101
|
Lamanna F, Kirschbaum F, Ernst AR, Feulner PG, Mamonekene V, Paul C, Tiedemann R. Species delimitation and phylogenetic relationships in a genus of African weakly-electric fishes (Osteoglossiformes, Mormyridae, Campylomormyrus). Mol Phylogenet Evol 2016; 101:8-18. [DOI: 10.1016/j.ympev.2016.04.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 11/30/2022]
|
102
|
The Genetics of Seasonal Migration and Plumage Color. Curr Biol 2016; 26:2167-73. [DOI: 10.1016/j.cub.2016.06.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/04/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
|
103
|
Kautt AF, Machado-Schiaffino G, Torres-Dowdall J, Meyer A. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats? Ecol Evol 2016; 6:5342-57. [PMID: 27551387 PMCID: PMC4984508 DOI: 10.1002/ece3.2287] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Understanding how speciation can occur without geographic isolation remains a central objective in evolutionary biology. Generally, some form of disruptive selection and assortative mating are necessary for sympatric speciation to occur. Disruptive selection can arise from intraspecific competition for resources. If this competition leads to the differential use of habitats and variation in relevant traits is genetically determined, then assortative mating can be an automatic consequence (i.e., habitat isolation). In this study, we caught Midas cichlid fish from the limnetic (middle of the lake) and benthic (shore) habitats of Crater Lake Asososca Managua to test whether some of the necessary conditions for sympatric speciation due to intraspecific competition and habitat isolation are given. Lake As. Managua is very small (<900 m in diameter), extremely young (maximally 1245 years of age), and completely isolated. It is inhabited by, probably, only a single endemic species of Midas cichlids, Amphilophus tolteca. We found that fish from the limnetic habitat were more elongated than fish collected from the benthic habitat, as would be predicted from ecomorphological considerations. Stable isotope analyses confirmed that the former also exhibit a more limnetic lifestyle than the latter. Furthermore, split‐brood design experiments in the laboratory suggest that phenotypic plasticity is unlikely to explain much of the observed differences in body elongation that we observed in the field. Yet, neutral markers (microsatellites) did not reveal any genetic clustering in the population. Interestingly, demographic inferences based on RAD‐seq data suggest that the apparent lack of genetic differentiation at neutral markers could simply be due to a lack of time, as intraspecific competition may only have begun a few hundred generations ago.
Collapse
Affiliation(s)
- Andreas F Kautt
- Department of Biology University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | | | - Julian Torres-Dowdall
- Department of Biology University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | - Axel Meyer
- Department of Biology University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| |
Collapse
|
104
|
Turissini DA, Liu G, David JR, Matute DR. The evolution of reproductive isolation in the Drosophila yakuba complex of species. J Evol Biol 2016; 28:557-75. [PMID: 25611516 DOI: 10.1111/jeb.12588] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/15/2015] [Indexed: 01/31/2023]
Abstract
In the Drosophila melanogaster subgroup, the yakuba species complex, D. yakuba, D. santomea and D. teissieri have identical mitochondrial genomes in spite of nuclear differentiation. The first two species can be readily hybridized in the laboratory and produce fertile females and sterile males. They also form hybrids in natural conditions. Nonetheless, the third species, D. teissieri, was thought to be unable to produce hybrids with either D. yakuba or D. santomea. This in turn posed the conundrum of why the three species shared a single mitochondrial genome. In this report, we show that D. teissieri can indeed hybridize with both D. yakuba and D. santomea. The resulting female hybrids from both crosses are fertile, whereas the hybrid males are sterile. We also characterize six isolating mechanisms that might be involved in keeping the three species apart. Our results open the possibility of studying the history of introgression in the yakuba species complex and dissecting the genetic basis of interspecific differences between these three species by genetic mapping.
Collapse
Affiliation(s)
- D A Turissini
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
105
|
Mao X, Zhang S, Rossiter SJ. Differential introgression suggests candidate beneficial and barrier loci between two parapatric subspecies of Pearson's horseshoe bat Rhinolophus pearsoni. Curr Zool 2016; 62:405-412. [PMID: 29491929 PMCID: PMC5829442 DOI: 10.1093/cz/zow017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
Observations that rates of introgression between taxa can vary across loci are
increasingly common. Here, we test for differential locus-wise introgression in 2
parapatric subspecies of Pearson′s horseshoe bat (Rhinolophus pearsoni
chinensis and R. p. pearsoni). To efficiently identify
putative speciation genes and/or beneficial genes in our current system, we used a
candidate gene approach by including loci from X chromosome that are suggested to be more
likely involved in reproductive isolation in other organisms and loci underlying hearing
that have been suggested to spread across the hybrid zone in another congeneric species.
Phylogenetic and coalescent analyses were performed at 2 X-linked, 4 hearing genes, as
well as 2 other autosomal loci individually. Likelihood ratio tests could not reject the
model of zero gene flow at 2 X-linked and 2 autosomal genes. In contrast, gene flow was
supported at 3 of 4 hearing genes. While this introgression could be adaptive, we cannot
rule out stochastic processes. Our results highlight the utility of the candidate gene
approach in searching for speciation genes and/or beneficial genes across the species
boundary in natural populations.
Collapse
Affiliation(s)
- Xiuguang Mao
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China and.,School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Shuyi Zhang
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China and
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
106
|
Noh S, Marshall JL. Sorted gene genealogies and species-specific nonsynonymous substitutions point to putative postmating prezygotic isolation genes in Allonemobius crickets. PeerJ 2016; 4:e1678. [PMID: 26893965 PMCID: PMC4756749 DOI: 10.7717/peerj.1678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/14/2016] [Indexed: 12/19/2022] Open
Abstract
In the Allonemobius socius complex of crickets, reproductive isolation is primarily accomplished via postmating prezygotic barriers. We tested seven protein-coding genes expressed in the male ejaculate for patterns of evolution consistent with a putative role as postmating prezygotic isolation genes. Our recently diverged species generally lacked sequence variation. As a result, ω-based tests were only mildly successful. Some of our genes showed evidence of elevated ω values on the internal branches of gene trees. In a couple of genes, these internal branches coincided with both species branching events of the species tree, between A. fasciatus and the other two species, and between A. socius and A. sp. nov. Tex. In comparison, more successful approaches were those that took advantage of the varying degrees of lineage sorting and allele sharing among our young species. These approaches were particularly powerful within the contact zone. Among the genes we tested we found genes with genealogies that indicated relatively advanced degrees of lineage sorting across both allopatric and contact zone alleles. Within a contact zone between two members of the species complex, only a subset of genes maintained allelic segregation despite evidence of ongoing gene flow in other genes. The overlap in these analyses was arginine kinase (AK) and apolipoprotein A-1 binding protein (APBP). These genes represent two of the first examples of sperm maturation, capacitation, and motility proteins with fixed non-synonymous substitutions between species-specific alleles that may lead to postmating prezygotic isolation. Both genes express ejaculate proteins transferred to females during copulation and were previously identified through comparative proteomics. We discuss the potential function of these genes in the context of the specific postmating prezygotic isolation phenotype among our species, namely conspecific sperm precedence and the superior ability of conspecific males to induce oviposition in females.
Collapse
Affiliation(s)
- Suegene Noh
- Department of Biology, Washington University in St. Louis , St. Louis, MO , United States
| | - Jeremy L Marshall
- Department of Entomology, Kansas State University , Manhattan, KS , United States
| |
Collapse
|
107
|
Martin MD, Mendelson TC. The accumulation of reproductive isolation in early stages of divergence supports a role for sexual selection. J Evol Biol 2016; 29:676-89. [PMID: 26717252 DOI: 10.1111/jeb.12819] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 11/28/2022]
Abstract
Models of speciation by sexual selection propose that male-female coevolution leads to the rapid evolution of behavioural reproductive isolation. Here, we compare the strength of behavioural isolation to ecological isolation, gametic incompatibility and hybrid inviability in a group of dichromatic stream fishes. In addition, we examine whether any of these individual barriers, or a combined measure of total isolation, is predicted by body shape differences, male colour differences, environmental differences or genetic distance. Behavioural isolation reaches the highest values of any barrier and is significantly greater than ecological isolation. No individual reproductive barrier is associated with any of the predictor variables. However, marginally significant relationships between male colour and body shape differences with ecological and behavioural isolation are discussed. Differences in male colour and body shape predict total reproductive isolation between species; hierarchical partitioning of these two variables' effects suggests a stronger role for male colour differences. Together, these results suggest an important role for divergent sexual selection in darter speciation but raise new questions about the mechanisms of sexual selection at play and the role of male nuptial ornaments.
