101
|
Backes EN, Hemby SE. Contribution of ventral tegmental GABA receptors to cocaine self-administration in rats. Neurochem Res 2008; 33:459-67. [PMID: 17943439 PMCID: PMC2637112 DOI: 10.1007/s11064-007-9454-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 07/20/2007] [Indexed: 11/29/2022]
Abstract
Recent evidence has suggested that compounds affecting GABAergic transmission may provide useful pharmacological tools for the treatment of cocaine addiction. Using a rat model of self-administration, the present study examined the effects of GABA agonists and antagonists injected directly into the ventral tegmental area (VTA) on cocaine intake in rats trained to self-administer cocaine (0, 125, 250 and 500 microg/infusion) under an FR5 schedule of reinforcement. Separate groups of rats received bilateral intra-VTA injections of the GABA-A antagonist picrotoxin (34 ng/side, n = 7; 68 ng/side, n = 8), GABA-A agonist muscimol (14 ng/side, n = 8), GABA-B agonist baclofen (56 ng/side, n = 7; 100 ng/side, n = 6), picrotoxin (68 ng/side) co-injected with the GABA-B antagonist 2-hydroxysaclofen (100 ng/side, n = 7; 2 microg/side, n = 8) or artificial cerebrospinal fluid (aCSF, n = 6) to assess the effects of the various compounds on the cocaine self-administration dose-response curve. Both picrotoxin and baclofen reduced responding maintained by cocaine, whereas muscimol had no effect on responding. In contrast, neither picrotoxin (n = 6) nor baclofen (n = 8) affected responding maintained by food. Interestingly, 2-hydroxysaclofen effectively blocked the suppression of responding produced by picrotoxin, suggesting that both picrotoxin and baclofen exert their effects via activation of GABA-B receptors. Additionally, these effects appear to be specific to cocaine reinforcement, supporting current investigation of baclofen as a treatment for cocaine addiction.
Collapse
Affiliation(s)
- E N Backes
- Neuroscience Graduate Program, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
102
|
Wegner F, Deuther-Conrad W, Scheunemann M, Brust P, Fischer S, Hiller A, Diekers M, Strecker K, Wohlfarth K, Allgaier C, Steinbach J, Hoepping A. GABAA receptor pharmacology of fluorinated derivatives of the novel sedative-hypnotic pyrazolopyrimidine indiplon. Eur J Pharmacol 2008; 580:1-11. [DOI: 10.1016/j.ejphar.2007.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 10/08/2007] [Accepted: 10/15/2007] [Indexed: 10/22/2022]
|
103
|
Soyka M, Preuss UW, Hesselbrock V, Zill P, Koller G, Bondy B. GABA-A2 receptor subunit gene (GABRA2) polymorphisms and risk for alcohol dependence. J Psychiatr Res 2008; 42:184-91. [PMID: 17207817 DOI: 10.1016/j.jpsychires.2006.11.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Gamma-aminobutyric acid (GABA) A receptors are believed to mediate some of the physiological and behavioral actions of ethanol. Recent studies have suggested that genetic variants of the GABA-A receptor alpha2 subunit gene (GABRA2) are associated with alcohol dependence. The aim of this study is to confirm and extend the role of GABRA2 haplotypes in the liability to alcohol dependence. 291 (231 male) treatment-seeking alcohol-dependent individuals and 295 (153 male) control subjects were enrolled into the study. Characteristics of alcohol dependence were obtained using the SSAGA (semi-structured assessment of the genetics of alcoholism, German Version). Genotyping of 10 SNPs across the GABRA2 gene was performed following previous reports and using PCR. One genetic variant was detected to significantly differ between alcohol-dependent subjects and controls. Two common 8 SNP haplotypes and their complementary alleles were identified containing this SNP and were present in 89.9% of controls and 93.4% of the alcohol-dependent individuals. One of the haplotypes (T-C-A-C-A-T-T-C) was significantly associated with alcohol dependence and characteristics of alcohol withdrawal and severity of alcohol dependence (delirium tremens, withdrawal seizures). These findings support and extend the three previous studies implicating a GABA-A receptor subunit as contributing to the genetic risk for alcohol dependence. Possible implications of these findings are discussed.
Collapse
Affiliation(s)
- M Soyka
- Psychiatric Hospital of Ludwig-Maximilians-University Munich, Germany.
| | | | | | | | | | | |
Collapse
|
104
|
Kotak VC, Takesian AE, Sanes DH. Hearing loss prevents the maturation of GABAergic transmission in the auditory cortex. Cereb Cortex 2008; 18:2098-108. [PMID: 18222937 PMCID: PMC2517109 DOI: 10.1093/cercor/bhm233] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Inhibitory neurotransmission is a critical determinant of neuronal network gain and dynamic range, suggesting that network properties are shaped by activity during development. A previous study demonstrated that sensorineural hearing loss (SNHL) in gerbils leads to smaller inhibitory potentials in L2/3 pyramidal neurons in the thalamorecipient auditory cortex, ACx. Here, we explored the mechanisms that account for proper maturation of γ-amino butyric acid (GABA)ergic transmission. SNHL was induced at postnatal day (P) 10, and whole-cell voltage-clamp recordings were obtained from layer 2/3 pyramidal neurons in thalamocortical slices at P16–19. SNHL led to an increase in the frequency of GABAzine-sensitive (antagonist) spontaneous (s) and miniature (m) inhibitory postsynaptic currents (IPSCs), accompanied by diminished amplitudes and longer durations. Consistent with this, the amplitudes of minimum-evoked IPSCs were also reduced while their durations were longer. The α1- and β2/3 subunit–specific agonists zolpidem and loreclezole increased control but not SNHL sIPSC durations. To test whether SNHL affected the maturation of GABAergic transmission, sIPSCs were recorded at P10. These sIPSCs resembled the long SNHL sIPSCs. Furthermore, zolpidem and loreclezole were ineffective in increasing their durations. Together, these data strongly suggest that the presynaptic release properties and expression of key postsynaptic GABAA receptor subunits are coregulated by hearing.
Collapse
Affiliation(s)
- Vibhakar C Kotak
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | | | | |
Collapse
|
105
|
Abstract
This review assesses the parallel data on the role of gamma-aminobutyric acid (GABA) in depression and anxiety. We review historical and new data from both animal and human experimentation which have helped define the key role for this transmitter in both these mental pathologies. By exploring the overlap in these conditions in terms of GABAergic neurochemistry, neurogenetics, brain circuitry, and pharmacology, we develop a theory that the two conditions are intrinsically interrelated. The role of GABAergic agents in demonstrating this interrelationship and in pointing the way to future research is discussed.
Collapse
Affiliation(s)
- Allan V Kalueff
- Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, Maryland, USA
| | | |
Collapse
|
106
|
Sarang SS, Lukyanova SM, Brown DD, Cummings BS, Gullans SR, Schnellmann RG. Identification, coassembly, and activity of gamma-aminobutyric acid receptor subunits in renal proximal tubular cells. J Pharmacol Exp Ther 2008; 324:376-82. [PMID: 17959749 DOI: 10.1124/jpet.107.129957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the properties and functions of GABA(A) receptors in the mammalian central nervous system have been well studied, the presence and significance of GABA(A) receptors in non-neural tissues are less clear. The goal of this study was to examine the expression of GABA(A) receptor alpha(1), alpha(2), alpha(4), alpha(5), beta(1), gamma(1), gamma(2), and delta subunits in the kidney and to determine whether these subunits coassemble to form an active renal epithelial cell GABA(A) receptor. Using reverse transcriptase products from RNA isolated from rat and rabbit kidney cortex and brain or cerebellum through polymerase chain reaction (PCR) and sequencing of the PCR products, we revealed that rat kidney cortex contained the alpha(1), alpha(5), beta(1), gamma(1), and gamma(2) subunits and that they were similar to the neuronal subunits. Sequencing of the PCR products revealed that the rabbit kidney cortex contained the alpha(1) and gamma(2) subunits and that they were similar to their neuronal counterparts. Immunoprecipitation and immunoblot studies using GABA(A) receptor subunit-specific antibodies and detergent-solubilized rat kidney cortex membranes identified a GABA(A) receptor complex containing alpha(5), beta(1), and gamma(1). Isolated rat renal proximal tubular cells exhibited GABA-mediated, picrotoxin-sensitive (36)Cl(-) uptake. These studies demonstrate the presence of numerous GABA(A) receptor subunits in the kidneys of two species, the assembly of the subunits into at least one novel receptor complex, and an active GABA(A) receptor in renal proximal tubular cells.
Collapse
Affiliation(s)
- Satinder S Sarang
- Department of Pharmaceutical Sciences, Medical University of South Carolina, 280 Calhoun St., POB 250140, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
107
|
Heldt SA, Ressler KJ. Forebrain and midbrain distribution of major benzodiazepine-sensitive GABAA receptor subunits in the adult C57 mouse as assessed with in situ hybridization. Neuroscience 2007; 150:370-85. [PMID: 17950542 PMCID: PMC2292345 DOI: 10.1016/j.neuroscience.2007.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/27/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
In the adult brain, GABA is the major inhibitory neurotransmitter. Understanding of the behavioral and pharmacological functions of GABA has been advanced by recent studies of mouse lines that possess mutations in various GABA receptor subtypes and associated proteins. Genetically altered mice have become important tools for discerning GABAergic function. Thus detailed knowledge of the anatomical distribution of different GABA(A) subtype receptors in mice is a prerequisite for understanding the neural circuitry underlying changes in normal and drug-induced behaviors seen in mutated mice. In the current study, we used in situ hybridization histochemistry with [(35)S]UTP-labeled riboprobes to examine the regional expression pattern of mRNA transcripts for seven major GABA(A) receptor subunits in adjacent coronal brain sections (alpha 1, alpha 2, alpha 3, alpha 5, beta 2, beta 3, and gamma 2). Our results indicate that many of these GABAergic genes are co-expressed in much of the adult brain including the neocortex, hippocampus, amygdala, thalamus and striatum. However, each gene also shows a unique region-specific distribution pattern, indicative of distinct neuronal circuits that may serve specific physiological and pharmacological functions.
