101
|
Luo Q, Xian P, Wang T, Wu S, Sun T, Wang W, Wang B, Yang H, Yang Y, Wang H, Liu W, Long Q. Antioxidant activity of mesenchymal stem cell-derived extracellular vesicles restores hippocampal neurons following seizure damage. Am J Cancer Res 2021; 11:5986-6005. [PMID: 33897894 PMCID: PMC8058724 DOI: 10.7150/thno.58632] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is a critical event in neuronal damage following seizures. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been shown to be promising nanotherapeutic agents in neurological disorders. However, the mechanism underlying MSC-EVs therapeutic efficacy for oxidative stress-induced neuronal damage remains poorly understood. Methods: We investigated the antioxidant and restoration activities of MSC-EVs on hippocampal neurons in response to H2O2 stimulation in vitro and seizures in vivo. We also explored the potential underlying mechanism by injecting adeno-associated virus (AAV)-nuclear factor erythroid-derived 2, like 2 (Nrf2), a key antioxidant mediator, in animal models. Results: MSC-EVs were enriched in antioxidant miRNAs and exhibited remarkable antioxidant activity evident by increased ferric ion-reducing antioxidant ability, catalase, superoxide dismutase, and glutathione peroxidase activities and decreased reactive oxygen species (ROS) generation, DNA/lipid/protein oxidation, and stress-associated molecular patterns in cultured cells and mouse models. Notably, EV administration exerted restorative effects on the hippocampal neuronal structure and associated functional impairments, including dendritic spine alterations, electrophysiological disturbances, calcium transients, mitochondrial changes, and cognitive decline after oxidative stress in vitro or in vivo. Mechanistically, we found that the Nrf2 signaling pathway was involved in the restorative effect of EV therapy against oxidative neuronal damage, while AAV-Nrf2 injection attenuated the antioxidant activity of MSC-EVs on the seizure-induced hippocampal injury. Conclusions: We have shown that MSC-EVs facilitate the reconstruction of hippocampal neurons associated with the Nrf2 defense system in response to oxidative insults. Our study highlights the clinical value of EV-therapy in neurological disorders such as seizures.
Collapse
|
102
|
Umemura M, Morrison M. Comparative lessons in regenerative medicine readiness: learning from the UK and Japanese experience. Regen Med 2021; 16:269-282. [PMID: 33781099 DOI: 10.2217/rme-2020-0136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This paper explores how 'regenerative readiness' varies between different national research and healthcare systems. Here, 'readiness' refers to both the readiness of a given technology and the ability of a given setting to adopt a new technology. We compare two settings that have taken active yet dissonant approaches to improve readiness: the UK and Japan. Existing scholarship observes that disruptive technologies such as regenerative medicine require many adaptations to become useable and function along the principles of their design. We incorporate the sociotechnical systems framework to consider the range of adaptive measures taken across elements of the sociotechnical system for novel technological adoption. Building upon existing works on technology readiness and institutional readiness, we also expand the conceptualization of readiness toward system-wide readiness.
Collapse
Affiliation(s)
- Maki Umemura
- Senior Lecturer in International Business, Cardiff Business School, Cardiff University, Aberconway Building, Colum Drive, Cardiff, CF10 3EU, UK
| | - Michael Morrison
- Senior Researcher in Social Science, Centre for Health, Law & Emerging Technologies, Faculty of Law, University of Oxford, Ewert House, Banbury Road, Oxford, OX2 7DD, UK.,Research Affiliate, Institution for Science Innovation & Society, School of Anthropology & Museum Ethnography, University of Oxford, 51/53 Banbury Road, Oxford, OX2 6PE, UK
| |
Collapse
|
103
|
Jafari S, Jalali R, Jalili C, Jamshidpoor T. Comparison Among Bone Marrow and Wheat Flour's Mixture and Standard Treatment on Healing Second-Degree Burn Wound in Rats. J Burn Care Res 2021; 42:288-293. [PMID: 32845004 DOI: 10.1093/jbcr/iraa144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The treatment of extensive skin burns remains as a challenge for health care personnel. This study aimed to compare the combination of bone marrow and wheat flour with standard treatment on animal models. In this experimental study, 45 male rats were randomly assigned into three groups as follows: The first group was control (no treatment), the second group received bone marrow and wheat flour combination topically, and the third group received standard treatment (1% silver sulfadiazine). The treatment lasted for up to 21 days. On the 22nd day, the rats were killed. The number of blood vessels and hair follicles was measured in the burn wound bed. The area and depth of the wound were also measured. Data were analyzed using SPSS software version 16. The results showed that, complete closure of the wound was better in the bone marrow treated group compared with the group receiving the silver sulfadiazine and the control group. Furthermore, the wound healing was better in the silver sulfadiazine group compared with the control group. Microscopic examination revealed a significant increase in the number of hair follicles and blood vessels in the bone marrow and silver groups compared with the control group. The results showed that, the group treated with bone marrow, because of the presence of mesenchymal and stem cells can cause stimulating angiogenesis and producing vegetative tissue, hence it improved maturation, shrinkage, and contraction of the wound in comparison with the silver sulfadiazine and control groups.
Collapse
Affiliation(s)
- Saboreh Jafari
- Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rostam Jalali
- Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tahereh Jamshidpoor
- Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
104
|
Fuloria S, Subramaniyan V, Dahiya R, Dahiya S, Sudhakar K, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Sekar M, Malviya R, Singh A, Fuloria NK. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Regenerative Potential and Challenges. BIOLOGY 2021; 10:172. [PMID: 33668707 PMCID: PMC7996168 DOI: 10.3390/biology10030172] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Evidence suggests that stem cells exert regenerative potential via the release of extracellular vesicles. Mesenchymal stem cell extracellular vesicles (MSCEVs) offer therapeutic benefits for various pathophysiological ailments by restoring tissues. Facts suggest that MSCEV action can be potentiated by modifying the mesenchymal stem cells culturing methodology and bioengineering EVs. Limited clinical trials of MSCEVs have questioned their superiority, culturing quality, production scale-up and isolation, and administration format. Translation of preclinically successful MSCEVs into a clinical platform requires paying attention to several critical matters, such as the production technique, quantification/characterization, pharmacokinetics/targeting/transfer to the target site, and the safety profile. Keeping these issues as a priority, the present review was designed to highlight the challenges in translating preclinical MSCEV research into clinical platforms and provide evidence for the regenerative potential of MSCEVs in various conditions of the liver, kidney, heart, nervous system, bone, muscle, cartilage, and other organs/tissues.
Collapse
Affiliation(s)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago;
| | - Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar 144411, India;
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Malaysia;
| | - Rishabha Malviya
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 203201, India; (R.M.); (A.S.)
| | - Amit Singh
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 203201, India; (R.M.); (A.S.)
| | | |
Collapse
|
105
|
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of upper and lower motor neurons with high burden on society. Despite tremendous efforts over the last several decades, there is still no definite cure for ALS. Up to now, only two disease-modifying agents, riluzole and edaravone, are approved by U.S. Food and Drug Administration (FDA) for ALS treatment, which only modestly improves survival and disease progression. Major challenging issues to find an effective therapy are heterogeneity in the pathogenesis and genetic variability of ALS. As such, stem cell therapy has been recently a focus of both preclinical and clinical investigations of ALS. This is because stem cells have multifaceted features that can potentially target multiple pathogenic mechanisms in ALS even though its underlying mechanisms are not completely elucidated. Methods & Results: Here, we will have an overview of stem cell therapy in ALS, including their therapeutic mechanisms, the results of recent clinical trials as well as ongoing clinical trials. In addition, we will further discuss complications and limitations of stem cell therapy in ALS. Conclusion: The determination of whether stem cells offer a viable treatment strategy for ALS rests on well-designed and appropriately powered future clinical trials. Randomized, double-blinded, and sham-controlled studies would be valuable.