Collapse
Affiliation(s)
- M D Martin
- Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - T C Mendelson
- Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| |
Collapse
|
108
|
Prunier J, Verta JP, MacKay JJ. Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function. THE NEW PHYTOLOGIST 2016; 209:44-62. [PMID: 26206592 DOI: 10.1111/nph.13565] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/14/2015] [Indexed: 05/21/2023]
Abstract
Conifers have been understudied at the genomic level despite their worldwide ecological and economic importance but the situation is rapidly changing with the development of next generation sequencing (NGS) technologies. With NGS, genomics research has simultaneously gained in speed, magnitude and scope. In just a few years, genomes of 20-24 gigabases have been sequenced for several conifers, with several others expected in the near future. Biological insights have resulted from recent sequencing initiatives as well as genetic mapping, gene expression profiling and gene discovery research over nearly two decades. We review the knowledge arising from conifer genomics research emphasizing genome evolution and the genomic basis of adaptation, and outline emerging questions and knowledge gaps. We discuss future directions in three areas with potential inputs from NGS technologies: the evolutionary impacts of adaptation in conifers based on the adaptation-by-speciation model; the contributions of genetic variability of gene expression in adaptation; and the development of a broader understanding of genetic diversity and its impacts on genome function. These research directions promise to sustain research aimed at addressing the emerging challenges of adaptation that face conifer trees.
Collapse
Affiliation(s)
- Julien Prunier
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Jukka-Pekka Verta
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, Tübingen, 72076, Germany
| | - John J MacKay
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
109
|
Piertney SB. High-Throughput DNA Sequencing and the Next Generation of Molecular Markers in Wildlife Research. CURRENT TRENDS IN WILDLIFE RESEARCH 2016. [DOI: 10.1007/978-3-319-27912-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
110
|
Gladieux P, Wilson BA, Perraudeau F, Montoya LA, Kowbel D, Hann-Soden C, Fischer M, Sylvain I, Jacobson DJ, Taylor JW. Genomic sequencing reveals historical, demographic and selective factors associated with the diversification of the fire-associated fungus Neurospora discreta. Mol Ecol 2015; 24:5657-75. [PMID: 26453896 DOI: 10.1111/mec.13417] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/30/2022]
Abstract
Delineating microbial populations, discovering ecologically relevant phenotypes and identifying migrants, hybrids or admixed individuals have long proved notoriously difficult, thereby limiting our understanding of the evolutionary forces at play during the diversification of microbial species. However, recent advances in sequencing and computational methods have enabled an unbiased approach whereby incipient species and the genetic correlates of speciation can be identified by examining patterns of genomic variation within and between lineages. We present here a population genomic study of a phylogenetic species in the Neurospora discreta species complex, based on the resequencing of full genomes (~37 Mb) for 52 fungal isolates from nine sites in three continents. Population structure analyses revealed two distinct lineages in South-East Asia, and three lineages in North America/Europe with a broad longitudinal and latitudinal range and limited admixture between lineages. Genome scans for selective sweeps and comparisons of the genomic landscapes of diversity and recombination provided no support for a role of selection at linked sites on genomic heterogeneity in levels of divergence between lineages. However, demographic inference indicated that the observed genomic heterogeneity in divergence was generated by varying rates of gene flow between lineages following a period of isolation. Many putative cases of exchange of genetic material between phylogenetically divergent fungal lineages have been discovered, and our work highlights the quantitative importance of genetic exchanges between more closely related taxa to the evolution of fungal genomes. Our study also supports the role of allopatric isolation as a driver of diversification in saprobic microbes.
Collapse
Affiliation(s)
- Pierre Gladieux
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Ecologie Systematique Evolution, Université Paris Sud, Batiment 360, 91405, Orsay, France
| | | | - Fanny Perraudeau
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Ecole Polytechnique, Route de Saclay, 91128, Palaiseau, France
| | - Liliam A Montoya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - David Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | | - Monika Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Iman Sylvain
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - David J Jacobson
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
111
|
Lavretsky P, Dacosta JM, Hernández-Baños BE, Engilis A, Sorenson MD, Peters JL. Speciation genomics and a role for the Z chromosome in the early stages of divergence between Mexican ducks and mallards. Mol Ecol 2015; 24:5364-78. [DOI: 10.1111/mec.13402] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Philip Lavretsky
- Department of Biological Sciences; Wright State University; 3640 Colonel Glenn Hwy Dayton OH 45435 USA
| | | | - Blanca E. Hernández-Baños
- Departamento de Biología Evolutiva; Facultad de Ciencias; Universidad Nacional Autónoma de México; México Distrito Federal México
| | - Andrew Engilis
- Museum of Wildlife and Fish Biology; Department of Wildlife, Fish, and Conservation Biology; University of California, Davis; One Shields Avenue Davis CA 95616 USA
- Department of Wildlife, Fish and Conservation Biology; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | | | - Jeffrey L. Peters
- Department of Biological Sciences; Wright State University; 3640 Colonel Glenn Hwy Dayton OH 45435 USA
| |
Collapse
|
112
|
Kawecki TJ. Can Test-Tube Evolution Explain Biodiversity? Trends Ecol Evol 2015. [DOI: 10.1016/j.tree.2015.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
113
|
Baack E, Melo MC, Rieseberg LH, Ortiz-Barrientos D. The origins of reproductive isolation in plants. THE NEW PHYTOLOGIST 2015; 207:968-84. [PMID: 25944305 DOI: 10.1111/nph.13424] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/16/2015] [Indexed: 05/23/2023]
Abstract
Reproductive isolation in plants occurs through multiple barriers that restrict gene flow between populations, but their origins remain uncertain. Work in the past decade has shown that postpollination barriers, such as the failure to form hybrid seeds or sterility of hybrid offspring, are often less strong than prepollination barriers. Evidence implicates multiple evolutionary forces in the origins of reproductive barriers, including mutation, stochastic processes and natural selection. Although adaptation to different environments is a common element of reproductive isolation, genomic conflicts also play a role, including female meiotic drive. The genetic basis of some reproductive barriers, particularly flower colour influencing pollinator behaviour, is well understood in some species, but the genetic changes underlying many other barriers, especially pollen-stylar interactions, are largely unknown. Postpollination barriers appear to accumulate at a faster rate in annuals compared with perennials, due in part to chromosomal rearrangements. Chromosomal changes can be important isolating barriers in themselves but may also reduce the recombination of genes contributing to isolation. Important questions for the next decade include identifying the evolutionary forces responsible for chromosomal rearrangements, determining how often prezygotic barriers arise due to selection against hybrids, and establishing the relative importance of genomic conflicts in speciation.
Collapse
Affiliation(s)
- Eric Baack
- Department of Biology, Luther College, Decorah, IA, 52101, USA
| | - Maria Clara Melo
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | |
Collapse
|
114
|
Maroja LS, Larson EL, Bogdanowicz SM, Harrison RG. Genes with Restricted Introgression in a Field Cricket (Gryllus firmus/Gryllus pennsylvanicus) Hybrid Zone Are Concentrated on the X Chromosome and a Single Autosome. G3 (BETHESDA, MD.) 2015; 5:2219-27. [PMID: 26311650 PMCID: PMC4632042 DOI: 10.1534/g3.115.021246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
Abstract
Characterizing the extent of genomic differentiation between recently diverged lineages provides an important context for understanding the early stages of speciation. When such lineages form discrete hybrid zones, patterns of differential introgression allow direct estimates of which genome regions are likely involved in speciation and local adaptation. Here we use a backcross experimental design to construct a genetic linkage map for the field crickets Gryllus firmus and Gryllus pennsylvanicus, which interact in a well-characterized hybrid zone in eastern North America. We demonstrate that loci with major allele frequency differences between allopatric populations are not randomly distributed across the genome. Instead, most are either X-linked or map to a few small autosomal regions. Furthermore, the subset of those highly differentiated markers that exhibit restricted introgression across the cricket hybrid zone are also concentrated on the X chromosome (39 of 50 loci) and in a single 7-cM region of one autosome. Although the accumulation on the sex chromosome of genes responsible for postzygotic barriers is a well-known phenomenon, less attention has been given to the genomic distribution of genes responsible for prezygotic barriers. We discuss the implications of our results for speciation, both in the context of the role of sex chromosomes and also with respect to the likely causes of heterogeneous genomic divergence. Although we do not yet have direct evidence for the accumulation of ecological, behavioral, or fertilization prezygotic barrier genes on the X chromosome, faster-X evolution could make these barriers more likely to be X-linked.