Collapse
Affiliation(s)
- S A Heldt
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, 954 Gatewood Drive, Atlanta, GA 30329, USA.
| | | |
Collapse
|
108
|
Marutha Ravindran CR, Mehta AK, Ticku MK. Effect of chronic administration of ethanol on the regulation of the delta-subunit of GABA(A) receptors in the rat brain. Brain Res 2007; 1174:47-52. [PMID: 17854781 PMCID: PMC2278031 DOI: 10.1016/j.brainres.2007.07.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/06/2007] [Accepted: 07/08/2007] [Indexed: 11/30/2022]
Abstract
In the present study, we investigated the effect of chronic ethanol (CE) administration on the polypeptide levels of the delta-subunit of GABA(A) receptors and [(3)H]muscimol binding to the immunoprecipitated delta-subunit-containing GABA(A) receptor assemblies in the rat brain. CE administration resulted a down-regulation of polypeptide levels of the delta-subunit of GABA(A) receptors in the rat cerebellum and hippocampus, whereas there were no changes in the delta-subunit polypeptide levels in the rat cerebral cortex. Further, CE administration caused a down-regulation of native delta-subunit-containing GABA(A) receptor assemblies in the rat cerebellum as determined by [(3)H]muscimol binding to the immunoprecipitated receptor assemblies. These results indicate that the delta-subunit-containing GABA(A) receptors may play a role in chronic ethanol-induced tolerance and dependence.
Collapse
Affiliation(s)
- C R Marutha Ravindran
- Department of Pharmacology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio TX 78229-3900, USA
| | | | | |
Collapse
|
109
|
Akk G, Covey DF, Evers AS, Steinbach JH, Zorumski CF, Mennerick S. Mechanisms of neurosteroid interactions with GABA(A) receptors. Pharmacol Ther 2007; 116:35-57. [PMID: 17524487 PMCID: PMC2047817 DOI: 10.1016/j.pharmthera.2007.03.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 03/29/2007] [Indexed: 11/20/2022]
Abstract
Neuroactive steroids have some of their most potent actions by augmenting the function of GABA(A) receptors. Endogenous steroid actions on GABA(A) receptors may underlie important effects on mood and behavior. Exogenous neuroactive steroids have potential as anesthetics, anticonvulsants, and neuroprotectants. We have taken multiple approaches to understand more completely the interaction of neuroactive steroids with GABA(A) receptors. We have developed many novel steroid analogues in this effort. Recent work has resulted in synthesis of new enantiomer analogue pairs, novel ligands that probe various properties of the steroid pharmacophore, fluorescent neuroactive steroid analogues, and photoaffinity labels. Using these tools, combined with receptor binding and electrophysiological assays, we have begun to untangle the complexity of steroid actions at this important class of ligand-gated ion channel.
Collapse
Affiliation(s)
- Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Douglas F. Covey
- Department of Molecular Biology & Pharmacology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Alex S. Evers
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Molecular Biology & Pharmacology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Joe Henry Steinbach
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Charles F. Zorumski
- Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Steven Mennerick
- Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| |
Collapse
|
110
|
You H, Dunn SMJ. Identification of a domain in the delta subunit (S238-V264) of the alpha4beta3delta GABAA receptor that confers high agonist sensitivity. J Neurochem 2007; 103:1092-101. [PMID: 17711419 DOI: 10.1111/j.1471-4159.2007.04817.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have expressed the alpha4beta3delta and alpha4beta3gamma2L subtypes of the rat GABAA receptor in Xenopus oocytes and have investigated their agonist activation properties. GABA was a more potent agonist of the alpha4beta3delta receptor (EC50 approximately 1.4 micromol/L) than of the alpha4beta3gamma2L subtype (EC50 approximately 27.6 micromol/L). Other GABAA receptor agonists (muscimol, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol, imidazole-4-amino acid) displayed similar subtype selectivity. The structural determinants underlying these differences have been investigated by co-expressing chimeric delta/gamma2L subunits with alpha4 and beta3 subunits. A stretch of amino acids in the delta subunit, S238-V264, is shown to play an important role in determining both agonist potency and the efficacies of full or partial agonists. This segment includes transmembrane domain 1 and the short intracellular loop that leads to the second transmembrane domain. The effects of the competitive antagonists, bicuculline and SR95531, and the channel blocker, picrotoxin, were not significantly affected by the incorporation of chimeric subunits. As the delta and gamma2L subunits have not been previously implicated directly in agonist binding, we suggest that the effects are likely to arise from changes in the transduction mechanisms that link agonist binding to channel activation.
Collapse
Affiliation(s)
- Haitao You
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
111
|
Marutha Ravindran CR, Mehta AK, Ticku MK. Effect of chronic administration of ethanol on the regulation of tyrosine kinase phosphorylation of the GABAA receptor subunits in the rat brain. Neurochem Res 2007; 32:1179-87. [PMID: 17404840 DOI: 10.1007/s11064-007-9288-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
One of the many pharmacological targets of ethanol is the GABA inhibitory system, and chronic ethanol (CE) is known to alter the polypeptide levels of the GABA(A )receptor subunits in rat brain regions. In the present study, we investigated the regulation of the tyrosine kinase phosphorylation of the GABA(A) receptor alpha(1)-, beta(2)- and gamma(2)-subunits in the rat cerebellum, cerebral cortex and hippocampus following chronic administration of ethanol to the rats. We observed either down-regulation or no change in the tyrosine kinase phosphorylation of the alpha(1) subunit, whereas there was an up-regulation or no change in the case of beta(2)- and gamma(2)-subunits of the GABA(A) receptors depending on the brain region following chronic administration of ethanol to the rats. These changes reverted back to the control level following 48 h of ethanol-withdrawal. These results suggest that tyrosine kinase phosphorylation of GABA(A )receptors may play a significant role in ethanol dependence.
Collapse
Affiliation(s)
- C R Marutha Ravindran
- Department of Pharmacology, MC 7764, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
112
|
Yang Z, Webb TI, Lynch JW. Closed-state cross-linking of adjacent beta1 subunits in alpha1beta1 GABAa receptors via introduced 6' cysteines. J Biol Chem 2007; 282:16803-10. [PMID: 17405880 DOI: 10.1074/jbc.m611555200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pore structural changes associated with Cys-loop receptor gating are currently the subject of considerable interest. Several functional approaches have shown that surface exposure of pore-lining side chains does not change significantly during activation. However, a disulfide trapping study on alpha1(T6'C)beta1(T6'C) gamma-aminobutyric acid type A (GABA(A)) receptors (GABA(A)Rs), which showed that adjacent beta subunits cross-link in the open state only, concluded that channel gating is mediated by beta subunits contra-rotating through a summed angle of approximately 120 degrees. Such a large rotation is not easily reconciled with other evidence. The present study initially sought to investigate an observation that appeared inconsistent with the rotation model: namely that alpha1(T6'C)beta1(T6'C) GABA(A)Rs expressed in HEK293 cells form 6' cysteine-mediated disulfide bonds in the closed state. On the basis of electrophysiological and Western blotting experiments, we conclude that adjacent beta(T6'C) subunits dimerise efficiently in the closed state via cross-links between their respective 6' cysteines and that this locks the channels closed. This questions the beta subunit contra-rotation model of activation and raises the question of how the closed state cross-links form. We propose that beta subunit 6' cysteines move into sufficiently close proximity for disulfide formation via relatively large amplitude random thermal motions that appear to be a unique feature of beta subunits. Because dimerized channels are locked closed, we conclude either that the spontaneous beta subunit movements or asymmetries in the movements of adjacent beta subunits during activation are essential for pore opening. Our results identify a novel feature of GABA(A)R gating that may be important for understanding its activation mechanism.