Collapse
Affiliation(s)
- Goun Je
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| | - Kiandokht Keyhanian
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| |
Collapse
|
106
|
Wang L, Lee DJ, Han H, Zhao L, Tsukamoto H, Kim YI, Musicant AM, Parag-Sharma K, Hu X, Tseng HC, Chi JT, Wang Z, Amelio AL, Ko CC. Application of bioluminescence resonance energy transfer-based cell tracking approach in bone tissue engineering. J Tissue Eng 2021; 12:2041731421995465. [PMID: 33643604 PMCID: PMC7894599 DOI: 10.1177/2041731421995465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/28/2021] [Indexed: 02/05/2023] Open
Abstract
Bioluminescent imaging (BLI) has emerged as a popular in vivo tracking modality in bone regeneration studies stemming from its clear advantages: non-invasive, real-time, and inexpensive. We recently adopted bioluminescence resonance energy transfer (BRET) principle to improve BLI cell tracking and generated the brightest bioluminescent signal known to date, which thus enables more sensitive real-time cell tracking at deep tissue level. In the present study, we brought BRET-based cell tracking strategy into the field of bone tissue engineering for the first time. We labeled rat mesenchymal stem cells (rMSCs) with our in-house BRET-based GpNLuc reporter and evaluated the cell tracking efficacy both in vitro and in vivo. In scaffold-free spheroid 3D culture system, using BRET-based GpNLuc labeling resulted in significantly better correlation to cell numbers than a fluorescence based approach. In scaffold-based 3D culture system, GpNLuc-rMSCs displayed robust bioluminescence signals with minimal background noise. Furthermore, a tight correlation between BLI signal and cell number highlighted the robust reliability of using BRET-based BLI. In calvarial critical sized defect model, robust signal and the consistency in cell survival evaluation collectively supported BRET-based GpNLuc labeling as a reliable approach for non-invasively tracking MSC. In summary, BRET-based GpNLuc labeling is a robust, reliable, and inexpensive real-time cell tracking method, which offers a promising direction for the technological innovation of BLI and even non-invasive tracking systems, in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Lufei Wang
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
| | - Dong Joon Lee
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
| | - Han Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hiroshi Tsukamoto
- Research & Development Center, Nitta Gelatin Inc., Yao-City, Osaka, Japan
| | - Yong-Il Kim
- Department of Orthodontics, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Adele M Musicant
- Graduate Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Kshitij Parag-Sharma
- Graduate Curriculum in Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Xiangxiang Hu
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
| | - Henry C Tseng
- Duke Eye Center and Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Center for Genomics and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Zhengyan Wang
- Department of Pediatric Dentistry, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
| | - Antonio L Amelio
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Ching-Chang Ko
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, USA
| |
Collapse
|
107
|
Wang Q, Xiong Y, Zhang S, Sui Y, Yu C, Liu P, Li H, Guo W, Gao Y, Przepiorski A, Davidson AJ, Guo M, Zhang X. The Dynamics of Metabolic Characterization in iPSC-Derived Kidney Organoid Differentiation via a Comparative Omics Approach. Front Genet 2021; 12:632810. [PMID: 33643392 PMCID: PMC7902935 DOI: 10.3389/fgene.2021.632810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
The use of differentiating human induced pluripotent stem cells (hiPSCs) in mini-tissue organoids provides an invaluable resource for regenerative medicine applications, particularly in the field of disease modeling. However, most studies using a kidney organoid model, focused solely on the transcriptomics and did not explore mechanisms of regulating kidney organoids related to metabolic effects and maturational phenotype. Here, we applied metabolomics coupled with transcriptomics to investigate the metabolic dynamics and function during kidney organoid differentiation. Not only did we validate the dominant metabolic alteration from glycolysis to oxidative phosphorylation in the iPSC differentiation process but we also showed that glycine, serine, and threonine metabolism had a regulatory role during kidney organoid formation and lineage maturation. Notably, serine had a role in regulating S-adenosylmethionine (SAM) to facilitate kidney organoid formation by altering DNA methylation. Our data revealed that analysis of metabolic characterization broadens our ability to understand phenotype regulation. The utilization of this comparative omics approach, in studying kidney organoid formation, can aid in deciphering unique knowledge about the biological and physiological processes involved in organoid-based disease modeling or drug screening.
Collapse
Affiliation(s)
- Qizheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yucui Xiong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Sheng Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yufei Sui
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Cunlai Yu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Peng Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Heying Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenjing Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yubo Gao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aneta Przepiorski
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
108
|
Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, Zeng W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater 2021; 6:2557-2568. [PMID: 33665496 PMCID: PMC7887299 DOI: 10.1016/j.bioactmat.2020.12.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) have enormous potential for vascular replacement therapy. However, thrombosis and intimal hyperplasia are important problems associated with TEVGs especially small diameter TEVGs (<6 mm) after transplantation. Endothelialization of TEVGs is a key point to prevent thrombosis. Here, we discuss different types of endothelialization and different seed cells of tissue-engineered vascular grafts. Meanwhile, endothelial heterogeneity is also discussed. Based on it, we provide a new perspective for selecting suitable types of endothelialization and suitable seed cells to improve the long-term patency rate of tissue-engineered vascular grafts with different diameters and lengths. The material, diameter and length of tissue-engineered vascular graft are all key factors affecting its long-term patency. Endothelialization strategies should consider the different diameters and lengths of tissue-engineered vascular grafts. Cell heterogeneity and tissue heterogeneity should be considered in the application of seed cells.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Wanshan Liao
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaochen Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Weiming Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yanzhao Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.,Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
109
|
Smith C, Crowley A, Munsie M, DeMartino ES, Staff NP, Shapiro S, Master Z. Academic physician specialists' views toward the unproven stem cell intervention industry: areas of common ground and divergence. Cytotherapy 2021; 23:348-356. [PMID: 33563545 DOI: 10.1016/j.jcyt.2020.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Premature commercialization of unproven stem cell interventions (SCIs) has received significant attention within the regenerative medicine community. Patients considering SCIs may encounter misinformation and seek out guidance from their physicians who are trusted brokers of health information. However, little is known about the perspectives of academic physician specialists toward the SCI industry. The purpose of this study was to capture the attitudes of physician specialists with experience addressing patient questions about unproven SCIs. METHODS The authors undertook 25 semi-structured interviews with academic physicians in cardiology, ophthalmology, orthopedics, pulmonology and neurology primarily from one academic center. RESULTS The authors identified two major themes: concerns and mediators of appropriateness of offering SCIs as therapies to patients. Specialists were generally aware of the industry and reported scientific and commercial concerns, including the scientific uncertainty of SCIs, medical harms to patients, misleading marketing and its impact on patient informed consent and economic harms due to large out-of-pocket costs for patients. All specialists outside of orthopedics voiced that it was inappropriate to be offering SCIs to patients today. These views were informed by previously expressed concerns surrounding safety and properly informing patients, levels of evidence needed prior to offering SCIs therapeutically and desired qualifications for clinicians. Among the specialties, orthopedists reported that under certain conditions, SCIs may be appropriate for patients with limited clinical options but only when safety is adequate, expectations are managed and patients are well informed about the risks and chances of benefit. Most participants expressed a desire for phase 3 studies and Food and Drug Administration approval prior to marketing SCIs, but some also shared the challenges associated with upholding these thresholds of evidence, especially when caring for out-of-option patients. CONCLUSIONS The authors' results suggest that medical specialists are aware of the industry and express several concerns surrounding SCIs but differ in their views on the appropriateness and clinical evidence necessary for offering SCIs currently to patients. Additional educational tools may help physicians with patient engagement and expectation management surrounding SCIs.
Collapse
Affiliation(s)
- Cambray Smith
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, Minnesota, USA; University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Aidan Crowley
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, Indiana, USA
| | - Megan Munsie
- Department of Anatomy and Neuroscience, Centre for Stem Cell Systems, University of Melbourne, Parkville, Australia
| | - Erin S DeMartino
- Division of Pulmonary and Critical Care Medicine and Biomedical Ethics Research Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shane Shapiro
- Department of Orthopedic Surgery and Center for Regenerative Medicine, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
| | - Zubin Master
- Biomedical Ethics Research Program and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
110
|
Sarnacki S. Pediatric surgery is academic by essence: The French perspective. Semin Pediatr Surg 2021; 30:151022. [PMID: 33648706 DOI: 10.1016/j.sempedsurg.2021.151022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This article offers a personal view on academic pediatric surgery from France. The author shares reflections and looks to the future of the speciality with the desire to encourage and embrace research and innovation. National and international collaboration is emphasized. Surgeons must seize these opportunities to become the next generation of academic pediatric surgeons in France.
Collapse
Affiliation(s)
- Sabine Sarnacki
- Head of the Department of Paediatric Surgery and Urology, Université de Paris, Hôpital Necker- Enfants Malades, France. President of the French Society of Paediatric Surgery, Chair of the French Reference Network for Rare Disease Neurosphinx, Chair of the surgeon specialty subcommittee of SIOPEN, Member of the SIOPEN EC..
| |
Collapse
|
111
|
Greenfield A. Making sense of heritable human genome editing: Scientific and ethical considerations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:1-28. [PMID: 34175039 DOI: 10.1016/bs.pmbts.2020.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome editing, particularly the use of CRISPR-Cas9-based methodologies, is revolutionizing biology through its impacts on research and the translation of these into applications in biomedicine. Somatic genome editing aimed at treating individuals with disease raises some significant ethical issues, but proposed heritable interventions, through the use of genome editing in gametes or embryos, raise a number of distinct social, ethical and political issues. This review will consider some proposed uses of heritable human genome editing (HHGE) and several of the objections to these that have been raised. Making sense of such proposed uses requires viewing HHGE as an assisted reproductive technology (ART) that, like preimplantation genetic testing (PGT) and mitochondrial replacement techniques (MRT), aims to prevent disease transmission during sexual reproduction, rather than acting as a therapy for an existing individual. Applications beyond the paradigm of disease prevention raise even more difficult scientific and ethical questions. Here, I will discuss various themes that are prominent in discussions of the science and ethics of HHGE, including impacts on human dignity and society, the language of HHGE used for public dialogue and the governance of HHGE.
