adiponectin as additional components. METHODS 3373 schoolchildren aged 6 to 18 years were recruited. Anthropometric and biochemical parameters and adipokines were measured. MetS was identified using both the International Diabetes Federation (IDF) and a modified Adult Treatment Panel III (ATP III) definitions. Exploratory factor analysis was performed to establish grouping of metabolic characteristics. RESULTS For children ≥ 10 years, the prevalence of MetS was 14.3% in the obese group and 3.7% in the overweight group according to the new IDF definition, and 32.3% in the obese group and 8.4% in the overweight group according to the modified ATPIII definition. Frequency of hypertriglyceridemia, low high-density lipoprotein cholesterol (HDL-C), impaired fasting glucose, elevated blood pressure, and central obesity according to the new IDF definition was 16.7%, 20.7%, 15.8%, 25.5% and 75.5% in obese boys and 14.7%, 24.0%, 12.0%, 11.0% and 89.0% in obese girls, respectively. Metabolic abnormalities in children under 10 years of age were also noted. Using factor analysis on eight conventional variables led to the extraction of 3 factors. Waist circumference (WC) provided a connection between two factors in boys and all three factors in girls, suggesting its central role in the clustering of metabolic risk factors. Addition of leptin and adiponectin also led to the extraction of 3 factors, with leptin providing a connection between two factors in girls. When using WC, mean arterial pressure, triglyceride/HDL-C ratio, HOMA-IR and leptin/adiponectin ratio as variables, a single-factor model was extracted. WC had the biggest factor loading, followed by leptin/adiponectin ratio. CONCLUSIONS MetS was highly prevalent amongst obese children and adolescents in this cohort, regardless of the definition used. Central obesity is the key player in the clustering of metabolic risk factors in children, supporting the new IDF definition. Moreover, our findings suggest that a common factor may underlie MetS. Leptin/adiponectin ratio as a possible component of MetS deserves further consideration.
Collapse
Affiliation(s)
- Qiaoxuan Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Yang H, Li F, Xiong X, Kong X, Zhang B, Yuan X, Fan J, Duan Y, Geng M, Li L, Yin Y. Soy isoflavones modulate adipokines and myokines to regulate lipid metabolism in adipose tissue, skeletal muscle and liver of male Huanjiang mini-pigs. Mol Cell Endocrinol 2013; 365:44-51. [PMID: 22986217 DOI: 10.1016/j.mce.2012.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 11/16/2022]
Abstract
Although a growing body of evidence suggests that soy isoflavones help regulate lipid metabolism, the underlying mechanism has not yet been thoroughly clarified. The present study was undertaken to determine the effects of soy isoflavones on the expression of genes involved in lipid metabolism in different adipose tissue depots, skeletal muscle and liver of male Huanjiang mini-pigs, as well as the expression of adipokines and myokines. A total of 36 male Huanjiang mini-pigs were fed basal diet (control, Con), low-dose soy isoflavones (LSI) and high-dose soy isoflavones (HSI). The results showed that LSI and HSI regulated the expression of genes involved in the anabolism and catabolism of fatty acids in dorsal subcutaneous (DSA), abdominal subcutaneous (ASA) and perirenal (PRA) adipose tissue depots, as well as longissimus dorsi muscle (LDM) and liver. LSI and HSI also regulated the expression of adipokines in DSA, ASA and PRA, and the expression of myokines in LDM in male Huanjiang mini-pigs. In addition, soy isoflavones regulated plasma glucose, leptin and adiponectin contents after treatment for two months. Our results indicate that soy isoflavones, by regulating the expression of adipokines and myokines, may regulate the metabolism of lipids and could have potential therapeutic applications in lipid abnormalities.
Collapse
Affiliation(s)
- Huansheng Yang
- Chinese Acad Sci, Inst Subtrop Agr, Res Ctr Healthy Breeding Livestock & Poultry, Hunan Engn & Res Ctr Anim & Poultry Sci, Key Lab Agroecol Proc Subtrop Reg, Scientific Oberving and Experimetal Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 Hunan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Yang H, Li F, Kong X, Yuan X, Wang W, Huang R, Li T, Geng M, Wu G, Yin Y. Chemerin regulates proliferation and differentiation of myoblast cells via ERK1/2 and mTOR signaling pathways. Cytokine 2012; 60:646-52. [DOI: 10.1016/j.cyto.2012.07.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 07/13/2012] [Accepted: 07/29/2012] [Indexed: 10/28/2022]
|
111
|
Auguet T, Terra X, Porras JA, Orellana-Gavaldà JM, Martinez S, Aguilar C, Lucas A, Pellitero S, Hernández M, Del Castillo D, Richart C. Plasma visfatin levels and gene expression in morbidly obese women with associated fatty liver disease. Clin Biochem 2012; 46:202-8. [PMID: 23174488 DOI: 10.1016/j.clinbiochem.2012.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The few studies on the physiopathological role of visfatin in morbid obesity and the related metabolic diseases have led us to examine visfatin levels and its liver gene expression in morbidly obese women with non-alcoholic fatty liver disease (NAFLD). DESIGN AND METHODS We examined the circulating levels of visfatin by ELISA in serum samples from 95 morbidly obese women (MO) (BMI>40 kg/m(2)) who underwent bariatric surgery and 38 normal weight control women (BMI<25 kg/m(2)). We analysed visfatin liver and adipose tissue mRNA expression by RT-PCR. We evaluated the circulating levels and gene expression of adiponectin, resistin, RBP4, TNFα, IL6 and CRP. RESULTS Serum visfatin was significantly higher in MO compared with controls, and also in MO with NAFLD was significantly higher than MO with normal liver. We found that NAFLD diabetic patients presented similar serum visfatin levels than non-diabetic. Serum visfatin correlated with IL6 (r=0.496; p<0.001) and CRP levels (r=0.241; p=0.049). Liver visfatin expression was significantly higher in MO compared to controls and was also significantly higher in MO with NAFLD than in MO with normal liver. Visfatin liver expression correlated positively with resistin (r=0.436, p=0.018) and TNFα expression (r=0.328, p=0.028). Visfatin expression in adipose tissues was similar among the MO groups analysed. CONCLUSION Serum visfatin and its liver expression are higher in MO women with NAFLD, irrespective of the presence of diabetes. Serum visfatin and its liver expression correlate positively with pro-inflammatory factors. These findings suggest that visfatin may be a molecule related with fat inflammation in morbid obesity and fatty liver disease.
Collapse
Affiliation(s)
- Teresa Auguet
- Grup de Recerca en Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Lenquiste SA, Batista ÂG, Marineli RDS, Dragano NRV, Maróstica MR. Freeze-dried jaboticaba peel added to high-fat diet increases HDL-cholesterol and improves insulin resistance in obese rats. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.07.052] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
113
|
Gilbert CA, Slingerland JM. Cytokines, obesity, and cancer: new insights on mechanisms linking obesity to cancer risk and progression. Annu Rev Med 2012; 64:45-57. [PMID: 23121183 DOI: 10.1146/annurev-med-121211-091527] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Obesity is a problem of epidemic proportions in many developed nations. Increased body mass index and obesity are associated with a significantly worse outcome for many cancers. Breast cancer risk in the postmenopausal setting and poor disease outcome for all patients is significantly augmented in overweight and obese individuals. The expansion of fat tissue involves a complex interaction of endocrine factors known as adipokines and cytokines. High cytokine levels in primary breast cancers and in the circulation of affected patients have been associated with poor outcome. This review summarizes the how cytokine production in obese adipose tissue creates a chronic inflammatory microenvironment that favors tumor cell motility, invasion, and epithelial-mesenchymal transition to enhance the metastatic potential of tumor cells. Many of the cytokines associated with a proinflammatory state are not only upregulated in obese adipose tissue but may also stimulate the self-renewal of cancer stem cells. Thus, enhanced cytokine production in obese adipose tissue may serve both as a chemoattractant for invading cancers and to augment their malignant potential. These new mechanistic insights suggest that the current obesity epidemic will presage a significant increase in cancer incidence, morbidity, and mortality in the next few decades.