Collapse
Affiliation(s)
- Zhe Yang
- School of Biomedical Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | | | | |
Collapse
|
113
|
Pericić D, Strac DS, Jembrek MJ, Vlainić J. Allosteric uncoupling and up-regulation of benzodiazepine and GABA recognition sites following chronic diazepam treatment of HEK 293 cells stably transfected with alpha1beta2gamma2S subunits of GABA (A) receptors. Naunyn Schmiedebergs Arch Pharmacol 2007; 375:177-87. [PMID: 17377772 DOI: 10.1007/s00210-007-0152-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 03/01/2007] [Indexed: 11/30/2022]
Abstract
Benzodiazepines are drugs known to produce tolerance and dependence and also to be abused and co-abused. The aim of this study was to further explore the mechanisms that underlie adaptive changes in GABA(A) receptors following prolonged exposure to these drugs. Human embryonic kidney (HEK 293) cells stably expressing recombinant alpha1beta2gamma2s GABA(A) receptors were exposed for 72 h to a high concentration of diazepam (50 microM) in the absence or presence of other drugs. Radioligand binding studies were used to determine the parameters of [(3)H]flunitrazepam and [(3)H]muscimol binding sites and allosteric interactions between these sites. Prolonged treatment with diazepam increased the maximum number (B (max)) of [(3)H]flunitrazepam and [(3)H]muscimol binding sites in the membranes, and of [(3)H]muscimol binding sites on the surface of HEK 293 cells. There was no change in the affinity (K (d)) of binding sites. The diazepam-induced increase in the B (max) value of [(3)H]flunitrazepam binding sites was reduced by two GABA(A) receptor antagonists, gabazine (1 and 10 microM) and picrotoxin (100 microM). In addition, it was reduced by cycloheximide (5 microg/ml), a protein synthesis inhibitor, and actinomycin D (7.5 microg/ml), an RNA synthesis inhibitor. Flumazenil (5 microM), the antagonist of benzodiazepine binding sites, also up-regulated [(3)H]flunitrazepam recognition sites. Simultaneous treatment with diazepam and flumazenil failed to produce an additive up-regulation. GABA (1 nM - 1 mM)-induced potentiation of [(3)H]flunitrazepam binding to membranes obtained from diazepam (50 microM)-pretreated cells was markedly reduced, suggesting functional uncoupling between GABA and benzodiazepine binding sites. The results suggest that diazepam up-regulated benzodiazepine binding sites on stably expressed GABA(A) receptors by stimulating their synthesis at both the transcriptional and translational levels. A comparable increase of [(3)H]muscimol binding sites expressed on the surface of intact HEK 293 cells suggests that internalisation of surface receptors presumably can not explain the uncoupling.
Collapse
Affiliation(s)
- Danka Pericić
- Division of Molecular Medicine, Ruder Bosković Institute, Laboratory for Molecular Neuropharmacology, P.O.Box 180, 10002 Zagreb, Croatia.
| | | | | | | |
Collapse
|
114
|
Sanchez RM, Justice JA, Zhang K. Persistently decreased basal synaptic inhibition of hippocampal CA1 pyramidal neurons after neonatal hypoxia-induced seizures. Dev Neurosci 2007; 29:159-67. [PMID: 17148958 DOI: 10.1159/000096220] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 04/18/2006] [Indexed: 11/19/2022] Open
Abstract
Hypoxia is the most common cause of neonatal seizures and can lead to epilepsy, but the epileptogenic mechanisms are not yet understood. We have previously shown that hypoxia-induced seizures in the neonatal rat result in acutely decreased amplitudes and frequency of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) in hippocampal CA1 pyramidal neurons. In the current study, we asked whether such changes persist for several days following hypoxia-induced seizures. Similar to the acute findings, we observed decreased frequency and amplitudes of sIPSCs and decreased mIPSC amplitudes in CA1 pyramidal neurons at 3-5 days after hypoxia. However, in contrast to the acute findings, we observed no differences between hypoxia-treated and control groups in mIPSC frequency. Additionally, by 7 days after hypoxia, sIPSC amplitudes in the hypoxia group had recovered to control levels, but sIPSC frequency remained decreased. These data indicate that the persistently decreased sIPSC frequency result from decreased firing of presynaptic inhibitory interneurons, with only transient possible changes in postsynaptic responses to GABA release.
Collapse
Affiliation(s)
- Russell M Sanchez
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
115
|
Cremers T, Ebert B. Plasma and CNS concentrations of Gaboxadol in rats following subcutaneous administration. Eur J Pharmacol 2007; 562:47-52. [PMID: 17362924 DOI: 10.1016/j.ejphar.2007.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 12/18/2006] [Accepted: 01/03/2007] [Indexed: 11/25/2022]
Abstract
Gaboxadol has been suggested to be a selective extrasynaptic GABA(A) receptor agonist. However, there is little information on Gaboxadol concentrations in the central nervous system (CNS) at therapeutically relevant doses. In order to investigate this, rats were injected subcutaneously with Gaboxadol and plasma and CNS concentrations were determined using the dynamic-no-net-flux and ultraslow microdialysis methods. Results using the 2 methods were similar and showed that Gaboxadol rapidly entered the brain and that peak CNS concentrations after 2.5, 5 and 10 mg/kg were in the range of 0.7 to 3 microM. Furthermore, a very short half-life (28 min) in both plasma and CNS was observed. It is concluded that concentrations of Gaboxadol in the CNS are in a range, which are likely to activate only extrasynaptic (nongamma subunit containing) GABA(A) receptors.
Collapse
Affiliation(s)
- Thomas Cremers
- Brains-on-Line, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
116
|
Association of GABRG2 polymorphisms with idiopathic generalized epilepsy. Pediatr Neurol 2007; 36:40-4. [PMID: 17162195 DOI: 10.1016/j.pediatrneurol.2006.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/21/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022]
Abstract
Missense mutations in the gamma2 subunit of gamma-aminobutyric acid (GABA) receptor gene have recently been described in families with idiopathic generalized epilepsies. This study aimed to evaluate whether polymorphisms of the gamma2 subunit of the GABA receptor gene are associated with idiopathic generalized epilepsies. A total of 77 children with idiopathic generalized epilepsies and 83 normal control subjects were included in the study. Polymerase chain reaction was used to identify the C/T and A/G polymorphisms of the gamma2 subunit of the GABA receptor gene on chromosome 5q33. Genotypes and allelic frequencies in both groups were compared. The gamma2 subunit of the GABA receptor (nucleotide position 3145 in intron G-> A) gene in both groups was not significantly different. In contrast, the gamma2 subunit of GABA receptor (SNP211037)-C allele frequency in patients with idiopathic generalized epilepsies was significantly higher than that in healthy control subjects (P = 0.002). The odds ratio for developing idiopathic generalized epilepsies in individuals with the gamma2 subunit of the GABA receptor (SNP211037)-C/C genotype was 3.61 compared with individuals with the gamma2 subunit of the GABA receptor (SNP211037)-T/T genotype. These data suggest that the gamma2 subunit of the GABA receptor gene might be one of the susceptibility factors for idiopathic generalized epilepsies.
Collapse
|
117
|
|
118
|
Ebert B, Wafford KA, Deacon S. Treating insomnia: Current and investigational pharmacological approaches. Pharmacol Ther 2006; 112:612-29. [PMID: 16876255 DOI: 10.1016/j.pharmthera.2005.04.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/19/2005] [Indexed: 10/24/2022]
Abstract
Chronic insomnia affects a significant proportion of young adult and elderly populations. Treatment strategies should alleviate nighttime symptoms, the feeling of nonrestorative sleep, and impaired daytime function. Current pharmacological approaches focus primarily on GABA, the major inhibitory neurotransmitter in the central nervous system. Benzodiazepine receptor agonists (BzRA) have been a mainstay of pharmacotherapy; the classical benzodiazepines and non-benzodiazepines share a similar mode of action and allosterically enhance inhibitory chloride currents through the GABA(A) receptor, a ligand-gated protein comprising 5 subunits pseudosymmetrically arranged around a core anion channel. Variations in GABA(A) receptor subunit composition confer unique pharmacological, biophysical, and electrophysiological properties on each receptor subtype. Classical benzodiazepines bind non-selectively to GABA(A) receptors containing a gamma2 subunit, whereas non-benzodiazepine hypnotics bind with higher relative affinity to alpha1-containing receptors. The non-benzodiazepine compounds generally represent an improvement over benzodiazepines as a result of improved binding selectivity and pharmacokinetic profiles. However, the enduring potential for amnestic effects, next day residual sedation, and abuse and physical dependence, particularly at higher doses, underscores the need for new treatment strategies. Novel pharmacotherapies in development act on systems believed to be specifically involved in the regulation of the sleep-wake cycle. The recently approved melatonin receptor agonist, ramelteon, targets circadian mechanisms. Gaboxadol, an investigational treatment and a selective extrasynaptic GABA(A) receptor agonist (SEGA), targets GABA(A) receptors containing a delta subunit, which are located outside the synaptic junctions of thalamic and cortical neurons thought to play an important regulatory role in the onset, maintenance, and depth of the sleep process.
Collapse
Affiliation(s)
- Bjarke Ebert
- Department of Electrophysiology, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Copenhagen, Denmark.
| | | | | |
Collapse
|
119
|
Benzodiazepine receptor agonists and insomnia: Is subtype selectivity lost in translation? ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ddstr.2006.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
120
|
Arancibia-Carcamo IL, Moss SJ. Molecular organization and assembly of the central inhibitory postsynapse. Results Probl Cell Differ 2006; 43:25-47. [PMID: 17068966 DOI: 10.1007/400_017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
gamma-Amino butyric acid type A (GABAA) receptors are the major sites of fast synaptic inhibition in the brain. GABAA receptors play an important role in regulating neuronal excitability and in addition have been implicated in numerous neurological disorders. In order to understand synaptic inhibition it is important to comprehend the cellular mechanisms, that neurons utilize to regulate the accumulation and regulation of GABAA receptors at postsynaptic inhibitory specializations. Over the past decade a number of GABAA receptor interacting proteins have been identified allowing us to further understand the trafficking, targeting and clustering of these receptors as well as the regulation of receptor stability. In the following review we examine the proteins identified as GABAA receptor binding partners and other components of the inhibitory postsynaptic scaffold, and how they contribute to the construction of inhibitory synapses and the dynamic modulation of synaptic inhibition.