Collapse
Affiliation(s)
- Andy Greenfield
- MRC Mammalian Genetics Unit, Harwell Institute, Oxfordshire, United Kingdom.
| |
Collapse
|
112
|
Chen H, Zhang Y, Ni T, Ding P, Zan Y, Cai X, Zhang Y, Liu M, Pei R. Construction of a Silk Fibroin/Polyethylene Glycol Double Network Hydrogel with Co-Culture of HUVECs and UCMSCs for a Functional Vascular Network. ACS APPLIED BIO MATERIALS 2021; 4:406-419. [PMID: 35014292 DOI: 10.1021/acsabm.0c00353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The success of complex tissue and internal organ reconstruction relies principally on the fabrication of a 3D vascular network, which guarantees the delivery of oxygen and nutrients in addition to the disposal of waste. In this study, a rapidly forming cell-encapsulated double network (DN) hydrogel is constructed by an ultrasonically activated silk fibroin network and bioorthogonal-mediated polyethylene glycol network. This DN hydrogel can be solidified within 10 s, and its mechanical property gradually increases to ∼20 kPa after 30 min. This work also demonstrates that coencapsulation of human umbilical vein endothelial cells (HUVECs) and umbilical cord-derived mesenchymal stem cells (UCMSCs) into the DN hydrogel can facilitate the formation of more mature vessels and complete the capillary network in comparison with the hydrogels encapsulated with a single cell type both in vitro and in vivo. Taking together, the DN hydrogel, combined with coencapsulation of HUVECs and UCMSCs, represents a strategy for the construction of a functional vascular network.
Collapse
Affiliation(s)
- Hong Chen
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.,Institut de Science des Matériaux de Mulhouse, IS2M-UMR CNRS 7361, UHA, 15, Rue Jean Starcky, Cedex 68057 Mulhouse, France
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tianyu Ni
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Pi Ding
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yue Zan
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xue Cai
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China
| | - Yiwei Zhang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Min Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
113
|
|
114
|
Introna M, Golay J. Tolerance to Bone Marrow Transplantation: Do Mesenchymal Stromal Cells Still Have a Future for Acute or Chronic GvHD? Front Immunol 2020; 11:609063. [PMID: 33362797 PMCID: PMC7759493 DOI: 10.3389/fimmu.2020.609063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal Stromal Cells (MSCs) are fibroblast-like cells of mesodermal origin present in many tissues and which have the potential to differentiate to osteoblasts, adipocytes and chondroblasts. They also have a clear immunosuppressive and tissue regeneration potential. Indeed, the initial classification of MSCs as pluripotent stem cells, has turned into their identification as stromal progenitors. Due to the relatively simple procedures available to expand in vitro large numbers of GMP grade MSCs from a variety of different tissues, many clinical trials have tested their therapeutic potential in vivo. One pathological condition where MSCs have been quite extensively tested is steroid resistant (SR) graft versus host disease (GvHD), a devastating condition that may occur in acute or chronic form following allogeneic hematopoietic stem cell transplantation. The clinical and experimental results obtained have outlined a possible efficacy of MSCs, but unfortunately statistical significance in clinical studies has only rarely been reached and effects have been relatively limited in most cases. Nonetheless, the extremely complex pathogenetic mechanisms at the basis of GvHD, the fact that studies have been conducted often in patients who had been previously treated with multiple lines of therapy, the variable MSC doses and schedules administered in different trials, the lack of validated potency assays and clear biomarkers, the difference in MSC sources and production methods may have been major factors for this lack of clear efficacy in vivo. The heterogeneity of MSCs and their different stromal differentiation potential and biological activity may be better understood through more refined single cell sequencing and proteomic studies, where either an “anti-inflammatory” or a more “immunosuppressive” profile can be identified. We summarize the pathogenic mechanisms of acute and chronic GvHD and the role for MSCs. We suggest that systematic controlled clinical trials still need to be conducted in the most promising clinical settings, using better characterized cells and measuring efficacy with specific biomarkers, before strong conclusions can be drawn about the therapeutic potential of these cells in this context. The same analysis should be applied to other inflammatory, immune or degenerative diseases where MSCs may have a therapeutic potential.
Collapse
Affiliation(s)
- Martino Introna
- Center of Cellular Therapy "G. Lanzani", Division of Haematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Josée Golay
- Center of Cellular Therapy "G. Lanzani", Division of Haematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.,Fondazione per la Ricerca Ospedale Maggiore, Bergamo, Italy
| |
Collapse
|
115
|
Epidural Stimulation Combined with Triple Gene Therapy for Spinal Cord Injury Treatment. Int J Mol Sci 2020; 21:ijms21238896. [PMID: 33255323 PMCID: PMC7734573 DOI: 10.3390/ijms21238896] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
The translation of new therapies for spinal cord injury to clinical trials can be facilitated with large animal models close in morpho-physiological scale to humans. Here, we report functional restoration and morphological reorganization after spinal contusion in pigs, following a combined treatment of locomotor training facilitated with epidural electrical stimulation (EES) and cell-mediated triple gene therapy with umbilical cord blood mononuclear cells overexpressing recombinant vascular endothelial growth factor, glial-derived neurotrophic factor, and neural cell adhesion molecule. Preliminary results obtained on a small sample of pigs 2 months after spinal contusion revealed the difference in post-traumatic spinal cord outcomes in control and treated animals. In treated pigs, motor performance was enabled by EES and the corresponding morpho-functional changes in hind limb skeletal muscles were accompanied by the reorganization of the glial cell, the reaction of stress cell, and synaptic proteins. Our data demonstrate effects of combined EES-facilitated motor training and cell-mediated triple gene therapy after spinal contusion in large animals, informing a background for further animal studies and clinical translation.
Collapse
|
116
|
Barczewska M, Maksymowicz S, Zdolińska-Malinowska I, Siwek T, Grudniak M. Umbilical Cord Mesenchymal Stem Cells in Amyotrophic Lateral Sclerosis: an Original Study. Stem Cell Rev Rep 2020; 16:922-932. [PMID: 32725316 PMCID: PMC7456414 DOI: 10.1007/s12015-020-10016-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is still incurable. Although different therapies can affect the health and survival of patients. Our aim is to evaluate the effect of umbilical mesenchymal stem cells administrated intrathecally to patients with amyotrophic lateral sclerosis on disability development and survival. METHODS This case-control study involved 67 patients treated with Wharton's jelly mesenchymal stem cells (WJ-MSC). The treated patients were paired with 67 reference patients from the PRO-ACT database which contains patient records from 23 ALS clinical studies (phase 2/3). Patients in the treatment and reference groups were fully matched in terms of race, sex, onset of symptoms (bulbar/spinal), FT9 disease stage at the beginning of therapy and concomitant amyotrophic lateral sclerosis medications. Progression rates prior to treatment varied within a range of ± 0.5 points. All patients received three intrathecal injections of Wharton's jelly-derived mesenchymal stem cells every two months at a dose of 30 × 106 cells. Patients were assessed using the ALSFRS-R scale. Survival times were followed-up until March 2020. RESULTS Median survival time increased two-fold in all groups. In terms of progression, three response types measured in ALSFRS-R were observed: decreased progression rate (n = 21, 31.3%), no change in progression rate (n = 33, 49.3%) and increased progression rate (n = 13, 19.4%). Risk-benefit ratios were favorable in all groups. No serious adverse drug reactions were observed. INTERPRETATION Wharton's jelly-derived mesenchymal stem cells therapy is safe and effective in some ALS patients, regardless of the clinical features and demographic factors excluding sex. The female sex and a good therapeutic response to the first administration are significant predictors of efficacy following further administrations. Graphical Abstract Medical therapeutic experiment with retrospective case-control analyses.
Collapse
Affiliation(s)
- Monika Barczewska
- Department of Neurosurgery, University of Warmia and Mazury, Olsztyn, Poland
- Instytut Terapii Komórkowych S.A., FamiCord Group, Olsztyn, Poland
- University Clinical Hospital, Olsztyn, Poland
| | - Stanisław Maksymowicz
- Instytut Terapii Komórkowych S.A., FamiCord Group, Olsztyn, Poland.
- Department of Psychology and Sociology of Health and Public Health, Collegium Medicum, University of Warmia and Mazury, Warszawska 30, 10-082, Olsztyn, Poland.
| | | | - Tomasz Siwek
- Instytut Terapii Komórkowych S.A., FamiCord Group, Olsztyn, Poland
- University Clinical Hospital, Olsztyn, Poland
- Department of Neurology, University of Warmia and Mazury, Olsztyn, Poland
| | - Mariusz Grudniak
- Polski Bank Komórek Macierzystych S.A., FamiCord Group, Warsaw, Poland
| |
Collapse
|
117
|
Roche CD, Brereton RJL, Ashton AW, Jackson C, Gentile C. Current challenges in three-dimensional bioprinting heart tissues for cardiac surgery. Eur J Cardiothorac Surg 2020; 58:500-510. [PMID: 32391914 PMCID: PMC8456486 DOI: 10.1093/ejcts/ezaa093] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/27/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022] Open
Abstract
SUMMARY Previous attempts in cardiac bioengineering have failed to provide tissues for cardiac regeneration. Recent advances in 3-dimensional bioprinting technology using prevascularized myocardial microtissues as 'bioink' have provided a promising way forward. This review guides the reader to understand why myocardial tissue engineering is difficult to achieve and how revascularization and contractile function could be restored in 3-dimensional bioprinted heart tissue using patient-derived stem cells.