Collapse
Affiliation(s)
- Candace A Gilbert
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | | |
Collapse
|
114
|
Acylation stimulating protein reduction precedes insulin sensitization after BPD-DS bariatric surgery in severely obese women. Nutr Diabetes 2012; 2:e41. [PMID: 23448805 PMCID: PMC3432183 DOI: 10.1038/nutd.2012.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The mechanisms involved in early resolution of insulin resistance and type 2 diabetes mellitus after biliopancreatic diversion with duodenal switch (BPD-DS) surgery are still unknown. We evaluated early effects of BPD-DS on plasma acylation stimulating protein (ASP), an adipokine involved in lipid and glucose metabolism. SUBJECTS 32 non-diabetic and 22 diabetic severely obese women (BMI40 kg m(-2)) were evaluated for body composition and plasma parameters before, 24 h, 5 days, 6 and 12 months after surgery. RESULTS Within the early postoperative period (24 h), ASP decreased 25 and 30% in non-diabetic and diabetic women, respectively (P<0.001). Twenty-four hours after surgery, triglyceride, cholesterol, HDL-Chol, LDL-Chol and C3 also decreased, while glucose, insulin and high-sensitivity C-reactive protein (hsCRP) increased (all P<0.001). By 5 days, without significant weight loss, the decreases in ASP, cholesterol, HDL-Chol and LDL-Chol levels were all maintained. At this time, glucose, insulin and HOMA-IR also decreased 11 to 52% (all P<0.001). At 6 and 12 months, with pronounced weight loss and decreased per cent fat mass, there were further decreases in ASP (maximal -56% non-diabetic, -61% diabetic, P<0.001), as well as in glucose, insulin, HOMA-IR, triglyceride, cholesterol, LDL-Chol, HDL-Chol and hsCRP levels. Improved insulin resistance/diabetes at 5 days was predicted by 24 h changes as follows: per cent change ASP, HDL-Chol, hsCRP and total cholesterol predicted HOMA-IR (5 days) (r(2)=0.454, P<0.001), and per cent change ASP, HDL-Chol and hsCRP predicted change (5 days vs baseline) in HOMA-IR (r(2)=0.351, P<0.001). CONCLUSION Acute postoperative decreases in ASP are associated with early improvement of insulin resistance/diabetes after BPD-DS surgery.
Collapse
|
115
|
Vidal F, Domingo P, Viladés C, Peraire J, Arnedo M, Alcamí J, Leal M, Villarroya F, Gatell JM. Pharmacogenetics of the lipodystrophy syndrome associated with HIV infection and combination antiretroviral therapy. Expert Opin Drug Metab Toxicol 2012; 7:1365-82. [PMID: 21999362 DOI: 10.1517/17425255.2011.621941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Antiretroviral drugs have been associated with several toxicities that limit their success. Of the chronic toxicities, the lipodystrophy syndrome is of special concern due to the metabolic alterations that can accompany it. Why some patients treated with a particular antiretroviral regimen develop lipodystrophy, while others do not, is a medical mystery, but it has been suggested that individuals may (or may not) have a genetically conditioned predisposition. Pharmacogenetics is the science that studies how the genetic composition of individuals can give rise to interindividual variations in response to drugs and drug toxicity. AREAS COVERED This article reviews the published investigations on the association between host genetic determinants in treated HIV-infected patients and the presence of lipodystrophy. Studies were identified through a PubMed database search. Case-control and longitudinal studies into pharmacogenetic association were selected. Areas covered include the data on the genetic variants of mitochondrial parameters, cytokines, adipokines, proteins involved in adipocyte biology and proteins involved in stavudine metabolism. EXPERT OPINION Most studies provide inconsistent data due to partial genetic evaluation, different assessment of lipodystrophy and low number of patients evaluated. The pharmacogenetics of lipodystrophy in HIV-infected patients treated with antiretroviral drugs still belongs in the research laboratory.
Collapse
Affiliation(s)
- Francesc Vidal
- Infectious Diseases and HIV/AIDS Section, Department of Internal Medicine , Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Carbone F, La Rocca C, Matarese G. Immunological functions of leptin and adiponectin. Biochimie 2012; 94:2082-8. [PMID: 22750129 DOI: 10.1016/j.biochi.2012.05.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/18/2012] [Indexed: 12/15/2022]
Abstract
Recent years have seen several advances in our understanding of the functions of adipose tissue regarding not only the energy storage, but also the regulation of complex metabolic and endocrine functions. In this context, leptin and adiponectin, the two most abundant adipocyte products, represent one of the best example of adipocytokines involved in the control of energy expenditure, lipid and carbohydrate metabolism as well as in the regulation of immune responses. Leptin and adiponectin secretion is counter-regulated in vivo, in relation to degree of adiposity, since plasma leptin concentrations are significantly elevated in obese subjects in proportion to body mass index while adiponectin secretion decreases in relation to the amount of adipose tissue. In this review we focus on the main biological activities of leptin and adiponectin on the lipid and carbohydrate metabolism and on their contribute in regulation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli 80131, Italy c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, Napoli 80131, Italy
| | | | | |
Collapse
|
117
|
Sjögren P, Sierra-Johnson J, Kallings LV, Cederholm T, Kolak M, Halldin M, Brismar K, de Faire U, Hellénius ML, Fisher RM. Functional changes in adipose tissue in a randomised controlled trial of physical activity. Lipids Health Dis 2012; 11:80. [PMID: 22721353 PMCID: PMC3475078 DOI: 10.1186/1476-511x-11-80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/09/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A sedentary lifestyle predisposes to cardiometabolic diseases. Lifestyle changes such as increased physical activity improve a range of cardiometabolic risk factors. The objective of this study was to examine whether functional changes in adipose tissue were related to these improvements. METHODS Seventy-three sedentary, overweight (mean BMI 29.9 ± 3.2 kg/m2) and abdominally obese, but otherwise healthy men and women (67.6 ± 0.5 years) from a randomised controlled trial of physical activity on prescription over a 6-month period were included (control n = 43, intervention n = 30). Detailed examinations were carried out at baseline and at follow-up, including fasting blood samples, a comprehensive questionnaire and subcutaneous adipose tissue biopsies for fatty acid composition analysis (n = 73) and quantification of mRNA expression levels of 13 candidate genes (n = 51), including adiponectin, leptin and inflammatory cytokines. RESULTS At follow-up, the intervention group had a greater increase in exercise time (+137 min/week) and a greater decrease in body fat mass (-1.5 kg) compared to the control subjects (changes of 0 min/week and -0.5 kg respectively). Circulating concentrations of adiponectin were unchanged, but those of leptin decreased significantly more in the intervention group (-1.8 vs -1.1 ng/mL for intervention vs control, P < 0.05). The w6-polyunsaturated fatty acid content, in particular linoleic acid (18:2w6), of adipose tissue increased significantly more in the intervention group, but the magnitude of the change was small (+0.17 vs +0.02 percentage points for intervention vs control, P < 0.05). Surprisingly leptin mRNA levels in adipose tissue increased in the intervention group (+107% intervention vs -20% control, P < 0.05), but changes in expression of the remaining genes did not differ between the groups. CONCLUSIONS After a 6-month period of increased physical activity in overweight elderly individuals, circulating leptin concentrations decreased despite increased levels of leptin mRNA in adipose tissue. Otherwise, only minor changes occurred in adipose tissue, although several improvements in metabolic parameters accompanied the modest increase in physical activity.
