101
|
Choi YJ, Kim NN, Habibi HR, Choi CY. Effects of gonadotropin inhibitory hormone or gonadotropin-releasing hormone on reproduction-related genes in the protandrous cinnamon clownfish, Amphiprion melanopus. Gen Comp Endocrinol 2016; 235:89-99. [PMID: 27288637 DOI: 10.1016/j.ygcen.2016.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 12/30/2022]
Abstract
Hypothalamic peptide neurohormones such as gonadotropin-releasing hormones (GnRHs) and gonadotropin-inhibitory hormone (GnIH) play pivotal roles in the control of reproduction and gonadal maturation in teleost fish. To study the effects of GnIH on fish reproduction, we investigated the influence of seabream GnRH (sbGnRH) and GnIH (both alone and in combination) on levels of reproductive genes (GnIH, GnIH-receptor [GnIH-R], melatonin receptor [MT3], sbGnRH, and gonadotropic hormones [GTHs]) during different stages of gonadal maturation in male, female, and immature cinnamon clownfish, Amphiprion melanopus. The results showed that the expression levels of GnIH, GnIH-R, and MT3 genes increased after the GnIH injection, but decreased after the sbGnRH injection. In addition, these gene expression levels gradually lowered after GnIH3 and sbGnRH combination treatment, as compared to the MT3 mRNA levels of GnIH treatment alone. However, the expression levels of the HPG (hypothalamus-pituitary-gonad) axis genes (sbGnRH and GTHs) decreased after the GnIH injection, but increased after the sbGnRH injection. In all cinnamon clownfish groups, HPG axis gene mRNA levels gradually decreased after mixed GnIH3 and sbGnRH treatment, compared to GnIH treatment alone. The present study provides novel information on the effects of GnIH and strongly supports the hypothesis that GnIH plays an important role in the negative regulation of the HPG axis in the protandrous cinnamon clownfish.
Collapse
Affiliation(s)
- Young Jae Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Na Na Kim
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W. Calgary, Alberta T3B 2V4, Canada
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
| |
Collapse
|
102
|
Choi YJ, Habibi HR, Choi CY. Profiles of gonadotropin-inhibitory hormone and melatonin during the sex change and maturation of cinnamon clownfish, Amphiprion melanopus. Biochem Biophys Res Commun 2016; 475:189-93. [DOI: 10.1016/j.bbrc.2016.05.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/13/2016] [Indexed: 11/25/2022]
|
103
|
Banerjee S, Tsutsui K, Chaturvedi CM. Apoptosis-mediated testicular alteration in Japanese quail (Coturnix coturnix japonica) in response to temporal phase relation of serotonergic and dopaminergic oscillations. J Exp Biol 2016; 219:1476-87. [DOI: 10.1242/jeb.129155] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/03/2016] [Indexed: 01/29/2023]
Abstract
ABSTRACT
Reproductive performance of many avian species, including Japanese quail, is reported to be modulated by specific temporal phase relation of serotonergic and dopaminergic oscillations. Accordingly, it has been shown that the serotonin precursor 5-HTP and the dopamine precursor l-DOPA given 8 h apart induce gonadal suppression and given 12 h apart lead to gonadal stimulation, while other temporal relationships were found to be ineffective. In the present study, we investigated the effects of 8- and 12-h phase relation of neural oscillations on testicular responses including expression of GnRH-I, GnIH, pro-apoptotic proteins (p53 and Bax), inactive and active executioner caspase-3, and the uncleaved DNA repair enzyme PARP-1. Testicular volume and mass decreased significantly in 8-h quail and increased in 12-h quail compared with controls. Expression of ir-GnIH, p53, Bax and active-caspase-3 increased and that of GnRH-I, pro-caspase-3 and uncleaved PARP-1 decreased in 8-h quail compared with controls. A TUNEL assay also confirmed testicular regression in these quail. Testes of 12-h quail exhibited significantly increased expression of GnRH-I, pro-caspase-3 and uncleaved PARP-1 compared with the control group. Our findings suggest that differential response of avian testes to 8- and 12-h phase relation of serotonergic and dopaminergic neural oscillations may be attributed to autocrine/paracrine action of GnIH expression, which is upregulated in regressed testes, leading to apoptotic changes, and downregulated in developed testes, causing apoptotic inhibition. It is concluded that specific phase relation of neural oscillations may modulate the local testicular GnRH-GnIH system and alter the apoptotic mechanism in quail testes. Moreover, these findings highlight the physiological effects of time-dependent drug delivery, including the specific time intervals between two drugs.
Collapse
Affiliation(s)
- Somanshu Banerjee
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
104
|
Di Yorio MP, Pérez Sirkin DI, Delgadin TH, Shimizu A, Tsutsui K, Somoza GM, Vissio PG. Gonadotrophin-Inhibitory Hormone in the Cichlid Fish Cichlasoma dimerus: Structure, Brain Distribution and Differential Effects on the Secretion of Gonadotrophins and Growth Hormone. J Neuroendocrinol 2016; 28. [PMID: 26919074 DOI: 10.1111/jne.12377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/10/2016] [Accepted: 02/19/2016] [Indexed: 12/21/2022]
Abstract
The role of gonadotrophin-inhibitory hormone (GnIH) in the inhibition of the reproductive axis has been well-established in birds and mammals. However, its role in other vertebrates, such as the teleost fish, remains controversial. In this context, the present study aimed to evaluate whether GnIH modulates the release of gonadotrophins and growth hormone (GH) in the cichlid fish Cichlasoma dimerus. First, we partially sequenced the precursor polypeptide for GnIH and identified three putative GnIH peptides. Next, we analysed the expression of this precursor polypeptide via a polymerase chain reaction in the reproductive axis of both sexes. We found a high expression of the polypeptide in the hypothalamus and gonads of males. Immunocytochemistry allowed the observation of GnIH-immunoreactive somata in the nucleus posterioris periventricularis and the nucleus olfacto-retinalis, with no differences between the sexes. GnIH-immunoreactive fibres were present in all brain regions, with a high density in the nucleus lateralis tuberis and at both sides of the third ventricle. Finally, we performed in vitro studies on intact pituitary cultures to evaluate the effect of two doses (10(-6) m and 10(-8) m) of synthetic C. dimerus (cd-) LPQRFa-1 and LPQRFa-2 on the release of gonadotrophins and GH. We observed that cd-LPQRFa-1 decreased β-luteinising hormone (LH) and β-follicle-stimulating hormone (FSH) and also increased GH release to the culture medium. The release of β-FSH was increased only when it was stimulated with the higher cd-LPQRFa-2 dose. The results of the present study indicate that cd-LPQRFa-1, the cichlid fish GnIH, inhibits β-LH and β-FSH release and stimulates GH release in intact pituitary cultures of C. dimerus. The results also show that cd-LPQRF-2 could act as an β-FSH-releasing factor in this fish species.
Collapse
Affiliation(s)
- M P Di Yorio
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| | - D I Pérez Sirkin
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| | - T H Delgadin
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| | - A Shimizu
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - K Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - G M Somoza
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina
| | - P G Vissio
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| |
Collapse
|
105
|
Effects of monochromatic light sources on sex hormone levels in serum and on semen quality of ganders. Anim Reprod Sci 2016; 167:96-102. [DOI: 10.1016/j.anireprosci.2016.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/07/2016] [Accepted: 02/13/2016] [Indexed: 11/18/2022]
|
106
|
Paullada-Salmerón JA, Cowan M, Aliaga-Guerrero M, Morano F, Zanuy S, Muñoz-Cueto JA. Gonadotropin Inhibitory Hormone Down-Regulates the Brain-Pituitary Reproductive Axis of Male European Sea Bass (Dicentrarchus labrax). Biol Reprod 2016; 94:121. [PMID: 26984999 PMCID: PMC6322450 DOI: 10.1095/biolreprod.116.139022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/08/2016] [Indexed: 01/17/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) inhibits gonadotropin synthesis and release from the pituitary of birds and mammals. However, the physiological role of orthologous GnIH peptides on the reproductive axis of fish is still uncertain, and their actions on the main neuroendocrine systems controlling reproduction (i.e., GnRHs, kisspeptins) have received little attention. In a recent study performed in the European sea bass, we cloned a cDNA encoding a precursor polypeptide that contained C-terminal MPMRFamide (sbGnIH-1) and MPQRFamide (sbGnIH-2) peptide sequences, developed a specific antiserum against sbGnIH-2, and characterized its central and pituitary GnIH projections in this species. In this study, we analyzed the effects of intracerebroventricular injection of sbGnIH-1 and sbGnIH-2 on brain and pituitary expression of reproductive hormone genes (gnrh1, gnrh2, gnrh3, kiss1, kiss2, gnih, lhbeta, fshbeta), and their receptors (gnrhr II-1a, gnrhr II-2b, kiss1r, kiss2r, and gnihr) as well as on plasma Fsh and Lh levels. In addition, we determined the effects of GnIH on pituitary somatotropin (Gh) expression. The results obtained revealed the inhibitory role of sbGnIH-2 on brain gnrh2, kiss1, kiss2, kiss1r, gnih, and gnihr transcripts and on pituitary fshbeta, lhbeta, gh, and gnrhr-II-1a expression, whereas sbGnIH-1 only down-regulated brain gnrh1 expression. However, at different doses, central administration of both sbGnIH-1 and sbGnIH-2 decreased Lh plasma levels. Our work represents the first study reporting the effects of centrally administered GnIH in fish and provides evidence of the differential actions of sbGnIH-1 and sbGnIH-2 on the reproductive axis of sea bass, the main inhibitory role being exerted by the sbGnIH-2 peptide.