Collapse
|
121
|
Abstract
The fidelity of synaptic function is dependent on the expression of the appropriate neurotransmitter receptor subtype, the targeting and trafficking of receptors to synapses as well as the regulation of the actual number of receptors at synapses. GABAA (γ-aminobutyric acid type A) receptors and NMDA (N-methyl-D-aspartate) receptors are both examples of ligand-gated, heteromeric neurotransmitter receptors whose cell-surface expression is dynamic and tightly regulated. NMDA receptors are localized at excitatory synapses. These synapses are highly structured but dynamic, with the interplay between NMDA receptors and NMDA receptor-associated scaffolding proteins regulating the expression of functional cell-surface synaptic and extrasynaptic receptors. Based on current information, inhibitory synapses seem to be less ordered, and a GABAA receptor equivalent of PSD-95 (postsynaptic density-95), the scaffolding molecule pivotal to the organization of NMDA receptor complexes at synapses, is yet to be validated. In the present paper, processes regulating the trafficking, assembly and molecular organization of both NMDA receptors and GABAA receptors will be discussed.
Collapse
Affiliation(s)
- F A Stephenson
- School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
122
|
Kanaumi T, Takashima S, Iwasaki H, Mitsudome A, Hirose S. Developmental changes in the expression of GABAA receptor alpha 1 and gamma 2 subunits in human temporal lobe, hippocampus and basal ganglia: An implication for consideration on age-related epilepsy. Epilepsy Res 2006; 71:47-53. [PMID: 16829043 DOI: 10.1016/j.eplepsyres.2006.05.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 11/22/2022]
Abstract
Mutations of genes encoding GABA(A) receptor alpha 1 (GABARA1) and gamma 2 subunit (GABARG2) are associated with age-dependent epilepsy. The development of the subunits expression may be related to the age-dependency of epilepsy. Nevertheless, developmental and spatial changes in expression of GABA(A) receptors have not been examined in the human brain. Using immunohistochemistry, we examined the development of GABARA1 and GABARG2 in the human temporal lobe, hippocampus and basal ganglia in specimens obtained from 21 fetuses/subjects who died aged 22 gestation weeks (GW) to 75 years. Unique developmental changes of GABARA1 and GABARG2 were recorded in each region. In hippocampal pyramidal cells, GABARA1 was already found from 22 GW mainly on CA2-3, whereas GABARG2 was expressed later than GABARA1 predominantly in CA3. In the temporal cortex, both subunits appeared in the pyramidal cells layer from 22 GW, while GABARA1 and GABARG2 expression was increased from 29 to 38 GW, respectively. Furthermore, transient increase of GABARA1 was detected in the granular cell layer of the hippocampus from 29 GW to 4 months, in the cortical pyramidal cell layer from 29 to 40 GW, and in the putamen from birth to 5 years of age. Thus gradual or transient increase of GABARA1 and GABARG2 was found in every region at different age. These developmental changes in the expression of these subunits may contribute to the age dependency in some epilepsy syndromes where deficiency of GABARA1 and GABARG2 is involved.
Collapse
Affiliation(s)
- Takeshi Kanaumi
- Department of Pediatrics, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan.
| | | | | | | | | |
Collapse
|
123
|
Duke AN, Platt DM, Cook JM, Huang S, Yin W, Mattingly BA, Rowlett JK. Enhanced sucrose pellet consumption induced by benzodiazepine-type drugs in squirrel monkeys: role of GABAA receptor subtypes. Psychopharmacology (Berl) 2006; 187:321-30. [PMID: 16783540 DOI: 10.1007/s00213-006-0431-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE Benzodiazepine agonists characteristically increase food intake in humans and non-human subjects, and the underlying mechanisms of this effect are not understood completely. OBJECTIVE Compounds with selectivity for GABAA receptor subtypes were used to evaluate the role of GABAA receptors containing alpha1 and alpha5 subunits (alpha1GABAA and alpha5GABAA receptors, respectively) in benzodiazepine-induced increases in sucrose pellet consumption. MATERIALS AND METHODS Adult male squirrel monkeys (N=4-6), maintained under free-feeding conditions, were administered with intramuscular injections of the nonselective benzodiazepines diazepam and alprazolam, the alpha1GABAA-preferring compounds zolpidem and zaleplon, or the alpha5GABAA-preferring agonist QH-ii-066 before daily 10-min periods when sucrose pellets were available. In a separate experiment, observable behavioral effects (e.g., ataxia and procumbent posture) were quantified after administration of alprazolam, zaleplon, and QH-ii-066. To further assess the roles of GABAA receptor subtypes, zolpidem-induced increases in pellet consumption were re-evaluated after pretreatment with nonselective antagonist flumazenil, the alpha1GABAA-preferring antagonist beta-carboline-3-carboxylate-t-butyl ester (BCCT), or QH-ii-066. RESULTS Alprazolam, diazepam, zolpidem, and zaleplon but not QH-ii-066 significantly increased sucrose pellet consumption. In addition, all agonists decreased locomotion and environment-directed behavior as well as engendered ataxia and procumbent posture. For all compounds except QH-ii-066, these behaviors occurred at doses similar to those that increased pellet consumption. Flumazenil and BCCT, but not QH-ii-066, antagonized zolpidem-induced increases in pellet consumption in a surmountable fashion. CONCLUSION These results suggest that the alpha1GABAA receptor subtype plays a key role in benzodiazepine-induced increases in consumption of palatable food, whereas the alpha5GABAA receptor subtype may not be involved in this effect.
Collapse
Affiliation(s)
- Angela N Duke
- New England Primate Research Center, Harvard Medical School, One Pine Hill Drive, P.O. Box 9102, Southborough, MA 01772-9102, USA.
| | | | | | | | | | | | | |
Collapse
|
124
|
Brito VN, Mendonca BB, Guilhoto LMFF, Freitas KCM, Arnhold IJP, Latronico AC. Allelic variants of the gamma-aminobutyric acid-A receptor alpha1-subunit gene (GABRA1) are not associated with idiopathic gonadotropin-dependent precocious puberty in girls with and without electroencephalographic abnormalities. J Clin Endocrinol Metab 2006; 91:2432-6. [PMID: 16569738 DOI: 10.1210/jc.2005-2657] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT gamma-Aminobutyric acid (GABA) is a dominant inhibitory neurotransmitter involved in the modulation of brain electric activity and puberty onset in primates. GABA inhibitory effects on GnRH neurons are mainly mediated by GABA-A receptor alpha1-subunit. OBJECTIVE The objective of this study was to investigate functional mutations or polymorphisms of the GABA-A receptor alpha1-subunit gene (GABRA1) in girls with idiopathic gonadotropin-dependent precocious puberty (GDPP) with and without electroencephalographic (EEG) abnormalities. DESIGN The entire coding region of GABRA1 was sequenced in all patients. Two known GABRA1 polymorphisms were investigated by GeneScan software analysis or enzymatic restriction. Seventy-three normal women were used as controls for genetic study. EEG tracings were recorded in 23 girls with GDPP and 17 girls with adequate pubertal development. SETTING The study was performed at a university hospital. PATIENTS Thirty-one girls from 28 unrelated families with idiopathic GDPP were studied. RESULTS Automatic sequencing revealed no functional mutations in girls with GDPP. Seven different GABRA1 polymorphisms, including two exonic (156T>C and 1323G>A) and five intronic [IVS2-712(GT)n, IVS3+12A>T, IVS8+45T>G, IVS9+76A>G, and IVS10+15G>A], were found in GDPP girls and controls. Abnormal EEG tracings were found in 26% of 23 girls with GDPP, two of them with epilepsy. The genotype and allele frequencies of the GABRA1 polymorphisms were not statistically different between unrelated GDPP girls and controls or between GDPP girls with or without EEG abnormalities. CONCLUSIONS GABRA1 functional mutations or polymorphisms are not associated with the intrinsic mechanism of GDPP in girls with and without EEG abnormalities.