Collapse
Affiliation(s)
- Per Sjögren
- Atherosclerosis Research Unit,, Department of Medicine, (Solna) Karolinska Institutet,, Stockholm, Sweden
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Justo Sierra-Johnson
- Atherosclerosis Research Unit,, Department of Medicine, (Solna) Karolinska Institutet,, Stockholm, Sweden
- Cardiovascular Division, Mayo Clinic, Rochester, MN, USA
| | - Lena V Kallings
- Department of Sport and Health Sciences, Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Unit of Cardiology, Department of Medicine, (Solna) Karolinska Institutet, Stockholm, Sweden
| | - Tommy Cederholm
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Maria Kolak
- Atherosclerosis Research Unit,, Department of Medicine, (Solna) Karolinska Institutet,, Stockholm, Sweden
| | - Mats Halldin
- Institute of Environmental Medicine, Division of Cardiovascular Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Brismar
- Rolf Luft Research Center for Diabetes and Endocrinology, , Department of Molecular Medicine and Surgery, Karolinska Institutet, , Stockholm, Sweden
| | - Ulf de Faire
- Institute of Environmental Medicine, Division of Cardiovascular Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Mai-Lis Hellénius
- Unit of Cardiology, Department of Medicine, (Solna) Karolinska Institutet, Stockholm, Sweden
| | - Rachel M Fisher
- Atherosclerosis Research Unit,, Department of Medicine, (Solna) Karolinska Institutet,, Stockholm, Sweden
| |
Collapse
|
118
|
Crescenti A, Solà R, Valls RM, Anguera A, Arola L. Polymorphisms in LEP and NPY genes modify the response to soluble fibre Plantago ovata husk intake on cardiovascular risk biomarkers. GENES AND NUTRITION 2012; 8:127-36. [PMID: 22669627 DOI: 10.1007/s12263-012-0303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 05/18/2012] [Indexed: 12/31/2022]
Abstract
The satiating effect of fibre consumption has been related to gut hormones, such as peptide YY and leptin. These peptides may also influence cardiovascular (CVD) risk biomarkers. Nevertheless, there is wide interindividual variation in metabolic responses to fibre consumption. The objective was to investigate differences in the effects of soluble fibre, in the form of Plantago ovata husk (Po-husk) treatment, on CVD risk biomarkers according to selected polymorphisms in genes related to satiety. The study was a multi-centred, double-blind, placebo-controlled, parallel and randomised trial in mild-moderate hypercholesterolaemic patients (age range: 43-67 years). Eight polymorphisms in three genes related to satiety (LEP, NPY and PYY) were identified in 178 participants; 88 patients in the placebo (microcrystalline cellulose 14 g/day) group and 90 in the Po-husk (14 g/day) group, which had added to a low-saturated-fat diet for 8 weeks. The CVD biomarkers measured included the following: lipid profile, blood pressure (BP), glucose, insulin, hs-CRP, oxidised LDL and IL-6. Relative to the placebo, Po-husk consumption lowered the plasma total cholesterol concentration by 3.3 % according to rs7799039 polymorphism in the LEP gene (p < 0.05). Furthermore, the Po-husk reduced systolic BP (mean [95 % CI]) by -8 mmHg (-14.16; -1.90) and hs-CRP by 24.9 % in subjects with the AA genotype of the rs16147 polymorphism in the NPY gene (32 % of our total population; p < 0.05), which remained significant after Bonferroni correction. In conclusion, polymorphisms in the LEP and NPY genes potentiate the response to Po-husk, particularly the effects on systolic BP and the hs-CRP plasma concentration.
Collapse
Affiliation(s)
- Anna Crescenti
- Departament de Bioquímica i Biotecnologia, Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Universitat Rovira i Virgili, Campus Sescelades. Marcel·lí Domingo, s/n, 43007, Tarragona, Spain
| | | | | | | | | |
Collapse
|
119
|
Ye F, Zhang H, Yang YX, Hu HD, Sze SK, Meng W, Qian J, Ren H, Yang BL, Luo MY, Wu X, Zhu W, Cai WJ, Tong JB. Comparative proteome analysis of 3T3-L1 adipocyte differentiation using iTRAQ-coupled 2D LC-MS/MS. J Cell Biochem 2012; 112:3002-14. [PMID: 21678470 DOI: 10.1002/jcb.23223] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Adipose tissue is critical in obesity and type II diabetes. Blocking of adipocyte differentiation is one of the anti-obesity strategies targeting on strong rise in fat storage and secretion of adipokine(s). However, the molecular basis of adipocyte differentiation and its regulation remains obscure. Therefore, we exposed 3T3-L1 cell line to appropriate hormonal inducers as adipocyte differentiation model. Using iTRAQ-coupled 2D LC-MS/MS, a successfully exploited high-throughput proteomic technology, we nearly quantitated 1,000 protein species and found 106 significantly altered proteins during adipocyte differentiation. The great majority of differentially expressed proteins were related to metabolism enzymes, structural molecules, and proteins involved in signal transduction. In addition to previously reported differentially expressed molecules, more than 20 altered proteins previously unknown to be involved with adipogenic process were firstly revealed (e.g., HEXB, DPP7, PTTG1IP, PRDX5, EPDR1, SPNB2, STEAP3, TPP1, etc.). The partially differential proteins were verified by Western blot and/or real-time PCR analysis. Furthermore, the association of PCX and VDAC2, two altered proteins, with adipocyte conversion was analyzed using siRNA method, and the results showed that they could contribute considerably to adipogenesis. In conclusion, our data provide valuable information for further understanding of adipogenesis.
Collapse
Affiliation(s)
- Feng Ye
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Tanabe R, Cha BY, Ha BG, Yonezawa T, Nagai K, Woo JT, Yagasaki K. Detection of adiponectin and monocyte chemoattractant protein-1 using a calixcrown derivatives-coated protein chip. J Immunoassay Immunochem 2012; 33:166-79. [PMID: 22471607 DOI: 10.1080/15321819.2011.615360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We used a ProteoChip coated with a calixcrown derivative protein linker to measure adiponectin and monocyte chemoattractant protein-1 (MCP-1) levels and compared the results with commercial enzyme-linked immunosorbent assay (ELISA) kits. Adiponectin and MCP-1 levels in normal human serum and RAW264 cell supernatants, respectively, were measured. The ProteoChip quantification results correlated with those from the ELISA kits; however, the ProteoChip required less sample volume, exhibited higher sensitivity, and had a wider detection range. The ProteoChip was capable of detecting and quantifying small amounts of protein, possibly replacing ELISA kits in evaluating the levels of adiponectin and MCP-1.
Collapse
Affiliation(s)
- Rima Tanabe
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
121
|
Evaluation of serum adipokines in peripheral arterial occlusive disease. Mediators Inflamm 2012; 2012:257808. [PMID: 22547903 PMCID: PMC3324910 DOI: 10.1155/2012/257808] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/06/2012] [Accepted: 01/20/2012] [Indexed: 01/29/2023] Open
Abstract
Aim. Out study aimed to assess the serum levels of adipokines in patients with peripheral arterial occlusive disease (PAOD) caused by atherosclerosis. Methods. Serum samples were obtained from 221 patients. One hundred and forty patients, (26 females and 114 males) met the inclusion criteria and were assigned into the case group. Eighty one patients (17 females and 64 males), were included in the control group. Circulating plasma levels of adiponectin, leptin, resistin, and TNF-α were measured using the enzyme-linked immunosorbent assay (ELISA) method. Results. Significant lower levels of adiponectin were present (P = 0.0061) in PAOD patients (2380.23 ± 1634.42 pg/mL) compared to the control group (3065.06 ± 1901.2 pg/mL). The mean value of leptin (2844.42 ± 3301.08 pg/mL) and resistin (2047.81±3301.08 pg/mL) patients included in the PAOD group was higher, as compared to the control group. Statistically significant difference was found between the two groups for leptin (P = 0.0332) and for resistin (P = 0.0352). No statistically significant difference for TNF-α was found between the two groups (P > 0.05). Conclusion. The markers of inflammation secreted by the adipose tissue (adiponectin, leptin, resistin) showed significant differences in patients from the case group (with PAOD) compared to the control group.