Collapse
Affiliation(s)
- Luana S Maroja
- Department of Biology, Williams College, Williamstown, Massachusetts 01267
| | - Erica L Larson
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - Steven M Bogdanowicz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853
| | - Richard G Harrison
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
115
|
Timeframe of speciation inferred from secondary contact zones in the European tree frog radiation (Hyla arborea group). BMC Evol Biol 2015; 15:155. [PMID: 26253600 PMCID: PMC4528686 DOI: 10.1186/s12862-015-0385-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/20/2015] [Indexed: 12/02/2022] Open
Abstract
Background Hybridization between incipient species is expected to become progressively limited as their genetic divergence increases and reproductive isolation proceeds. Amphibian radiations and their secondary contact zones are useful models to infer the timeframes of speciation, but empirical data from natural systems remains extremely scarce. Here we follow this approach in the European radiation of tree frogs (Hyla arborea group). We investigated a natural hybrid zone between two lineages (Hyla arborea and Hyla orientalis) of Mio-Pliocene divergence (~5 My) for comparison with other hybrid systems from this group. Results We found concordant geographic distributions of nuclear and mitochondrial gene pools, and replicated narrow transitions (~30 km) across two independent transects, indicating an advanced state of reproductive isolation and potential local barriers to dispersal. This result parallels the situation between H. arborea and H. intermedia, which share the same amount of divergence with H. orientalis. In contrast, younger lineages show much stronger admixture at secondary contacts. Conclusions Our findings corroborate the negative relationship between hybridizability and divergence time in European tree frogs, where 5 My are necessary to achieve almost complete reproductive isolation. Speciation seems to progress homogeneously in this radiation, and might thus be driven by gradual genome-wide changes rather than single speciation genes. However, the timescale differs greatly from that of other well-studied amphibians. General assumptions on the time necessary for speciation based on evidence from unrelated taxa may thus be unreliable. In contrast, comparative hybrid zone analyses within single radiations such as our case study are useful to appreciate the advance of speciation in space and time. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0385-2) contains supplementary material, which is available to authorized users.
Collapse
|
116
|
Dowle EJ, Morgan-Richards M, Brescia F, Trewick SA. Correlation between shell phenotype and local environment suggests a role for natural selection in the evolution ofPlacostylussnails. Mol Ecol 2015; 24:4205-21. [DOI: 10.1111/mec.13302] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/18/2022]
Affiliation(s)
- E. J. Dowle
- Ecology Group; Massey University; Private Bag 11-222 Palmerston North New Zealand
- Entomology Department, Waters Hall; Kansas State University; Manhattan KS 66506 USA
| | - M. Morgan-Richards
- Ecology Group; Massey University; Private Bag 11-222 Palmerston North New Zealand
| | - F. Brescia
- Axe 2 ‘Diversités biologique et fonctionnelle des Ecosystèmes’; Institut Agronomique néo-Calédonien (IAC); Port-Laguerre BP73 98890 Païta New Caledonia
| | - S. A. Trewick
- Ecology Group; Massey University; Private Bag 11-222 Palmerston North New Zealand
| |
Collapse
|
117
|
Three-Dimensional Morphometrics for Quantitative Trait Locus Analysis: Tackling Complex Questions with Complex Phenotypes. Evol Biol 2015. [DOI: 10.1007/s11692-015-9318-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
118
|
Zhang L, Sun T, Woldesellassie F, Xiao H, Tao Y. Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility. PLoS Genet 2015; 11:e1005073. [PMID: 25822261 PMCID: PMC4379000 DOI: 10.1371/journal.pgen.1005073] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/16/2015] [Indexed: 11/24/2022] Open
Abstract
Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s) that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome – two patterns widely observed across animals. Millions of species live on Earth, thanks to an evolutionary process that splits one species to two or more new species. The formation of new species is benchmarked by the evolution of reproductive isolation (RI) such as hybrid sterility between new species. The fundamental question of how RI evolves, however, remains largely unknown. In a pair of very young fruitfly species, we localized six loci expressing dual functions of hybrid male sterility (HMS) and sex ratio distortion, implicating an evolutionary causal link between these two traits. The rapid evolution of HMS widely observed across animal taxa can be attributed to the rapid evolution of genes controlling sex chromosome segregation. All genes in a genome are not equal. This study suggests that conflicts among various parts of a genome might confer strong evolutionary pressure—a mechanism that has hitherto been regarded as rare and could actually be more ubiquitous than currently appreciated.
Collapse
Affiliation(s)
- Linbin Zhang
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Tianai Sun
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | | | - Hailian Xiao
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Yun Tao
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
119
|
Serebryany E, King JA. Wild-type human γD-crystallin promotes aggregation of its oxidation-mimicking, misfolding-prone W42Q mutant. J Biol Chem 2015; 290:11491-503. [PMID: 25787081 DOI: 10.1074/jbc.m114.621581] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Indexed: 11/06/2022] Open
Abstract
Non-native protein conformers generated by mutation or chemical damage template aggregation of wild-type, undamaged polypeptides in diseases ranging from amyotrophic lateral sclerosis to cancer. We tested for such interactions in the natively monomeric human eye lens protein γd-crystallin, whose aggregation leads to cataract disease. The oxidation-mimicking W42Q mutant of γd-crystallin formed non-native polymers starting from a native-like state under physiological conditions. Aggregation occurred in the temperature range 35-45 °C, in which the mutant protein began to lose the native conformation of its N-terminal domain. Surprisingly, wild-type γd-crystallin promoted W42Q polymerization in a catalytic manner, even at mutant concentrations too low for homogeneous nucleation to occur. The presence of wild-type protein also downshifted the temperature range of W42Q aggregation. W42Q aggregation required formation of a non-native intramolecular disulfide bond but not intermolecular cross-linking. Transient WT/W42Q binding may catalyze this oxidative misfolding event in the mutant. That a more stable variant in a mixture can specifically promote aggregation of a less stable one rationalizes how extensive aggregation of rare damaged polypeptides can occur during the course of aging.
Collapse
Affiliation(s)
- Eugene Serebryany
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jonathan A King
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
120
|
Li Y, Maki M. Variation in the frequency and extent of hybridization between Leucosceptrum japonicum and L. stellipilum (Lamiaceae) in the Central Japanese Mainland. PLoS One 2015; 10:e0116411. [PMID: 25738505 PMCID: PMC4349587 DOI: 10.1371/journal.pone.0116411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/09/2014] [Indexed: 11/18/2022] Open
Abstract
Variations in the frequency and extent of hybridization among mixed populations located in the same contact zone provide natural laboratories for the study of extrinsic reproductive isolation maintaining species integrity. In this study, we examined the pattern of hybridization between L. japonicum and L. stellipilum among mixed populations in different localities of a contact zone. The genetic structures from three sympatric populations and six mixed populations in the hybrid zone, and five reference populations far from the contact zone, were characterized using 10 neutral nuclear microsatellite markers. Evidence from genetic distance-based clustering analysis, the frequency distribution of admixture proportion values, and the hybrid category assignment approaches indicated that the frequency and extent of hybridization varied considerably among populations in the contact zone between L. japonicum and L. stellipilum. One likely explanation is that variation in exogenous (ecological) selection among populations might contribute to differences in frequency and extent of hybridization. The present study will facilitate future research exploring the evolution of reproductive isolation between L. japonicum and L. stellipilum.
Collapse
Affiliation(s)
- Yue Li
- Division of Plant Evolutionary Biology, Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980–8578, Japan
- Botanical Gardens, Tohoku University, Kawauchi 12–2, Aoba, Sendai 980–0862, Japan
| | - Masayuki Maki
- Botanical Gardens, Tohoku University, Kawauchi 12–2, Aoba, Sendai 980–0862, Japan
| |
Collapse
|
121
|
Bromham L, Hua X, Lanfear R, Cowman PF. Exploring the Relationships between Mutation Rates, Life History, Genome Size, Environment, and Species Richness in Flowering Plants. Am Nat 2015; 185:507-24. [PMID: 25811085 DOI: 10.1086/680052] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A new view is emerging of the interplay between mutation at the genomic level, substitution at the population level, and diversification at the lineage level. Many studies have suggested that rate of molecular evolution is linked to rate of diversification, but few have evaluated competing hypotheses. By analyzing sequences from 130 families of angiosperms, we show that variation in the synonymous substitution rate is correlated among genes from the mitochondrial, chloroplast, and nuclear genomes and linked to differences in traits among families (average height and genome size). Within each genome, synonymous rates are correlated to nonsynonymous substitution rates, suggesting that increasing the mutation rate results in a faster rate of genome evolution. Substitution rates are correlated with species richness in protein-coding sequences from the chloroplast and nuclear genomes. These data suggest that species traits contribute to lineage-specific differences in the mutation rate that drive both synonymous and nonsynonymous rates of change across all three genomes, which in turn contribute to greater rates of divergence between populations, generating higher rates of diversification. These observations link mutation in individuals to population-level processes and to patterns of lineage divergence.