Collapse
Affiliation(s)
- José A Paullada-Salmerón
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - Mairi Cowan
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - María Aliaga-Guerrero
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - Francesca Morano
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - Silvia Zanuy
- Institute of Aquaculture of Torre de la Sal, CSIC, Ribera de Cabanes, Castellón, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| |
Collapse
|
107
|
Ogawa S, Sivalingam M, Biran J, Golan M, Anthonysamy RS, Levavi-Sivan B, Parhar IS. Distribution of LPXRFa, a gonadotropin-inhibitory hormone ortholog peptide, and LPXRFa receptor in the brain and pituitary of the tilapia. J Comp Neurol 2016; 524:2753-75. [PMID: 26917324 DOI: 10.1002/cne.23990] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 11/09/2022]
Abstract
In vertebrates, gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH), respectively, regulate reproduction in positive and negative manners. GnIH belongs to the LPXRFa family of peptides previously identified in mammalian and nonmammalian vertebrates. Studying the detailed distribution of LPXRFa as well as its receptor (LPXRFa-R) in the brain and pituitary is important for understanding their multiple action sites and potential functions. However, the distribution of LPXRFa and LPXRFa-R has not been studied in teleost species, partially because of the lack of fish-specific antibodies. Therefore, in the present study, we generated specific antibodies against LPXRFa and its receptor from Nile tilapia (Oreochromis niloticus), and examined their distributions in the brain and pituitary by immunohistochemistry. Tilapia LPXRFa-immunoreactive neurons lie in the posterior ventricular nucleus of the caudal preoptic area, whereas LPXRFa-R-immunoreactive cells are distributed widely. Double immunofluorescence showed that neither LPXRFa-immunoreactive fibers nor LPXRFa-R is closely associated or coexpressed with GnRH1, GnRH3, or kisspeptin (Kiss2) neurons. In the pituitary, LPXRFa fibers are closely associated with gonadotropic endocrine cells [expressing luteinizing hormone (LH) and follicle-stimulating hormone (FSH)], with adrenocorticomelanotropic cells [corticotropin (ACTH) and α-melanotropin (α-MSH)], and with somatolactin endocrine cells. In contrast, LPXRFa-R are expressed only in LH, ACTH, and α-MSH cells. These results suggest that LPXRFa and LPXRFa-R signaling acts directly on the pituitary cells independent from GnRH or kisspeptin and could play multiple roles in reproductive and nonreproductive functions in teleosts. J. Comp. Neurol. 524:2753-2775, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Mageswary Sivalingam
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Jakob Biran
- Department of Animal Sciences, The Robert H Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Matan Golan
- Department of Animal Sciences, The Robert H Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Rachel Shalini Anthonysamy
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
108
|
Son YL, Ubuka T, Soga T, Yamamoto K, Bentley GE, Tsutsui K. Inhibitory action of gonadotropin‐inhibitory hormone on the signaling pathways induced by kisspeptin and vasoactive intestinal polypeptide in GnRH neuronal cell line, GT1–7. FASEB J 2016; 30:2198-210. [DOI: 10.1096/fj.201500055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/10/2016] [Indexed: 01/24/2023]
Affiliation(s)
- You Lee Son
- Laboratory of Integrative Brain SciencesDepartment of BiologyCenter for Medical Life ScienceWaseda UniversityTokyoJapan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain SciencesDepartment of BiologyCenter for Medical Life ScienceWaseda UniversityTokyoJapan
- Brain Research Institute, School of Medicine and Health Sciences, Monash UniversitySunwayMalaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash UniversitySunwayMalaysia
| | - Kazutoshi Yamamoto
- Laboratory of Integrative Brain SciencesDepartment of BiologyCenter for Medical Life ScienceWaseda UniversityTokyoJapan
| | - George E. Bentley
- Department of Integrative Biology and Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyBerkleyCaliforniaUSA
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain SciencesDepartment of BiologyCenter for Medical Life ScienceWaseda UniversityTokyoJapan
| |
Collapse
|
109
|
Osugi T, Son YL, Ubuka T, Satake H, Tsutsui K. RFamide peptides in agnathans and basal chordates. Gen Comp Endocrinol 2016; 227:94-100. [PMID: 26130238 DOI: 10.1016/j.ygcen.2015.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
Since a peptide with a C-terminal Arg-Phe-NH2 (RFamide peptide) was first identified in the ganglia of the venus clam in 1977, RFamide peptides have been found in the nervous system of both invertebrates and vertebrates. In vertebrates, the RFamide peptide family includes gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa), and kisspeptins (kiss1 and kiss2). They are involved in important functions such as the release of hormones, regulation of sexual or social behavior, pain transmission, reproduction, and feeding. In contrast to tetrapods and jawed fish, the information available on RFamide peptides in agnathans and basal chordates is limited, thus preventing further insights into the evolution of RFamide peptides in vertebrates. In this review, we focus on the previous research and recent advances in the studies on RFamide peptides in agnathans and basal chordates. In agnathans, the genes encoding GnIH, NPFF, and PrRP precursors and the mature peptides have been identified in lamprey (Petromyzon marinus) and hagfish (Paramyxine atami). Putative kiss1 and kiss2 genes have also been found in the genome database of lamprey. In basal chordates, namely, in amphioxus (Branchiostoma japonicum), a common ancestral form of GnIH and NPFF genes and their mature peptides, as well as the ortholog of the QRFP gene have been identified. The studies revealed that the number of orthologs of vertebrate RFamide peptides present in agnathans and basal chordates is greater than expected, suggesting that the vertebrate RFamide peptides might have emerged and expanded at an early stage of chordate evolution.
Collapse
Affiliation(s)
- Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan.
| | - You Lee Son
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Takayoshi Ubuka
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
110
|
Tsutsui K. How to contribute to the progress of neuroendocrinology: New insights from discovering novel neuropeptides and neurosteroids regulating pituitary and brain functions. Gen Comp Endocrinol 2016; 227:3-15. [PMID: 26145291 DOI: 10.1016/j.ygcen.2015.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/28/2015] [Accepted: 05/07/2015] [Indexed: 12/29/2022]
Abstract
Obtaining new insights by discovering novel neuropeptides and neurosteroids regulating pituitary and brain functions is essential for the progress of neuroendocrinology. At the beginning of 1970s, gonadotropin-releasing hormone (GnRH) was discovered in mammals. Since then, it was generally accepted that GnRH is the only hypothalamic neuropeptide regulating gonadotropin release in vertebrates. In 2000, however, gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide that actively inhibits gonadotropin release, was discovered in quail. The follow-up studies demonstrated that GnIH acts as a new key player for regulation of reproduction across vertebrates. It now appears that GnIH acts on the pituitary and the brain to serve a number of behavioral and physiological functions. On the other hand, a new concept has been established that the brain synthesizes steroids, called neurosteroids. The formation of neurosteroids in the brain was originally demonstrated in mammals and subsequently in other vertebrates. Recently, 7α-hydroxypregnenolone was discovered as a novel bioactive neurosteroid inducing locomotor behavior of vertebrates, indicating that neurosteroidogenesis in the brain is still incompletely elucidated in vertebrates. At the beginning of 2010s, it was further found that the pineal gland actively produces neurosteroids. Pineal neurosteroids act on the brain to regulate locomotor rhythms and neuronal survival. Furthermore, the interaction of neuropeptides and neurosteroids is becoming clear. GnIH decreases aggressive behavior by regulating neuroestrogen synthesis in the brain. This review summarizes these new insights by discovering novel neuropeptides and neurosteroids in the field of neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| |
Collapse
|
111
|
Ukena K, Iwakoshi-Ukena E, Osugi T, Tsutsui K. Identification and localization of gonadotropin-inhibitory hormone (GnIH) orthologs in the hypothalamus of the red-eared slider turtle, Trachemys scripta elegans. Gen Comp Endocrinol 2016; 227:69-76. [PMID: 26130239 DOI: 10.1016/j.ygcen.2015.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 01/27/2023]
Abstract
Gonadotropin-inhibitory hormone (GnIH) was discovered in 2000 as a novel hypothalamic neuropeptide that inhibited gonadotropin release in the Japanese quail. GnIH and its orthologs have a common C-terminal LPXRFamide (X=L or Q) motif, and have been identified in vertebrates from agnathans to humans, apart from reptiles. In the present study, we characterized a cDNA encoding GnIH orthologs in the brain of the red-eared slider turtle. The deduced precursor protein consisted of 205 amino-acid residues, encoding three putative peptide sequences that included the LPXRFamide motif at their C-termini. In addition, the precursor sequence was most similar to those of avian species. Immunoaffinity purification combined with mass spectrometry confirmed that three mature peptides were produced in the brain. In situ hybridization and immunohistochemistry showed that turtle GnIH-containing cells were restricted to the periventricular hypothalamic nucleus. Immunoreactive fibers were densely distributed in the median eminence. Thus, GnIH and related peptides may act on the pituitary to regulate pituitary hormone release in turtles as well as other vertebrates.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | - Eiko Iwakoshi-Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Tomohiro Osugi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo 162-8480, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
112
|
Ernst DK, Lynn SE, Bentley GE. Differential response of GnIH in the brain and gonads following acute stress in a songbird. Gen Comp Endocrinol 2016; 227:51-7. [PMID: 26158243 DOI: 10.1016/j.ygcen.2015.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/28/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) acts to inhibit reproduction at all levels of the hypothalamo-pituitary-gonad axis. GnIH expression and/or immunoreactivity in the hypothalamus increase with acute stress in some birds and mammals, and thus may be involved in stress-induced reproductive inhibition. Much is known about GnIH and stress in seasonal and continuous breeders, but far less is known about these interactions in opportunistic breeders. For opportunistically breeding animals, reproductive readiness is closely associated with unpredictable environmental cues, and thus the GnIH system may be more sensitive to stress. To test this, we collected tissues from zebra finches immediately following capture or after 60 min of restraint. Restraint significantly increased plasma corticosterone in males and females but, contrary to studies on other species, restrained birds had significantly fewer GnIH immunoreactive (GnIH-ir) cell bodies than control birds. GnIH-ir cell number did not differ between the sexes. Stressed females had lower mRNA expression of the beta subunit of follicle stimulating hormone (FSHβ) in the pituitary, suggesting that the reduction in observed GnIH immunoreactivity in females may have been due to increased GnIH release in response to acute stress. GnIH expression increased in the testes, but not the ovaries, of restrained animals. Our data suggest that although GnIH responsiveness to stress appears to be conserved across species, specific tissue response and direction of GnIH regulation is not. Variation in the GnIH response to stress between species might be the result of ecological adaptations or other species differences in the response of the GnIH system to stress.
Collapse
Affiliation(s)
- Darcy K Ernst
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Sharon E Lynn
- Department of Biology, The College of Wooster, Wooster, OH 44691, USA
| | - George E Bentley
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| |
Collapse
|
113
|
Ubuka T, Son YL, Tsutsui K. Molecular, cellular, morphological, physiological and behavioral aspects of gonadotropin-inhibitory hormone. Gen Comp Endocrinol 2016; 227:27-50. [PMID: 26409890 DOI: 10.1016/j.ygcen.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was isolated from the brains of Japanese quail in 2000, which inhibited luteinizing hormone release from the anterior pituitary gland. Here, we summarize the following fifteen years of researches that investigated on the mechanism of GnIH actions at molecular, cellular, morphological, physiological, and behavioral levels. The unique molecular structure of GnIH peptide is in its LPXRFamide (X=L or Q) motif at its C-terminal. The primary receptor for GnIH is GPR147. The cell signaling pathway triggered by GnIH is initiated by inhibiting adenylate cyclase and decreasing cAMP production in the target cell. GnIH neurons regulate not only gonadotropin synthesis and release in the pituitary, but also regulate various neurons in the brain, such as GnRH1, GnRH2, dopamine, POMC, NPY, orexin, MCH, CRH, oxytocin, and kisspeptin neurons. GnIH and GPR147 are also expressed in gonads and they may regulate steroidogenesis and germ cell maturation in an autocrine/paracrine manner. GnIH regulates reproductive development and activity. In female mammals, GnIH may regulate estrous or menstrual cycle. GnIH is also involved in the regulation of seasonal reproduction, but GnIH may finely tune reproductive activities in the breeding seasons. It is involved in stress responses not only in the brain but also in gonads. GnIH may inhibit male socio-sexual behavior by stimulating the activity of cytochrome P450 aromatase in the brain and stimulates feeding behavior by modulating the activities of hypothalamic and central amygdala neurons.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan; Brain Research Institute Monash Sunway (BRIMS) of the Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya 46150, Malaysia.
| | - You Lee Son
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan
| | - Kazuyoshi Tsutsui
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|
114
|
Wingfield JC, Perfito N, Calisi R, Bentley G, Ubuka T, Mukai M, O'Brien S, Tsutsui K. Putting the brakes on reproduction: Implications for conservation, global climate change and biomedicine. Gen Comp Endocrinol 2016; 227:16-26. [PMID: 26474923 DOI: 10.1016/j.ygcen.2015.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023]
Abstract
Seasonal breeding is widespread in vertebrates and involves sequential development of the gonads, onset of breeding activities (e.g. cycling in females) and then termination resulting in regression of the reproductive system. Whereas males generally show complete spermatogenesis prior to and after onset of breeding, females of many vertebrate species show only partial ovarian development and may delay onset of cycling (e.g. estrous), yolk deposition or germinal vesicle breakdown until conditions conducive for ovulation and onset of breeding are favorable. Regulation of this "brake" on the onset of breeding remains relatively unknown, but could have profound implications for conservation efforts and for "mismatches" of breeding in relation to global climate change. Using avian models it is proposed that a brain peptide, gonadotropin-inhibitory hormone (GnIH), may be the brake to prevent onset of breeding in females. Evidence to date suggests that although GnIH may be involved in the regulation of gonadal development and regression, it plays more regulatory roles in the process of final ovarian development leading to ovulation, transitions from sexual to parental behavior and suppression of reproductive function by environmental stress. Accumulating experimental evidence strongly suggests that GnIH inhibits actions of gonadotropin-releasing hormones on behavior (central effects), gonadotropin secretion (central and hypophysiotropic effects), and has direct actions in the gonad to inhibit steroidogenesis. Thus, actual onset of breeding activities leading to ovulation may involve environmental cues releasing an inhibition (brake) on the hypothalamo-pituitary-gonad axis.