Collapse
|
122
|
Than A, Tee WT, Chen P. Apelin secretion and expression of apelin receptors in 3T3-L1 adipocytes are differentially regulated by angiotensin type 1 and type 2 receptors. Mol Cell Endocrinol 2012; 351:296-305. [PMID: 22249006 DOI: 10.1016/j.mce.2012.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/27/2011] [Accepted: 01/04/2012] [Indexed: 12/28/2022]
Abstract
Adipocytes play pivotal roles in regulating metabolism through secretion of a variety of adipokines, which in turn is regulated by other metabolic factors (e.g., insulin). Understanding the regulations of adipokine secretion is important because adipokines are implicated with metabolic disorders, such as, obesity and diabetes mellitus. Here, we investigated the regulatory roles of angiotensin II (AngII) on the secretion of apelin in 3T3-L1 adipocytes, and distinct signaling pathways mediated by AngII receptor type 1 (AT₁) and type 2 (AT₂) were revealed. It was found that activation of AT₁ receptors stimulates apelin secretion in Ca²⁺, protein kinase C, and MAPK kinase dependent ways while activation of AT₂ receptors inhibits apelin secretion through cAMP and cGMP dependent pathways. Furthermore, we demonstrate that the expression of apelin receptor (APJ) is also similarly regulated by AT₁ and AT₂ receptors. Finally, a detailed AngII signaling map is proposed.
Collapse
Affiliation(s)
- Aung Than
- Division of Bioengineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | | | | |
Collapse
|
123
|
Poller W, Rother M, Skurk C, Scheibenbogen C. Endogenous migration modulators as parent compounds for the development of novel cardiovascular and anti-inflammatory drugs. Br J Pharmacol 2012; 165:2044-58. [PMID: 22035209 PMCID: PMC3413843 DOI: 10.1111/j.1476-5381.2011.01762.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/18/2011] [Accepted: 09/16/2011] [Indexed: 01/13/2023] Open
Abstract
Development of novel cell migration modulators for anti-inflammatory and cardiovascular therapy is a complex task since any modulator will necessarily interfere with a balanced system of physiological regulators directing proper positioning of diverse immune cell types within the body. Whereas this shall serve efficient pathogen elimination, lack of proper control over these processes may result in counterproductive chronic inflammation and progressive tissue injury instead of healing. Prediction of the therapeutic potential or side effects of any migration modulator is not possible based on theoretical considerations alone but needs to be experimentally evaluated in preclinical disease models and by clinical studies. Here, we briefly summarize basic mechanism of cell migration, and groups of synthetic drugs currently in use for migration modulation. We then discuss one fundamental problem encountered with single-target approaches that arises from the complexity of any inflammation, with multiple interacting and often redundant factors being involved. This issue is likely to arise for any class of therapeutic agent (small molecules, peptides, antibodies, regulatory RNAs) addressing a single gene or protein. Against this background of studies on synthetic migration modulators addressing single targets, we then discuss the potential of endogenous proteins as therapeutic migration modulators, or as parent compounds for the development of mimetic drugs. Regulatory proteins of this type commonly address multiple receptors and signalling pathways and act upon the immune response in a phase-specific manner. Based on recent evidence, we suggest investigation of such endogenous migration modulators as novel starting points for anti-inflammatory and cardiovascular drug development.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology and Pneumology, Campus Benjamin Franklin CBF, Charite - Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
124
|
McCaskey SJ, Rondini EA, Langohr IM, Fenton JI. Differential effects of energy balance on experimentally-induced colitis. World J Gastroenterol 2012; 18:627-36. [PMID: 22363133 PMCID: PMC3281219 DOI: 10.3748/wjg.v18.i7.627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/09/2011] [Accepted: 04/16/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize the influence of diet-induced changes in body fat on colitis severity in SMAD3-/- mice.
METHODS: SMAD3-/- mice (6-8 wk of age) were randomly assigned to receive a calorie restricted (30% of control; CR), control (CON), or high fat (HF) diet for 20 wk and were gavaged with sterile broth or with Helicobacter hepaticus (H. hepaticus) to induce colitis. Four weeks after infection, mice were sacrificed and the cecum and colons were processed for histological evaluation.
RESULTS: Dietary treatment significantly influenced body composition prior to infection (P < 0.05), with CR mice having less (14% ± 2%) and HF-fed mice more body fat (32% ± 7%) compared to controls (22% ± 4%). Differences in body composition were associated with alterations in plasma levels of leptin (HF > CON > CR) and adiponectin (CON > HF ≥ CR) (P < 0.05). There were no significant differences in colitis scores between CON and HF-fed mice 4 wk post-infection. Consistent with this, differences in proliferation and inflammation markers (COX-2, iNOS), and infiltrating cell types (CD3+ T lymphocytes, macrophages) were not observed. Unexpectedly, only 40% of CR mice survived infection with H. hepaticus, with mortality observed as early as 1 wk following induction of colitis.
CONCLUSION: Increased adiposity does not influence colitis severity in SMAD3-/- mice. Importantly, caloric restriction negatively impacts survival following pathogen challenge, potentially due to an impaired immune response.
Collapse
|
125
|
SUZUKI Y, SONG SH, SATO K, SO KH, ARDIYANTI A, KITAYAMA S, HONG YH, LEE SD, CHOI KC, HAGINO A, KATOH K, ROH SG. Chemerin analog regulates energy metabolism in sheep. Anim Sci J 2012; 83:263-7. [DOI: 10.1111/j.1740-0929.2011.01002.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
126
|
Akbarzadeh S, Nabipour I, Jafari SM, Movahed A, Motamed N, Assadi M, Hajian N. Serum visfatin and vaspin levels in normoglycemic first-degree relatives of Iranian patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2012; 95:132-8. [PMID: 22024288 DOI: 10.1016/j.diabres.2011.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 09/11/2011] [Accepted: 10/03/2011] [Indexed: 11/28/2022]
Abstract
AIM To investigate circulating visfatin and vaspin levels in first-degree relatives of subjects with type 2 diabetes mellitus (FDRs) who frequently have higher value of HOMA-IR and beta cell dysfunction. METHODS Serum visfatin and vaspin concentrations were measured in 179 Iranian subjects (90 normoglycemic FDRs and 89 age- and sex-matched healthy controls) using enzyme-linked immunosorbent assay (ELISA) methods. RESULT Serum visfatin levels were significantly lower in the FDRs when compared to the controls (1.71±0.93 ng/ml versus 2.69±2.02 ng/ml, p=0.0001). However, no significant difference was found in serum vaspin concentrations between the FDRs and the controls (0.452±0.254 ng/ml versus 0.409±0.275 ng/ml, p>0.05). In multiple logistic regression analysis, the FDRs showed a significant association with lower visfatin levels after adjustments for age, sex, Body Mass Index, systolic and diastolic blood pressures, lipid profile, blood glucose levels and HOMA-IR [odds ratios (OR)=1.71, 95% confidence interval (1.30-2.25); p<0.0001]. CONCLUSION The FDRs showed a significant association with lower visfatin levels. The observed lower circulating visfatin levels in FDRs may suggest a pathophysiological role for visfatin in beta cell dysfunction in this group.