Collapse
Affiliation(s)
- Christopher D Roche
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
- Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
- Department of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
- Department of Cardiothoracic Surgery, University Hospital of Wales, Cardiff, UK
| | - Russell J L Brereton
- Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
| | - Anthony W Ashton
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
| | - Christopher Jackson
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
| | - Carmine Gentile
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
- Department of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| |
Collapse
|
118
|
Affiliation(s)
- Peter W Marks
- US Food and Drug Administration, Silver Spring, Maryland
| | - Stephen Hahn
- US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
119
|
Yu H, Liu P, Zhu D, Yin J, Yang Q, Huang Y, Chen Y, Zhang C, Gao Y. Chrysophanic acid shifts the differentiation tendency of BMSCs to prevent alcohol-induced osteonecrosis of the femoral head. Cell Prolif 2020; 53:e12871. [PMID: 32597546 PMCID: PMC7445404 DOI: 10.1111/cpr.12871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives Osteonecrosis of the femoral head (ONFH), largely caused by alcohol abuse, is a refractory bone disease characterized by the impaired capacity of osteogenic differentiation of bone mesenchymal stem cells (BMSCs), as well as the disordered adipocyte accumulation. Chrysophanic acid (CPA) is a natural anthraquinone which has lipid regulation and bone protection capacity. The aim of this study was to reveal the potential function of CPA and the underlying mechanisms for the alcohol‐induced ONFH. Materials and Methods The effects of alcohol and CPA on BMSCs were investigated by cell proliferation, induced differentiation assays and immunofluorescent staining. Meanwhile, the function of PI3K/AKT and AMPK pathway was investigated in the process of osteogenic and adipogenic differentiation, respectively. Furthermore, we established the rat model of alcohol‐induced ONFH to reveal the pharmacotherapeutic effect of CPA in vivo using radiographical and histopathological methods. Results In vitro, alcohol significantly inhibited the proliferation and osteogenic differentiation of BMSCs but stimulated the adipogenic differentiation. However, CPA could counteract the anti‐osteogenesis of alcohol partly via PI3K/AKT pathway and retard the promotion of alcohol‐induced adipogenesis via AMPK pathway. In vivo, radiographical and histopathological findings showed that CPA could alleviate alcohol‐induced ONFH and substantially restore the bone volume. Conclusions We demonstrated that CPA ameliorated alcohol‐induced ONFH possibly via regulating the differentiation tendency of BMSCs. Hence, CPA may become a beneficial herb extract to alleviate alcohol‐induced ONFH.
Collapse
Affiliation(s)
- Hongping Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pei Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junhui Yin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yigang Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
120
|
Cossu G, Fears R, Griffin G, Ter Meulen V. Regenerative medicine: challenges and opportunities. Lancet 2020; 395:1746-1747. [PMID: 32505242 DOI: 10.1016/s0140-6736(20)31250-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester M13 9PL, UK.
| | - Robin Fears
- European Academies Science Advisory Council, German National Academy of Sciences Leopoldina, Halle (Saale), Germany
| | - George Griffin
- Institute of Infection and Immunity, St George's, University of London, London, UK
| | - Volker Ter Meulen
- European Academies Science Advisory Council, German National Academy of Sciences Leopoldina, Halle (Saale), Germany
| |
Collapse
|
121
|
Bartlett RD, Burley S, Ip M, Phillips JB, Choi D. Cell Therapies for Spinal Cord Injury: Trends and Challenges of Current Clinical Trials. Neurosurgery 2020; 87:E456-E472. [DOI: 10.1093/neuros/nyaa149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
Abstract
Cell therapies have the potential to revolutionize the treatment of spinal cord injury. Basic research has progressed significantly in recent years, with a plethora of cell types now reaching early-phase human clinical trials, offering new strategies to repair the spinal cord. However, despite initial enthusiasm for preclinical and early-phase clinical trials, there has been a notable hiatus in the translation of cell therapies to routine clinical practice. Here, we review cell therapies that have reached clinical trials for spinal cord injury, providing a snapshot of all registered human trials and a summary of all published studies. Of registered trials, the majority have used autologous cells and approximately a third have been government funded, a third industry sponsored, and a third funded by university or healthcare systems. A total of 37 cell therapy trials have been published, primarily using stem cells, although a smaller number have used Schwann cells or olfactory ensheathing cells. Significant challenges remain for cell therapy trials in this area, including achieving stringent regulatory standards, ensuring appropriately powered efficacy trials, and establishing sustainable long-term funding. However, cell therapies hold great promise for human spinal cord repair and future trials must continue to capitalize on the exciting developments emerging from preclinical studies.
Collapse
Affiliation(s)
- Richard D Bartlett
- Centre for Nerve Engineering, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
- Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, United Kingdom
| | - Sarah Burley
- Centre for Nerve Engineering, University College London, London, United Kingdom
| | - Mina Ip
- Centre for Nerve Engineering, University College London, London, United Kingdom
| | - James B Phillips
- Centre for Nerve Engineering, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| | - David Choi
- Centre for Nerve Engineering, University College London, London, United Kingdom
- Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, United Kingdom
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
122
|
Kidney Regenerative Medicine: Promises and Limitations. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
123
|
Disease-modifying therapies in amyotrophic lateral sclerosis. Neuropharmacology 2020; 167:107986. [DOI: 10.1016/j.neuropharm.2020.107986] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023]
|
124
|
Alt EU, Winnier G, Haenel A, Rothoerl R, Solakoglu O, Alt C, Schmitz C. Towards a Comprehensive Understanding of UA-ADRCs (Uncultured, Autologous, Fresh, Unmodified, Adipose Derived Regenerative Cells, Isolated at Point of Care) in Regenerative Medicine. Cells 2020; 9:E1097. [PMID: 32365488 PMCID: PMC7290808 DOI: 10.3390/cells9051097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
It has become practically impossible to survey the literature on cells derived from adipose tissue for regenerative medicine. The aim of this paper is to provide a comprehensive and translational understanding of the potential of UA-ADRCs (uncultured, unmodified, fresh, autologous adipose derived regenerative cells isolated at the point of care) and its application in regenerative medicine. We provide profound basic and clinical evidence demonstrating that tissue regeneration with UA-ADRCs is safe and effective. ADRCs are neither 'fat stem cells' nor could they exclusively be isolated from adipose tissue. ADRCs contain the same adult stem cells ubiquitously present in the walls of blood vessels that are able to differentiate into cells of all three germ layers. Of note, the specific isolation procedure used has a significant impact on the number and viability of cells and hence on safety and efficacy of UA-ADRCs. Furthermore, there is no need to specifically isolate and separate stem cells from the initial mixture of progenitor and stem cells found in ADRCs. Most importantly, UA-ADRCs have the physiological capacity to adequately regenerate tissue without need for more than minimally manipulating, stimulating and/or (genetically) reprogramming the cells for a broad range of clinical applications. Tissue regeneration with UA-ADRCs fulfills the criteria of homologous use as defined by the regulatory authorities.
Collapse
Affiliation(s)
- Eckhard U. Alt
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA
- Sanford Health, University of South Dakota, Sioux Falls, SD 57104, USA
- University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Isar Klinikum Munich, 80331 Munich, Germany
- InGeneron, Inc., Houston, TX 77054, USA
| | | | - Alexander Haenel
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, 23562 Lübeck, Germany
| | | | - Oender Solakoglu
- Dental Department of the University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Periodontology and Implant Dentistry, 22453 Hamburg, Germany
| | | | - Christoph Schmitz
- Institute of Anatomy, Faculty of Medicine, LMU Munich, 80331 Munich, Germany
| |
Collapse
|
125
|
Tsiapalis D, O’Driscoll L. Mesenchymal Stem Cell Derived Extracellular Vesicles for Tissue Engineering and Regenerative Medicine Applications. Cells 2020; 9:E991. [PMID: 32316248 PMCID: PMC7226943 DOI: 10.3390/cells9040991] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are being extensively investigated for their potential in tissue engineering and regenerative medicine. However, recent evidence suggests that the beneficial effects of MSCs may be manifest by their released extracellular vesicles (EVs); typically not requiring the administration of MSCs. This evidence, predominantly from pre-clinical in vitro and in vivo studies, suggests that MSC-EVs may exhibit substantial therapeutic properties in many pathophysiological conditions, potentially restoring an extensive range of damaged or diseased tissues and organs. These benefits of MSC EVs are apparently found, regardless of the anatomical or body fluid origin of the MSCs (and include e.g., bone marrow, adipose tissue, umbilical cord, urine, etc). Furthermore, early indications suggest that the favourable effects of MSC-EVs could be further enhanced by modifying the way in which the donor MSCs are cultured (for example, in hypoxic compared to normoxic conditions, in 3D compared to 2D culture formats) and/or if the EVs are subsequently bio-engineered (for example, loaded with specific cargo). So far, few human clinical trials of MSC-EVs have been conducted and questions remain unanswered on whether the heterogeneous population of EVs is beneficial or some specific sub-populations, how best we can culture and scale-up MSC-EV production and isolation for clinical utility, and in what format they should be administered. However, as reviewed here, there is now substantial evidence supporting the use of MSC-EVs in tissue engineering and regenerative medicine and further research to establish how best to exploit this approach for societal and economic benefit is warranted.