Collapse
Affiliation(s)
- Vinicius Nahime Brito
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo Disciplina de Endocrinologia e Metabologia, Avenue Dr. Eneas de Carvalho Aguiar, 155-2 andar Bloco 6, 05403900 Sao Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
125
|
Hayasaki H, Sohma Y, Kanbara K, Maemura K, Kubota T, Watanabe M. A local GABAergic system within rat trigeminal ganglion cells. Eur J Neurosci 2006; 23:745-57. [PMID: 16487155 DOI: 10.1111/j.1460-9568.2006.04602.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the GABAergic system within the Sprague-Dawley rat (2-3-weeks old) trigeminal ganglion (TG). Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed expression of glutamate decarboxylase (GAD) 65 and GAD67 mRNAs and mRNAs encoding GABA(A) receptor subunits alpha1-6, beta1-3, gamma1-3, and delta. In situ hybridization revealed that GAD65 and GAD67 mRNAs were expressed in neuronal cell bodies but not satellite cells. Immunohistochemical analysis showed that only GAD65 was expressed in all neuronal cell bodies, and approximately 70% of all neurons exhibited GABA immunoreactivity. Satellite cells were strongly immunopositive for GABA. GABA(A) receptor alpha1, alpha5, beta2/3 and gamma1/2/3 subunit immunoreactivities were observed in the majority of neurons, but no immunoreactivity for alpha2 was observed. Two types of cells were identified in TG based on cell size and morphology, type A and B. The percentage of cells expressing alpha3, alpha4, alpha6, and delta subunits appeared to be dependent on cell size, as delta and alpha6 expression were only observed in small (B-type) neurons. In whole-cell patch clamp experiments, GABA application induced inward Cl- currents in all neurons examined. The EC50 for GABA varied from 5.3 to 240 microm, and the Hill Coefficient (nH) varied between 0.98 and 2.6 at -60 mV. We found that GABA was released from TG cells by increasing extracellular K+ concentration to 100 mm. We speculate that GABA acts as a nonsynaptically released diffusible neurotransmitter, which may modulate somatic inhibition of neurons within the TG.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bicuculline/pharmacology
- Cell Count/methods
- Cells, Cultured
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Radiation
- Electric Capacitance
- Electric Stimulation/methods
- Epistasis, Genetic
- GABA Agonists/pharmacology
- GABA Antagonists/pharmacology
- Glutamate Decarboxylase/metabolism
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Isoenzymes/metabolism
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Membrane Potentials/radiation effects
- Models, Neurological
- Muscimol/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neural Inhibition/radiation effects
- Neurons/classification
- Neurons/drug effects
- Neurons/metabolism
- Neurons/radiation effects
- Patch-Clamp Techniques
- Potassium/pharmacology
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Trigeminal Ganglion/cytology
- gamma-Aminobutyric Acid/metabolism
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- H Hayasaki
- Department of Anatomy, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | | | | | | | | | | |
Collapse
|
126
|
Pan Y, Ripps H, Qian H. Random assembly of GABA rho1 and rho2 subunits in the formation of heteromeric GABA(C) receptors. Cell Mol Neurobiol 2006; 26:289-305. [PMID: 16767514 PMCID: PMC11520671 DOI: 10.1007/s10571-006-9001-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
1. Various combinations of the rho subunits (rho(1A), rho(1B), rho(2A), rho(2B)) of GABA(C) receptors cloned from white perch retina were expressed in Xenopus oocytes, and electrophysiological and pharmacological methods were used to test their ability to co-assemble into heteromeric receptors. Simultaneous injection of the two subunits, irrespective of their relative proportions, led invariably to the formation of a preponderance of heteromeric receptors. 2. The GABA deactivation responses elicited from these cells could be described by a single exponential decay, and their pharmacological responses deviated significantly from those expected of a simple mixture of two homomeric rho(1) and rho(2) receptors. In contrast, a double exponential function comprising fast and slow components was required to fit the GABA deactivation responses elicited from oocytes sequentially expressing rho(1) and rho(2) subunits, a condition that favors the formation of a mixture of homomeric rho(1) and rho(2) receptors. 3. Both the GABA-response kinetics and the sensitivity to picrotoxin of the heteromeric perch rho(1B)rho(2A) receptor varied with the proportion of the subunit RNA injected, indicating there is no fixed stoichiometry for their co-assembly into heteromeric rho(1)rho(2) receptors. 4. If native GABA(C) receptors in retinal neurons behave in a similar manner as in the oocyte expression system, these finding suggest that the properties of their GABA(C) receptors are likely to be influenced by the transcription/translation efficiency of GABA rho subunit genes.
Collapse
Affiliation(s)
- Yi Pan
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, USA
- Department of Biological Sciences, University of Illinois, Chicago, USA
- Present Address: Center for Molecular and Human Genetics, Columbus Children's Research Institute, Ohio State University, Ohio, USA
| | - Harris Ripps
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, USA
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, USA
| | - Haohua Qian
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, USA
- Department of Biological Sciences, University of Illinois, Chicago, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612 USA
| |
Collapse
|
127
|
Najib J. Eszopiclone, a Nonbenzodiazepine Sedative-Hypnotic Agent for the Treatment of Transient and Chronic Insomnia. Clin Ther 2006; 28:491-516. [PMID: 16750462 DOI: 10.1016/j.clinthera.2006.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE This paper reviews the pharmacologic and pharmacokinetic properties, clinical efficacy, and safety profile of the nonbenzodiazepine cyclopyrrolone agent eszopiclone in the management of adult patients with insomnia. METHODS Recent studies, abstracts, reviews, and consensus statements published in English were identified through searches of MEDLINE (1966-December 2005), International Pharmaceutical Abstracts (1970 December 2005), and PharmaProjects (1990-December 2005) using the search terms eszopiclone, cyclopyrrolone, insomnia, nonbenzodiazepine, and zopiclone enantiomer. Selected information provided by the manufacturer of eszopiclone was included, as were all pertinent clinical trials. RESULTS Eszopiclone is rapidly absorbed after oral administration, with Tmax achieved within approximately 1 hour and a terminal-phase elimination half-life of approximately 6 hours. Approximately 52% to 59% of a dose is weakly bound to plasma protein. Eszopiclone is extensively metabolized by oxidation and demethylation. In vitro studies have indicated that the cytochrome P450 (CYP) isozymes CYP3A4 and CYP2E1 are involved in the biotransformation of eszopiclone; therefore, drugs that induce or inhibit these CYP isozymes may affect the metabolism of eszopiclone. Eszopiclone is excreted in the urine as racemic zopiclone at <10% of the orally administered dose. Six Phase III clinical trials were identified that evaluated the safety profile and efficacy of eszopiclone, 1 in healthy subjects with transient insomnia and 5 in patients with primary chronic insomnia (3 in younger adults and 2 in the elderly). In the trials in younger adults, eszopiclone significantly improved sleep efficiency, sleep latency, wake time after sleep onset, number of awakenings, number of nights awakened weekly, total sleep time, and quality and depth of sleep compared with placebo (P<0.05). In the trials in elderly patients, who received eszopiclone 2 mg or placebo for 2 weeks, eszopiclone was associated with significantly shorter sleep latency compared with placebo (P<0.004), as well as a significant decrease in the cumulative number of naps (P<0.05). The most commonly reported drug-related, dose-responsive adverse event in clinical trials of eszopiclone 2 and 3 mg was bitter taste (17% and 34%, respectively), followed by dizziness (5% and 7%) and dry mouth (5% and 7%). Somnolence occurred at an incidence of 4% to 9% with both doses. Tolerance or rebound insomnia was not reported. CONCLUSIONS Eszopiclone represents an effective and well-tolerated option for the treatment of insomnia. In the absence of published studies comparing eszopiclone with similar hypnotic agents (eg, zolpidem, zaleplon, zopiclone), it is not yet possible to evaluate its efficacy relative to other agents used for insomnia.
Collapse
Affiliation(s)
- Jadwiga Najib
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn 11201, and Department of Pharmacy St. Luke's/Roosevelt Hospital Center, New York, New York, USA.
| |
Collapse
|
128
|
Abstract
Upon activation by agonist, the type A gamma-aminobutyric acid receptor (GABAR) 'gates', allowing chloride ions to permeate membranes and produce fast inhibition of neurons. There is no consensus kinetic model for the GABAR gating mechanism. We expressed human alpha(1)beta(1)gamma(2S) GABARs in HEK 293 cells and recorded single channel currents in the cell-attached configuration using various GABA concentrations (50-5000 microm). Closed and open events occurred individually and in clusters that had at least three different modes that were distinguishable by open probability (P(O)): High (P(O)= 0.73), Mid (P(O)= 0.50), and Low (P(O)= 0.21). We used a critical time to isolate shorter bursts of openings and to thus eliminate long-lived, desensitized events. Bursts from all three modes contained three closed and three open components. We employed maximum likelihood fitting, autocorrelation analysis and macroscopic current simulation to distinguish kinetic schemes. The 'core' gating scheme for most models contained two closed states that preceded an open state (C(1) C(2) O(1)). The two best-fitting models had a third closed state connected to C(1) and a second open state (O(2)) connected to C(2). The third open state, whose occupancy varied greatly between modes, could be connected either to O(2) or C(2). We estimated rate constants for two identical, independent GABA binding steps by globally fitting data across GABA concentrations ranging from 50 to 1000 microm. For the most highly ranked model the binding rate constants were: k(+)= 3 microm(-1) s(-1) and k(-)= 272 s(-1) (K(D)= 91 microm).