Collapse
Affiliation(s)
- Lindell Bromham
- Centre for Macroevolution and Macroecology, Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | |
Collapse
|
122
|
Špírek M, Poláková S, Jatzová K, Sulo P. Post-zygotic sterility and cytonuclear compatibility limits in S. cerevisiae xenomitochondrial cybrids. Front Genet 2015; 5:454. [PMID: 25628643 PMCID: PMC4290679 DOI: 10.3389/fgene.2014.00454] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/11/2014] [Indexed: 12/04/2022] Open
Abstract
Nucleo-mitochondrial interactions, particularly those determining the primary divergence of biological species, can be studied by means of xenomitochondrial cybrids, which are cells where the original mitochondria are substituted by their counterparts from related species. Saccharomyces cerevisiae cybrids are prepared simply by the mating of the ρ(0) strain with impaired karyogamy and germinating spores from other Saccharomyces species and fall into three categories. Cybrids with compatible mitochondrial DNA (mtDNA) from Saccharomyces paradoxus CBS 432 and Saccharomyces cariocanus CBS 7994 are metabolically and genetically similar to cybrids containing mtDNA from various S. cerevisiae. Cybrids with mtDNA from other S. paradoxus strains, S. cariocanus, Saccharomyces kudriavzevii, and Saccharomyces mikatae require a period of adaptation to establish efficient oxidative phosphorylation. They exhibit a temperature-sensitive phenotype, slower growth rate on a non-fermentable carbon source and a long lag phase after the shift from glucose. Their decreased respiration capacity and reduced cytochrome aa3 content is associated with the inefficient splicing of cox1I3β, the intron found in all Saccharomyces species but not in S. cerevisiae. The splicing defect is compensated in cybrids by nuclear gain-of-function and can be alternatively suppressed by overexpression of MRP13 gene for mitochondrial ribosomal protein or the MRS2, MRS3, and MRS4 genes involved in intron splicing. S. cerevisiae with Saccharomyces bayanus mtDNA is unable to respire and the growth on ethanol-glycerol can be restored only after mating to some mit (-) strains. The nucleo-mitochondrial compatibility limit of S. cerevisiae and other Saccharomyces was set between S. kudriavzevii and S. bayanus at the divergence from S. cerevisiae about 15 MYA. The MRS1-cox1 S. cerevisiae/S. paradoxus cytonuclear Dobzhansky-Muller pair has a neglible impact on the separation of species since its imperfection is compensated for by gain-of-function mutation.
Collapse
Affiliation(s)
| | | | | | - Pavol Sulo
- *Correspondence: Pavol Sulo, Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, 842 15 Bratislava, Slovakia e-mail:
| |
Collapse
|
123
|
Xu S, Schlüter PM. Modeling the two-locus architecture of divergent pollinator adaptation: how variation in SAD paralogs affects fitness and evolutionary divergence in sexually deceptive orchids. Ecol Evol 2015; 5:493-502. [PMID: 25691974 PMCID: PMC4314279 DOI: 10.1002/ece3.1378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 01/26/2023] Open
Abstract
Divergent selection by pollinators can bring about strong reproductive isolation via changes at few genes of large effect. This has recently been demonstrated in sexually deceptive orchids, where studies (1) quantified the strength of reproductive isolation in the field; (2) identified genes that appear to be causal for reproductive isolation; and (3) demonstrated selection by analysis of natural variation in gene sequence and expression. In a group of closely related Ophrys orchids, specific floral scent components, namely n-alkenes, are the key floral traits that control specific pollinator attraction by chemical mimicry of insect sex pheromones. The genetic basis of species-specific differences in alkene production mainly lies in two biosynthetic genes encoding stearoyl–acyl carrier protein desaturases (SAD) that are associated with floral scent variation and reproductive isolation between closely related species, and evolve under pollinator-mediated selection. However, the implications of this genetic architecture of key floral traits on the evolutionary processes of pollinator adaptation and speciation in this plant group remain unclear. Here, we expand on these recent findings to model scenarios of adaptive evolutionary change at SAD2 and SAD5, their effects on plant fitness (i.e., offspring number), and the dynamics of speciation. Our model suggests that the two-locus architecture of reproductive isolation allows for rapid sympatric speciation by pollinator shift; however, the likelihood of such pollinator-mediated speciation is asymmetric between the two orchid species O. sphegodes and O. exaltata due to different fitness effects of their predominant SAD2 and SAD5 alleles. Our study not only provides insight into pollinator adaptation and speciation mechanisms of sexually deceptive orchids but also demonstrates the power of applying a modeling approach to the study of pollinator-driven ecological speciation.
Collapse
Affiliation(s)
- Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Philipp M Schlüter
- Institute of Systematic Botany, University of Zurich Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| |
Collapse
|
124
|
Gilchrist AS, Shearman DCA, Frommer M, Raphael KA, Deshpande NP, Wilkins MR, Sherwin WB, Sved JA. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species. BMC Genomics 2014; 15:1153. [PMID: 25527032 PMCID: PMC4367827 DOI: 10.1186/1471-2164-15-1153] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/12/2014] [Indexed: 01/08/2023] Open
Abstract
Background The tephritid fruit flies include a number of economically important pests of horticulture, with a large accumulated body of research on their biology and control. Amongst the Tephritidae, the genus Bactrocera, containing over 400 species, presents various species groups of potential utility for genetic studies of speciation, behaviour or pest control. In Australia, there exists a triad of closely-related, sympatric Bactrocera species which do not mate in the wild but which, despite distinct morphologies and behaviours, can be force-mated in the laboratory to produce fertile hybrid offspring. To exploit the opportunities offered by genomics, such as the efficient identification of genetic loci central to pest behaviour and to the earliest stages of speciation, investigators require genomic resources for future investigations. Results We produced a draft de novo genome assembly of Australia’s major tephritid pest species, Bactrocera tryoni. The male genome (650 -700 Mbp) includes approximately 150Mb of interspersed repetitive DNA sequences and 60Mb of satellite DNA. Assessment using conserved core eukaryotic sequences indicated 98% completeness. Over 16,000 MAKER-derived gene models showed a large degree of overlap with other Dipteran reference genomes. The sequence of the ribosomal RNA transcribed unit was also determined. Unscaffolded assemblies of B. neohumeralis and B. jarvisi were then produced; comparison with B. tryoni showed that the species are more closely related than any Drosophila species pair. The similarity of the genomes was exploited to identify 4924 potentially diagnostic indels between the species, all of which occur in non-coding regions. Conclusions This first draft B. tryoni genome resembles other dipteran genomes in terms of size and putative coding sequences. For all three species included in this study, we have identified a comprehensive set of non-redundant repetitive sequences, including the ribosomal RNA unit, and have quantified the major satellite DNA families. These genetic resources will facilitate the further investigations of genetic mechanisms responsible for the behavioural and morphological differences between these three species and other tephritids. We have also shown how whole genome sequence data can be used to generate simple diagnostic tests between very closely-related species where only one of the species is scaffolded. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1153) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony Stuart Gilchrist
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052 Australia.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Dowle EJ, Morgan-Richards M, Trewick SA. Morphological differentiation despite gene flow in an endangered grasshopper. BMC Evol Biol 2014; 14:216. [PMID: 25318347 PMCID: PMC4219001 DOI: 10.1186/s12862-014-0216-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene flow is traditionally considered a limitation to speciation because selection is required to counter the homogenising effect of allele exchange. Here we report on two sympatric short-horned grasshoppers species in the South Island of New Zealand; one (Sigaus australis) widespread and the other (Sigaus childi) a narrow endemic. RESULTS Of the 79 putatively neutral markers (mtDNA, microsatellite loci, ITS sequences and RAD-seq SNPs) all but one marker we examined showed extensive allele sharing, and similar or identical allele frequencies in the two species where they co-occur. We found no genetic evidence of deviation from random mating in the region of sympatry. However, analysis of morphological and geometric traits revealed no evidence of morphological introgression. CONCLUSIONS Based on phenotype the two species are clearly distinct, but their genotypes thus far reveal no divergence. The best explanation for this is that some loci associated with the distinguishing morphological characters are under strong selection, but exchange of neutral loci is occurring freely between the two species. Although it is easier to define species as requiring a barrier between them, a dynamic model that accommodates gene flow is a biologically more reasonable explanation for these grasshoppers.