Collapse
Affiliation(s)
- John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Nicole Perfito
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Rebecca Calisi
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA
| | - George Bentley
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - T Ubuka
- Department of Biology, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - M Mukai
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Sara O'Brien
- Department of Biology, Radford University, Radford, VA 24142, USA
| | - K Tsutsui
- Department of Biology, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
115
|
Anjum S, Krishna A, Tsutsui K. Possible Role of GnIH as a Mediator between Adiposity and Impaired Testicular Function. Front Endocrinol (Lausanne) 2016; 7:6. [PMID: 26869993 PMCID: PMC4737883 DOI: 10.3389/fendo.2016.00006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/15/2016] [Indexed: 12/01/2022] Open
Abstract
The aim of the present study was to evaluate the roles of gonadotropin-inhibitory hormone (GnIH) as an endocrine link between increasing adiposity and impaired testicular function in mice. To achieve this, the effect of GnIH on changes in nutrients uptake and hormonal synthesis/action in the adipose tissue and testis was investigated simultaneously by in vivo study and separately by in vitro study. Mice were treated in vivo with different doses of GnIH for 8 days. In the in vitro study, adipose tissue and testes of mice were cultured with different doses of GnIH with or without insulin or LH for 24 h at 37°C. The GnIH treatment in vivo showed increased food intake, upregulation of glucose transporter 4 (GLUT4), and increased uptake of triglycerides (TGs) in the adipose tissue. These changes may be responsible for increased accumulation of fat in white adipose tissue, resulting in increase in the body mass. Contrary to the adipose tissue, treatment with GnIH both in vivo and in vitro showed decreased uptake of glucose by downregulation of glucose transporter 8 (GLUT8) expressions in the testis, which in turn resulted in the decreased synthesis of testosterone. The GnIH treatment in vivo also showed the decreased expression of insulin receptor protein in the testis, which may also be responsible for the decreased testicular activity in the mice. These findings thus suggest that GnIH increases the uptake of glucose and TGs in the adipose tissue, resulting in increased accumulation of fat, whereas simultaneously in the testis, GnIH suppressed the GLUT8-mediated glucose uptake, which in turn may be responsible for decreased testosterone synthesis. This study thus demonstrates GnIH as mediator of increasing adiposity and impaired testicular function in mice.
Collapse
Affiliation(s)
- Shabana Anjum
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi, India
- *Correspondence: Amitabh Krishna,
| | | |
Collapse
|
116
|
Tsutsui K, Ubuka T. GnIH Control of Feeding and Reproductive Behaviors. Front Endocrinol (Lausanne) 2016; 7:170. [PMID: 28082949 PMCID: PMC5186799 DOI: 10.3389/fendo.2016.00170] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/16/2016] [Indexed: 11/13/2022] Open
Abstract
In 2000, Tsutsui and colleagues discovered a neuropeptide gonadotropin-inhibitory hormone (GnIH) that inhibits gonadotropin release in birds. Subsequently, extensive studies during the last 15 years have demonstrated that GnIH is a key neurohormone that regulates reproduction in vertebrates, acting in the brain and on the pituitary to modulate reproduction and reproductive behavior. On the other hand, deprivation of food and other metabolic challenges inhibit the reproductive axis as well as sexual motivation. Interestingly, recent studies have further indicated that GnIH controls feeding behavior in vertebrates, such as in birds and mammals. This review summarizes the discovery of GnIH and its conservation in vertebrates and the neuroendocrine control of feeding behavior and reproductive behavior by GnIH.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui,
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
117
|
Hypothalamic inhibition of socio-sexual behaviour by increasing neuroestrogen synthesis. Nat Commun 2015; 5:3061. [PMID: 24430094 PMCID: PMC3905723 DOI: 10.1038/ncomms4061] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/03/2013] [Indexed: 01/18/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotropin secretion and socio-sexual behaviours. Oestrogen (neuroestrogen) synthesized in the brain from androgen by aromatase regulates male socio-sexual behaviours. Here we show that GnIH directly activates aromatase and increases neuroestrogen synthesis in the preoptic area (POA) and inhibits socio-sexual behaviours of male quail. Aromatase activity and neuroestrogen concentration in the POA are low in the morning when the birds are active, but neuroestrogen synthesis gradually increases until the evening when the birds become inactive. Centrally administered GnIH in the morning increases neuroestrogen synthesis in the POA and decreases socio-sexual behaviours. Centrally administered 17β-oestradiol at higher doses also inhibits socio-sexual behaviours in the morning. These results suggest that GnIH inhibits male socio-sexual behaviours by increasing neuroestrogen synthesis beyond its optimum concentration for the expression of socio-sexual behaviours. This is the first demonstration of any hypothalamic neuropeptide that directly regulates neuroestrogen synthesis.
Collapse
|
118
|
Golan M, Zelinger E, Zohar Y, Levavi-Sivan B. Architecture of GnRH-Gonadotrope-Vasculature Reveals a Dual Mode of Gonadotropin Regulation in Fish. Endocrinology 2015; 156:4163-73. [PMID: 26261873 DOI: 10.1210/en.2015-1150] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The function and components of the hypothalamic-pituitary axis are conserved among vertebrates; however, in fish, a neuroglandular mode of delivery (direct contact between axons and endocrine cells) was considered dominant, whereas in tetrapods hypothalamic signals are relayed to their targets via the hypophysial portal blood system (neurovascular delivery mode). By using a transgenic zebrafish model we studied the functional and anatomical aspects of gonadotrope regulation thus revisiting the existing model. FSH cells were found to be situated close to the vasculature whereas the compact organization of LH cells prevented direct contact of all cells with the circulation. GnRH3 fibers formed multiple boutons upon reaching the pituitary, but most of these structures were located in the neurohypophysis rather than adjacent to gonadotropes. A close association was observed between FSH cells and GnRH3 boutons, but only a fifth of the LH cells were in direct contact with GnRH3 axons, suggesting that FSH cells are more directly regulated than LH cells. GnRH3 fibers closely followed the vasculature in the neurohypophysis and formed numerous boutons along these tracts. These vessels were found to be permeable to relatively large molecules, suggesting the uptake of GnRH3 peptides. Our findings have important implications regarding the differential regulation of LH and FSH and contradict the accepted notion that fish pituitary cells are mostly regulated directly by hypothalamic fibers. Instead, we provide evidence that zebrafish apply a dual mode of gonadotrope regulation by GnRH3 that combines both neuroglandular and neurovascular components.
Collapse
Affiliation(s)
- Matan Golan
- Department of Animal Sciences (M.G., B.L.-S.) and The Interdepartmental Equipment Unit (E.Z.), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; and Department of Marine Biotechnology (Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202
| | - Einat Zelinger
- Department of Animal Sciences (M.G., B.L.-S.) and The Interdepartmental Equipment Unit (E.Z.), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; and Department of Marine Biotechnology (Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202
| | - Yonathan Zohar
- Department of Animal Sciences (M.G., B.L.-S.) and The Interdepartmental Equipment Unit (E.Z.), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; and Department of Marine Biotechnology (Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202
| | - Berta Levavi-Sivan
- Department of Animal Sciences (M.G., B.L.-S.) and The Interdepartmental Equipment Unit (E.Z.), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; and Department of Marine Biotechnology (Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202
| |
Collapse
|
119
|
Dan X, Han L, Riaz H, Luo X, Liu X, Chong Z, Yang L. Construction and evaluation of the novel DNA vaccine harboring the inhibin α (1-32) and the RF-amide related peptide-3 genes for improving fertility in mice. Exp Anim 2015; 65:17-25. [PMID: 26437787 PMCID: PMC4783647 DOI: 10.1538/expanim.15-0044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To further improve fertility of animals, a novel gene RFRP-3 (RF-amide
related peptide-3, RFRP-3) was used to construct DNA vaccines with INH
α (1–32) (inhibin, INH) fragment for the first time.
The aim of this study was to evaluate the effects of novel DNA vaccines on fertility in
mice. Synthesized SINH and SRFRP (INH and RFRP genes
were separately ligated to the C-terminus of the small envelope protein of the hepatitis B
virus (HBV-S) gene) fragments were inserted into multiple cloning site of pIRES vector to
develop p-SINH/SRFRP. The synthesized tissue plasminogen activator (TPA) signal sequence
was then inserted into the p-SINH/SRFRP to construct p-TPA-SINH/TPA-SFRFP. Meanwhile,
p-SINH was prepared and considered as positive control. Forty Kunming mice were equally
divided into four groups and respectively immunized by electroporation with p-SINH,
p-SINH/SRFRP and p-TPA-SINH/TPA-SRFRP vaccine (three times at 2 weeks interval) and saline
as control. Results showed that the average antibodies (P/N value) of anti-INH and
anti-RFRP in mice inoculated with p-TPA-SINH/TPA-SFRFP were significantly higher
(P<0.05) than those inoculated with p-SINH/SRFRP and the positive
rates were 100% (anti-INH) and 90% (anti-RFRP) respectively, at 2 weeks after the third
immunization. Litter size of mice immunized with the three recombinant plasmids was higher
(P<0.05) than that of the control, and litter size of mice immunized
with p-TPA-SINH/TPA-SRFRP significantly increased (P<0.05) compared
with p-SINH. These results suggested that the p-TPA-SINH/TPA-SRFRP harboring
INH and RFRP genes was successfully constructed and
had good immunogenicity, and might effectively increase litter size.
Collapse
Affiliation(s)
- Xingang Dan
- Key Lab of Education Ministry of China in Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | | | | | | | | | | | | |
Collapse
|
120
|
Biswas S, Jadhao AG, Pinelli C, Palande NV, Tsutsui K. GnIH and GnRH expressions in the central nervous system and pituitary of Indian major carp, Labeo rohita during ontogeny: An immunocytochemical study. Gen Comp Endocrinol 2015; 220:88-92. [PMID: 24955881 DOI: 10.1016/j.ygcen.2014.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/31/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the major hypothalamic neuropeptide stimulating gonadotropin secretion in vertebrates. In 2000, gonadotropin-inhibitory hormone (GnIH) was discovered as a hypothalamic neuropeptide that inhibits gonadotropin secretion in birds. Subsequent studies have shown that GnIH is present in the brain of other vertebrates. We show for the first time GnIH immunoreactivity in the central nervous system and pituitary during development of Indian major carp, Labeo rohita and compare it with the localization of GnRH. GnIH and GnRH immunoreactivities were observed from the olfactory system to spinal cord throughout development. In the brain, both neuropeptides were localized in the telencephalon, diencephalon including the preoptic area and rhombencephalon. The localization of GnIH and GnRH in the pituitary suggests that these neuropeptides are involved in the regulation of pituitary hormones by an autocrine manner during development. In addition, the presence of GnIH and GnRH in several other brain regions including the olfactory system suggests their involvement in the regulation of other physiological functions.