Collapse
Affiliation(s)
| | - Lorraine O’Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland;
| |
Collapse
|
126
|
Hurd JL, Facile TR, Weiss J, Hayes M, Hayes M, Furia JP, Maffulli N, Winnier GE, Alt C, Schmitz C, Alt EU, Lundeen M. Safety and efficacy of treating symptomatic, partial-thickness rotator cuff tears with fresh, uncultured, unmodified, autologous adipose-derived regenerative cells (UA-ADRCs) isolated at the point of care: a prospective, randomized, controlled first-in-human pilot study. J Orthop Surg Res 2020; 15:122. [PMID: 32238172 PMCID: PMC7110715 DOI: 10.1186/s13018-020-01631-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
Background This study tested the hypothesis that treatment of symptomatic, partial-thickness rotator cuff tears (sPTRCT) with fresh, uncultured, unmodified, autologous adipose-derived regenerative cells (UA-ADRCs) isolated from lipoaspirate at the point of care is safe and more effective than corticosteroid injection. Methods Subjects aged between 30 and 75 years with sPTRCT who did not respond to physical therapy treatments for at least 6 weeks were randomly assigned to receive a single injection of an average 11.4 × 106 UA-ADRCs (in 5 mL liquid; mean cell viability: 88%) (n = 11; modified intention-to-treat (mITT) population) or a single injection of 80 mg of methylprednisolone (40 mg/mL; 2 mL) plus 3 mL of 0.25% bupivacaine (n = 5; mITT population), respectively. Safety and efficacy were assessed using the American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form (ASES), RAND Short Form-36 Health Survey, and pain visual analogue scale (VAS) at baseline (BL) as well as 3 weeks (W3), W6, W9, W12, W24, W32, W40, and W52 post treatment. Fat-saturated T2-weighted magnetic resonance imaging of the shoulder was performed at BL as well as at W24 and W52 post treatment. Results No severe adverse events related to the injection of UA-ADRCs were observed in the 12 months post treatment. The risks connected with treatment of sPTRCT with UA-ADRCs were not greater than those connected with treatment of sPTRCT with corticosteroid injection. However, one subject in the corticosteroid group developed a full rotator cuff tear during the course of this pilot study. Despite the small number of subjects in this pilot study, those in the UA-ADRCs group showed statistically significantly higher mean ASES total scores at W24 and W52 post treatment than those in the corticosteroid group (p < 0.05). Discussion This pilot study suggests that the use of UA-ADRCs in subjects with sPTRCT is safe and leads to improved shoulder function without adverse effects. To verify the results of this initial safety and feasibility pilot study in a larger patient population, a randomized controlled trial on 246 patients suffering from sPTRCT is currently ongoing. Trial registration Clinicaltrials.gov ID NCT02918136. Registered September 28, 2016, https://clinicaltrials.gov/ct2/show/NCT02918136. Level of evidence Level I; prospective, randomized, controlled trial.
Collapse
Affiliation(s)
- Jason L Hurd
- Sanford Orthopedics & Sports Medicine Sioux Falls, 1210 W. 18th St., Suite G01, Sioux Falls, SD, 57104, USA.
| | | | | | | | | | - John P Furia
- SUN Orthopedics of Evangelical Community Hospital, Lewisburg, PA, USA
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Salerno, Italy.,Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London, UK.,School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University School of Medicine, Stoke on Trent, UK
| | | | | | - Christoph Schmitz
- Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Eckhard U Alt
- Sanford Health, Sioux Falls, SD, USA.,InGeneron, Inc., Houston, TX, USA.,Isar Klinikum, Munich, Germany
| | - Mark Lundeen
- Sanford Orthopedics & Sports Medicine Fargo, Fargo, ND, USA
| |
Collapse
|
127
|
Scopetti M, Santurro A, Gatto V, La Russa R, Manetti F, D’Errico S, Frati P, Fineschi V. Mesenchymal stem cells in neurodegenerative diseases: Opinion review on ethical dilemmas. World J Stem Cells 2020; 12:168-177. [PMID: 32266049 PMCID: PMC7118285 DOI: 10.4252/wjsc.v12.i3.168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/13/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
The treatment of neurodegenerative diseases presents a growing need for innovation in relation to recent evidence in the field of reconstructive therapy using stem cells. Understanding the molecular mechanisms underlying neurodegenerative disorders, and the advent of methods able to induce neuronal stem cell differentiation allowed to develop innovative therapeutic approaches offering the prospect of healthy and perfectly functional cell transplants, able to replace the sick ones. Hence the importance of deepening the state of the art regarding the clinical applications of advanced cell therapy products for the regeneration of nerve tissue. Besides representing a promising area of tissue transplant surgery and a great achievement in the field of neurodegenerative disease, stem cell research presents certain critical issues that need to be carefully examined from the ethical perspective. In fact, a subject so complex and not entirely explored requires a detailed scientific and ethical evaluation aimed at avoiding improper and ineffective use, rather than incorrect indications, technical inadequacies, and incongruous expectations. In fact, the clinical usefulness of stem cells will only be certain if able to provide the patient with safe, long-term and substantially more effective strategies than any other treatment available. The present paper provides an ethical assessment of tissue regeneration through mesenchymal stem cells in neurodegenerative diseases with the aim to rule out the fundamental issues related to research and clinical translation.
Collapse
Affiliation(s)
- Matteo Scopetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Alessandro Santurro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Vittorio Gatto
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Raffaele La Russa
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Sapienza University of Roma, Pozzilli 86077, Italy
| | - Federico Manetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Stefano D’Errico
- UOC Risk Management, Quality and Accreditation, Sant'Andrea University Hospital of Rome, Rome 00189, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Sapienza University of Roma, Pozzilli 86077, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Sapienza University of Roma, Pozzilli 86077, Italy.
| |
Collapse
|
128
|
Smith C, Martin-Lillie C, Higano JD, Turner L, Phu S, Arthurs J, Nelson TJ, Shapiro S, Master Z. Challenging misinformation and engaging patients: characterizing a regenerative medicine consult service. Regen Med 2020; 15:1427-1440. [PMID: 32319855 PMCID: PMC7466910 DOI: 10.2217/rme-2020-0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Aim: To address the unmet needs of patients interested in regenerative medicine, Mayo Clinic created a Regenerative Medicine Consult Service (RMCS). We describe the service and patient satisfaction. Materials & methods: We analyzed RMCS databases through retrospective chart analysis and performed qualitative interviews with patients. Results: The average patient was older to elderly and seeking information about regenerative options for their condition. Patients reported various conditions with osteoarthritis being most common. Over a third of consults included discussions about unproven interventions. About a third of patients received a clinical or research referral. Patients reported the RMCS as useful and the consultant as knowledgeable. Conclusion: An institutional RMCS can meet patients' informational needs and support the responsible translation of regenerative medicine.
Collapse
Affiliation(s)
- Cambray Smith
- Biomedical Ethics Research Program, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905, USA
| | - Charlene Martin-Lillie
- Center for Regenerative Medicine, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905, USA
| | - Jennifer Dens Higano
- Mayo Clinic Alix School of Medicine, 200 First Street, SW, Rochester, MN 55905, USA
| | - Leigh Turner
- Center for Bioethics, School of Public Health & College of Pharmacy, University of Minnesota, N520 Boynton, 410 Church Street SE, Minneapolis, MN 55455, USA
| | - Sydney Phu
- School of History, Philosophy & Religion, Oregon State University, 322 Milam Hall, 2520 SW Campus Way, Corvallis, OR 97331, USA
| | - Jennifer Arthurs
- Center for Regenerative Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Timothy J Nelson
- Center for Regenerative Medicine, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905, USA
- Department of General Internal Medicine, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905, USA
| | - Shane Shapiro
- Center for Regenerative Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
- Department of Orthopedic Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Zubin Master
- Biomedical Ethics Research Program, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905, USA
- Center for Regenerative Medicine, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905, USA
| |
Collapse
|
129
|
Muraoka K, Le W, Behn AW, Yao J. The Effect of Growth Differentiation Factor 8 (Myostatin) on Bone Marrow-Derived Stem Cell-Coated Bioactive Sutures in a Rabbit Tendon Repair Model. Hand (N Y) 2020; 15:264-270. [PMID: 30079783 PMCID: PMC7076613 DOI: 10.1177/1558944718792708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background: We have reported that bioactive sutures coated with bone marrow-derived mesenchymal stem cells (BMSCs) enhance tendon repair strength in an in vivo rat model. We have additionally shown that growth differentiation factor 8 (GDF-8, also known as myostatin) simulates tenogenesis in BMSCs in vitro. The purpose of this study was to determine the possibility of BMSC-coated bioactive sutures treated with GDF-8 to increase tendon repair strength in an in vivo rabbit tendon repair model. Methods: Rabbit BMSCs were grown and seeded on to 4-0 Ethibond sutures and treated with GDF-8. New Zealand white rabbits' bilateral Achilles tendons were transected and randomized to experimental (BMSC-coated bioactive sutures treated with GDF-8) or plain suture repaired control groups. Tendons were harvested at 4 and 7 days after the surgery and subjected to tensile mechanical testing and quantitative polymerase chain reaction. Results: There were distinguishing differences of collagen and matrix metalloproteinase RNA level between the control and experimental groups in the early repair periods (day 4 and day 7). However, there were no significant differences between the experimental and control groups in force to 1-mm or 2-mm gap formation or stiffness at 4 or 7 days following surgery. Conclusions: BMSC-coated bioactive sutures with GDF-8 do not appear to affect in vivo rabbit tendon healing within the first week following repair despite an increased presence of quantifiable RNA level of collagen. GDF-8's treatment efficacy of the early tendon repair remains to be defined.