Collapse
Affiliation(s)
- Gareth M C Lema
- Center for Single Molecule Biophysics, Department of Physiology and Biophysics, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| | | |
Collapse
|
129
|
Neto FL, Ferreira-Gomes J, Castro-Lopes JM. Distribution of GABA Receptors in the Thalamus and Their Involvement in Nociception. GABA 2006; 54:29-51. [PMID: 17175809 DOI: 10.1016/s1054-3589(06)54002-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fani L Neto
- Institute of Histology and Embryology, Faculty of Medicine of Porto and IBMC, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
130
|
Krogsgaard-Larsen P, Frølund B, Liljefors T. GABAA Agonists and Partial Agonists: THIP (Gaboxadol) as a Non‐Opioid Analgesic and a Novel Type of Hypnotic1. GABA 2006; 54:53-71. [PMID: 17175810 DOI: 10.1016/s1054-3589(06)54003-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Povl Krogsgaard-Larsen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
131
|
Pericić D, Lazić J, Strac DS. Chronic treatment with flumazenil enhances binding sites for convulsants at recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors. Biomed Pharmacother 2005; 59:408-14. [PMID: 16084060 DOI: 10.1016/j.biopha.2005.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 02/24/2005] [Indexed: 11/26/2022] Open
Abstract
GABA(A) receptors mediate most of the fast inhibitory neurotransmission in the brain. Prolonged occupancy of these receptors by ligands leads to regulatory changes often resulting in reduction of receptor function. The mechanism of these changes is still unknown. In this study, stably transfected human embryonic kidney (HEK) 293 cells were used as a model to study the effects of prolonged flumazenil (antagonist of benzodiazepine binding sites at GABA(A) receptors) exposure on the recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors, the most common type of GABA(A) receptors found in the brain. Exposure (48 h) of HEK 293 cells stably expressing recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors to flumazenil (1 or 5 microM) in the presence of GABA (1 microM), enhanced the maximum number (B(max)) without affecting the affinity (K(d)) of [(3)H]TBOB labeled binding sites for convulsants. Diazepam (1 nM-1 mM) in the presence of GABA (1 microM) modulated [(3)H]TBOB binding to control and flumazenil pretreated cells according to a two-site model. No significant differences between the groups were observed in either the potency or efficacy of diazepam to modulate [(3)H]TBOB binding, as evidenced by a lack of significant changes between their IC(50) and I(max) values. The results suggest that chronic exposure of HEK 293 cells stably expressing recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors to flumazenil up-regulates the binding sites for convulsants, but it does not appear to affect the functional coupling between these sites and benzodiazepine binding sites. Along with our recent data, these results suggest that chronic treatment with flumazenil enhances the number of GABA(A) receptors.
Collapse
Affiliation(s)
- Danka Pericić
- Ruder Bosković Institute, Laboratory for Molecular Neuropharmacology, Division of Molecular Medicine, P.O.B. 180, 10002 Zagreb, Croatia.
| | | | | |
Collapse
|
132
|
Hansen RS, Paulsen I, Davies M. Determinants of amentoflavone interaction at the GABA(A) receptor. Eur J Pharmacol 2005; 519:199-207. [PMID: 16129428 DOI: 10.1016/j.ejphar.2005.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 06/20/2005] [Indexed: 11/29/2022]
Abstract
We investigated the recognition properties of different GABA(A) receptor subtypes and mutant receptors for the biflavonoid amentoflavone, a constituent of St. John's Wort. Radioligand binding studies showed that amentoflavone recognition paralleled that of the classical benzodiazepine diazepam in that it had little or no affinity for alpha4- or alpha6-containing receptors. Lysine and alanine substitutions at position 101 of the rat alpha1 subunit resulted in a complete loss of competitive amentoflavone binding, but functional analysis of the alanine mutant expressed with beta2 and gamma2 subunits in Xenopus oocytes revealed no significant difference in the negative modulation of GABA-induced currents brought about by amentoflavone. Furthermore, elimination of the gamma subunit had no effect on the negative modulation of these currents. This negative modulation was also observed at alpha1beta1gamma2 GABA(A) receptors and is therefore not likely mediated by the loreclezole site. These results suggest a complex mechanism of amentoflavone interaction at GABA(A) receptors.
Collapse
Affiliation(s)
- Reena S Hansen
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
133
|
Rodríguez Gil DJ, Vacotto M, Rapacioli M, Scicolone G, Flores V, Fiszer de Plazas S. Development and localisation of GABA(A) receptor alpha1, alpha2, beta2 and gamma2 subunit mRNA in the chick optic tectum. J Neurosci Res 2005; 81:469-80. [PMID: 15968643 DOI: 10.1002/jnr.20579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An in situ hybridisation technique was used to analyse the spatial and temporal pattern of expression of the mRNA encoding the four gamma-aminobutyric acid A (GABA(A)) receptor subunits (alpha1, alpha2, beta2, and gamma2) in the developing chick optic tectum. As a rule, layer i, layer h, and transient cell compartment 3 (TCC3) show the highest levels of expression, especially of alpha1, alpha2 and beta2, which undergo striking changes as a function of time. Apart from these common features, the global pattern is highly complex and dynamic. Such complexity derives from the fact that each subunit exhibits a characteristically distinct pattern of expression and the temporal evolution of each differs in the different layers of the tectum. The influence of several developmental cell behaviours such as proliferation, neuronal migration, programmed cell death, and differentiation must be taken into account to understand pattern complexity and dynamics. Our results suggest that differences in the rate of subunit expression, particularly of alpha1, alpha2, and beta2, could have significant consequences on GABA(A) receptor complex subunit composition along development and on the functional properties of the GABA neurotransmitter system.
Collapse
Affiliation(s)
- Diego J Rodríguez Gil
- Institute of Cell Biology and Neurosciences, Prof. E. De Robertis, School of Medicine,University of Buenos Aires, Paraguay, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
134
|
Abstract
In the adult central nervous system (CNS), gamma-amino butyric acid (GABA) is a predominant inhibitory neurotransmitter, and is involved in the expression of various higher brain functions. In the cerebellum, formation of GABAergic synapses is crucial for cerebellar functions. However, it is not fully understood how GABAergic synapses and networks are formed. We are morphologically investigating the developmental changes in GABAergic signaling and the mechanisms underlying the assembly of GABAergic synapses using the cerebellum, which provides an ideal system for the investigation of brain development. The anatomy and development of GABAergic synapses and networks in the cerebellar cortex are reviewed, the key factors for the formation of GABAergic synapses are addressed, and the mechanisms underlying the formation of cerebellar GABAergic networks are discussed.
Collapse
Affiliation(s)
- Chitoshi Takayama
- Department of Molecular Neuroanatomy, Hokkaido University School of Medicine, Sapporo, Japan.
| |
Collapse
|
135
|
Rode F, Jensen DG, Blackburn-Munro G, Bjerrum OJ. Centrally-mediated antinociceptive actions of GABAA receptor agonists in the rat spared nerve injury model of neuropathic pain. Eur J Pharmacol 2005; 516:131-8. [PMID: 15936014 DOI: 10.1016/j.ejphar.2005.04.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 04/18/2005] [Accepted: 04/22/2005] [Indexed: 10/25/2022]
Abstract
Gamma aminobutyric acid (GABA) plays a major role in the central hyperexcitabilty associated with nerve damage. The precise antinociceptive actions mediated by GABA(A) receptor agonists remain unclear as previous studies have shown mixed results in neuropathic pain models. Thus, various drugs which modulate GABA(A) receptor function were tested in the rat spared nerve injury (SNI) model of neuropathic pain. The selective GABA(A) receptor agonist gaboxadol dose-dependently (6 and 15 mg/kg, s.c.) reversed hindpaw mechanical allodynia and hyperalgesia for at least 150 min after administration. The GABA(A) receptor agonist muscimol (0.02-2 mg/kg, s.c.) also dose-dependently reversed mechanical allodynia, although the maximal effect achieved was less than that observed for gaboxadol. Mechanical hyperalgesia was attenuated only by the highest dose of muscimol. In contrast, the selective GABA(A) receptor agonist isoguvacine (20 mg/kg, s.c.) which has poor central nervous system penetration, and the benzodiazepine-site ligand zolpidem (20 mg/kg, s.c.) were ineffective against either nociceptive behaviour. In the rotarod test, both gaboxadol (15 mg/kg) and zolpidem impaired motor function for at least 60 min after injection; muscimol (2 mg/kg) and gaboxadol (6 mg/kg) were ineffective. Importantly, the ataxic effects induced by gaboxadol resolved 1-2 h after administration, a time point where clear antiallodynic and antihyperalgesic actions still occurred. Thus, systemic administration of blood-brain penetratable selective GABA(A) receptor agonists attenuate nociceptive behaviours in the SNI rat model of neuropathic pain that can be considered to occur independently of other effects on motor function.
Collapse
Affiliation(s)
- Frederik Rode
- Danish University of Pharmaceutical Sciences, Department of Pharmacology, Jagtvej 120, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
136
|
Perouansky M, Banks MI, Pearce RA. The Differential Effects of the Nonimmobilizer 1,2-Dichlorohexafluorocyclobutane (F6, 2N) and Isoflurane on Extrasynaptic Gamma-Aminobutyric AcidA Receptors. Anesth Analg 2005; 100:1667-1673. [PMID: 15920193 DOI: 10.1213/01.ane.0000150942.68328.66] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The nonimmobilizer 1,2-dichlorohexafluorocyclobutane (F6; also known as 2N) causes amnesia and seizures at concentrations less than and more than, respectively, than that predicted to cause immobility (MACpred). The molecular and cellular basis of these effects is not known. We reported previously that F6 has no effect on synaptic gamma aminobutyric acid (GABA)A receptors located on the somata of hippocampal pyramidal cells. However, in hippocampal neurons, GABAA receptors that are located subsynaptically have different pharmacologic properties from those at extrasynaptic sites, and these classes of receptors may serve different physiologic functions. Therefore, we investigated the effects of F6 and isoflurane on currents mediated predominantly by extrasynaptic GABAA receptors harvested from hippocampal neurons by exposing nucleated excised patches to brief, high-concentration pulses of GABA. We found that extrasynaptic GABAA receptors in the majority of neurons located in the pyramidal cell layer are insensitive to F6 at concentrations up to 110 microM, although receptors harvested from one putative interneuron were potently inhibited by 43 microM of F6. By contrast, isoflurane consistently reduced the peak amplitude and slowed deactivation of currents mediated by extrasynaptic receptors, similar to its effect on synaptic receptors. These results demonstrate the selective sensitivity of extrasynaptic GABAA receptors on pyramidal neurons to isoflurane but not F6.