Collapse
Affiliation(s)
- Saikat Biswas
- Department of Zoology, RTM Nagpur University, Nagpur 440033, India
| | - Arun G Jadhao
- Department of Zoology, RTM Nagpur University, Nagpur 440033, India.
| | - Claudia Pinelli
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Nikhil V Palande
- Department of Zoology, RTM Nagpur University, Nagpur 440033, India
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
121
|
Paullada-Salmerón JA, Cowan M, Aliaga-Guerrero M, Gómez A, Zanuy S, Mañanos E, Muñoz-Cueto JA. LPXRFa peptide system in the European sea bass: A molecular and immunohistochemical approach. J Comp Neurol 2015; 524:176-98. [DOI: 10.1002/cne.23833] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/15/2023]
Affiliation(s)
- José A. Paullada-Salmerón
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| | - Mairi Cowan
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| | - María Aliaga-Guerrero
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| | - Ana Gómez
- Institute of Aquaculture of Torre de la Sal, CSIC; Ribera de Cabanes E-12595 Castellón Spain
| | - Silvia Zanuy
- Institute of Aquaculture of Torre de la Sal, CSIC; Ribera de Cabanes E-12595 Castellón Spain
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC; Ribera de Cabanes E-12595 Castellón Spain
| | - José A. Muñoz-Cueto
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| |
Collapse
|
122
|
Osugi T, Ubuka T, Tsutsui K. An evolutionary scenario for gonadotrophin-inhibitory hormone in chordates. J Neuroendocrinol 2015; 27:556-66. [PMID: 25494813 DOI: 10.1111/jne.12246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 12/12/2022]
Abstract
In 2000, we discovered a novel hypothalamic neuropeptide that actively inhibits gonadotrophin release in quail and termed it gonadotrophin-inhibitory hormone (GnIH). GnIH peptides have subsequently been identified in most representative species of gnathostomes. They all share a C-terminal LPXRFamide (X = L or Q) motif. GnIH can inhibit gonadotrophin synthesis and release by decreasing the activity of GnRH neuroes, as well as by directly inhibiting pituitary gonadotrophin secretion in birds and mammals. To investigate the evolutionary origin of GnIH and its ancestral function, we identified a GnIH precursor gene encoding GnIHs from the brain of sea lamprey, the most ancient lineage of vertebrates. Lamprey GnIHs possess a C-terminal PQRFamide motif. In vivo administration of one of lamprey GnIHs stimulated the expression of lamprey GnRH in the hypothalamus and gonadotophin β mRNA in the pituitary. Thus, GnIH may have emerged in agnathans as a stimulatory neuropeptide that subsequently diverged to an inhibitory neuropeptide during the course of evolution from basal vertebrates to later-evolved vertebrates, such as birds and mammals. From a structural point of view, pain modulatory neuropeptides, such as neuropeptide FF (NPFF) and neuropeptide AF, share a C-terminal PQRFamide motif. Because agnathans possess both GnIH and NPFF genes, the origin of GnIH and NPFF genes may date back before the emergence of agnathans. More recently, we identified a novel gene encoding RFamide peptides in the amphioxus. Molecular phylogenetic analysis and synteny analysis indicated that this gene is closely related to the genes of GnIH and NPFF of vertebrates. The results suggest that the identified protochordate gene is similar to the common ancestor of GnIH and NPFF genes, indicating that the origin of GnIH and NPFF may date back to the time of the emergence of early chordates. The GnIH and NPFF genes may have diverged by whole-genome duplication during the course of vertebrate evolution.
Collapse
Affiliation(s)
- T Osugi
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Tokyo, Japan
| | - T Ubuka
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Tokyo, Japan
| | - K Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Tokyo, Japan
| |
Collapse
|
123
|
Choi CY, Shin HS, Kim NN, Yang SG, Kim BS, Yu YM. Time-related effects of various LED light spectra on reproductive hormones in the brain of the goldfishCarassius auratus. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1046247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
124
|
Davies S, Cros T, Richard D, Meddle SL, Tsutsui K, Deviche P. Food availability, energetic constraints and reproductive development in a wild seasonally breeding songbird. Funct Ecol 2015; 29:1421-1434. [PMID: 27546946 PMCID: PMC4974902 DOI: 10.1111/1365-2435.12448] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/23/2015] [Indexed: 11/28/2022]
Abstract
In many organisms, food availability is a proximate cue that synchronizes seasonal development of the reproductive system with optimal environmental conditions. Growth of the gonads and secondary sexual characteristics is orchestrated by the hypothalamic–pituitary–gonadal (HPG) axis. However, our understanding of the physiological mechanisms by which food availability modulates activity of the HPG axis is limited. It is thought that many factors, including energetic status, modulate seasonal reproductive activation. We tested the hypothesis that food availability modulates the activity of the HPG axis in a songbird. Specifically, we food‐restricted captive adult male Abert's Towhees Melozone aberti for 2 or 4 weeks during photoinduced reproductive development. A third group (control) received ad libitum food throughout. We measured multiple aspects of the reproductive system including endocrine activity of all three levels of the HPG axis [i.e. hypothalamic gonadotropin‐releasing hormone‐I (GnRH‐I), plasma luteinizing hormone (LH) and testosterone (T)], and gonad morphology. Furthermore, because gonadotropin‐inhibitory hormone (GnIH) and neuropeptide Y (NPY; a potent orexigenic peptide) potentially integrate information on food availability into seasonal reproductive development, we also measured the brain levels of these peptides. At the hypothalamic level, we detected no effect of food restriction on immunoreactive (ir) GnRH‐I, but the duration of food restriction was inversely related to the size of ir‐GnIH perikarya. Furthermore, the number of ir‐NPY cells was higher in food‐restricted than control birds. Food restriction did not influence photoinduced testicular growth, but decreased plasma LH and T, and width of the cloacal protuberance, an androgen‐sensitive secondary sexual characteristic. Returning birds to ad libitum food availability had no effect on plasma LH or T, but caused the cloacal protuberance to rapidly increase in size to that of ad libitum‐fed birds. Our results support the tenet that food availability modulates photoinduced reproductive activation. However, they also suggest that this modulation is complex and depends upon the level of the HPG axis considered. At the hypothalamic level, our results are consistent with a role for the GnIH and NPY systems in integrating information on energetic status. There also appears to be a role for endocrine function at the anterior pituitary gland and testicular levels in modulating reproductive development in the light of energetic status and independently of testicular growth.
Collapse
Affiliation(s)
- Scott Davies
- School of Life Sciences Arizona State University Tempe Arizona 85287 USA; Present address: Department of Biological Sciences Virginia Tech Blacksburg Virginia 24061USA
| | - Thomas Cros
- Faculté des Sciences Fondamentales et Appliquées Université de Poitiers Poitiers 86022 France
| | - Damien Richard
- Faculté des Sciences Fondamentales et Appliquées Université de Poitiers Poitiers 86022 France
| | - Simone L Meddle
- The Roslin Institute The Royal (Dick) School of Veterinary Studies The University of Edinburgh Easter Bush Midlothian EH25 9RG UK
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences Department of Biology and Center for Medical Life Science Waseda University Tokyo 162-8480 Japan
| | - Pierre Deviche
- School of Life Sciences Arizona State University Tempe Arizona 85287 USA
| |
Collapse
|
125
|
Beltramo M, Robert V, Galibert M, Madinier JB, Marceau P, Dardente H, Decourt C, De Roux N, Lomet D, Delmas AF, Caraty A, Aucagne V. Rational design of triazololipopeptides analogs of kisspeptin inducing a long-lasting increase of gonadotropins. J Med Chem 2015; 58:3459-70. [PMID: 25811530 DOI: 10.1021/jm5019675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New potent and selective KISS1R agonists were designed using a combination of rational chemical modifications of the endogenous neuropeptide kisspeptin 10 (KP10). Improved resistance to degradation and presumably reduced renal clearance were obtained by introducing a 1,4-disubstituted 1,2,3-triazole as a proteolysis-resistant amide mimic and a serum albumin-binding motif, respectively. These triazololipopeptides are highly potent full agonists of KISS1R and are >100 selective over the closely related NPFF1R. When injected in ewes with a quiescent reproductive system, the best compound of our series induced a much prolonged increase of luteinizing hormone release compared to KP10 and increased follicle-stimulating hormone plasma concentration. Hence, this KISS1R agonist is a new valuable pharmacological tool to explore the potential of KP system in reproduction control. Furthermore, it represents the first step to develop drugs treating reproductive system disorders due to a reduced activity of the hypothalamo-pituitary-gonadal axis such as delayed puberty, hypothalamic amenorrhea, and hypogonadotropic hypogonadism.
Collapse
Affiliation(s)
- Massimiliano Beltramo
- †UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85; CNRS, UMR7247; Université François Rabelais Tours; IFCE), F-37380 Nouzilly, France
| | - Vincent Robert
- †UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85; CNRS, UMR7247; Université François Rabelais Tours; IFCE), F-37380 Nouzilly, France
| | - Mathieu Galibert
- ‡Centre de Biophysique Moléculaire (CNRS UPR4301), Rue Charles Sadron, F-45071 Orléans Cedex 2, France
| | - Jean-Baptiste Madinier
- ‡Centre de Biophysique Moléculaire (CNRS UPR4301), Rue Charles Sadron, F-45071 Orléans Cedex 2, France
| | - Philippe Marceau
- ‡Centre de Biophysique Moléculaire (CNRS UPR4301), Rue Charles Sadron, F-45071 Orléans Cedex 2, France
| | - Hugues Dardente
- †UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85; CNRS, UMR7247; Université François Rabelais Tours; IFCE), F-37380 Nouzilly, France
| | - Caroline Decourt
- †UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85; CNRS, UMR7247; Université François Rabelais Tours; IFCE), F-37380 Nouzilly, France
| | | | - Didier Lomet
- †UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85; CNRS, UMR7247; Université François Rabelais Tours; IFCE), F-37380 Nouzilly, France
| | - Agnès F Delmas
- ‡Centre de Biophysique Moléculaire (CNRS UPR4301), Rue Charles Sadron, F-45071 Orléans Cedex 2, France
| | - Alain Caraty
- †UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85; CNRS, UMR7247; Université François Rabelais Tours; IFCE), F-37380 Nouzilly, France
| | - Vincent Aucagne
- ‡Centre de Biophysique Moléculaire (CNRS UPR4301), Rue Charles Sadron, F-45071 Orléans Cedex 2, France
| |
Collapse
|
126
|
Kriegsfeld LJ, Ubuka T, Bentley GE, Tsutsui K. Seasonal control of gonadotropin-inhibitory hormone (GnIH) in birds and mammals. Front Neuroendocrinol 2015; 37:65-75. [PMID: 25511257 PMCID: PMC4405439 DOI: 10.1016/j.yfrne.2014.12.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/05/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Animals inhabiting temperate and boreal latitudes experience marked seasonal changes in the quality of their environments and maximize reproductive success by phasing breeding activities with the most favorable time of year. Whereas the specific mechanisms driving seasonal changes in reproductive function vary across species, converging lines of evidence suggest gonadotropin-inhibitory hormone (GnIH) serves as a key component of the neuroendocrine circuitry driving seasonal changes in reproduction and sexual motivation in some species. In addition to anticipating environmental change through transduction of photoperiodic information and modifying reproductive state accordingly, GnIH is also positioned to regulate acute changes in reproductive status should unpredictable conditions manifest throughout the year. The present overview summarizes the role of GnIH in avian and mammalian seasonal breeding while considering the similarities and disparities that have emerged from broad investigations across reproductively photoperiodic species.
Collapse
Affiliation(s)
- Lance J Kriegsfeld
- Department of Psychology and Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-1650, USA.