Collapse
Affiliation(s)
- Eddy J Dowle
- Ecology Group, IAE, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.
| | - Mary Morgan-Richards
- Ecology Group, IAE, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.
| | - Steven A Trewick
- Ecology Group, IAE, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.
| |
Collapse
|
126
|
Peccoud J, de la Huerta M, Bonhomme J, Laurence C, Outreman Y, Smadja CM, Simon JC. Widespread host-dependent hybrid unfitness in the pea aphid species complex. Evolution 2014; 68:2983-95. [PMID: 24957707 DOI: 10.1111/evo.12478] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/06/2014] [Indexed: 02/02/2023]
Abstract
Linking adaptive divergence to hybrid unfitness is necessary to understand the ecological factors contributing to reproductive isolation and speciation. To date, this link has been demonstrated in few model systems, most of which encompass ecotypes that occupy relatively early stages in the speciation process. Here we extend these studies by assessing how host-plant adaptation conditions hybrid fitness in the pea aphid, Acyrthosiphon pisum. We made crosses between and within five pea aphid biotypes adapted to different host plants and representing various stages of divergence within the complex. Performance of F1 hybrids and nonhybrids was assessed on a "universal" host that is favorable to all pea aphid biotypes in laboratory conditions. Although hybrids performed equally well as nonhybrids on the universal host, their performance was much lower than nonhybrids on the natural hosts of their parental populations. Hence, hybrids, rather than being intrinsically deficient, are maladapted to their parents' hosts. Interestingly, the impact of this maladaptation was stronger in certain hybrids from crosses involving the most divergent biotype, suggesting that host-dependent postzygotic isolation has continued to evolve late in divergence. Even though host-independent deficiencies are not excluded, hybrid maladaptation to parental hosts supports the hypothesis of ecological speciation in this complex.
Collapse
Affiliation(s)
- Jean Peccoud
- Institut National de la Recherche Agronomique INRA, Institut de Génétique, Environnement et Protection des Plantes (UMR 1349 IGEPP), Domaine de La Motte, BP, 35327, 35653 le Rheu Cedex, France
| | | | | | | | | | | | | |
Collapse
|
127
|
Vinarski MV. A comparative study of shell variation in two morphotypes of Lymnaea stagnalis (Mollusca: Gastropoda: Pulmonata). Zool Stud 2014. [DOI: 10.1186/s40555-014-0069-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
128
|
Thomas J, Phillips CD, Baker RJ, Pritham EJ. Rolling-circle transposons catalyze genomic innovation in a mammalian lineage. Genome Biol Evol 2014; 6:2595-610. [PMID: 25223768 PMCID: PMC4224331 DOI: 10.1093/gbe/evu204] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rolling-circle transposons (Helitrons) are a newly discovered group of mobile DNA widespread in plant and invertebrate genomes but limited to the bat family Vespertilionidae among mammals. Little is known about the long-term impact of Helitron activity because the genomes where Helitron activity has been extensively studied are predominated by young families. Here, we report a comprehensive catalog of vetted Helitrons from the 7× Myotis lucifugus genome assembly. To estimate the timing of transposition, we scored presence/absence across related vespertilionid genome sequences with estimated divergence times. This analysis revealed that the Helibat family has been a persistent source of genomic innovation throughout the vespertilionid diversification from approximately 30–36 Ma to as recently as approximately 1.8–6 Ma. This is the first report of persistent Helitron transposition over an extended evolutionary timeframe. These findings illustrate that the pattern of Helitron activity is akin to the vertical persistence of LINE retrotransposons in primates and other mammalian lineages. Like retrotransposition in primates, rolling-circle transposition has generated lineage-specific variation and accounts for approximately 110 Mb, approximately 6% of the genome of M. lucifugus. The Helitrons carry a heterogeneous assortment of host sequence including retroposed messenger RNAs, retrotransposons, DNA transposons, as well as introns, exons and regulatory regions (promoters, 5′-untranslated regions [UTRs], and 3′-UTRs) of which some are evolving in a pattern suggestive of purifying selection. Evidence that Helitrons have contributed putative promoters, exons, splice sites, polyadenylation sites, and microRNA-binding sites to transcripts otherwise conserved across mammals is presented, and the implication of Helitron activity to innovation in these unique mammals is discussed.
Collapse
Affiliation(s)
- Jainy Thomas
- Department of Human Genetics, University of Utah
| | - Caleb D Phillips
- Department of Biological Sciences and Museum, Texas Tech University
| | - Robert J Baker
- Department of Biological Sciences and Museum, Texas Tech University
| | | |
Collapse
|
129
|
Panova M, Johansson T, Canbäck B, Bentzer J, Rosenblad MA, Johannesson K, Tunlid A, André C. Species and gene divergence in Littorina snails detected by array comparative genomic hybridization. BMC Genomics 2014; 15:687. [PMID: 25135785 PMCID: PMC4148934 DOI: 10.1186/1471-2164-15-687] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 08/11/2014] [Indexed: 12/11/2022] Open
Abstract
Background Array comparative genomic hybridization (aCGH) is commonly used to screen different types of genetic variation in humans and model species. Here, we performed aCGH using an oligonucleotide gene-expression array for a non-model species, the intertidal snail Littorina saxatilis. First, we tested what types of genetic variation can be detected by this method using direct re-sequencing and comparison to the Littorina genome draft. Secondly, we performed a genome-wide comparison of four closely related Littorina species: L. fabalis, L. compressa, L. arcana and L. saxatilis and of populations of L. saxatilis found in Spain, Britain and Sweden. Finally, we tested whether we could identify genetic variation underlying “Crab” and “Wave” ecotypes of L. saxatilis. Results We could reliably detect copy number variations, deletions and high sequence divergence (i.e. above 3%), but not single nucleotide polymorphisms. The overall hybridization pattern and number of significantly diverged genes were in close agreement with earlier phylogenetic reconstructions based on single genes. The trichotomy of L. arcana, L. compressa and L. saxatilis could not be resolved and we argue that these divergence events have occurred recently and very close in time. We found evidence for high levels of segmental duplication in the Littorina genome (10% of the transcripts represented on the array and up to 23% of the analyzed genomic fragments); duplicated genes and regions were mostly the same in all analyzed species. Finally, this method discriminated geographically distant populations of L. saxatilis, but we did not detect any significant genome divergence associated with ecotypes of L. saxatilis. Conclusions The present study provides new information on the sensitivity and the potential use of oligonucleotide arrays for genotyping of non-model organisms. Applying this method to Littorina species yields insights into genome evolution following the recent species radiation and supports earlier single-gene based phylogenies. Genetic differentiation of L. saxatilis ecotypes was not detected in this study, despite pronounced innate phenotypic differences. The reason may be that these differences are due to single-nucleotide polymorphisms. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-687) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Panova
- Department of Biological and Environmental Sciences - Tjärnö, Gothenburg University, Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
One approach to understanding the genetic basis of speciation is to scan the genomes of recently diverged taxa to identify highly differentiated regions. The house mouse, Mus musculus, provides a useful system for the study of speciation. Three subspecies (M. m. castaneus, M. m. domesticus, and M. m. musculus) diverged ∼350 KYA, are distributed parapatrically, show varying degrees of reproductive isolation in laboratory crosses, and hybridize in nature. We sequenced the testes transcriptomes of multiple wild-derived inbred lines from each subspecies to identify highly differentiated regions of the genome, to identify genes showing high expression divergence, and to compare patterns of differentiation among subspecies that have different demographic histories and exhibit different levels of reproductive isolation. Using a sliding-window approach, we found many genomic regions with high levels of sequence differentiation in each of the pairwise comparisons among subspecies. In all comparisons, the X chromosome was more highly differentiated than the autosomes. Sequence differentiation and expression divergence were greater in the M. m. domesticus-M. m. musculus comparison than in either pairwise comparison with M. m. castaneus, which is consistent with laboratory crosses that show the greatest reproductive isolation between M. m. domesticus and M. m. musculus. Coalescent simulations suggest that differences in estimates of effective population size can account for many of the observed patterns. However, there was an excess of highly differentiated regions relative to simulated distributions under a wide range of demographic scenarios. Overlap of some highly differentiated regions with previous results from QTL mapping and hybrid zone studies points to promising candidate regions for reproductive isolation.