Collapse
|
137
|
Abstract
In the adult central nervous system (CNS), GABA is a predominant inhibitory neurotransmitter that regulates glutamatergic activity. Recent studies have revealed that GABA serves as an excitatory transmitter in the immature CNS and acts as a trophic factor for brain development. Furthermore, synaptic transmission by GABA is also involved in the expression of higher brain functions, such as memory, learning and anxiety. These results indicate that GABA plays various roles in the expression of brain functions and GABAergic roles change developmentally in accordance with alterations in GABAergic transmission and signaling. We have investigated morphologically the developmental changes in the GABAergic transmission system and the key factors important for the formation of GABAergic synapses and networks using the mouse cerebellum, which provides an ideal system for the investigation of brain development. Here, we focus on GABA and GABA(A) receptors in the developing cerebellum and address the processes of how GABA exerts its effect on developing neurons and the mechanisms underlying the formation of functional GABAergic synapses.
Collapse
Affiliation(s)
- Chitoshi Takayama
- Department of Molecular Neuroanatomy, Hokkaido University School of Medicine, Sapporo, Japan.
| | | |
Collapse
|
138
|
Tian H, Chen HJ, Cross TH, Edenberg HJ. Alternative splicing and promoter use in the human GABRA2 gene. ACTA ACUST UNITED AC 2005; 137:174-83. [PMID: 15950776 DOI: 10.1016/j.molbrainres.2005.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 02/24/2005] [Accepted: 03/03/2005] [Indexed: 11/25/2022]
Abstract
GABA(A) receptors mediate the majority of the fast synaptic inhibition in the mammalian brain. They are the targets of several important drugs, including benzodiazepines, which are used as anxiolytics, sedatives, anti-convulsants, and in the treatment of alcohol withdrawal symptoms. Non-coding variations in GABRA2, the gene encoding the alpha2 subunit, are associated with the risk for alcoholism, suggesting that regulatory differences are important. GABRA2 mRNAs from whole human brain and from three brain regions were examined for evidence of alternative splicing using reverse transcription-PCR and DNA sequencing. A complex pattern of alternative splicing and alternative promoter use of the human GABRA2 mRNA was demonstrated. There are four major isoforms consisting of combinations of two alternative 5' and 3' exons, as well as minor isoforms lacking exon 4 or exon 8. The alternative 5' exons each lie downstream of a functional promoter sequence, as shown by transient transfection assays. The promoter activities of naturally occurring haplotypes differed, indicating genetic differences in gene expression.
Collapse
Affiliation(s)
- Huijun Tian
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Room 4063E, Indianapolis, IN 46202-5122, USA
| | | | | | | |
Collapse
|
139
|
Hamilton NM, Cooke AJ. α-Subunit selective modulators of GABAAreceptor function as CNS therapeutics. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.10.1491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
140
|
Fischer H, Harper AA, Anderson CR, Adams DJ. Developmental changes in expression of GABAA receptor-channels in rat intrinsic cardiac ganglion neurones. J Physiol 2005; 564:465-74. [PMID: 15731187 PMCID: PMC1464452 DOI: 10.1113/jphysiol.2005.084012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The effects of gamma-aminobutyric acid (GABA) on the electrophysiological properties of intracardiac neurones were investigated in the intracardiac ganglion plexus in situ and in dissociated neurones from neonatal, juvenile and adult rat hearts. Focal application of GABA evoked a depolarizing, excitatory response in both intact and dissociated intracardiac ganglion neurones. Under voltage clamp, both GABA and muscimol elicited inward currents at -60 mV in a concentration-dependent manner. The fast, desensitizing currents were mimicked by the GABA(A) receptor agonists muscimol and taurine, and inhibited by the GABA(A) receptor antagonists, bicuculline and picrotoxin. The GABA(A0) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methyl phosphonic acid (TPMPA), had no effect on GABA-induced currents, suggesting that GABA(A) receptor-channels mediate the response. The GABA-evoked current amplitude recorded from dissociated neurones was age dependent whereby the peak current density measured at -100 mV was approximately 20 times higher for intracardiac neurones obtained from neonatal rats (P2-5) compared with adult rats (P45-49). The decrease in GABA sensitivity occurred during the first two postnatal weeks and coincides with maturation of the sympathetic innervation of the rat heart. Immunohistochemical staining using antibodies against GABA demonstrate the presence of GABA in the intracardiac ganglion plexus of the neonatal rat heart. Taken together, these results suggest that GABA and taurine may act as modulators of neurotransmission and cardiac function in the developing mammalian intrinsic cardiac nervous system.
Collapse
Affiliation(s)
- Harald Fischer
- School of Biomedical Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | |
Collapse
|
141
|
Krogsgaard-Larsen P, Frølund B, Liljefors T, Ebert B. GABA(A) agonists and partial agonists: THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem Pharmacol 2005; 68:1573-80. [PMID: 15451401 DOI: 10.1016/j.bcp.2004.06.040] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 06/30/2004] [Indexed: 01/07/2023]
Abstract
The GABA(A) receptor system is implicated in a number of central nervous system (CNS) disorders, making GABA(A) receptor ligands interesting as potential therapeutic agents. Only a few different classes of structures are currently known as ligands for the GABA recognition site on the hetero-pentameric GABA(A) receptor complex, reflecting the very strict structural requirements for GABA(A) receptor recognition and activation. A large number of the compounds showing agonist activity at the GABA(A) receptor site are structurally derived from the GABA(A) agonists muscimol, THIP (Gaboxadol), or isoguvacine, which we developed at the initial stage of the project. Using recombinant GABA(A) receptors, functional selectivity has been shown for a number of compounds, including THIP, showing subunit-dependent potency and maximal response. The pharmacological and clinical activities of THIP probably reflect its potent effects at extrasynaptic GABA(A) receptors insensitive to benzodiazepines and containing alpha(4)beta(3)delta subunits. The results of ongoing clinical studies on the effect of the partial GABA(A) agonist THIP on human sleep pattern show that the functional consequences of a directly acting agonist are distinctly different from those seen after administration of GABA(A) receptor modulators, such as benzodiazepines. In the light of the interest in partial GABA(A) receptor agonists as potential therapeutics, structure-activity studies of a number of analogues of 4-PIOL, a low-efficacy partial GABA(A) agonist derived from THIP, have been performed. In this connection, a series of GABA(A) ligands has been developed showing pharmacological profiles ranging from low-efficacy partial GABA(A) agonist activity to selective antagonist effect.
Collapse
Affiliation(s)
- Povl Krogsgaard-Larsen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
142
|
Abstract
Drugs modulating gamma-aminobutyric acid (GABA) transmission via the benzodiazepine (BZ) site on the gamma-aminobutyric acid type A (GABAA) receptor have been in widespread use for more than 40 years to treat anxiety, epilepsy, and sleep disorders. These drugs have been shown to be safe, well tolerated, and effective although the mechanism by they produce a myriad of pharmacologic effects remains elusive. In recent years it has been discovered that, although the GABAA receptor is widely distributed in the brain, the substructure and composition of the receptor differs from between brain regions. Termed "GABAA receptor subtypes" their discovery leads to speculation that different subtypes may mediate specific effects of BZs such as anxiety or sedation. The phenotypic analysis of transgenic knock-in and knock-out mice in which particular GABAA receptors were rendered insensitive to the effects of BZ while others were unaffected confirmed this speculation. Subsequently, subtype-specific GABAA ligands were developed that, for example, retained the anxiolytic effects of BZs but were devoid of their sedative effects. Therefore, it may be possible to develop effective anxiolytic compounds that have a much reduced side-effect profile compared with existing drugs.
Collapse
Affiliation(s)
- Gerard R Dawson
- Merck Sharp & Dohme Research Laboratories, Terlings Park, Eastwick Road, Essex CM20 1QR, England
| | | | | |
Collapse
|
143
|
Frølund B, Jensen LS, Guandalini L, Canillo C, Vestergaard HT, Kristiansen U, Nielsen B, Stensbøl TB, Madsen C, Krogsgaard-Larsen P, Liljefors T. Potent 4-Aryl- or 4-Arylalkyl-Substituted 3-Isoxazolol GABAAAntagonists: Synthesis, Pharmacology, and Molecular Modeling. J Med Chem 2005; 48:427-39. [PMID: 15658856 DOI: 10.1021/jm049256w] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously described a series of competitive GABA(A) antagonists derived from the low-efficacy partial agonist 5-(4-piperidyl)-3-isoxazolol (4-PIOL, 4). The 2-naphthylmethyl analogue, 4-(2-naphthylmethyl)-5-(4-piperidyl)-3-isoxazolol (5), provided affinity for the GABA(A) receptor site higher than that of the standard GABA(A) receptor antagonist, SR 95531 (3). Molecular modeling studies of these compounds exposed a cavity at the receptor recognition site capable of accommodating aromatic groups of substantial size in the 4-position in the 3-isoxazolol ring. Here we present a series of analogues of 5, with various substituents in different positions in the naphthyl ring system (6a-k), and compounds with aromatic substituents directly attached to the 4-position of the 3-isoxazolol ring (7l-n). The compounds have been pharmacologically characterized using receptor-binding assays and electrophysiological whole-cell patch-clamp techniques. All of the tested compounds show affinity for the GABA(A) receptor site. While the 5-, 7-, and 8-bromo analogues, 6b-d, showed receptor affinities (K(i) = 45, 109, and 80 nM, respectively) comparable with that of 5 (K(i) = 49 nM), the 1-bromo analogue, 6a, provided the highest receptor affinity of the series (K(i) = 10 nM). Introduction of a series of different substituents in the 1-position in the 2-naphthyl ring system led to compounds, 6e-k, with retained high affinity for the GABA(A) receptor (K(i) = 16-250 nM). Introduction of a phenyl ring directly into the 4-position on the 3-isoxazolol ring gave a 41-fold increase in affinity relative to that of 4-PIOL. In whole-cell patch-clamp recordings from cultured cerebral cortical neurons, all of the tested compounds were able to inhibit the effect of the specific GABA(A) agonist isoguvacine, 6a showing antagonist potency (IC(50) = 42 nM) markedly higher than that of 3 (IC(50) = 240 nM). Molecular modeling studies, based on the compounds described, emphasized the importance of the distal ring in 5 for receptor affinity and the considerable dimensions of the proposed receptor cavity. Furthermore, the phenyl rings in 7l and in 6k were shown to represent highly favorable positions for an aromatic ring in previously unexplored receptor regions in terms of a pharmacophore model.