Collapse
Affiliation(s)
- Samad Akbarzadeh
- Department of Endocrine and Metabolic Diseases, The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Boostan 19 Alley, Imam Khomeini St, Bushehr 7514763448, Iran
| | | | | | | | | | | | | |
Collapse
|
127
|
Vaiopoulos AG, Marinou K, Christodoulides C, Koutsilieris M. The role of adiponectin in human vascular physiology. Int J Cardiol 2011; 155:188-93. [PMID: 21907426 DOI: 10.1016/j.ijcard.2011.07.047] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 06/22/2011] [Accepted: 07/11/2011] [Indexed: 12/20/2022]
Abstract
Adiponectin (ApN) is an adipose tissue-derived hormone which is involved in a wide variety of physiological processes including energy metabolism, inflammation, and vascular physiology via actions on a broad spectrum of target organs including liver, skeletal muscle, and vascular endothelium. Besides possessing insulin sensitizing and anti-inflammatory properties ApN also exerts a pivotal role in vascular protection through activation of multiple intracellular signaling cascades. Enhancement of nitric oxide generation and attenuation of reactive oxygen species production in endothelial cells along with reduced vascular smooth muscle cell proliferation and migration constitute some of ApN's vasoprotective actions. Additionally, recent data indicate that ApN has direct myocardio-protective effects. Decreased plasma ApN levels are implicated in the pathogenesis of the metabolic syndrome and atherosclerosis and may serve as a diagnostic and prognostic biomarker as well as a rational pharmaco-therapeutic target to treat these disorders. This review article summarizes recent work on the cardiovascular actions of ApN.
Collapse
|
128
|
Romao JM, Jin W, Dodson MV, Hausman GJ, Moore SS, Guan LL. MicroRNA regulation in mammalian adipogenesis. Exp Biol Med (Maywood) 2011; 236:997-1004. [PMID: 21844119 DOI: 10.1258/ebm.2011.011101] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adipogenesis, the complex development from preadipocytes or mesenchymal stem cells to mature adipocytes, is essential for fat formation and metabolism of adipose tissues in mammals. It has been reported to be regulated by hormones and various adipogenic transcription factors which are expressed as a transcriptional cascade promoting adipocyte differentiation, leading to the mature adipocyte phenotype. Recent findings indicate that microRNAs (miRNAs), a family of small RNA molecules of approximately 22 nucleotides in length, are involved in the regulatory network of many biological processes, including cell differentiation, through post-transcriptional regulation of transcription factors and/or other genes. In this review, we focus on the recent understanding of the roles of miRNAs in adipogenesis, including the most recent and relevant findings that support the role of several miRNAs as pro- or antiadipogenic factors regulating adipogenesis in mice, human and cattle to propose the future role of miRNA in adipogenesis of farm animal models.
Collapse
Affiliation(s)
- Josue M Romao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
129
|
Miyahira SA, de Azevedo JLMC, Araújo E. Fuzzy obesity index (MAFOI) for obesity evaluation and bariatric surgery indication. J Transl Med 2011; 9:134. [PMID: 21838928 PMCID: PMC3170238 DOI: 10.1186/1479-5876-9-134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/14/2011] [Indexed: 11/17/2022] Open
Abstract
Background The Miyahira-Araujo Fuzzy Obesity Index (MAFOI) for being used as an alternative in bariatric surgery indication (BSI) is validated in this paper. The search for a more accurate method to evaluate obesity and to indicate a better treatment is important in the world health context. Body mass index (BMI) is considered the main criteria for obesity treatment and BSI. Nevertheless, the fat excess related to the percentage of Body Fat (%BF) is actually the principal harmful factor in obesity disease that is usually neglected. The aim of this research is to validate a previous fuzzy mechanism by associating BMI with %BF that yields the Miyahira-Araujo Fuzzy Obesity Index (MAFOI) for obesity evaluation, classification, analysis, treatment, as well for better indication of surgical treatment. Methods Seventy-two patients were evaluated for both BMI and %BF. The BMI and %BF classes are aggregated yielding a new index (MAFOI). The input linguistic variables are the BMI and %BF, and the output linguistic variable is employed an obesity classification with entirely new types of obesity in the fuzzy context, being used for BSI, as well. Results There is gradual and smooth obesity classification and BSI criteria when using the Miyahira-Araujo Fuzzy Obesity Index (MAFOI), mainly if compared to BMI or %BF alone for dealing with obesity assessment, analysis, and treatment. Conclusion The resulting fuzzy decision support system (MAFOI) becomes a feasible alternative for obesity classification and bariatric surgery indication.
Collapse
Affiliation(s)
- Susana Abe Miyahira
- Universidade Federal de São Paulo, Brazil, R, Botucatu 740 - São Paulo, SP, CEP 04023-900, Brazil.
| | | | | |
Collapse
|
130
|
Ho PC, Chuang YS, Hung CH, Wei LN. Cytoplasmic receptor-interacting protein 140 (RIP140) interacts with perilipin to regulate lipolysis. Cell Signal 2011; 23:1396-403. [PMID: 21504789 PMCID: PMC3095660 DOI: 10.1016/j.cellsig.2011.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 01/14/2023]
Abstract
Receptor-interacting protein 140 (RIP140) is abundantly expressed in mature adipocyte and modulates gene expression involved in lipid and glucose metabolism. Protein kinase C epsilon and protein arginine methyltransferase 1 can sequentially stimulate RIP140 phosphorylation and then methylation, thereby promoting its export to the cytoplasm. Here we report a lipid signal triggering cytoplasmic accumulation of RIP140, and a new functional role for cytoplasmic RIP140 in adipocyte to regulate lipolysis. Increased lipid content, particularly an elevation in diacylglycerol levels, promotes RIP140 cytoplasmic accumulation and increased association with lipid droplets (LDs) by its direct interaction with perilipin. By interacting with RIP140, perilipin more efficiently recruits hormone-sensitive lipase (HSL) to LDs and enhances adipose triglyceride lipase (ATGL) forming complex with CGI-58, an activator of ATGL. Consequentially, HSL can more readily access its substrates, and ATGL is activated, ultimately enhancing lipolysis. In adipocytes, blocking cytoplasmic RIP140 accumulation reduces basal and isoproterenol-stimulated lipolysis and the pro-inflammatory potential of their conditioned media (i.e. activating NF-κB and inflammatory genes in macrophages). These results show that in adipocytes with high lipid contents, RIP140 increasingly accumulates in the cytoplasm and enhances triglyceride catabolism by directly interacting with perilipin. The study suggests that reducing nuclear export of RIP140 might be a useful means of controlling adipocyte lipolysis.
Collapse
Affiliation(s)
- Ping-Chih Ho
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
131
|
Lewis JP, Shuldiner AR. Genetics of the metabolic complications of obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 94:349-72. [PMID: 21036331 DOI: 10.1016/b978-0-12-375003-7.00012-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Joshua P Lewis
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
132
|
Abstract
Over the last decades, substantial progress has been made in defining the molecular events and relevant tissues controlling insulin action and the potential defects that lead to insulin resistance and later on Type 2 diabetes mellitus (T2DM). Mitochondrial dysfunction has been postulated as a common mechanism implicated in the development of insulin resistance and T2DM aetiology. Since then there has been growing interest in this area of research and many studies have addressed whether mitochondrial function/dysfunction is implicated in the progression of T2DM or if it is just a consequence. Mitochondria are adjusted to the specific needs of the tissue and to the environmental interactions or pathophysiological state that it encounters. This review offers a current state of the subject in a tissue specific approach. We will focus our attention on skeletal muscle, liver, and white adipose tissue as the main insulin sensitive organs. Hypothalamic mitochondrial function will be also discussed.