Collapse
Affiliation(s)
- Kunihide Muraoka
- Robert A. Chase Hand & Upper Limb Center, Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, CA, USA,Fukuoka University Faculty of Medicine, Japan
| | - Wei Le
- Robert A. Chase Hand & Upper Limb Center, Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, CA, USA
| | - Anthony W. Behn
- Robert A. Chase Hand & Upper Limb Center, Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, CA, USA
| | - Jeffrey Yao
- Robert A. Chase Hand & Upper Limb Center, Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, CA, USA,Jeffrey Yao, Robert A. Chase Hand & Upper Limb Center, Department of Orthopaedic Surgery, Stanford University Medical Center, 450 Broadway Street C-442, Redwood City, CA 94063, USA.
| |
Collapse
|
130
|
Tsuchiya T, Doi R, Obata T, Hatachi G, Nagayasu T. Lung Microvascular Niche, Repair, and Engineering. Front Bioeng Biotechnol 2020; 8:105. [PMID: 32154234 PMCID: PMC7047880 DOI: 10.3389/fbioe.2020.00105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/03/2020] [Indexed: 12/28/2022] Open
Abstract
Biomaterials have been used for a long time in the field of medicine. Since the success of "tissue engineering" pioneered by Langer and Vacanti in 1993, tissue engineering studies have advanced from simple tissue generation to whole organ generation with three-dimensional reconstruction. Decellularized scaffolds have been widely used in the field of reconstructive surgery because the tissues used to generate decellularized scaffolds can be easily harvested from animals or humans. When a patient's own cells can be seeded onto decellularized biomaterials, theoretically this will create immunocompatible organs generated from allo- or xeno-organs. The most important aspect of lung tissue engineering is that the delicate three-dimensional structure of the organ is maintained during the tissue engineering process. Therefore, organ decellularization has special advantages for lung tissue engineering where it is essential to maintain the extremely thin basement membrane in the alveoli. Since 2010, there have been many methodological developments in the decellularization and recellularization of lung scaffolds, which includes improvements in the decellularization protocols and the selection and preparation of seeding cells. However, early transplanted engineered lungs terminated in organ failure in a short period. Immature vasculature reconstruction is considered to be the main cause of engineered organ failure. Immature vasculature causes thrombus formation in the engineered lung. Successful reconstruction of a mature vasculature network would be a major breakthrough in achieving success in lung engineering. In order to regenerate the mature vasculature network, we need to remodel the vascular niche, especially the microvasculature, in the organ scaffold. This review highlights the reconstruction of the vascular niche in a decellularized lung scaffold. Because the vascular niche consists of endothelial cells (ECs), pericytes, extracellular matrix (ECM), and the epithelial-endothelial interface, all of which might affect the vascular tight junction (TJ), we discuss ECM composition and reconstruction, the contribution of ECs and perivascular cells, the air-blood barrier (ABB) function, and the effects of physiological factors during the lung microvasculature repair and engineering process. The goal of the present review is to confirm the possibility of success in lung microvascular engineering in whole organ engineering and explore the future direction of the current methodology.
Collapse
Affiliation(s)
- Tomoshi Tsuchiya
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Division of Nucleic Acid Drug Development, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Ryoichiro Doi
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomohiro Obata
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Go Hatachi
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
131
|
Evaluation of the stability of standard reference genes of adipose-derived mesenchymal stem cells during in vitro proliferation and differentiation. Mol Biol Rep 2020; 47:2109-2122. [DOI: 10.1007/s11033-020-05311-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
|
132
|
Alessandra G, Algerta M, Paola M, Carsten S, Cristina L, Paolo M, Elisa M, Gabriella T, Carla P. Shaping Pancreatic β-Cell Differentiation and Functioning: The Influence of Mechanotransduction. Cells 2020; 9:E413. [PMID: 32053947 PMCID: PMC7072458 DOI: 10.3390/cells9020413] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023] Open
Abstract
Embryonic and pluripotent stem cells hold great promise in generating β-cells for both replacing medicine and novel therapeutic discoveries in diabetes mellitus. However, their differentiation in vitro is still inefficient, and functional studies reveal that most of these β-like cells still fail to fully mirror the adult β-cell physiology. For their proper growth and functioning, β-cells require a very specific environment, the islet niche, which provides a myriad of chemical and physical signals. While the nature and effects of chemical stimuli have been widely characterized, less is known about the mechanical signals. We here review the current status of knowledge of biophysical cues provided by the niche where β-cells normally live and differentiate, and we underline the possible machinery designated for mechanotransduction in β-cells. Although the regulatory mechanisms remain poorly understood, the analysis reveals that β-cells are equipped with all mechanosensors and signaling proteins actively involved in mechanotransduction in other cell types, and they respond to mechanical cues by changing their behavior. By engineering microenvironments mirroring the biophysical niche properties it is possible to elucidate the β-cell mechanotransductive-regulatory mechanisms and to harness them for the promotion of β-cell differentiation capacity in vitro.
Collapse
Affiliation(s)
- Galli Alessandra
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Marku Algerta
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Marciani Paola
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Schulte Carsten
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Lenardi Cristina
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Milani Paolo
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maffioli Elisa
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Tedeschi Gabriella
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Perego Carla
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| |
Collapse
|
133
|
Umuhoza D, Yang F, Long D, Hao Z, Dai J, Zhao A. Strategies for Tuning the Biodegradation of Silk Fibroin-Based Materials for Tissue Engineering Applications. ACS Biomater Sci Eng 2020; 6:1290-1310. [DOI: 10.1021/acsbiomaterials.9b01781] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Diane Umuhoza
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
- Commercial Insect Program, Sericulture, Rwanda Agricultural Board, 5016 Kigali, Rwanda
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Dingpei Long
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Zhanzhang Hao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Jing Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| |
Collapse
|
134
|
Hussein KH, Park KM, Yu L, Song SH, Woo HM, Kwak HH. Vascular reconstruction: A major challenge in developing a functional whole solid organ graft from decellularized organs. Acta Biomater 2020; 103:68-80. [PMID: 31887454 DOI: 10.1016/j.actbio.2019.12.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Bioengineering a functional organ holds great potential to overcome the current gap between the organ need and shortage of available organs. Whole organ decellularization allows the removal of cells from large-scale organs, leaving behind extracellular matrices containing different growth factors, structural proteins, and a vascular network with a bare surface. Successful application of decellularized tissues as transplantable organs is hampered by the inability to completely reline the vasculature by endothelial cells (ECs), leading to blood coagulation, loss of vascular patency, and subsequent death of reseeded cells. Therefore, an intact, continuous layer of endothelium is essential to maintain proper functioning of the vascular system, which includes the transfer of nutrients to surrounding tissues and protecting other types of cells from shear stress. Here, we aimed to summarize the available cell sources that can be used for reendothelialization in addition to different trials performed by researchers to reconstruct vascularization of decellularized solid organs. Additionally, different techniques for enhancing reendothelialization and the methods used for evaluating reendothelialization efficiency along with the future prospective applications of this field are discussed. STATEMENT OF SIGNIFICANCE: Despite the great progress in whole organ decellularization, reconstruction of vasculature within the engineered constructs is still a major roadblock. Reconstructed endothelium acts as a multifunctional barrier of vessels, which can reduce thrombosis and help delivering of oxygen and nutrients throughout the whole organ. Successful reendothelialization can be achieved through reseeding of appropriate cell types on the naked vasculature with or without modification of its surface. Here, we present the current research milestones that so far established to reconstruct the vascular network in addition to the methods used for evaluating the efficiency of reendotheilization. Thus, this review is quite significant and will aid the researchers to know where we stand toward biofabricating a transplantable organ from decellularizd extracellular matrix.
Collapse
|
135
|
Dou X, Zhao Y, Li M, Chen Q, Yamaguchi Y. Raman imaging diagnosis of the early stage differentiation of mouse embryonic stem cell (mESC). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117438. [PMID: 31377684 DOI: 10.1016/j.saa.2019.117438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 05/19/2023]
Abstract
Raman microspectroscopy as a non-invasive and label-free technique was applied to diagnose the early stage differentiation of mouse embryonic stem cells. The differentiated and undifferentiated embryonic bodies (EBs) were cultured using handing drop method by the control of Leukemia Inhibitory Factor (LIF). Raman spectra of the periphery cells of differentiated EBs (PrE cells) and those of the interior of undifferentiated EBs (ES cells) were obtained to diagnose the stem cells of different differentiation. It was found from the spectra that the protein content increased as the cells differentiated. Principal component analysis (PCA) was carried out to further analyze the differences between ES cells and PrE cells. The first three principle components contained 98.19% from the total variance. Characteristic bands of ES and PrE cells were chosen to acquire Raman images of two cells according to the results of PCA. In the Raman images, PrE cells had a clear and bright outline in the peripheral areas while ES cells were difficult to identify, this could be a distinct characteristic to discriminate them. The result of the Raman images was consistent with the biological agreement that the differentiated cells were distributed around the periphery.