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - George E Bentley
- Department of Integrative Biology and Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720-3140, USA
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
127
|
Zheng L, Su J, Fang R, Jin M, Lei Z, Hou Y, Ma Z, Guo T. Developmental changes in the role of gonadotropin-inhibitory hormone (GnIH) and its receptors in the reproductive axis of male Xiaomeishan pigs. Anim Reprod Sci 2015; 154:113-20. [PMID: 25640458 DOI: 10.1016/j.anireprosci.2015.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 11/30/2014] [Accepted: 01/14/2015] [Indexed: 11/18/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH), a key regulator of vertebrate reproduction, was identified in the Japanese quail in 2000, and RFamide-related peptide-3 (RFRP-3) was found to be a mammalian GnIH ortholog. To further determine its role in the reproductive system of male Xiaomeishan pigs, we systematically investigated changes in GnIH and its receptors (GPR147 and GPR74) during the development of the reproductive axis of male pigs. We also investigated the direct effect of RFRP-3 on the synthesis and secretion of testosterone in Leydig cells in vitro. The expression patterns of GnIH in the reproductive axis of male pigs at different stages of development (postnatal 3, 30, 60, 90, and 120D) were studied using semiquantitative RT-PCR and immunohistochemistry. Our results show that hypothalamic, pituitary and testicular levels of GnIH and its receptors mRNA significantly changed on postnatal day 30 and postnatal day 90. The immunoreactivities of the GnIH proteins were mainly localized to the spermatogenic cells, sustentacular cells and interstitial cells of the testis throughout sexual development. It was confirmed that different doses of GnIH/RFRP-3 inhibited the release and synthesis of testosterone, and impacted on the gene expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and P450, enzymes that play a key role in the synthesis of testosterone. Together, this research provides molecular and morphological data on the regulation of GnIH in the reproductive development of male pigs.
Collapse
Affiliation(s)
- Lucheng Zheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Fang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengmeng Jin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihai Lei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanlong Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyu Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
128
|
Abstract
Acquisition of a mature pattern of gonadotropin-releasing hormone (GnRH) secretion from the CNS is a hallmark of the pubertal process. Little is known about GnRH release during sexual maturation, but it is assumed to be minimal before later stages of puberty. We studied spontaneous GnRH secretion in brain slices from male mice during perinatal and postnatal development using fast-scan cyclic voltammetry (FSCV) to detect directly the oxidation of secreted GnRH. There was good correspondence between the frequency of GnRH release detected by FSCV in the median eminence of slices from adults with previous reports of in vivo luteinizing hormone (LH) pulse frequency. The frequency of GnRH release in the late embryonic stage was surprisingly high, reaching a maximum in newborns and remaining elevated in 1-week-old animals despite low LH levels. Early high-frequency GnRH release was similar in wild-type and kisspeptin knock-out mice indicating that this release is independent of kisspeptin-mediated excitation. In vivo treatment with testosterone or in vitro treatment with gonadotropin-inhibitory hormone (GnIH) reduced GnRH release frequency in slices from 1-week-old mice. RF9, a putative GnIH antagonist, restored GnRH release in slices from testosterone-treated mice, suggesting that testosterone inhibition may be GnIH-dependent. At 2-3 weeks, GnRH release is suppressed before attaining adult patterns. Reduction in early life spontaneous GnRH release frequency coincides with the onset of the ability of exogenous GnRH to induce pituitary LH secretion. These findings suggest that lack of pituitary secretory response, not lack of GnRH release, initially blocks downstream activation of the reproductive system.
Collapse
|
129
|
Leon S, Tena-Sempere M. Dissecting the Roles of Gonadotropin-Inhibitory Hormone in Mammals: Studies Using Pharmacological Tools and Genetically Modified Mouse Models. Front Endocrinol (Lausanne) 2015; 6:189. [PMID: 26779117 PMCID: PMC4700143 DOI: 10.3389/fendo.2015.00189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/10/2015] [Indexed: 12/24/2022] Open
Abstract
Reproduction is essential for perpetuation of the species and, hence, is controlled by a sophisticated network of regulatory factors of central and peripheral origin that integrate at the hypothalamic-pituitary-gonadal (HPG) axis. Among the central regulators of reproduction, kisspeptins, as major stimulatory drivers of gonadotropin-releasing hormone (GnRH) neurosecretion, have drawn considerable interest in the last decade. However, the dynamic, if not cyclic (in the female), nature of reproductive function and the potency of kisspeptins and other stimulatory signals of the HPG axis make tenable the existence of counterbalance inhibitory mechanisms, which may keep stimulation at check and would allow adaptation of reproductive maturation and function to different endogenous and environmental conditions. In this context, discovery of the gonadotropin-inhibitory hormone (GnIH) in birds, and its mammalian homolog, RFRP, opened up the exciting possibility that this inhibitory signal might operate centrally to suppress, directly or indirectly, GnRH/gonadotropin secretion, thus reciprocally cooperating with other stimulatory inputs in the dynamic regulation of the reproductive hypothalamic-pituitary unit. After more than 15 years of active research, the role of GnIH/RFRP in the control of the HPG axis has been documented in different species. Yet, important aspects of the physiology of this system, especially regarding its relative importance and actual roles in the control of key facets of reproductive function, remain controversial. In the present work, we aim to provide a critical review of recent developments in this area, with special attention to studies in rodent models, using pharmacological tools and functional genomics. In doing so, we intend to endow the reader with an updated view of what is known (and what is not known) about the physiological role of GnIH/RFRP signaling in the control of mammalian reproduction.
Collapse
Affiliation(s)
- Silvia Leon
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Instituto de Salud Carlos III, CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofia (IMIBIC/HURS), Córdoba, Spain
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Instituto de Salud Carlos III, CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofia (IMIBIC/HURS), Córdoba, Spain
- FiDiPro Program, Department of Physiology, University of Turku, Turku, Finland
- *Correspondence: Manuel Tena-Sempere,
| |
Collapse
|
130
|
Tsutsui K, Ubuka T, Son YL, Bentley GE, Kriegsfeld LJ. Contribution of GnIH Research to the Progress of Reproductive Neuroendocrinology. Front Endocrinol (Lausanne) 2015; 6:179. [PMID: 26635728 PMCID: PMC4655308 DOI: 10.3389/fendo.2015.00179] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/05/2015] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of gonadotropin-releasing hormone (GnRH) in mammals at the beginning of the 1970s, it was generally accepted that GnRH is the only hypothalamic neuropeptide regulating gonadotropin release in mammals and other vertebrates. In 2000, however, gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide that actively inhibits gonadotropin release, was discovered in quail. Numerous studies over the past decade and a half have demonstrated that GnIH serves as a key player regulating reproduction across vertebrates, acting on the brain and pituitary to modulate reproductive physiology and behavior. In the latter case, recent evidence indicates that GnIH can regulate reproductive behavior through changes in neurosteroid, such as neuroestrogen, biosynthesis in the brain. This review summarizes the discovery of GnIH, and the contributions to GnIH research focused on its mode of action, regulation of biosynthesis, and how these findings advance our understanding of reproductive neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui,
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
- Brain Research Institute Monash Sunway of the Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - George E. Bentley
- Department of Integrative Biology, Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Lance J. Kriegsfeld
- Department of Psychology, Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
131
|
Valle S, Carpentier E, Vu B, Tsutsui K, Deviche P. Food restriction negatively affects multiple levels of the reproductive axis in male house finches, Haemorhous mexicanus. J Exp Biol 2015; 218:2694-704. [DOI: 10.1242/jeb.123323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/23/2015] [Indexed: 01/06/2023]
Abstract
Nutrition influences reproductive functions across vertebrates, but the effects of food availability on the functioning of the hypothalamic-pituitary-gonadal (HPG) axis in wild birds and the mechanisms mediating these effects remain unclear. We investigated the influence of chronic food restriction on the HPG axis of photostimulated House Finches, Haemorhous mexicanus. Food-restricted birds had underdeveloped testes with smaller seminiferous tubules than ad libitum-fed birds. Baseline plasma testosterone (T) increased in response to photostimulation in ad libitum-fed but not in food-restricted birds. Food availability did not, however, affect the plasma T increase resulting from a gonadotropin-releasing hormone (GnRH) or a luteinizing hormone (LH) challenge. The number of hypothalamic GnRH-I immunoreactive (ir) but not proGnRH-ir perikarya was higher in food-restricted than ad libitum-fed finches, suggesting inhibited secretion of GnRH. Hypothalamic gonadotropin-inhibitory hormone (GnIH)-ir and neuropeptide Y (NPY)-ir were not affected by food availability. Plasma corticosterone (CORT) was also not affected by food availability, indicating that the observed HPG axis inhibition did not result from increased activity of the hypothalamic-pituitary-adrenal (HPA) axis. This study is among the first to examine multilevel functional changes in the HPG axis in response to food restriction in a wild bird. The results indicate that food availability affects both hypothalamic and gonadal function, but further investigations are needed to clarify the mechanisms by which nutritional signals mediate these effects.
Collapse
Affiliation(s)
- Shelley Valle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Elodie Carpentier
- Universite de Poitiers, Faculté des Sciences Fondamentales et Appliquées, Poitiers, F-86022, France
| | - Bethany Vu
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Kazuyoshi Tsutsui
- Department of Biology, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
132
|
Lomniczi A, Wright H, Ojeda SR. Epigenetic regulation of female puberty. Front Neuroendocrinol 2015; 36:90-107. [PMID: 25171849 PMCID: PMC6824271 DOI: 10.1016/j.yfrne.2014.08.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/15/2014] [Accepted: 08/20/2014] [Indexed: 12/18/2022]
Abstract
Substantial progress has been made in recent years toward deciphering the molecular and genetic underpinnings of the pubertal process. The availability of powerful new methods to interrogate the human genome has led to the identification of genes that are essential for puberty to occur. Evidence has also emerged suggesting that the initiation of puberty requires the coordinated activity of gene sets organized into functional networks. At a cellular level, it is currently thought that loss of transsynaptic inhibition, accompanied by an increase in excitatory inputs, results in the pubertal activation of GnRH release. This concept notwithstanding, a mechanism of epigenetic repression targeting genes required for the pubertal activation of GnRH neurons was recently identified as a core component of the molecular machinery underlying the central restraint of puberty. In this chapter we will discuss the potential contribution of various mechanisms of epigenetic regulation to the hypothalamic control of female puberty.