Collapse
Affiliation(s)
- Pablo M Garcia-Roves
- Diabetes and Obesity Laboratory, Institute for Biomedical Research August Pi i Sunyer (IDIBAPS) and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
133
|
Abstract
Mounting evidence indicates that inflammation may play a significant role in the development of depression. Patients with depression exhibit increased inflammatory markers, and administration of cytokines and other inflammatory stimuli can induce depressive symptoms. Mechanisms by which cytokines access the brain and influence neurotransmitter systems relevant to depression have also been described, as have preliminary findings indicating that antagonizing inflammatory pathways may improve depressive symptoms. One primary source of inflammation in depression appears to be adiposity. Adipose tissue is a rich source of inflammatory factors including adipokines, chemokines, and cytokines, and a bidirectional relationship between adiposity and depression has been revealed. Adiposity is associated with the development of depression, and depression is associated with adiposity, reflecting a potentional vicious cycle between these two conditions which appears to center around inflammation. Treatments targeting this vicious cycle may be especially relevant for the treatment and prevention of depression as well as its multiple comorbid disorders such as cardiovascular disease, diabetes, and cancer, all of which have also been associated with both depression and inflammation.
Collapse
Affiliation(s)
- Richard C Shelton
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA.
| | | |
Collapse
|
134
|
Auguet T, Quintero Y, Riesco D, Morancho B, Terra X, Crescenti A, Broch M, Aguilar C, Olona M, Porras JA, Hernandez M, Sabench F, del Castillo D, Richart C. New adipokines vaspin and omentin. Circulating levels and gene expression in adipose tissue from morbidly obese women. BMC MEDICAL GENETICS 2011; 12:60. [PMID: 21526992 PMCID: PMC3107780 DOI: 10.1186/1471-2350-12-60] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/28/2011] [Indexed: 01/12/2023]
Abstract
BACKGROUND Vaspin and omentin are recently described molecules that belong to the adipokine family and seem to be related to metabolic risk factors. The objectives of this study were twofold: to evaluate vaspin and omentin circulating levels and mRNA expression in subcutaneous and visceral adipose tissues in non-diabetic morbidly obese women; and to assess the relationship of vaspin and omentin with anthropometric and metabolic parameters, and other adipo/cytokines. DESIGN We analysed vaspin and omentin circulating levels in 71 women of European descent (40 morbidly obese [BMI≥40 kg/m2] and 31 lean [BMI≤25]). We assessed vaspin and omentin gene expression in paired samples of visceral and subcutaneous abdominal adipose tissue from 46 women: 40 morbidly obese and 6 lean. We determined serum vaspin and plasma omentin levels with an Enzyme-Linked Immunosorbent Assay and adipose tissue mRNA expression by real time RT-PCR. RESULTS Serum vaspin levels in the morbidly obese were not significantly different from those in controls. They correlated inversely with levels of lipocalin 2 and interleukin 6. Vaspin mRNA expression was significantly higher in the morbidly obese, in both subcutaneous and visceral adipose tissue.Plasma omentin levels were significantly lower in the morbidly obese and they correlated inversely with glucidic metabolism parameters. Omentin circulating levels, then, correlated inversely with the metabolic syndrome (MS). Omentin expression in visceral adipose tissue was significantly lower in morbidly obese women than in controls. CONCLUSIONS The present study indicates that vaspin may have a compensatory role in the underlying inflammation of obesity. Decreased omentin circulating levels have a close association with MS in morbidly obese women.
Collapse
Affiliation(s)
- Teresa Auguet
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, and Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Gallagher EJ, Leroith D, Karnieli E. Insulin resistance in obesity as the underlying cause for the metabolic syndrome. ACTA ACUST UNITED AC 2011; 77:511-23. [PMID: 20960553 DOI: 10.1002/msj.20212] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The metabolic syndrome affects more than a third of the US population, predisposing to the development of type 2 diabetes and cardiovascular disease. The 2009 consensus statement from the International Diabetes Federation, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, and the National Heart, Lung, and Blood Institute defines the metabolic syndrome as 3 of the following elements: abdominal obesity, elevated blood pressure, elevated triglycerides, low high-density lipoprotein cholesterol, and hyperglycemia. Many factors contribute to this syndrome, including decreased physical activity, genetic predisposition, chronic inflammation, free fatty acids, and mitochondrial dysfunction. Insulin resistance appears to be the common link between these elements, obesity and the metabolic syndrome. In normal circumstances, insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose-tissue lipolysis and hepatic production of very-low-density lipoproteins. Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus. Insulin resistance, in contrast, leads to the release of free fatty acids from adipose tissue, increased hepatic production of very-low-density lipoproteins and decreased high-density lipoproteins. Increased production of free fatty acids, inflammatory cytokines, and adipokines and mitochondrial dysfunction contribute to impaired insulin signaling, decreased skeletal muscle glucose uptake, increased hepatic gluconeogenesis, and β cell dysfunction, leading to hyperglycemia. In addition, insulin resistance leads to the development of hypertension by impairing vasodilation induced by nitric oxide. In this review, we discuss normal insulin signaling and the mechanisms by which insulin resistance contributes to the development of the metabolic syndrome.
Collapse
|
136
|
Leckstrom A, Lew PS, Poritsanos NJ, Mizuno TM. Central melanocortin receptor agonist reduces hepatic lipogenic gene expression in streptozotocin-induced diabetic mice. Life Sci 2011; 88:664-9. [DOI: 10.1016/j.lfs.2011.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 01/03/2011] [Accepted: 01/20/2011] [Indexed: 01/24/2023]
|
137
|
Conde J, Gomez R, Bianco G, Scotece M, Lear P, Dieguez C, Gomez-Reino J, Lago F, Gualillo O. Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes. Ann Rheum Dis 2011; 70:551-9. [PMID: 21216818 DOI: 10.1136/ard.2010.132399] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Obesity is a major risk factor for a plethora of diseases including joint disorders associated with cartilage destruction. Recently, it has been demonstrated that adipose tissue might contribute to degenerative joint diseases via the secretion of potent bioactive molecules termed adipokines. OBJECTIVE To study expression of the novel adipokines chemerin, lipocalin 2 (LCN2) and serum amyloid A3 (SAA3) in murine and human chondrocytes, under basal conditions, in response to a range of biological and pharmacological treatments, and during chondrocyte differentiation. METHODS Chemerin, LCN2 and SAA3 mRNA and protein expression were evaluated by quantitative real-time reverse transcription PCR and western blot analysis, respectively, in the ATDC-5 murine chondrocyte cell line, a human immortalised chondrocyte cell line (T/C-28a2) and primary cultured human chondrocytes. RESULTS Human and murine chondrocytes expressed chemerin, LCN2 and SAA3 mRNA; interleukin (IL)-1β was a potent inducer of these novel adipokines. Moreover, dexamethasone, lipopolysaccharides (LPS) and other relevant adipokines such as leptin and adiponectin were able to modulate chemerin, LCN2 and SAA3 mRNA expression alone and when coadministered. Intracellular signal transducers involved in the IL-1β-mediated upregulation of LCN2 and SAA3 included Janus kinase (JAK) 2, phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein (MAP) kinases. Finally, expression of chemerin, LCN2 and SAA3 mRNA expression were modulated throughout chondrocyte differentiation. CONCLUSION Chemerin, LCN2 and SAA3 are implicated in chondrocyte pathophysiology, and regulated by other relevant factors that drive inflammatory process such as IL-1β, LPS and adipokines including leptin and adiponectin. It seems likely that JAK2, PI3K and MAP kinases are involved in mediating these responses.
