101
|
Moreira R, Nóbrega C, de Almeida LP, Mendonça L. Brain-targeted drug delivery - nanovesicles directed to specific brain cells by brain-targeting ligands. J Nanobiotechnology 2024; 22:260. [PMID: 38760847 PMCID: PMC11100082 DOI: 10.1186/s12951-024-02511-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Neurodegenerative diseases are characterized by extensive loss of function or death of brain cells, hampering the life quality of patients. Brain-targeted drug delivery is challenging, with a low success rate this far. Therefore, the application of targeting ligands in drug vehicles, such as lipid-based and polymeric nanoparticles, holds the promise to overcome the blood-brain barrier (BBB) and direct therapies to the brain, in addition to protect their cargo from degradation and metabolization. In this review, we discuss the barriers to brain delivery and the different types of brain-targeting ligands currently in use in brain-targeted nanoparticles, such as peptides, proteins, aptamers, small molecules, and antibodies. Moreover, we present a detailed review of the different targeting ligands used to direct nanoparticles to specific brain cells, like neurons (C4-3 aptamer, neurotensin, Tet-1, RVG, and IKRG peptides), astrocytes (Aquaporin-4, D4, and Bradykinin B2 antibodies), oligodendrocytes (NG-2 antibody and the biotinylated DNA aptamer conjugated to a streptavidin core Myaptavin-3064), microglia (CD11b antibody), neural stem cells (QTRFLLH, VPTQSSG, and NFL-TBS.40-63 peptides), and to endothelial cells of the BBB (transferrin and insulin proteins, and choline). Reports demonstrated enhanced brain-targeted delivery with improved transport to the specific cell type targeted with the conjugation of these ligands to nanoparticles. Hence, this strategy allows the implementation of high-precision medicine, with reduced side effects or unwanted therapy clearance from the body. Nevertheless, the accumulation of some of these nanoparticles in peripheral organs has been reported indicating that there are still factors to be improved to achieve higher levels of brain targeting. This review is a collection of studies exploring targeting ligands for the delivery of nanoparticles to the brain and we highlight the advantages and limitations of this type of approach in precision therapies.
Collapse
Grants
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, 8005-139, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Liliana Mendonça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal.
| |
Collapse
|
102
|
Wood OWG, Walby J, Yeung JH, Ke S, Palpagama TH, Turner C, Waldvogel HJ, Faull RLM, Kwakowsky A. Alzheimer's Disease-associated Region-specific Decrease of Vesicular Glutamate Transporter Immunoreactivity inthe Medial Temporal Lobe and Superior Temporal Gyrus. Neuroscience 2024; 546:75-87. [PMID: 38552733 DOI: 10.1016/j.neuroscience.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which there are very limited treatment options. Dysfunction of the excitatory neurotransmitter system is thought to play a major role in the pathogenesis of this condition. Vesicular glutamate transporters (VGLUTs) are key to controlling the quantal release of glutamate. Thus, expressional changes in disease can have implications for aberrant neuronal activity, raising the possibility of a therapeutic target. There is no information regarding the expression of VGLUTs in the human medial temporal lobe in AD, one of the earliest and most severely affected brain regions. This study aimed to quantify and compare the layer-specific expression of VGLUT1 and VGLUT2 between control and AD cases in the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus. Free-floating fluorescent immunohistochemistry was used to label VGLUT1 and VGLUT2 in the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus. Sections were imaged using laser-scanning confocal microscopy and transporter densitometric analysis was performed. VGLUT1 density was not significantly different in AD tissue, except lower staining density observed in the dentate gyrus stratum moleculare (p = 0.0051). VGLUT2 expression was not altered in the hippocampus and entorhinal cortex of AD cases but was significantly lower in the subiculum (p = 0.015) and superior temporal gyrus (p = 0.0023). This study indicates a regionally specific vulnerability of VGLUT1 and VGLUT2 expression in the medial temporal lobe and superior temporal gyrus in AD. However, the causes and functional consequences of these disturbances need to be further explored to assess VGLUT1 and VGLUT2 as viable therapeutic targets.