Collapse
Affiliation(s)
- Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA.
| | - Hollis Wright
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA.
| |
Collapse
|
133
|
Ubuka T, Tsutsui K. Evolution of gonadotropin-inhibitory hormone receptor and its ligand. Gen Comp Endocrinol 2014; 209:148-61. [PMID: 25220854 DOI: 10.1016/j.ygcen.2014.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/15/2014] [Accepted: 09/04/2014] [Indexed: 12/13/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide inhibitor of gonadotropin secretion, which was first identified in the Japanese quail hypothalamus. GnIH peptides share a C-terminal LPXRFamide (X=L or Q) motif in most vertebrates. The receptor for GnIH (GnIHR) is the seven-transmembrane G protein-coupled receptor 147 (GPR147) that inhibits cAMP production. GPR147 is also named neuropeptide FF (NPFF) receptor 1 (NPFFR1), because it also binds NPFF that has a C-terminal PQRFamide motif. To understand the evolutionary history of the GnIH system in the animal kingdom, we searched for receptors structurally similar to GnIHR in the genome of six mammals (human, mouse, rat, cattle, cat, and rabbit), five birds (pigeon, chicken, turkey, budgerigar, and zebra finch), one reptile (green anole), one amphibian (Western clawed flog), six fishes (zebrafish, Nile tilapia, Fugu, coelacanth, spotted gar, and lamprey), one hemichordate (acorn worm), one echinoderm (purple sea urchin), one mollusk (California sea hare), seven insects (pea aphid, African malaria mosquito, honey bee, buff-tailed bumblebee, fruit fly, jewel wasp, and red flour beetle), one cnidarian (hydra), and constructed phylogenetic trees by neighbor joining (NJ) and maximum likelihood (ML) methods. A multiple sequence alignment of the receptors showed highly conserved seven-transmembrane domains as well as disulfide bridge sites between the first and second extracellular loops, including the receptor of hydra. Both NJ and ML analyses grouped the receptors of vertebrates into NPFFR1 and NPFFR2 (GPR74), and the receptors of insects into the receptor for SIFamide peptides that share a C-terminal YRKPPFNGSIFamide motif. Although human, quail and zebrafish GnIHR (NPFFR1) were most structurally similar to SIFamide receptor of fruit fly in the Famide peptide (FMRFamide, neuropeptide F, short neuropeptide F, drosulfakinin, myosuppressin, SIFamide) receptor families, the amino acid sequences and the peptide coding regions of GnIH precursors were most similar to FMRFamide precursor of fruit fly in the precursors of Famide peptide families. Chromosome synteny analysis of the precursor genes of human, quail and zebrafish GnIH and fruit fly Famide peptides further identified conserved synteny in vertebrate GnIH and fruit fly FMRFa precursor genes as well as other Famide peptide precursor genes. These results suggest that GnIH and its receptor pair and SIFamide and its receptor pair may have diverged and co-evolved independently in vertebrates and insects, respectively, from their ancestral Famide peptide and its receptor pair, during diversification and evolution of deuterostomian and protostomian species.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan
| | - Kazuyoshi Tsutsui
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|
134
|
Pinelli C, Jadhao AG, Biswas SP, Tsutsui K, D''Aniello B. Neuroanatomical Organization of the Brain Gonadotropin-Inhibitory Hormone and Gonadotropin-Releasing Hormone Systems in the Frog Pelophylax esculentus. BRAIN, BEHAVIOR AND EVOLUTION 2014; 85:15-28. [DOI: 10.1159/000368594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/28/2014] [Indexed: 11/19/2022]
Abstract
Growing evidence suggests that gonadotropin-inhibitory hormone (GnIH) may play a key role in mediating vertebrate reproduction. GnIH inhibits gonadotropin synthesis and release by decreasing the activity of gonadotropin-releasing hormone (GnRH) neurons as well as by directly regulating gonadotropin secretion from the pituitary. Whereas the presence of GnIH has been widely investigated in various classes of vertebrates, there are very few immunohistochemical reports focusing on GnIH in amphibians. The aim of this study was to assess the presence and neuroanatomical distribution of GnIH-like immunoreactivity in the brain of the anuran amphibian Pelophylax (Rana) esculentus (esculenta) and to explore any potential anatomical relationship with mammalian GnRH-immunoreactive (mGnRH-ir) elements. The GnIH-like immunoreactive (GnIH-ir) system constitutes two distinct subpopulations in the telencephalon and diencephalon, with the highest number of immunoreactive cells located in the preoptic and suprachiasmatic areas. GnIH-ir neurons were also observed in the medial septum, the anterior commissure, the dorsal hypothalamus, the periventricular nucleus of the hypothalamus, and the posterior tuberculum. Scattered GnIH-ir fibers were present in all major subdivisions of the brain but only occasionally in the median eminence. mGnRH-ir neurons were distributed in the mediobasal telencephalon, the medial septal area, and the anterior preoptic area. Double-label immunohistochemistry revealed that the GnRH and GnIH systems coexist and have overlapping distributions at the level of the anterior preoptic area. Some GnIH-ir fibers were in close proximity to mGnRH-ir cell bodies. Our results suggest that both the neuroanatomy and the functional regulation of GnRH release are conserved properties of the hypothalamic GnIH-ir system among vertebrate species.
Collapse
|
135
|
Jørgensen SR, Andersen MD, Overgaard A, Mikkelsen JD. Changes in RFamide-related peptide-1 (RFRP-1)-immunoreactivity during postnatal development and the estrous cycle. Endocrinology 2014; 155:4402-10. [PMID: 25144921 DOI: 10.1210/en.2014-1274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH is a key player in the hypothalamic control of gonadotropin secretion from the anterior pituitary gland. It has been shown that the mammalian counterpart of the avian gonadotropin inhibitory hormone named RFamide-related peptide (RFRP) is expressed in hypothalamic neurons that innervate and inhibit GnRH neurons. The RFRP precursor is processed into 2 mature peptides, RFRP-1 and RFRP-3. These are characterized by a conserved C-terminal motif RF-NH2 but display highly different N termini. Even though the 2 peptides are equally potent in vitro, little is known about their relative distribution and their distinct roles in vivo. In this study, we raised an antiserum selective for RFRP-1 and defined the distribution of RFRP-1-immunoreactive (ir) neurons in the rat brain. Next, we analyzed the level of RFRP-1-ir during postnatal development in males and females and investigated changes in RFRP-1-ir during the estrous cycle. RFRP-1-ir neurons were distributed along the third ventricle from the caudal part of the medial anterior hypothalamus throughout the medial tuberal hypothalamus and were localized in, but mostly in between, the dorsomedial hypothalamic, ventromedial hypothalamic, and arcuate nuclei. The number of RFRP-1-ir neurons and the density of cellular immunoreactivity were unchanged from juvenile to adulthood in male rats during the postnatal development. However, both parameters were significantly increased in female rats from peripuberty to adulthood, demonstrating prominent gender difference in the developmental control of RFRP-1 expression. The percentage of c-Fos-positive RFRP-1-ir neurons was significantly higher in diestrus as compared with proestrus and estrus. In conclusion, we found that adult females, as compared with males, have significantly more RFRP-1-ir per cell, and these cells are regulated during the estrous cycle.
Collapse
Affiliation(s)
- Sara R Jørgensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
136
|
Lima CJG, Cardoso SC, Lemos EFL, Zingler E, Capanema C, Menezes LD, Vogado G, Dos Santos BTA, de Moraes OL, Duarte EF, de Brito VN, Latronico AC, Lofrano-Porto A. Mutational analysis of the genes encoding RFamide-related peptide-3, the human orthologue of gonadotrophin-inhibitory hormone, and its receptor (GPR147) in patients with gonadotrophin-releasing hormone-dependent pubertal disorders. J Neuroendocrinol 2014; 26:817-24. [PMID: 25180599 DOI: 10.1111/jne.12207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 08/24/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022]
Abstract
RFamide-related peptide-3 (RFRP-3), the orthologue of avian gonadotrophin-inhibitory hormone, and its receptor GPR147 have been recently identified in the human hypothalamus, and their roles in the regulation of reproductive axis has been studied. The present study aimed to investigate whether the presence of variants in the genes encoding human RFRP-3 (NPVF gene) and its receptor, GPR147 (NPFFR1 gene), is associated with the occurrence of gonadotrophin-releasing hormone-dependent pubertal disorders. Seventy-eight patients with idiopathic central precocious puberty (CPP) and 51 with normosmic isolated hypogonadotrophic hypogonadism (nIHH) were investigated. Fifty healthy subjects comprised the control group. The coding sequences of the NPVF and NPFFR1 genes were amplified and sequenced. Odds ratios (OR) were used to estimate the likelihood of CPP or nIHH in the presence of the described polymorphisms. All such polymorphisms have already been registered in the National Center for Biotechnology Information database. A three-nucleotide in frame deletion was identified in the NPVF gene (p.I71_K72), with a smaller proportion in the CPP (5%) compared to the nIHH (15%) group (P = 0.06). This results in the deletion of the isoleucine at position 71, adjacent to lysine at an endoproteolytic cleavage site of the precursor peptide. This polymorphism was associated with a lower risk of CPP (OR = 0.33; 95% confidence interval = 0.08-0.88); interestingly, only two men with nIHH were homozygotes for this variant. A total of five missense polymorphisms were found in the NPFFR1 gene, which encodes GPR147, with similar frequencies among groups and no association with pubertal timing. Our data suggest that RFRP-3/GPR147 may play secondary, modulatory roles on the regulation of pubertal development; a restraining modulatory effect of the NPVF p.I71_K72 variant on the activation of the gonadotrophic axis cannot be ruled out and deserves further investigation.
Collapse
Affiliation(s)
- C J G Lima
- Laboratório de Farmacologia Molecular, Faculdade de Ciências da Saúde e Ambulatório de Endocrinologia das Gônadas e Adrenais, Hospital Universitário de Brasília, Universidade de Brasília, Brasília, DF, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Moussavi M, Wlasichuk M, Chang JP, Habibi HR. Seasonal effects of GnIH on basal and GnRH-induced goldfish somatotrope functions. J Endocrinol 2014; 223:191-202. [PMID: 25319842 DOI: 10.1530/joe-14-0441] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To understand how gonadotropin-inhibitory hormone (GnIH) regulates goldfish GH cell functions, we monitored GH release and expression during early, mid-, and/or late gonadal recrudescence. In vivo and in vitro responses to goldfish (g) GnIH were different, indicating direct action at the level of pituitary, as well as interactions with other neuroendocrine factors involved in GH regulation. Injection of gGnIH consistently reduced basal serum GH levels but elevated pituitary gh mRNA levels, indicating potential dissociation of GH release and synthesis. Goldfish GnRH (sGnRH and cGnRHII) injection differentially stimulated serum GH and pituitary gh mRNA levels with some seasonal differences; these responses were reduced by gGnIH. In contrast, in vitro application of gGnIH during 24-h static incubation of goldfish pituitary cells generally elevated basal GH release and attenuated sGnRH-induced changes in gh mRNA, while suppressing basal gh mRNA levels at mid- and late recrudescence but elevating them at early recrudescence. gGnIH attenuated the GH release responses to sGnRH during static incubation at early, but not at mid- and late recrudescence. In cell column perifusion experiments examining short-term GH release, gGnIH reduced the cGnRHII- and sGnRH-stimulated secretion at late recrudescence but inhibited tha action of cGnRHII only during mid-recrudescence. Interestingly, a reduction of basal GH release upon perifusion with gGnIH during late recrudescence was followed by a rebound increase in GH release upon gGnIH removal. These results indicate that gGnIH exerts complex effects on basal and GnRH-stimulated goldfish GH cell functions and can differentially affect GH release and mRNA expression in a seasonal reproductive manner.
Collapse
Affiliation(s)
- M Moussavi
- Department of Biological SciencesUniversity of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4Department of Biological SciencesUniversity of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - M Wlasichuk
- Department of Biological SciencesUniversity of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4Department of Biological SciencesUniversity of Alberta, Edmonton, Alberta, Canada T6G 2E9 Department of Biological SciencesUniversity of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4Department of Biological SciencesUniversity of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - J P Chang
- Department of Biological SciencesUniversity of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4Department of Biological SciencesUniversity of Alberta, Edmonton, Alberta, Canada T6G 2E9 Department of Biological SciencesUniversity of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4Department of Biological SciencesUniversity of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - H R Habibi
- Department of Biological SciencesUniversity of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4Department of Biological SciencesUniversity of Alberta, Edmonton, Alberta, Canada T6G 2E9
| |
Collapse
|
138
|
Ubuka T, Tsutsui K. Review: neuroestrogen regulation of socio-sexual behavior of males. Front Neurosci 2014; 8:323. [PMID: 25352775 PMCID: PMC4195287 DOI: 10.3389/fnins.2014.00323] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/25/2014] [Indexed: 11/13/2022] Open
Abstract
It is thought that estrogen (neuroestrogen) synthesized by the action of aromatase in the brain from testosterone activates male socio-sexual behaviors, such as aggression and sexual behavior in birds. We recently found that gonadotropin-inhibitory hormone (GnIH), a hypothalamic neuropeptide, inhibits socio-sexual behaviors of male quail by directly activating aromatase and increasing neuroestrogen synthesis in the preoptic area (POA). The POA is thought to be the most critical site of aromatization and neuroestrogen action for the regulation of socio-sexual behavior of male birds. We concluded that GnIH inhibits socio-sexual behaviors of male quail by increasing neuroestrogen concentration beyond its optimal concentration in the brain for expression of socio-sexual behavior. On the other hand, it has been reported that dopamine and glutamate, which stimulate male socio-sexual behavior in birds and mammals, inhibit the activity of aromatase in the POA. Multiple studies also report that the activity of aromatase or neuroestrogen is negatively correlated with changes in male socio-sexual behavior in fish, birds, and mammals including humans. Here, we review previous studies that investigated the role of neuroestrogen in the regulation of male socio-sexual behavior and reconsider the hypothesis that neuroestrogen activates male socio-sexual behavior in vertebrates. It is considered that basal concentration of neuroestrogen is required for the maintenance of male socio-sexual behavior but higher concentration of neuroestrogen may inhibit male socio-sexual behavior.