Collapse
Affiliation(s)
- Javier Conde
- Correspondence to Dr Oreste Gualillo, Santiago University Clinical Hospital, Research Laboratory 9 (NEIRID LAB, Laboratory of Neuro Endocrine Interactions in Rheumatology and Inflammatory Diseases). Building C, Level 2, Calle Choupana s/n, 15706, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Patankar JV, Chandak PG, Obrowsky S, Pfeifer T, Diwoky C, Uellen A, Sattler W, Stollberger R, Hoefler G, Heinemann A, Battle M, Duncan S, Kratky D, Levak-Frank S. Loss of intestinal GATA4 prevents diet-induced obesity and promotes insulin sensitivity in mice. Am J Physiol Endocrinol Metab 2011; 300:E478-88. [PMID: 21177287 PMCID: PMC3163292 DOI: 10.1152/ajpendo.00457.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 12/17/2010] [Indexed: 12/20/2022]
Abstract
Transcriptional regulation of small intestinal gene expression controls plasma total cholesterol (TC) and triglyceride (TG) levels, which are major determinants of metabolic diseases. GATA4, a zinc finger domain transcription factor, is critical for jejunal identity, and intestinal GATA4 deficiency leads to a jejunoileal transition. Although intestinal GATA4 ablation is known to misregulate jejunal gene expression, its pathophysiological impact on various components of metabolic syndrome remains unknown. Here, we used intestine-specific GATA4 knockout (GATA4iKO) mice to dissect the contribution of GATA4 on obesity development. We challenged adult GATA4iKO mice and control littermates with a Western-type diet (WTD) for 20 wk. Our findings show that WTD-fed GATA4iKO mice are resistant to diet-induced obesity. Accordingly, plasma TG and TC levels are markedly decreased. Intestinal lipid absorption in GATA4iKO mice was strongly reduced, whereas luminal lipolysis was unaffected. GATA4iKO mice displayed a greater glucagon-like peptide-1 (GLP-1) release on normal chow and even after long-term challenge with WTD remained glucose sensitive. In summary, our findings show that the absence of intestinal GATA4 has a beneficial effect on decreasing intestinal lipid absorption causing resistance to hyperlipidemia and obesity. In addition, we show that increased GLP-1 release in GATA4iKO mice decreases the risk for development of insulin resistance.
Collapse
Affiliation(s)
- Jay V Patankar
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/3, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Than A, Ye F, Xue R, Ong JW, Poh CL, Chen P. The crosstalks between adipokines and catecholamines. Mol Cell Endocrinol 2011; 332:261-70. [PMID: 21070834 DOI: 10.1016/j.mce.2010.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 01/11/2023]
Abstract
Adipocytes, which secrete a spectrum of adipokines, play an integral role in metabolism via communications with other endocrine cells. In the present work, we have studied the interplays between adipokines and catecholamines, using 3T3-L1 adipocytes and PC12 cells as the cell models and an integrative experimental platform. We demonstrate that all catecholamines inhibit vesicle trafficking and secretion of leptin and resistin through β-adrenergic receptors, while leptin and resistin enhance the vesicle trafficking and secretion of catecholamines through PKC, PKA, MAPK kinase and Ca(2+) dependent pathways. The crosstalks between adipokines and catecholamines were further corroborated by co-culturing 3T3-L1 adipocytes and PC12 cells. Our findings highlight the importance of adipo-adrenal axis in energy metabolism and the intricate interactions between metabolic hormones.
Collapse
Affiliation(s)
- Aung Than
- Division of Bioengineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | | | | | | | | | | |
Collapse
|
140
|
Qin W, Bauman WA, Cardozo C. Bone and muscle loss after spinal cord injury: organ interactions. Ann N Y Acad Sci 2010; 1211:66-84. [PMID: 21062296 DOI: 10.1111/j.1749-6632.2010.05806.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spinal cord injury (SCI) results in paralysis and marked loss of skeletal muscle and bone below the level of injury. Modest muscle activity prevents atrophy, whereas much larger--and as yet poorly defined--bone loading seems necessary to prevent bone loss. Once established, bone loss may be irreversible. SCI is associated with reductions in growth hormone, IGF-1, and testosterone, deficiencies likely to exacerbate further loss of muscle and bone. Reduced muscle mass and inactivity are assumed to be contributors to the high prevalence of insulin resistance and diabetes in this population. Alterations in muscle gene expression after SCI share common features with other muscle loss states, but even so, show distinct profiles, possibly reflecting influences of neuromuscular activity due to spasticity. Changes in bone cells and markers after SCI have similarities with other conditions of unloading, although after SCI these changes are much more dramatic, perhaps reflecting the much greater magnitude of unloading. Adiposity and marrow fat are increased after SCI with intriguing, though poorly understood, implications for the function of skeletal muscle and bone cells.
Collapse
Affiliation(s)
- Weiping Qin
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| | | | | |
Collapse
|
141
|
Imrie D, Sadler KC. White adipose tissue development in zebrafish is regulated by both developmental time and fish size. Dev Dyn 2010; 239:3013-23. [PMID: 20925116 PMCID: PMC3016641 DOI: 10.1002/dvdy.22443] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adipocytes are heterogeneous. Whether their differences are attributed to anatomical location or to different developmental origins is unknown. We investigated whether development of different white adipose tissue (WAT) depots in zebrafish occurs simultaneously or whether adipogenesis is influenced by the metabolic demands of growing fish. Like mammals, zebrafish adipocyte morphology is distinctive and adipocytes express cell-specific markers. All adults contain WAT in pancreatic, subcutaneous, visceral, esophageal, mandibular, cranial, and tail-fin depots. Unlike most zebrafish organs that form during embryogenesis, WAT was not found in embryos or young larvae. Instead, WAT was first identified in the pancreas on 12 days postfertilization (dpf), and then in visceral, subcutaneous, and cranial stores in older fish. All 30 dpf fish exceeding 10.6 mm standard length contained the adult repertoire of WAT depots. Pancreatic, esophageal, and subcutaneous WAT appearance correlated with size, not age, as found for other features appearing during postembryonic zebrafish development.
Collapse
Affiliation(s)
- Dru Imrie
- Department of Medicine/Division of Liver Diseases and Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York
| | - Kirsten C. Sadler
- Department of Medicine/Division of Liver Diseases and Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
142
|
DeBoer MD, Gurka MJ. Ability among adolescents for the metabolic syndrome to predict elevations in factors associated with type 2 diabetes and cardiovascular disease: data from the national health and nutrition examination survey 1999-2006. Metab Syndr Relat Disord 2010; 8:343-53. [PMID: 20698802 PMCID: PMC3046372 DOI: 10.1089/met.2010.0008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The aim of this study was to compare currently proposed sets of pediatric metabolic syndrome criteria for the ability to predict elevations in "surrogate" factors that are associated with metabolic syndrome and with future cardiovascular disease and type 2 diabetes mellitus. These surrogate factors were fasting insulin, hemoglobin A1c (HbA1c), high-sensitivity C-reactive protein (hsCRP), and uric acid. METHODS Waist circumference (WC), blood pressure, triglycerides, high-density lipoprotein cholesterol (HDL-C), fasting glucose, fasting insulin, HbA1c, hsCRP, and uric acid measurements were obtained from 2,624 adolescent (12-18 years old) participants of the 1999-2006 National Health and Nutrition Examination Surveys. We identified children with metabolic syndrome as defined by six commonly used sets of pediatric metabolic syndrome criteria. We then defined elevations in the surrogate factors as values in the top 5% for the cohort and calculated sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for each set of metabolic syndrome criteria and for each surrogate factor. RESULTS Current pediatric metabolic syndrome criteria exhibited variable sensitivity and specificity for surrogate predictions. Metabolic syndrome criteria had the highest sensitivity for predicting fasting insulin (40-70%), followed by uric acid (31-54%), hsCRP (13-31%), and HbA1c (7-21%). The criteria of de Ferranti (which includes children with WC >75(th) percentile, compared to all other sets including children with WC >90(th) percentile) exhibited the highest sensitivity for predicting each of the surrogates, with only modest decrease in specificity compared to the other sets of criteria. However, the de Ferranti criteria also exhibited the lowest PPV values. Conversely, the pediatric International Diabetes Federation criteria exhibited the lowest sensitivity and the highest specificity. CONCLUSIONS Pediatric metabolic syndrome criteria exhibit moderate sensitivity for detecting elevations in surrogate factors associated with metabolic syndrome and with risk for future disease. Inclusion of children with more modestly elevated WC improved sensitivity.