Collapse
|
131
|
Rogers SM, Jamniczky HA. The shape of things to come in the study of the origin of species? Mol Ecol 2014; 23:1650-2. [PMID: 24667008 DOI: 10.1111/mec.12695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 12/13/2022]
Abstract
Perhaps Darwin would agree that speciation is no longer the mystery of mysteries that it used to be. It is now generally accepted that evolution by natural selection can contribute to ecological adaptation, resulting in the evolution of reproductive barriers and, hence, to the evolution of new species (Schluter & Conte 2009; Meyer 2011; Nosil 2012). From genes that encode silencing proteins that cause infertility in hybrid mice (Mihola et al. 2009), to segregation distorters linked to speciation in fruit flies (Phadnis & Orr 2009), or pollinator-mediated selection on flower colour alleles driving reinforcement in Texan wildflowers (Hopkins & Rausher 2012), characterization of the genes that drive speciation is providing clues to the origin of species (Nosil & Schluter 2011). It is becoming apparent that, while recent work continues to overturn historical ideas about sympatric speciation (e.g. Barluenga et al. 2006), ecological circumstances strongly influence patterns of genomic divergence, and ultimately the establishment of reproductive isolation when gene flow is present (Elmer & Meyer 2011). Less clear, however, are the genetic mechanisms that cause speciation, particularly when ongoing gene flow is occurring. Now, in this issue, Franchini et al. (2014) employ a classic genetic mapping approach augmented with new genomic tools to elucidate the genomic architecture of ecologically divergent body shapes in a pair of sympatric crater lake cichlid fishes. From over 450 segregating SNPs in an F2 cross, 72 SNPs were linked to 11 QTL associated with external morphology measured by means of traditional and geometric morphometrics. Annotation of two highly supported QTL further pointed to genes that might contribute to ecological divergence in body shape in Midas cichlids, overall supporting the hypothesis that genomic regions of large phenotypic effect may be contributing to early-stage divergence in Midas cichlids.
Collapse
Affiliation(s)
- Sean M Rogers
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
132
|
Vines TH. Stuck in the middle with you: close concordance between geographical clines in a cricket hybrid zone. Mol Ecol 2014; 23:1647-9. [PMID: 24667007 DOI: 10.1111/mec.12692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 11/30/2022]
Abstract
Students of speciation have long recognized that hybridization between populations does not affect all parts of the genome in the same way (Key 1968, Bazykin 1969, Wu 2001, Nosil et al. 2009). For example, divergence is expected to be high at loci involved in Dobzhansky-Muller incompatibilities or at loci under divergent natural selection, while those that are effectively neutral should show only weak divergence. Studies that examine geographical clines at divergent loci in a hybrid zone can be particularly powerful, as here one can estimate how net selection is affecting each locus (Payseur 2010). An excellent example of this approach appears in this issue (Larson et al. 2014) for a hybrid zone between the crickets Gryllus firmus and Gryllus pennsylvanicus in the eastern United States.
Collapse
Affiliation(s)
- Timothy H Vines
- Molecular Ecology Editorial Office, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
133
|
Matute DR, Gavin-Smyth J, Liu G. Variable post-zygotic isolation in Drosophila melanogaster/D. simulans
hybrids. J Evol Biol 2014; 27:1691-705. [DOI: 10.1111/jeb.12422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/13/2014] [Accepted: 04/28/2014] [Indexed: 11/29/2022]
Affiliation(s)
- D. R. Matute
- Department of Human Genetics; The University of Chicago; Chicago IL USA
- The Chicago Fellows Program; The University of Chicago; Chicago IL USA
| | - J. Gavin-Smyth
- The Chicago Fellows Program; The University of Chicago; Chicago IL USA
- Department of Ecology and Evolution; The University of Chicago; Chicago IL USA
| | - G. Liu
- Department of Human Genetics; The University of Chicago; Chicago IL USA
| |
Collapse
|
134
|
Henning F, Meyer A. The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Annu Rev Genomics Hum Genet 2014; 15:417-41. [PMID: 24898042 DOI: 10.1146/annurev-genom-090413-025412] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With more than 1,500 species, cichlid fishes provide textbook examples of recent and diverse adaptive radiations, rapid rates of speciation, and the parallel evolution of adaptive phenotypes among both recently and distantly related lineages. This extraordinary diversity has attracted considerable interest from researchers across several biological disciplines. Their broad phenotypic variation coupled with recent divergence makes cichlids an ideal model system for understanding speciation, adaptation, and phenotypic diversification. Genetic mapping, genome-wide analyses, and genome projects have flourished in the past decade and have added new insights on the question of why there are so many cichlids. These recent findings also show that the sharing of older DNA polymorphisms is extensive and suggest that linage sorting is incomplete and that adaptive introgression played a role in the African radiation. Here, we review the results of genetic and genomic research on cichlids in the past decade and suggest some potential avenues to further exploit the potential of the cichlid model system to provide a better understanding of the genomics of adaptation and speciation.
Collapse
Affiliation(s)
- Frederico Henning
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany;
| | | |
Collapse
|
135
|
Popovic I, Marko PB, Wares JP, Hart MW. Selection and demographic history shape the molecular evolution of the gamete compatibility protein bindin in Pisaster sea stars. Ecol Evol 2014; 4:1567-88. [PMID: 24967076 PMCID: PMC4063459 DOI: 10.1002/ece3.1042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 02/15/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022] Open
Abstract
Reproductive compatibility proteins have been shown to evolve rapidly under positive selection leading to reproductive isolation, despite the potential homogenizing effects of gene flow. This process has been implicated in both primary divergence among conspecific populations and reinforcement during secondary contact; however, these two selective regimes can be difficult to discriminate from each other. Here, we describe the gene that encodes the gamete compatibility protein bindin for three sea star species in the genus Pisaster. First, we compare the full-length bindin-coding sequence among all three species and analyze the evolutionary relationships between the repetitive domains of the variable second bindin exon. The comparison suggests that concerted evolution of repetitive domains has an effect on bindin divergence among species and bindin variation within species. Second, we characterize population variation in the second bindin exon of two species: We show that positive selection acts on bindin variation in Pisaster ochraceus but not in Pisaster brevispinus, which is consistent with higher polyspermy risk in P. ochraceus. Third, we show that there is no significant genetic differentiation among populations and no apparent effect of sympatry with congeners that would suggest selection based on reinforcement. Fourth, we combine bindin and cytochrome c oxidase 1 data in isolation-with-migration models to estimate gene flow parameter values and explore the historical demographic context of our positive selection results. Our findings suggest that positive selection on bindin divergence among P. ochraceus alleles can be accounted for in part by relatively recent northward population expansions that may be coupled with the potential homogenizing effects of concerted evolution.
Collapse
Affiliation(s)
- Iva Popovic
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, British Columbia, Canada
| | - Peter B Marko
- Department of Biology, University of Hawai'iMānoa, Hawaii
| | - John P Wares
- Department of Genetics, University of GeorgiaAthens, Georgia
| | - Michael W Hart
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, British Columbia, Canada
| |
Collapse
|
136
|
Brown A, Thatje S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol Rev Camb Philos Soc 2014; 89:406-26. [PMID: 24118851 PMCID: PMC4158864 DOI: 10.1111/brv.12061] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 08/01/2013] [Accepted: 08/14/2013] [Indexed: 12/01/2022]
Abstract
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity-depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity-depth pattern over time. Thermal effects on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa invading the deep sea, may invoke a stress-evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress-evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity-depth pattern.
Collapse
Affiliation(s)
- Alastair Brown
- Ocean and Earth Science, University of Southampton, National Oceanography Centre SouthamptonEuropean Way, Southampton, SO14 3ZH, U.K.
| | - Sven Thatje
- Ocean and Earth Science, University of Southampton, National Oceanography Centre SouthamptonEuropean Way, Southampton, SO14 3ZH, U.K.
| |
Collapse
|
137
|
Abstract
Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.
Collapse
|
138
|
Lamanna F, Kirschbaum F, Tiedemann R. De novo assembly and characterization of the skeletal muscle and electric organ transcriptomes of the African weakly electric fish Campylomormyrus compressirostris (Mormyridae, Teleostei). Mol Ecol Resour 2014; 14:1222-30. [PMID: 24690394 DOI: 10.1111/1755-0998.12260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
African weakly electric fishes (Mormyridae) underwent an outstanding adaptive radiation (about 200 species), putatively owing to their ability to communicate through species-specific weak electric signals. The electric organ discharge (EOD) is produced by muscle-derived electrocytes organized in piles to form an electric organ. Despite the importance of this trait as a prezygotic isolation mechanism, genomic resources remained limited. We present here a first draft of the skeletal muscle and electric organ transcriptomes from the weakly electric fish species Campylomormyrus compressirostris, obtained using the Illumina HiSeq2000 sequencing technology. Approximately 6.8 Gbp of cDNA sequence data were produced from both tissues, resulting in 57,268,109 raw reads for the skeletal muscle and 46,934,923 for the electric organ, and assembled de novo into 46,143 and 89,270 contigs, respectively. About 50% of both transcriptomes were annotated after protein databases search. The two transcriptomes show similar profiles in terms of Gene Ontology categories composition. We identified several candidate genes which are likely to play a central role in the production and evolution of the electric signal. For most of these genes, and for many other housekeeping genes, we were able to obtain the complete or partial coding DNA sequences (CDS), which can be used for the development of primers to be utilized in qRT-PCR experiments. We present also the complete mitochondrial genome and compare it to those available from other weakly electric fish species. Additionally, we located 1671 SSR-containing regions with their flanking sites and designed the relative primers. This study establishes a first step in the development of genomic tools aimed at understanding the role of electric communication during speciation.