Collapse
Affiliation(s)
- Xiaoming Dou
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Yubin Zhao
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingda Li
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qinmiao Chen
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yoshinori Yamaguchi
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita City, Osaka 565-0871, Japan.
| |
Collapse
|
136
|
Javidi MA, Kaeidi A, Mortazavi Farsani SS, Babashah S, Sadeghizadeh M. Investigating curcumin potential for diabetes cell therapy, in vitro and in vivo study. Life Sci 2019; 239:116908. [PMID: 31610197 DOI: 10.1016/j.lfs.2019.116908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
AIMS An important obstacle on the way of cell-based therapy is the risk of tumorigenicity in the patients benefit from these transplanted cells due to undifferentiated cells which participate in transplantation. Curcumin, the main compound of spice turmeric -as one of the natural products-was demonstrated to possess effective anti-cancer properties, with no significant effect on normal cells in dose and/or time-dependent manner. Furthermore many studies have been accomplished using curcumin for diabetes treatment. Therefore in this study we examined the efficacy of IPCs treated with curcumin in vivo. MAIN METHODS Differentiation efficiency investigated by flowcytometry. RNA extraction and real-time PCR performed for important genes in IPC differentiation and tumorigenesis including Insulin, Nestin, Ngn3, Pdx1, P21, and P53. Finally we investigated the efficiency of these differentiated and treated cells in diabetic rats. KEY FINDINGS Our data indicates that nanocurcumin -in a specific dose-reduces the expression of Nestin with no significant effect on insulin expression in mRNA and protein level. Besides blood glucose level of diabetic rats which treated with DNC + cells, decreased from average 350 (mg/dI) to 100 (mg/dI). Checking out the pancreases of these rats, demonstrated that their endocrine segment was rebuilt. Moreover hematoxylin & eosin staining and IF results revealed that the Langerhans Islands were reformed. SIGNIFICANCE IPCs' which treated with DNC were able to efficiently control the blood glucose level in diabetic rats which these cells were transplanted to them. Hence Curcumin has the potential to be employed in this kind of cell therapy.
Collapse
Affiliation(s)
- Mohammad Amin Javidi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ayat Kaeidi
- Physiology-pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
137
|
Riva L, Petrini C. A few ethical issues in translational research for gene and cell therapy. J Transl Med 2019; 17:395. [PMID: 31779636 PMCID: PMC6883654 DOI: 10.1186/s12967-019-02154-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background Although translational research for drug development can provide patients with valuable therapeutic resources it is not without risk, especially in the early-phase trials that present the highest degree of uncertainty. With the extraordinary evolution of biomedical technologies, a growing number of innovative products based on human cells and gene therapy are being tested and used as drugs. Their use on humans poses several challenges. Methods In this work, we discuss some ethical issues related to gene and cell therapies translational research. We focus on early-phase studies analysing the regulatory approach of Europe and the United States. We report the current recommendations and guidelines of international scientific societies and European and American regulatory authorities. Results The peculiarity of human cell- or tissue-based products and gene therapy has required the development of specific regulatory tools that must be continually updated in line with the progress of the research. The ethics of translational research for these products also requires further considerations, particularly with respect to the specificity of the associated risk profiles. Conclusions An integrated ethical approach that aims for transparency and regulation of development processes, the support of independent judgment in clinical trials and the elimination of unregulated and uncontrolled grey areas of action are necessary to move gene and cell therapy forward.
Collapse
Affiliation(s)
- Luciana Riva
- Bioethics Unit, Istituto Superiore di Sanità (Italian National Institute of Health), Via Giano della Bella 34, 00162, Rome, Italy.
| | - Carlo Petrini
- Bioethics Unit, Istituto Superiore di Sanità (Italian National Institute of Health), Via Giano della Bella 34, 00162, Rome, Italy
| |
Collapse
|
138
|
Isolation and Culture of Human Stem Cells from Apical Papilla under Low Oxygen Concentration Highlight Original Properties. Cells 2019; 8:cells8121485. [PMID: 31766521 PMCID: PMC6952825 DOI: 10.3390/cells8121485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cells isolated from the apical papilla of wisdom teeth (SCAPs) are an attractive model for tissue repair due to their availability, high proliferation rate and potential to differentiate in vitro towards mesodermal and neurogenic lineages. Adult stem cells, such as SCAPs, develop in stem cell niches in which the oxygen concentration [O2] is low (3–8% compared with 21% of ambient air). In this work, we evaluate the impact of low [O2] on the physiology of SCAPs isolated and processed in parallel at 21% or 3% O2 without any hyperoxic shock in ambient air during the experiment performed at 3% O2. We demonstrate that SCAPs display a higher proliferation capacity at 3% O2 than in ambient air with elevated expression levels of two cell surface antigens: the alpha-6 integrin subunit (CD49f) and the embryonic stem cell marker (SSEA4). We show that the mesodermal differentiation potential of SCAPs is conserved at early passage in both [O2], but is partly lost at late passage and low [O2], conditions in which SCAPs proliferate efficiently without any sign of apoptosis. Unexpectedly, we show that autophagic flux is active in SCAPs irrespective of [O2] and that this process remains high in cells even after prolonged exposure to 3% O2.
Collapse
|
139
|
Barcia Durán JG, Lis R, Rafii S. Haematopoietic stem cell reprogramming and the hope for a universal blood product. FEBS Lett 2019; 593:3253-3265. [PMID: 31725897 DOI: 10.1002/1873-3468.13681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Haematopoietic stem cells (HSCs) are the only adult stem cells with a demonstrated clinical use, even though a tractable method to maintain and expand human HSCs in vitro has not yet been found. Owing to the introduction of transplantation strategies for the treatment of haematological malignancies and, more recently, the promise of gene therapy, the need to improve the generation, manipulation and scalability of autologous or allogeneic HSCs has risen steeply over the past decade. In that context, reprogramming strategies based on the expression of exogenous transcription factors have emerged as a means to produce functional HSCs in vitro. These approaches largely stem from the assumption that key master transcription factors direct the expression of downstream target genes thereby triggering haematopoiesis. Both somatic and pluripotent cells have been used to this end, yielding variable results in terms of haematopoietic phenotype and functionality. Here, we present an overview of the haematopoietic reprogramming methods reported to date, provide the appropriate historical context and offer some critical insight about where the field stands at present.
Collapse
Affiliation(s)
- José Gabriel Barcia Durán
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Raphaël Lis
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA.,Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
140
|
Expansion processes for cell-based therapies. Biotechnol Adv 2019; 37:107455. [PMID: 31629791 DOI: 10.1016/j.biotechadv.2019.107455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/08/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Living cells are emerging as therapeutic entities for the treatment of patients affected with severe and chronic diseases where no conventional drug can provide a definitive cure. At the same time, the promise of cell-based therapies comes with several biological, regulatory, economic, logistical, safety and engineering challenges that need to be addressed before translating into clinical practice. Among the complex operations required for their manufacturing, cell expansion occupies a significant part of the entire process and largely determines the number, the phenotype and several other critical quality attributes of the final cell therapy products (CTPs). This review aims at characterizing the main culture systems and expansion processes used for CTP production, highlighting the need to implement scalable, cost-efficient technologies together with process optimization strategies to bridge the gap between basic scientific research and commercially available therapies.
Collapse
|
141
|
Extracellular matrix-based hydrogels obtained from human tissues: a work still in progress. Curr Opin Organ Transplant 2019; 24:604-612. [DOI: 10.1097/mot.0000000000000691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
142
|
Winnier GE, Valenzuela N, Peters-Hall J, Kellner J, Alt C, Alt EU. Isolation of adipose tissue derived regenerative cells from human subcutaneous tissue with or without the use of an enzymatic reagent. PLoS One 2019; 14:e0221457. [PMID: 31479463 PMCID: PMC6719836 DOI: 10.1371/journal.pone.0221457] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Freshly isolated, uncultured, autologous adipose derived regenerative cells (ADRCs) have emerged as a promising tool for regenerative cell therapy. The Transpose RT system (InGeneron, Inc., Houston, TX, USA) is a system for isolating ADRCs from adipose tissue, commercially available in Europe as a CE-marked medical device and under clinical evaluation in the United States. This system makes use of the proprietary, enzymatic Matrase Reagent for isolating cells. The present study addressed the question whether the use of Matrase Reagent influences cell yield, cell viability, live cell yield, biological characteristics, physiological functions or structural properties of the ADRCs in final cell suspension. Identical samples of subcutaneous adipose tissue from 12 subjects undergoing elective lipoplasty were processed either with or without the use of Matrase Reagent. Then, characteristics of the ADRCs in the respective final cell suspensions were evaluated. Compared to non-enzymatic isolation, enzymatic isolation resulted in approximately twelve times higher mean cell yield (i.e., numbers of viable cells/ml lipoaspirate) and approximately 16 times more colony forming units. Despite these differences, cells isolated from lipoaspirate both with and without the use of Matrase Reagent were independently able to differentiate into cells of all three germ layers. This indicates that biological characteristics, physiological functions or structural properties relevant for the intended use were not altered or induced using Matrase Reagent. A comprehensive literature review demonstrated that isolation of ADRCs from lipoaspirate using the Transpose RT system and the Matrase Reagent results in the highest viable cell yield among published data regarding isolation of ADRCs from lipoaspirate.