Collapse
Affiliation(s)
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda UniversityShinjuku, Tokyo, Japan
| |
Collapse
|
139
|
Anjum S, Krishna A, Tsutsui K. Inhibitory roles of the mammalian GnIH ortholog RFRP3 in testicular activities in adult mice. J Endocrinol 2014; 223:79-91. [PMID: 25232146 DOI: 10.1530/joe-14-0333] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to evaluate the effects of in vivo and in vitro treatments with RFamide-related peptide 3 (RFRP3), a mammalian gonadotropin-inhibitory hormone ortholog, on testicular activities, i.e. spermatogenesis and steroidogenesis, in mice. Mice were treated in vivo with different doses of RFRP3 (control: 0.02 μg, 0.2 μg, and 2.0 μg/day) for 8 days. For in vitro study, the testes of mice were evaluated with different doses of RFRP3 (control: 1 and 10 ng/ml) with or without LH (control: 10 and 100 ng/ml) for 24 h at 37 °C. RFRP3 treatment produced significant changes in the body mass, circulating steroid level, and testicular activity in mice. RFRP3 treatment also caused dose-dependent histological changes in spermatogenesis, such as decline in germ cell proliferation and survival markers and increase in apoptotic markers in testis. Both in vivo and in vitro studies showed the inhibitory effect of RFRP3 on testosterone synthesis in the testis. RFRP3 inhibited the expression of the receptor for LH (LHCGR), STAR protein, cytochrome P450 side-chain cleavage (CYP11A1) and 3β-hydroxysteroid dehydrogenase in the testis, and testosterone secretion dose dependently. This study also suggested that the inhibitory effect of RFRP3 in the testis may be mediated through local production of GnRH. Thus, RFRP3 inhibits testicular steroidogenesis and spermatogenesis either indirectly through GnRH or by directly influencing germ cell proliferation, survival, and apoptosis.
Collapse
Affiliation(s)
- Shabana Anjum
- Department of ZoologyBanaras Hindu University, Varanasi 221 005, Uttar Pradesh, IndiaDepartment of BiologyWaseda University, Tokyo 162-8480, Japan
| | - Amitabh Krishna
- Department of ZoologyBanaras Hindu University, Varanasi 221 005, Uttar Pradesh, IndiaDepartment of BiologyWaseda University, Tokyo 162-8480, Japan
| | - Kazuyoshi Tsutsui
- Department of ZoologyBanaras Hindu University, Varanasi 221 005, Uttar Pradesh, IndiaDepartment of BiologyWaseda University, Tokyo 162-8480, Japan
| |
Collapse
|
140
|
A new pathway mediating social effects on the endocrine system: female presence acting via norepinephrine release stimulates gonadotropin-inhibitory hormone in the paraventricular nucleus and suppresses luteinizing hormone in quail. J Neurosci 2014; 34:9803-11. [PMID: 25031417 DOI: 10.1523/jneurosci.3706-13.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rapid effects of social interactions on transient changes in hormonal levels are known in a wide variety of vertebrate taxa, ranging from fish to humans. Although these responses are mediated by the brain, neurochemical pathways that translate social signals into reproductive physiological changes are unclear. In this study, we analyzed how a female presence modifies synthesis and/or release of various neurochemicals, such as monoamines and neuropeptides, in the brain and downstream reproductive hormones in sexually active male Japanese quail. By viewing a female bird, sexually active males rapidly increased norepinephrine (NE) release in the paraventricular nucleus (PVN) of the hypothalamus, in which gonadotropin-inhibitory hormone (GnIH) neuronal cell bodies exist, increased GnIH precursor mRNA expression in the PVN, and decreased luteinizing hormone (LH) concentration in the plasma. GnIH is a hypothalamic neuropeptide that inhibits gonadotropin secretion from the pituitary. It was further shown that GnIH can rapidly suppress LH release after intravenous administration in this study. Centrally administered NE decreased plasma LH concentration in vivo. It was also shown that NE stimulated the release of GnIH from diencephalic tissue blocks in vitro. Fluorescence double-label immunohistochemistry indicated that GnIH neurons received noradrenergic innervations, and immunohistochemistry combined with in situ hybridization have further shown that GnIH neurons expressed α2A-adrenergic receptor mRNA. These results indicate that a female presence increases NE release in the PVN and stimulates GnIH release, resulting in the suppression of LH release in sexually active male quail.
Collapse
|
141
|
Ubuka T, Tsutsui K. Gonadotropin-inhibitory hormone inhibits aggressive behavior of male quail by increasing neuroestrogen synthesis in the brain beyond its optimum concentration. Gen Comp Endocrinol 2014; 205:49-54. [PMID: 24698787 DOI: 10.1016/j.ygcen.2014.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/16/2014] [Indexed: 11/28/2022]
Abstract
The action of testosterone on male socio-sexual behaviors, such as aggressive and sexual behaviors, requires its aromatization into estrogen (neuroestrogen) in the brain. Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotropin secretion from the pituitary. On the other hand, wide distribution of GnIH-immunoreactive (ir) neuronal fibers in the brain suggested their roles in the regulation of behavior. Our recent studies have shown that GnIH indeed inhibits aggressive and sexual behaviors. Accordingly, we further investigated the effect of GnIH on aromatase activity and estrogen synthesis in the brain. Abundant GnIH-ir neuronal fibers were observed in the vicinity of aromatase-ir cells in the brain, such as in the preoptic area (POA) that is thought to be the most critical site of aromatization and neuroestrogen action for the regulation of socio-sexual behavior. GnIH receptor (GPR147) mRNA was also expressed in aromatase-ir cells in the POA. GnIH stimulated the activity of aromatase and increased neuroestrogen synthesis in the POA through GPR147. The increase in neuroestrogen concentration in the POA was associated with a significant decrease in aggressive behavior. Finally, centrally administered 17β-estradiol at higher doses inhibited aggressive behavior. These findings indicated that GnIH inhibits aggressive behavior by directly activating aromatase and increasing neuroestrogen synthesis in the brain beyond its optimum concentration for the expression of aggressive behavior. This review highlights recent findings of the role of GnIH in the regulation of neuroestrogen synthesis and its possible function in the regulation of socio-sexual behaviors.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan; Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, 2-8-30 Kounodai, Ichikawa, Chiba 272-0827, Japan.
| | - Kazuyoshi Tsutsui
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
142
|
Tsutsui K, Ubuka T. Breakthrough in neuroendocrinology by discovering novel neuropeptides and neurosteroids: 1. Discovery of gonadotropin-inhibitory hormone (GnIH) across vertebrates. Gen Comp Endocrinol 2014; 205:4-10. [PMID: 24704563 DOI: 10.1016/j.ygcen.2014.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
Abstract
Bargmann-Scharrer's discovery of "neurosecretion" in the first half of the 20th century has since matured into the scientific discipline of neuroendocrinology. Identification of novel neurohormones, such as neuropeptides and neurosteroids, is essential for the progress of neuroendocrinology. Our studies over the past two decades have significantly broadened the horizons of this field of research by identifying novel neuropeptides and neurosteroids in vertebrates that have opened new lines of scientific investigation in neuroendocrinology. Since the discovery of gonadotropin-releasing hormone (GnRH) in mammals at the beginning of 1970s, it was generally believed that GnRH is the only hypothalamic neuropeptide regulating gonadotropin release in vertebrates. In 2000, however, we discovered a novel hypothalamic neuropeptide that actively inhibits gonadotropin release in quail and termed it gonadotropin-inhibitory hormone (GnIH). It now appears that GnIH is highly conserved across vertebrates, including humans, and serves a number of behavioral and physiological functions other than regulation of reproduction, providing enormous opportunity for investigators from a wide array of disciplines to study this neuropeptide. This review summarizes the discovery of GnIH and its contribution to the progress of neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
143
|
Osugi T, Ubuka T, Tsutsui K. Review: evolution of GnIH and related peptides structure and function in the chordates. Front Neurosci 2014; 8:255. [PMID: 25177268 PMCID: PMC4133751 DOI: 10.3389/fnins.2014.00255] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/29/2014] [Indexed: 11/13/2022] Open
Abstract
Discovery of gonadotropin-inhibitory hormone (GnIH) in the Japanese quail in 2000 was the first to demonstrate the existence of a hypothalamic neuropeptide inhibiting gonadotropin release. We now know that GnIH regulates reproduction by inhibiting gonadotropin synthesis and release via action on the gonadotropin-releasing hormone (GnRH) system and the gonadotrope in various vertebrates. GnIH peptides identified in birds and mammals have a common LPXRF-amide (X = L or Q) motif at the C-terminus and inhibit pituitary gonadotropin secretion. However, the function and structure of GnIH peptides are diverse in fish. Goldfish GnIHs possessing a C-terminal LPXRF-amide motif have both stimulatory and inhibitory effects on gonadotropin synthesis or release. The C-terminal sequence of grass puffer and medaka GnIHs are MPQRF-amide. To investigate the evolutionary origin of GnIH and its ancestral structure and function, we searched for GnIH in agnathans, the most ancient lineage of vertebrates. We identified GnIH precursor gene and mature GnIH peptides with C-terminal QPQRF-amide or RPQRF-amide from the brain of sea lamprey. Lamprey GnIH fibers were in close proximity to GnRH-III neurons. Further, one of lamprey GnIHs stimulated the expression of lamprey GnRH-III peptide in the hypothalamus and gonadotropic hormone β mRNA expression in the pituitary. We further identified the ancestral form of GnIH, which had a C-terminal RPQRF-amide, and its receptors in amphioxus, the most basal chordate species. The amphioxus GnIH inhibited cAMP signaling in vitro. In sum, the original forms of GnIH may date back to the time of the emergence of early chordates. GnIH peptides may have had various C-terminal structures slightly different from LPXRF-amide in basal chordates, which had stimulatory and/or inhibitory functions on reproduction. The C-terminal LPXRF-amide structure and its inhibitory function on reproduction may be selected in later-evolved vertebrates, such as birds and mammals.