Collapse
Affiliation(s)
- Francesco Lamanna
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, Germany
| | | | | |
Collapse
|
139
|
Roesti M, Gavrilets S, Hendry AP, Salzburger W, Berner D. The genomic signature of parallel adaptation from shared genetic variation. Mol Ecol 2014; 23:3944-56. [PMID: 24635356 DOI: 10.1111/mec.12720] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 12/19/2022]
Abstract
Parallel adaptation is common and may often occur from shared genetic variation, but the genomic consequences of this process remain poorly understood. We first use individual-based simulations to demonstrate that comparisons between populations adapted in parallel to similar environments from shared variation reveal a characteristic genomic signature around a selected locus: a low-divergence valley centred at the locus and flanked by twin peaks of high divergence. This signature is initiated by the hitchhiking of haplotype tracts differing between derived populations in the broader neighbourhood of the selected locus (driving the high-divergence twin peaks) and shared haplotype tracts in the tight neighbourhood of the locus (driving the low-divergence valley). This initial hitchhiking signature is reinforced over time because the selected locus acts as a barrier to gene flow from the source to the derived populations, thus promoting divergence by drift in its close neighbourhood. We next empirically confirm the peak-valley-peak signature by combining targeted and RAD sequence data at three candidate adaptation genes in multiple marine (source) and freshwater (derived) populations of threespine stickleback. Finally, we use a genome-wide screen for the peak-valley-peak signature to discover additional genome regions involved in parallel marine-freshwater divergence. Our findings offer a new explanation for heterogeneous genomic divergence and thus challenge the standard view that peaks in population divergence harbour divergently selected loci and that low-divergence regions result from balancing selection or localized introgression. We anticipate that genome scans for peak-valley-peak divergence signatures will promote the discovery of adaptation genes in other organisms.
Collapse
Affiliation(s)
- Marius Roesti
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | | | | | | | | |
Collapse
|
140
|
McIntosh EJ, Rossetto M, Weston PH, Wardle GM. Maintenance of strong morphological differentiation despite ongoing natural hybridization between sympatric species of Lomatia (Proteaceae). ANNALS OF BOTANY 2014; 113:861-872. [PMID: 24489011 PMCID: PMC3962242 DOI: 10.1093/aob/mct314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 12/13/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND AND AIMS When species cohesion is maintained despite ongoing natural hybridization, many questions are raised about the evolutionary processes operating in the species complex. This study examined the extensive natural hybridization between the Australian native shrubs Lomatia myricoides and L. silaifolia (Proteaceae). These species exhibit striking differences in morphology and ecological preferences, exceeding those found in most studies of hybridization to date. METHODS Nuclear microsatellite markers (nSSRs), genotyping methods and morphometric analyses were used to uncover patterns of hybridization and the role of gene flow in morphological differentiation between sympatric species. KEY RESULTS The complexity of hybridization patterns differed markedly between sites, however, signals of introgression were present at all sites. One site provided evidence of a large hybrid swarm and the likely presence of multiple hybrid generations and backcrosses, another site a handful of early generational hybrids and a third site only traces of admixture from a past hybridization event. The presence of cryptic hybrids and a pattern of morphological bimodality amongst hybrids often disguised the extent of underlying genetic admixture. CONCLUSIONS Distinct parental habitats and phenotypes are expected to form barriers that contribute to the rapid reversion of hybrid populations to their parental character state, due to limited opportunities for hybrid/intermediate advantage. Furthermore, strong genomic filters may facilitate continued gene flow between species without the danger of assimilation. Stochastic fire events facilitate temporal phenological isolation between species and may partly explain the bi-directional and site-specific patterns of hybridization observed. Furthermore, the findings suggest that F1 hybrids are rare, and backcrosses may occur rapidly following these initial hybridization events.
Collapse
Affiliation(s)
- Emma J. McIntosh
- The Royal Botanic Gardens and Domain Trust, Sydney, New South Wales, Australia
- School of Biological Sciences, the University of Sydney, Sydney, New South Wales, Australia
| | - Maurizio Rossetto
- The Royal Botanic Gardens and Domain Trust, Sydney, New South Wales, Australia
| | - Peter H. Weston
- The Royal Botanic Gardens and Domain Trust, Sydney, New South Wales, Australia
| | - Glenda M. Wardle
- School of Biological Sciences, the University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
141
|
Matute DR, Gavin-Smyth J. Fine mapping of dominant X-linked incompatibility alleles in Drosophila hybrids. PLoS Genet 2014; 10:e1004270. [PMID: 24743238 PMCID: PMC3990725 DOI: 10.1371/journal.pgen.1004270] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 02/12/2014] [Indexed: 11/18/2022] Open
Abstract
Sex chromosomes have a large effect on reproductive isolation and play an important role in hybrid inviability. In Drosophila hybrids, X-linked genes have pronounced deleterious effects on fitness in male hybrids, which have only one X chromosome. Several studies have succeeded at locating and identifying recessive X-linked alleles involved in hybrid inviability. Nonetheless, the density of dominant X-linked alleles involved in interspecific hybrid viability remains largely unknown. In this report, we study the effects of a panel of small fragments of the D. melanogaster X-chromosome carried on the D. melanogaster Y-chromosome in three kinds of hybrid males: D. melanogaster/D. santomea, D. melanogaster/D. simulans and D. melanogaster/D. mauritiana. D. santomea and D. melanogaster diverged over 10 million years ago, while D. simulans (and D. mauritiana) diverged from D. melanogaster over 3 million years ago. We find that the X-chromosome from D. melanogaster carries dominant alleles that are lethal in mel/san, mel/sim, and mel/mau hybrids, and more of these alleles are revealed in the most divergent cross. We then compare these effects on hybrid viability with two D. melanogaster intraspecific crosses. Unlike the interspecific crosses, we found no X-linked alleles that cause lethality in intraspecific crosses. Our results reveal the existence of dominant alleles on the X-chromosome of D. melanogaster which cause lethality in three different interspecific hybrids. These alleles only cause inviability in hybrid males, yet have little effect in hybrid females. This suggests that X-linked elements that cause hybrid inviability in males might not do so in hybrid females due to differing sex chromosome interactions.
Collapse
Affiliation(s)
- Daniel R. Matute
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
- The Chicago Fellows Program, The University of Chicago, Chicago, Illinois, United States of America
| | - Jackie Gavin-Smyth
- The Chicago Fellows Program, The University of Chicago, Chicago, Illinois, United States of America
- Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
142
|
Chevin LM, Decorzent G, Lenormand T. NICHE DIMENSIONALITY AND THE GENETICS OF ECOLOGICAL SPECIATION. Evolution 2014; 68:1244-56. [DOI: 10.1111/evo.12346] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/03/2014] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Thomas Lenormand
- CEFE-UMR 5175 1919 route de Mende; F-34293 Montpellier CEDEX 5 France
| |
Collapse
|
143
|
Merrill RM, Chia A, Nadeau NJ. Divergent warning patterns contribute to assortative mating between incipient Heliconius species. Ecol Evol 2014; 4:911-7. [PMID: 24772270 PMCID: PMC3997309 DOI: 10.1002/ece3.996] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 11/06/2022] Open
Abstract
Theoretical models suggest that traits under divergent ecological selection, which also contribute to assortative mating, will facilitate speciation with gene flow. Evidence for these so-called "magic traits" now exists across a range of taxa. However, their importance during speciation will depend on the extent to which they contribute to reproductive isolation. Addressing this requires experiments to determine the exact cues involved as well as estimates of assortative mating in the wild. Heliconius butterflies are well known for their diversity of bright warning color patterns, and their amenability to experimental manipulation has provided an excellent opportunity to test their role in reproductive isolation. Here, we reveal that divergent color patterns contribute to mate recognition between the incipient species Heliconius himera and H. erato, a taxon pair for which assortative mating by color pattern has been demonstrated among wild individuals: First, we demonstrate that males are more likely to attempt to mate conspecific females; second, we show that males are more likely to approach pinned females that share their own warning pattern. These data are valuable as these taxa likely represent the early stages of speciation, but unusually also allow comparisons with rates of interbreeding between divergent ecologically relevant phenotypes measured in the wild.