Collapse
Affiliation(s)
- Mark D DeBoer
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| | | |
Collapse
|
143
|
Shelton RC, Miller AH. Eating ourselves to death (and despair): the contribution of adiposity and inflammation to depression. Prog Neurobiol 2010; 91:275-99. [PMID: 20417247 PMCID: PMC2929810 DOI: 10.1016/j.pneurobio.2010.04.004] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/07/2010] [Accepted: 04/16/2010] [Indexed: 01/18/2023]
Abstract
Obesity and related metabolic conditions are of epidemic proportions in most of the world, affecting both adults and children. The accumulation of lipids in the body in the form of white adipose tissue in the abdomen is now known to activate innate immune mechanisms. Lipid accumulation causes adipocytes to directly secrete the cytokines interleukin (IL) 6 and tumor necrosis factor alpha (TNFalpha), but also monocyte chemoattractant protein 1 (MCP-1), which results in the accumulation of leukocytes in fat tissue. This sets up a chronic inflammatory state which is known to mediate the association between obesity and conditions such as cardiovascular disease, type 2 diabetes, and cancer. There is also a substantial literature linking inflammation with risk for depression. This includes the observations that: (1) people with inflammatory diseases such as multiple sclerosis, cardiovascular disease, and psoriasis have elevated rates of depression; (2) many people administered inflammatory cytokines such as interferon alpha develop depression that is indistinguishable from depression in non-medically ill populations; (3) a significant proportion of depressed persons show upregulation of inflammatory factors such as IL-6, C-reactive protein, and TNFalpha; (4) inflammatory cytokines can interact with virtually every pathophysiologic domain relevant to depression, including neurotransmitter metabolism, neuroendocrine function, and synaptic plasticity. While many factors may contribute to the association between inflammatory mediators and depression, we hypothesize that increased adiposity may be one causal pathway. Mediational analysis suggests a bi-directional association between adiposity and depression, with inflammation possibly playing an intermediary role.
Collapse
Affiliation(s)
- Richard C Shelton
- Vanderbilt University, 1500 21st Avenue South, Suite 2200, Nashville, TN 37212, USA.
| | | |
Collapse
|
144
|
Challa TD, Rais Y, Ornan EM. Effect of adiponectin on ATDC5 proliferation, differentiation and signaling pathways. Mol Cell Endocrinol 2010; 323:282-91. [PMID: 20380870 DOI: 10.1016/j.mce.2010.03.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 03/28/2010] [Accepted: 03/30/2010] [Indexed: 12/18/2022]
Abstract
Adiponectin, an adipose-secreted adipocytokine, exhibits various metabolic functions but has no known effect on bone development through the growth plate and specifically, in chondrocytes. Using the mouse ATDC5 cell line, a widely used in vitro model of chondrogenesis, we demonstrated the expression of adiponectin and its receptors during chondrogenic differentiation. Adiponectin at 0.5mug/ml increased chondrocyte proliferation, proteoglycan synthesis and matrix mineralization, as reflected by upregulation of the expression of type II collagen, aggrecan, Runx2 and type X collagen, and of alkaline phosphatase activity. Quantitative RT-PCR and gelatin zymography showed a significant increase in the matrix metalloproteinase MMP9's expression and activity following adiponectin treatment. We therefore concluded that adiponectin can directly stimulate chondrocyte proliferation and differentiation. To evaluate the underlying mechanisms, we examined the effect of adiponectin on the expression of chondrogenic signaling molecules: Ihh, PTHrP, Ptc1, FGF18, BMP7, IGF1 and p21 were all upregulated while FGF9 was downregulated. This study reveals novel and direct activity of adiponectin in chondrocytes, suggesting its positive effects on bone development.
Collapse
Affiliation(s)
- T Delessa Challa
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Israel
| | | | | |
Collapse
|
145
|
Balistreri CR, Caruso C, Candore G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators Inflamm 2010; 2010:802078. [PMID: 20671929 PMCID: PMC2910551 DOI: 10.1155/2010/802078] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/13/2010] [Indexed: 12/30/2022] Open
Abstract
Obesity is an energy-rich condition associated with overnutrition, which impairs systemic metabolic homeostasis and elicits stress. It also activates an inflammatory process in metabolically active sites, such as white adipose tissue, liver, and immune cells. As consequence, increased circulating levels of proinflammatory cytokines, hormone-like molecules, and other inflammatory markers are induced. This determines a chronic active inflammatory condition, associated with the development of the obesity-related inflammatory diseases. This paper describes the role of adipose tissue and the biological effects of many adipokines in these diseases.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Immunosenescence Group, Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Corso Tukory 211, 90134, Palermo, Italy
| | - Calogero Caruso
- Immunosenescence Group, Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Corso Tukory 211, 90134, Palermo, Italy
| | - Giuseppina Candore
- Immunosenescence Group, Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Corso Tukory 211, 90134, Palermo, Italy
| |
Collapse
|
146
|
Yang CC, Deng SJ, Hsu CC, Liu BH, Lin EC, Cheng WTK, Wang PH, Ding ST. Visfatin regulates genes related to lipid metabolism in porcine adipocytes. J Anim Sci 2010; 88:3233-41. [PMID: 20562354 DOI: 10.2527/jas.2010-2799] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Visfatin is a visceral adipose tissue-specific adipocytokine that plays a positive role in attenuating insulin resistance by binding to the insulin receptor. Visfatin has been suggested to play a role in the regulation of lipid metabolism and inflammation; however, the mechanism remains unclear. We investigated the effects of visfatin on the regulation of gene expression in cultured porcine preadipocytes and differentiated adipocytes. In preadipocytes, the mRNA abundance of lipoprotein lipase and PPARgamma were significantly increased by visfatin or insulin treatment after 8 d (all P < 0.05). In the presence of insulin, the mRNA abundance of adipocyte fatty acid-binding protein was 24.7-fold greater than in the untreated group (P < 0.05), whereas visfatin alone had no effect on adipocyte fatty acid-binding protein mRNA abundance. Adipocyte differentiation was induced by insulin treatment for 8 d. In differentiated porcine adipocytes, exposure to insulin or visfatin for 24 h increased (P < 0.05) fatty acid synthase mRNA abundance but had no effect on the expression of sterol regulatory element binding-protein 1c mRNA. We also found a 5.8-fold upregulation of IL-6 expression in porcine adipocytes after 24 h of treatment with visfatin (P < 0.05). These results demonstrated that visfatin upregulated lipoprotein lipase expression in preadipocytes, potentially facilitating lipid uptake, and increased the gene expression of fatty acid synthase in differentiated adipocytes to potentially enhance lipogenic activity. Furthermore, visfatin can upregulate IL-6 expression in differentiated porcine adipocytes. The information presented in this study provides insights into the roles of visfatin in lipid metabolism in pigs.
Collapse
Affiliation(s)
- C C Yang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|