Collapse
Affiliation(s)
- Tomohiro Osugi
- Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical Life Science, Waseda University Tokyo, Japan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical Life Science, Waseda University Tokyo, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical Life Science, Waseda University Tokyo, Japan
| |
Collapse
|
144
|
Li H, Song H, Huang M, Nie H, Wang Z, Wang F. Impact of Food Restriction on Ovarian Development, RFamide-Related Peptide-3 and the Hypothalamic-Pituitary-Ovarian Axis in Pre-Pubertal Ewes. Reprod Domest Anim 2014; 49:831-8. [DOI: 10.1111/rda.12375] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/11/2014] [Indexed: 12/11/2022]
Affiliation(s)
- H Li
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry; Nanjing Agricultural University; Nanjing China
- Jiangsu Livestock Embryo Engineering Laboratory; Nanjing Agricultural University; Nanjing China
| | - H Song
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry; Nanjing Agricultural University; Nanjing China
| | - M Huang
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry; Nanjing Agricultural University; Nanjing China
| | - H Nie
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry; Nanjing Agricultural University; Nanjing China
| | - Z Wang
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry; Nanjing Agricultural University; Nanjing China
| | - F Wang
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry; Nanjing Agricultural University; Nanjing China
- Jiangsu Livestock Embryo Engineering Laboratory; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
145
|
Calisi RM. An integrative overview of the role of gonadotropin-inhibitory hormone in behavior: applying Tinbergen's four questions. Gen Comp Endocrinol 2014; 203:95-105. [PMID: 24704003 DOI: 10.1016/j.ygcen.2014.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/06/2023]
Abstract
The integration of various fields of investigation is of key importance to fully comprehending endocrine function. Here, I enact the theoretical framework of Nikolaas Tinbergen's four questions for understanding behavior to help bridge the wide gap that exists between our relatively reductionist molecular knowledge of a particular neurohormone, gonadotropin-inhibitory hormone (GnIH), and its place in animal behavior. Hypothalamic GnIH, upon its discovery in 2000, was so named because of its inhibitory effect on the release of the gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), from the pituitary. Because gonadotropins are necessary for reproduction, this finding stimulated questions about the functional significance of GnIH in reproduction and sexual behavior. After over a decade of research, invaluable knowledge has been gained regarding the mechanistic attributes of GnIH (mammalian homolog, RFamide-related peptide (RFRP)) in a variety of vertebrate species. However, many questions remain regarding the effect of the environment on GnIH and the subsequent effects of GnIH on behavior. I review the role of GnIH in shaping behavior using the framework of Tinbergen's four questions of mechanism, ontogeny, function and phylogeny. The studies I review were conducted in various species of mammals, birds, and in one species of fish. Because GnIH can play a role in mediating behaviors such as those important for reproduction, sociality, feeding, and the stress response in a variety of species, an integrative approach to the study of GnIH will help provide a multipronged schema for answering questions of GnIH function. By using the framework highlighted by Tinbergen's four questions, we will deepen and enhance our knowledge of the role of hormones in behavior from the point of view of the mechanisms involved.
Collapse
|
146
|
Osugi T, Okamura T, Son YL, Ohkubo M, Ubuka T, Henmi Y, Tsutsui K. Evolutionary origin of GnIH and NPFF in chordates: insights from novel amphioxus RFamide peptides. PLoS One 2014; 9:e100962. [PMID: 24983238 PMCID: PMC4077772 DOI: 10.1371/journal.pone.0100962] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/30/2014] [Indexed: 11/18/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a newly identified hypothalamic neuropeptide that inhibits pituitary hormone secretion in vertebrates. GnIH has an LPXRFamide (X = L or Q) motif at the C-terminal in representative species of gnathostomes. On the other hand, neuropeptide FF (NPFF), a neuropeptide characterized as a pain-modulatory neuropeptide, in vertebrates has a PQRFamide motif similar to the C-terminal of GnIH, suggesting that GnIH and NPFF have diverged from a common ancestor. Because GnIH and NPFF belong to the RFamide peptide family in vertebrates, protochordate RFamide peptides may provide important insights into the evolutionary origin of GnIH and NPFF. In this study, we identified a novel gene encoding RFamide peptides and two genes of their putative receptors in the amphioxus Branchiostoma japonicum. Molecular phylogenetic analysis and synteny analysis indicated that these genes are closely related to the genes of GnIH and NPFF and their receptors of vertebrates. We further identified mature RFamide peptides and their receptors in protochordates. The identified amphioxus RFamide peptides inhibited forskolin induced cAMP signaling in the COS-7 cells with one of the identified amphioxus RFamide peptide receptors expressed. These results indicate that the identified protochordate RFamide peptide gene is a common ancestral form of GnIH and NPFF genes, suggesting that the origin of GnIH and NPFF may date back to the time of the emergence of early chordates. GnIH gene and NPFF gene may have diverged by whole-genome duplication in the course of vertebrate evolution.
Collapse
Affiliation(s)
- Tomohiro Osugi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - Tomoki Okamura
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - Makoto Ohkubo
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - Yasuhisa Henmi
- Aitsu Marine Station, Center for Marine Environmental Studies, Kumamoto University, Kumamoto, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
147
|
Abstract
Neuropeptides possessing the Arg-Phe-NH2 (RFamide) motif at their C-termini (designated as RFamide peptides) have been characterized in a variety of animals. Among these, neuropeptide 26RFa (also termed QRFP) is the latest member of the RFamide peptide family to be discovered in the hypothalamus of vertebrates. The neuropeptide 26RFa/QRFP is a 26-amino acid residue peptide that was originally identified in the frog brain. It has been shown to exert orexigenic activity in mammals and to be a ligand for the previously identified orphan G protein-coupled receptor, GPR103 (QRFPR). The cDNAs encoding 26RFa/QRFP and QRFPR have now been characterized in representative species of mammals, birds, and fish. Functional studies have shown that, in mammals, the 26RFa/QRFP-QRFPR system may regulate various functions, including food intake, energy homeostasis, bone formation, pituitary hormone secretion, steroidogenesis, nociceptive transmission, and blood pressure. Several biological actions have also been reported in birds and fish. This review summarizes the current state of identification, localization, and understanding of the functions of 26RFaQRFP and its cognate receptor, QRFPR, in vertebrates.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Tomohiro Osugi
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Jérôme Leprince
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
148
|
Li L, Zhang Z, Peng J, Wang Y, Zhu Q. Cooperation of luteinizing hormone signaling pathways in preovulatory avian follicles regulates circadian clock expression in granulosa cell. Mol Cell Biochem 2014; 394:31-41. [PMID: 24825178 DOI: 10.1007/s11010-014-2078-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/03/2014] [Indexed: 12/13/2022]
Abstract
Ovulation in birds is triggered by a surge of luteinizing hormone (LH), and the ovulatory cycle is affected by the circadian rhythms of clock genes transcription levels in follicles. The influence of LH signaling cascades action on circadian clock genes was investigated using granulosa cells of preovulatory follicles from Roman hens cultured in a serum-free system. The expression of core oscillators (Bmal1, Clock, Cry1, Per2, and Rev-erbβ), clock-controlled gene (Star), Egr-1 and LHr was measured by quantitative real-time PCR. Significant changes in clock genes transcription levels were observed in control groups over 24 h, indicating that cell-autonomous rhythms exist in granulosa cells. Intriguingly, the transcript levels of clock genes increased with LH treatment during 24 h of culture; they peaked 4 h in advance of controls and second but weaker oscillations were also observed. It appeared that LH changed the cell-autonomous rhythm and cycle time of clock genes. To further investigate the LH signaling cascades, inhibitors of cyclic adenosine monophosphate (cAMP), p38 mitogen-activated protein kinases (p38MAPK) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways were used. The transcript levels of clock genes were suppressed by blocking cAMP, but increased with similar expression patterns by blocking the p38MPAK and ERK1/2 pathways over 24 h. Thus, the influence of LH signaling cascades in chicken ovulation is mediated by the cAMP pathway and also involves the p38MAPK and ERK1/2 pathways.
Collapse
Affiliation(s)
- Liang Li
- Laboratory of Animal Genetic and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | | | | | | | | |
Collapse
|
149
|
Son YL, Ubuka T, Narihiro M, Fukuda Y, Hasunuma I, Yamamoto K, Belsham DD, Tsutsui K. Molecular basis for the activation of gonadotropin-inhibitory hormone gene transcription by corticosterone. Endocrinology 2014; 155:1817-26. [PMID: 24552400 DOI: 10.1210/en.2013-2076] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The inhibitory effect of stress on reproductive function is potentially mediated by high concentrations of circulating glucocorticoids (GCs) acting via the GC receptor (GR). Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotropin secretion. GnIH may mediate stress-induced reproductive dysfunction. However, it is not yet known whether GC-bound GR is directly involved in GnIH transcription. Here, we demonstrated the localization of GR mRNA in GnIH neurons in the paraventricular nucleus of quail, suggesting that GC can directly regulate GnIH transcription. We next showed that 24 hours of treatment with corticosterone (CORT) increase GnIH mRNA expression in the quail diencephalon. We further investigated the mechanism of activation of GnIH transcription by CORT using a GnIH-expressing neuronal cell line, rHypoE-23, derived from rat hypothalamus. We found the expression of GR mRNA in rHypoE-23 cells and increased GnIH mRNA expression by 24 hours of CORT treatment. We finally characterized the promoter activity of rat GnIH gene stimulated by CORT. Through DNA deletion analysis, we identified a CORT-responsive region at 2000-1501 bp upstream of GnIH precursor coding region. This region included 2 GC response elements (GREs) at -1665 and -1530 bp. Mutation of -1530 GRE abolished CORT responsiveness. We also found CORT-stimulated GR recruitment at the GnIH promoter region containing the -1530 GRE. These results provide a putative molecular basis for transcriptional activation of GnIH under stress by demonstrating that CORT directly induces GnIH transcription by recruitment of GR to its promoter.
Collapse
Affiliation(s)
- You Lee Son
- Laboratory of Integrative Brain Sciences (Y.L.S., T.U., M.N., Y.F., I.H., K.Y., K.T.), Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan; and Departments of Physiology (D.D.B.), Medicine, and Obstetrics and Gynaecology, University of Toronto, and Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Soga T, Kitahashi T, Clarke IJ, Parhar IS. Gonadotropin-inhibitory hormone promoter-driven enhanced green fluorescent protein expression decreases during aging in female rats. Endocrinology 2014; 155:1944-55. [PMID: 24605826 DOI: 10.1210/en.2013-1786] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gonadotropin-inhibitory hormone (GnIH) neurons project to GnRH neurons to negatively regulate reproductive function. To fully explore the projections of the GnIH neurons, we created transgenic rats carrying an enhanced green fluorescent protein (EGFP) tagged to the GnIH promoter. With these animals, we show that EGFP-GnIH neurons are localized mainly in the dorsomedial hypothalamic nucleus (DMN) and project to the hypothalamus, telencephalon, and diencephalic thalamus, which parallels and confirms immunocytochemical and gene expression studies. We observed an age-related reduction in c-Fos-positive GnIH cell numbers in female rats. Furthermore, GnIH fiber appositions to GnRH neurons in the preoptic area were lessened in middle-aged females (70 weeks old) compared with their younger counterparts (9-12 weeks old). The fiber density in other brain areas was also reduced in middle-aged female rats. The expression of estrogen and progesterone receptors mRNA in subsets of EGFP-GnIH neurons was shown in laser-dissected single EGFP-GnIH neurons. We then examined estradiol-17β and progesterone regulation of GnIH neurons, using c-Fos presence as a marker. Estradiol-17β treatment reduced c-Fos labeling in EGFP-GnIH neurons in the DMN of young ovariectomized adult females but had no effect in middle-aged females. Progesterone had no effect on the number of GnIH cells positive for c-Fos. We conclude that there is an age-related decline in GnIH neuron number and GnIH inputs to GnRH neurons. We also conclude that the response of GnIH neurons to estrogen diminishes with reproductive aging.
Collapse
Affiliation(s)
- Tomoko Soga
- Brain Research Institute (T.S., T.K., I.S.P.), School of Medicine and Health Sciences, Monash University, Sunway, PJ 46150, Malaysia; and Department of Physiology (I.J.C.), Monash University, Victoria 3880, Australia
| | | | | | | |
Collapse
|