Collapse
Affiliation(s)
| | | | | | | | | | - Eckhard U. Alt
- InGeneron, Inc., Houston, TX, United States of America
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, New Orleans, LA, United States of America
- Sanford Health, University of South Dakota, Sioux Falls, SD, United States of America
- Isar Klinikum Munich, Munich, Germany
- * E-mail: ,
| |
Collapse
|
143
|
Galli F, Bragg L, Meggiolaro L, Rossi M, Caffarini M, Naz N, Santoleri S, Cossu G. Gene and Cell Therapy for Muscular Dystrophies: Are We Getting There? Hum Gene Ther 2019; 29:1098-1105. [PMID: 30132372 PMCID: PMC6211823 DOI: 10.1089/hum.2018.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the last few years, significant advances have occurred in the preclinical and clinical work toward gene and cell therapy for muscular dystrophy. At the time of this writing, several trials are ongoing and more are expected to start. It is thus a time of expectation, even though many hurdles remain and it is unclear whether they will be overcome with current strategies or if further improvements will be necessary.
Collapse
Affiliation(s)
- Francesco Galli
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| | - Laricia Bragg
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| | - Linda Meggiolaro
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| | - Maira Rossi
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| | - Miriam Caffarini
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| | - Naila Naz
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| | - Sabrina Santoleri
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester , Manchester, United Kingdom
| |
Collapse
|
144
|
Naeem EM, Sajad D, Talaei-Khozani T, Khajeh S, Azarpira N, Alaei S, Tanideh N, Reza TM, Razban V. Decellularized liver transplant could be recellularized in rat partial hepatectomy model. J Biomed Mater Res A 2019; 107:2576-2588. [PMID: 31361939 DOI: 10.1002/jbm.a.36763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022]
Abstract
In situ recellularization of the liver decellularized scaffold is a potential therapeutic alternative for liver transplantation. We aimed to develop an in situ procedure for recellularization of the rat liver using sodium lauryl ether sulfate (SLES) compared with Triton X-100/SDS. Rat liver specimens were rinsed with PBS, decellularized with either Triton X-100/SDS or SLES, and finally rinsed by distilled water. The efficiency of decellularized liver scaffolds was evaluated by histological, confocal Raman microscopy, histochemical staining, and DNA quantification assessments. Finally, in vivo studies were done to assess the biocompatibility of the liver scaffold by serum biochemical parameters and the recellularization capacity by histological and immunohistochemistry staining. Findings confirmed the preservation of extracellular matrix (ECM) components such as reticular, collagen, glycosaminoglycans, and neutral carbohydrates in both Triton X-100/SDS- and SLES-treated livers. Hoechst, feulgen, Hematoxylin and eosin, and DNA quantification assessments confirmed complete genetic content removal. The serological parameters showed no adverse impact on the liver functions. Transplantation of SLES-treated cell-free decellularized liver showed extensive neovascularization along with migration of the fibrocytes and adipocytes and some immune cells. Also, immunohistochemical staining showed that the oval cells, stellate cells, cholangiocytes and hepatocytes invaded extensively into the graft. It is concluded that SLES can be considered as a promising alternative in the liver decellularization process, and the transplanted decellularized liver can appropriately be revascularized and regenerated.
Collapse
Affiliation(s)
- Erfani M Naeem
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Daneshi Sajad
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Alaei
- Department of Reproductive Biology, School of Advanced Medical Sciences and Applied Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tabandeh M Reza
- Department of Biochemistry and Molecular Biology, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Vahid Razban
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
145
|
Amyloid-like peptide nanofibrils as scaffolds for tissue engineering: Progress and challenges (Review). Biointerphases 2019; 14:040801. [PMID: 31284721 DOI: 10.1116/1.5098332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Networks of amyloid-like nanofibrils assembled from short peptide sequences have the ability to form scaffolds that can encapsulate clinically relevant stem cells encouraging their attachment, growth, and differentiation into various lineages which can be used in tissue engineering applications to treat a range of diseases and traumas. In this review, the author highlights a selection of important proof-of-principle papers that show how this class of self-assembled networks is highly suited to biomaterial scaffold development. The author highlights recent studies which have shown that these scaffolds can be used to promote cell and tissue regeneration both in vitro and in vivo. The author also presents some fundamental knowledge gaps which are preventing the widespread translation of such scaffolds. Finally, the author outlines a selection of studies that elucidate molecular assembly mechanisms and biophysical properties of amyloid-like peptide nanofibrils and suggests how studies like these might lead to the ability to generate nanofibril scaffolds with bespoke properties for tissue engineering.
Collapse
|
146
|
MacPherson A, Kimmelman J. Ethical development of stem-cell-based interventions. Nat Med 2019; 25:1037-1044. [PMID: 31270501 DOI: 10.1038/s41591-019-0511-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
The process of developing new and complex stem-cell-based therapeutics is incremental and requires decades of sustained collaboration among different stakeholders. In this Perspective, we address key ethical and policy challenges confronting the clinical translation of stem-cell-based interventions (SCBIs), including premature diffusion of SCBIs to clinical practice, assessment of risk in trials, obtaining valid informed consent for research participants, balanced and complete scientific reporting and public communications, regulation, and equitable access to treatment. We propose a way forward for translating these therapies with the above challenges in mind.
Collapse
Affiliation(s)
- Amanda MacPherson
- Biomedical Ethics Unit, STREAM Research Group, McGill University, Montreal, Canada
| | - Jonathan Kimmelman
- Biomedical Ethics Unit, STREAM Research Group, McGill University, Montreal, Canada.
| |
Collapse
|
147
|
Rota C, Morigi M, Imberti B. Stem Cell Therapies in Kidney Diseases: Progress and Challenges. Int J Mol Sci 2019; 20:ijms20112790. [PMID: 31181604 PMCID: PMC6600599 DOI: 10.3390/ijms20112790] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
The prevalence of renal diseases is emerging as a public health problem. Despite major progress in supportive therapy, mortality rates among patients remain high. In an attempt to find innovative treatments to stimulate kidney regeneration, stem cell-based technology has been proposed as a potentially promising strategy. Here, we summarise the renoprotective potential of pluripotent and adult stem cell therapy in experimental models of acute and chronic kidney injury and we explore the different mechanisms at the basis of stem cell-induced kidney regeneration. Specifically, cell engraftment, incorporation into renal structures, or paracrine activities of embryonic or induced pluripotent stem cells as well as mesenchymal stem cells and renal precursors are analysed. We also discuss the relevance of stem cell secretome-derived bioproducts, including soluble factors and extracellular vesicles, and the option of using them as cell-free therapy to induce reparative processes. The translation of the experimental results into clinical trials is also addressed, highlighting the safety and feasibility of stem cell treatments in patients with kidney injury.
Collapse
Affiliation(s)
- Cinzia Rota
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| | - Barbara Imberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| |
Collapse
|
148
|
|
149
|
Perspectives for Clinical Translation of Adipose Stromal/Stem Cells. Stem Cells Int 2019; 2019:5858247. [PMID: 31191677 PMCID: PMC6525805 DOI: 10.1155/2019/5858247] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Adipose stromal/stem cells (ASCs) are an ideal cell type for regenerative medicine applications, as they can easily be harvested from adipose tissue in large quantities. ASCs have excellent proliferation, differentiation, and immunoregulatory capacities that have been demonstrated in numerous studies. Great interest and investment have been placed in efforts to exploit the allogeneic use and immunomodulatory and anti-inflammatory effects of ASCs. However, bridging the gap between in vitro and in vivo studies and moving into clinical practice remain a challenge. For the clinical translation of ASCs, several issues must be considered, including how to characterise such a heterogenic cell population and how to ensure their safety and efficacy. This review explores the different phases of in vitro and preclinical ASC characterisation and describes the development of appropriate potency assays. In addition, good manufacturing practice requirements are discussed, and cell-based medicinal products holding marketing authorisation in the European Union are reviewed. Moreover, the current status of clinical trials applying ASCs and the patent landscape in the field of ASC research are presented. Overall, this review highlights the applicability of ASCs for clinical cell therapies and discusses their potential.
Collapse
|
150
|
Ling C, Nishimoto K, Rolfs Z, Smith LM, Frey BL, Welham NV. Differentiated fibrocytes assume a functional mesenchymal phenotype with regenerative potential. SCIENCE ADVANCES 2019; 5:eaav7384. [PMID: 31086819 PMCID: PMC6506241 DOI: 10.1126/sciadv.aav7384] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/26/2019] [Indexed: 05/27/2023]
Abstract
Fibrocytes (FCs) are hematopoietic lineage cells that migrate to sites of injury, transition to a mesenchymal phenotype, and help to mediate wound repair. Despite their relevance to human fibrotic disorders, there are few data characterizing basic FC biology. Herein, using proteomic, bioenergetic, and bioengineering techniques, we conducted deep phenotypic characterization of differentiating and mature FCs. Differentiation was associated with metabolic reprogramming that favored oxidative phosphorylation. Mature FCs had distinct proteomes compared to classic mesenchymal cells, formed functional stromae that supported epithelial maturation during in vitro organotypic culture, and exhibited in vivo survival and self-tolerance as connective tissue isografts. In an in vitro scratch assay, FCs promoted fibroblast migration and wound closure by paracrine signaling via the chemokine CXCL8 (interleukin-8). These findings characterize important aspects of FC differentiation and show that, in addition to their role in wound healing, FCs hold potential as an easily isolated autologous cell source for regenerative medicine.
Collapse
Affiliation(s)
- Changying Ling
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Kohei Nishimoto
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Zach Rolfs
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian L. Frey
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nathan V. Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|