Collapse
Affiliation(s)
- Bente Frølund
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Kalueff AV, Tuohimaa P. Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs. Eur J Pharmacol 2005; 508:147-53. [PMID: 15680265 DOI: 10.1016/j.ejphar.2004.11.054] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 10/18/2004] [Accepted: 11/26/2004] [Indexed: 10/26/2022]
Abstract
Grooming is an important part of rodent behavioural repertoire, representing a complex hierarchically ordered cephalo-caudal sequence of patterns sensitive to stress and various drugs. Gamma-aminobutyric acid (GABA) is involved in the regulation of both anxiety and grooming behaviours. This study investigated the predictive validity of grooming behavioural microstructure as a marker of anxiety, by examining the effects of two GABAergic reference compounds, anxiolytic diazepam (0.1 and 0.5 mg/kg i.p.) and anxiogenic pentylenetetrazole (5 and 10 mg/kg i.p.) on mouse grooming. Our data suggest that the percentage of pattern transitions not fitting to the cephalo-caudal progression, and the percentage of interrupted grooming bouts are more reliable behavioural markers of stress bidirectionally sensitive to GABAergic anxiogenic and anxiolytic drugs, compared to the frequency and duration scores. Our study also confirms that detailed ethological analyses of grooming microstructure can be a useful tool in behavioural pharmacology of anxiety.
Collapse
Affiliation(s)
- Allan V Kalueff
- Medical School of the University of Tampere, Tampere University Hospital, Tampere 33014, Finland.
| | | |
Collapse
|
145
|
Jelitai M, Madarasz E. The role of GABA in the early neuronal development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 71:27-62. [PMID: 16512345 DOI: 10.1016/s0074-7742(05)71002-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marta Jelitai
- Laboratory of Neural Cell and Developmental Biology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| | | |
Collapse
|
146
|
Fiszman ML. Insights into GABA functions in the developing cerebellum. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 71:95-112. [PMID: 16512347 DOI: 10.1016/s0074-7742(05)71004-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Mónica L Fiszman
- Instituto de Investigaciones Farmacologicas-CONICET, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
147
|
Takayama C. GABAergic signaling in the developing cerebellum. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 71:63-94. [PMID: 16512346 DOI: 10.1016/s0074-7742(05)71003-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chitoshi Takayama
- Department of Molecular Neuroanatomy, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
148
|
Pericić D, Jazvinsćak Jembrek M, Svob Strac D, Lazić J, Spoljarić IR. Enhancement of benzodiazepine binding sites following chronic treatment with flumazenil. Eur J Pharmacol 2004; 507:7-13. [PMID: 15659288 DOI: 10.1016/j.ejphar.2004.10.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 10/13/2004] [Indexed: 11/23/2022]
Abstract
The aim of this study was to improve our knowledge of the mechanisms leading to adaptive changes in gamma-aminobutyric acid(A) (GABA(A)) receptors following chronic drug treatment. Exposure (48 h) of human embryonic kidney (HEK 293) cells stably expressing recombinant alpha1beta2gamma2S GABA(A) receptors to the antagonist of benzodiazepine binding sites, flumazenil (5 microM), enhanced the maximum number (B(max)) and the equilibrium dissociation constant (K(d)) of [3H]flunitrazepam binding sites. The flumazenil-induced enhancement in B(max) was potentiated by GABA (50 microM) and reduced by the GABA(A) receptor antagonist, bicuculline (100 microM). Flumazenil-induced enhancement in K(d) was affected by neither of these treatments. GABA (50 microM) enhanced the density of [3H]flunitrazepam binding sites, and this enhancement was greater in the presence of diazepam (1 microM). The results suggest that chronic flumazenil treatment up-regulates in a bicuculline-sensitive manner benzodiazepine binding sites at stably expressed GABA(A) receptors.
Collapse
Affiliation(s)
- Danka Pericić
- Ruder Bosković Institute, Laboratory for Molecular Neuropharmacology, Division of Molecular Medicine, P.O.B. 180, 10002 Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
149
|
Keller CA, Yuan X, Panzanelli P, Martin ML, Alldred M, Sassoè-Pognetto M, Lüscher B. The gamma2 subunit of GABA(A) receptors is a substrate for palmitoylation by GODZ. J Neurosci 2004; 24:5881-91. [PMID: 15229235 PMCID: PMC2366890 DOI: 10.1523/jneurosci.1037-04.2004] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neurotransmitter GABA activates heteropentameric GABA(A) receptors, which are composed mostly of alpha, beta, and gamma2 subunits. Regulated membrane trafficking and subcellular targeting of GABA(A) receptors is important for determining the efficacy of GABAergic inhibitory function. Of special interest is the gamma2 subunit, which is mostly dispensable for assembly and membrane insertion of functional receptors but essential for accumulation of GABA(A) receptors at synapses. In a search for novel receptor trafficking proteins, we have used the SOS-recruitment system and isolated a Golgi-specific DHHC zinc finger protein (GODZ) as a novel gamma2 subunit-interacting protein. GODZ is a member of the superfamily of DHHC cysteine-rich domain (DHHC-CRD) polytopic membrane proteins shown recently in yeast to represent palmitoyltransferases. GODZ mRNA is found in many tissues; however, in brain the protein is detected in neurons only and highly concentrated and asymmetrically distributed in the Golgi complex. GODZ interacts with a cysteine-rich 14-amino acid domain conserved specifically in the large cytoplasmic loop of gamma1-3 subunits but not in other GABA(A) receptor subunits. Coexpression of GODZ and GABA(A) receptors in heterologous cells results in palmitoylation of the gamma2 subunit in a cytoplasmic loop domain-dependent manner. Neuronal GABA(A) receptors are similarly palmitoylated. Thus, GODZ-mediated palmitoylation represents a novel posttranslational modification that is selective for gamma subunit-containing GABA(A) receptor subtypes, a mechanism that is likely to be important for regulated trafficking of these receptors in the secretory pathway.
Collapse
Affiliation(s)
- Cheryl A Keller
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Pericić D, Lazić J, Jembrek MJ, Strac DS, Rajcan I. Chronic exposure of cells expressing recombinant GABAA receptors to benzodiazepine antagonist flumazenil enhances the maximum number of benzodiazepine binding sites. Life Sci 2004; 76:303-17. [PMID: 15531382 DOI: 10.1016/j.lfs.2004.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Accepted: 07/08/2004] [Indexed: 11/30/2022]
Abstract
The aim of this study was to better understand the mechanisms that underlie adaptive changes in GABAA receptors following their prolonged exposure to drugs. Exposure (48 h) of human embryonic kidney (HEK) 293 cells stably expressing recombinant alpha1beta2gamma2S GABAA receptors to flumazenil (1 or 5 microM) in the presence of GABA (1 microM) enhanced the maximum number (Bmax) of [3H]flunitrazepam binding sites without affecting their affinity (Kd). The flumazenil-induced enhancement in Bmax was not counteracted by diazepam (1 microM). GABA (1 nM-1 mM) enhanced [3H]flunitrazepam binding to membranes obtained from control and flumazenil-pretreated cells in a concentration-dependent manner. No significant differences were observed in either the potency (EC50) or efficacy (Emax) of GABA to potentiate [3H]flunitrazepam binding. However, in flumazenil pretreated cells the basal [3H]flunitrazepam and [3H]TBOB binding were markedly enhanced. GABA produced almost complete inhibition of [3H]TBOB binding to membranes obtained from control and flumazenil treated cells. The potencies of GABA to inhibit this binding, as shown by a lack of significant changes in the IC50 values, were not different between vehicle and drug treated cells. The results suggest that chronic exposure of HEK 293 cells stably expressing recombinant alpha1beta2gamma2S GABAA receptors to flumazenil (in the presence of GABA) up-regulates benzodiazepine and convulsant binding sites, but it does not affect the allosteric interactions between these sites and the GABA binding site. Further studies are needed to elucidate these phenomena.
Collapse
Affiliation(s)
- Danka Pericić
- Ruder Bosković Institute, Laboratory for Molecular Neuropharmacology, Division of Molecular Medicine, POB 180, 10002 Zagreb, Croatia.
| | | | | | | | | |
Collapse
|