Collapse
Affiliation(s)
| | - Audrey Chia
- Department of Zoology, University of Cambridge Cambridge, U.K
| | - Nicola J Nadeau
- Department of Zoology, University of Cambridge Cambridge, U.K ; Department of Animal and Plant Sciences, University of Sheffield Sheffield, U.K
| |
Collapse
|
144
|
Dion-Côté AM, Renaut S, Normandeau E, Bernatchez L. RNA-seq Reveals Transcriptomic Shock Involving Transposable Elements Reactivation in Hybrids of Young Lake Whitefish Species. Mol Biol Evol 2014; 31:1188-99. [DOI: 10.1093/molbev/msu069] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
145
|
Morán T, Fontdevila A. Genome-wide dissection of hybrid sterility in Drosophila confirms a polygenic threshold architecture. J Hered 2014; 105:381-96. [PMID: 24489077 DOI: 10.1093/jhered/esu003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To date, different studies about the genetic basis of hybrid male sterility (HMS), a postzygotic reproductive barrier thoroughly investigated using Drosophila species, have demonstrated that no single major gene can produce hybrid sterility without the cooperation of several genetic factors. Early work using hybrids between Drosophila koepferae (Dk) and Drosophila buzzatii (Db) was consistent with the idea that HMS requires the cooperation of several genetic factors, supporting a polygenic threshold (PT) model. Here we present a genome-wide mapping strategy to test the PT model, analyzing serially backcrossed fertile and sterile males in which the Dk genome was introgressed into the Db background. We identified 32 Dk-specific markers significantly associated with hybrid sterility. Our results demonstrate 1) a strong correlation between the number of segregated sterility markers and males' degree of sterility, 2) the exchangeability among markers, 3) their tendency to cluster into low-recombining chromosomal regions, and 4) the requirement for a minimum number (threshold) of markers to elicit sterility. Although our findings do not contradict a role for occasional major hybrid-sterility genes, they conform more to the view that HMS primarily evolves by the cumulative action of many interacting genes of minor effect in a complex PT architecture.
Collapse
Affiliation(s)
- Tomás Morán
- the Grup de Biologia Evolutiva, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | |
Collapse
|
146
|
Faria R, Renaut S, Galindo J, Pinho C, Melo-Ferreira J, Melo M, Jones F, Salzburger W, Schluter D, Butlin R. Advances in Ecological Speciation: an integrative approach. Mol Ecol 2014; 23:513-21. [DOI: 10.1111/mec.12616] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/28/2013] [Accepted: 11/30/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio; Laboratório Associado; Universidade do Porto. Campus Agrário de Vairão; 4485-661 Vairão Portugal
- IBE, Institute of Evolutionary Biology (UPF-CSIC); Universitat Pompeu Fabra. PRBB; Av. Doctor Aiguader N88 08003 Barcelona Spain
| | - Sebastien Renaut
- Department of Botany; Biodiversity Research Centre; University of British Columbia; Vancouver British Columbia Canada V6T 1Z4
| | - Juan Galindo
- Departamento de Bioquímica, Xenética e Inmunoloxía; Facultade de Bioloxía; Universidade de Vigo; Campus Universitario 36310 Vigo Spain
| | - Catarina Pinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio; Laboratório Associado; Universidade do Porto. Campus Agrário de Vairão; 4485-661 Vairão Portugal
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio; Laboratório Associado; Universidade do Porto. Campus Agrário de Vairão; 4485-661 Vairão Portugal
| | - Martim Melo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio; Laboratório Associado; Universidade do Porto. Campus Agrário de Vairão; 4485-661 Vairão Portugal
| | - Felicity Jones
- Friedrich Miescher Laboratory of the Max Planck Society; Tuebingen 72070 Germany
| | - Walter Salzburger
- Zoological Institute; University of Basel; Vesalgasse 1 4051 Basel Switzerland
| | - Dolph Schluter
- Department of Zoology; Biodiversity Research Centre; University of British Columbia; Vancouver British Columbia Canada V6T 1Z4
| | - Roger Butlin
- Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
- Sven Lovén Centre - Tjärnö; University of Gothenburg; S-452 96 Strömstad Sweden
| |
Collapse
|
147
|
Li C, Wang Z, Zhang J. Toward genome-wide identification of Bateson-Dobzhansky-Muller incompatibilities in yeast: a simulation study. Genome Biol Evol 2013; 5:1261-72. [PMID: 23742870 PMCID: PMC3730343 DOI: 10.1093/gbe/evt091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Bateson–Dobzhansky–Muller (BDM) model of reproductive isolation by genetic incompatibility is a widely accepted model of speciation. Because of the exceptionally rich biological information about the budding yeast Saccharomyces cerevisiae, the identification of BDM incompatibilities in yeast would greatly deepen our understanding of the molecular genetic basis of reproductive isolation and speciation. However, despite repeated efforts, BDM incompatibilities between nuclear genes have never been identified between S. cerevisiae and its sister species S. paradoxus. Such negative results have led to the belief that simple nuclear BDM incompatibilities do not exist between the two yeast species. Here, we explore an alternative explanation that such incompatibilities exist but were undetectable due to limited statistical power. We discover that previously employed statistical methods were not ideal and that a redesigned method improves the statistical power. We determine, under various sample sizes, the probabilities of identifying BDM incompatibilities that cause F1 spore inviability with incomplete penetrance, and confirm that the previously used samples were too small to detect such incompatibilities. Our findings call for an expanded experimental search for yeast BDM incompatibilities, which has become possible with the decreasing cost of genome sequencing. The improved methodology developed here is, in principle, applicable to other organisms and can help detect epistasis in general.
Collapse
Affiliation(s)
- Chuan Li
- Department of Ecology and Evolutionary Biology, University of Michigan, USA
| | | | | |
Collapse
|
148
|
Franchini P, Fruciano C, Spreitzer ML, Jones JC, Elmer KR, Henning F, Meyer A. Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes. Mol Ecol 2013; 23:1828-45. [PMID: 24237636 DOI: 10.1111/mec.12590] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/18/2013] [Accepted: 10/28/2013] [Indexed: 12/26/2022]
Abstract
Determining the genetic bases of adaptations and their roles in speciation is a prominent issue in evolutionary biology. Cichlid fish species flocks are a prime example of recent rapid radiations, often associated with adaptive phenotypic divergence from a common ancestor within a short period of time. In several radiations of freshwater fishes, divergence in ecomorphological traits - including body shape, colour, lips and jaws - is thought to underlie their ecological differentiation, specialization and, ultimately, speciation. The Midas cichlid species complex (Amphilophus spp.) of Nicaragua provides one of the few known examples of sympatric speciation where species have rapidly evolved different but parallel morphologies in young crater lakes. This study identified significant QTL for body shape using SNPs generated via ddRAD sequencing and geometric morphometric analyses of a cross between two ecologically and morphologically divergent, sympatric cichlid species endemic to crater Lake Apoyo: an elongated limnetic species (Amphilophus zaliosus) and a high-bodied benthic species (Amphilophus astorquii). A total of 453 genome-wide informative SNPs were identified in 240 F2 hybrids. These markers were used to construct a genetic map in which 25 linkage groups were resolved. Seventy-two segregating SNPs were linked to 11 QTL. By annotating the two most highly supported QTL-linked genomic regions, genes that might contribute to divergence in body shape along the benthic-limnetic axis in Midas cichlid sympatric adaptive radiations were identified. These results suggest that few genomic regions of large effect contribute to early stage divergence in Midas cichlids.
Collapse
Affiliation(s)
- Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätstraße 10, 78457, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
149
|
Feder JL, Flaxman SM, Egan SP, Comeault AA, Nosil P. Geographic Mode of Speciation and Genomic Divergence. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135825] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey L. Feder
- Department of Biological Sciences,
- Environmental Change Initiative, and
- Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, Indiana 46556; ,
| | - Samuel M. Flaxman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309;
| | - Scott P. Egan
- Department of Biological Sciences,
- Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, Indiana 46556; ,
| | - Aaron A. Comeault
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S102TN, United Kingdom; ,
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S102TN, United Kingdom; ,
| |
Collapse
|
150
|
Gordon IJ, Ireri P, Smith DAS. Hologenomic speciation: synergy between a male-killing bacterium and sex-linkage creates a ‘magic trait’ in a butterfly hybrid zone. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ian J. Gordon
- Environmental Health Division; International Centre for Insect Physiology and Ecology (ICIPE); PO Box 30772-00100 Nairobi Kenya
- BirdLife International; Africa Partnership Secretariat; PO Box 3502-00100 Nairobi Kenya
- Department of Entomology; National Museums of Kenya; PO Box 40658-00100 Nairobi Kenya
| | - Piera Ireri
- Environmental Health Division; International Centre for Insect Physiology and Ecology (ICIPE); PO Box 30772-00100 Nairobi Kenya
- Department of Zoological Sciences; Kenyatta University; Nairobi Kenya
| | - David A. S. Smith
- Environmental Health Division; International Centre for Insect Physiology and Ecology (ICIPE); PO Box 30772-00100 Nairobi Kenya
- Natural History Museum; Eton College; Windsor SL4 6EW UK
| |
Collapse
|