Collapse
Affiliation(s)
- Oliver W G Wood
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Josh Walby
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Jason H Yeung
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Stephen Ke
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Thulani H Palpagama
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, New Zealand; Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Ireland.
| |
Collapse
|
103
|
Plaitakis A, Sidiropoulou K, Kotzamani D, Litso I, Zaganas I, Spanaki C. Evolution of Glutamate Metabolism via GLUD2 Enhances Lactate-Dependent Synaptic Plasticity and Complex Cognition. Int J Mol Sci 2024; 25:5297. [PMID: 38791334 PMCID: PMC11120665 DOI: 10.3390/ijms25105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Human evolution is characterized by rapid brain enlargement and the emergence of unique cognitive abilities. Besides its distinctive cytoarchitectural organization and extensive inter-neuronal connectivity, the human brain is also defined by high rates of synaptic, mainly glutamatergic, transmission, and energy utilization. While these adaptations' origins remain elusive, evolutionary changes occurred in synaptic glutamate metabolism in the common ancestor of humans and apes via the emergence of GLUD2, a gene encoding the human glutamate dehydrogenase 2 (hGDH2) isoenzyme. Driven by positive selection, hGDH2 became adapted to function upon intense excitatory firing, a process central to the long-term strengthening of synaptic connections. It also gained expression in brain astrocytes and cortical pyramidal neurons, including the CA1-CA3 hippocampal cells, neurons crucial to cognition. In mice transgenic for GLUD2, theta-burst-evoked long-term potentiation (LTP) is markedly enhanced in hippocampal CA3-CA1 synapses, with patch-clamp recordings from CA1 pyramidal neurons revealing increased sNMDA receptor currents. D-lactate blocked LTP enhancement, implying that glutamate metabolism via hGDH2 potentiates L-lactate-dependent glia-neuron interaction, a process essential to memory consolidation. The transgenic (Tg) mice exhibited increased dendritic spine density/synaptogenesis in the hippocampus and improved complex cognitive functions. Hence, enhancement of neuron-glia communication, via GLUD2 evolution, likely contributed to human cognitive advancement by potentiating synaptic plasticity and inter-neuronal connectivity.
Collapse
Affiliation(s)
- Andreas Plaitakis
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
| | - Kyriaki Sidiropoulou
- Department of Biology, University of Crete, Voutes, 71003 Heraklion, Crete, Greece;
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), 70013 Heraklion, Crete, Greece
| | - Dimitra Kotzamani
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
| | - Ionela Litso
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
| | - Ioannis Zaganas
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
- Neurology Department, PaGNI University General Hospital of Heraklion, 71500 Heraklion, Crete, Greece
| | - Cleanthe Spanaki
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
- Neurology Department, PaGNI University General Hospital of Heraklion, 71500 Heraklion, Crete, Greece
| |
Collapse
|
104
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
105
|
Andersen JV, Westi EW, Griem-Krey N, Skotte NH, Schousboe A, Aldana BI, Wellendorph P. Deletion of CaMKIIα disrupts glucose metabolism, glutamate uptake, and synaptic energetics in the cerebral cortex. J Neurochem 2024; 168:704-718. [PMID: 36949663 DOI: 10.1111/jnc.15814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/24/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a key regulator of neuronal signaling and synaptic plasticity. Synaptic activity and neurotransmitter homeostasis are closely coupled to the energy metabolism of both neurons and astrocytes. However, whether CaMKIIα function is implicated in brain energy and neurotransmitter metabolism remains unclear. Here, we explored the metabolic consequences of CaMKIIα deletion in the cerebral cortex using a genetic CaMKIIα knockout (KO) mouse. Energy and neurotransmitter metabolism was functionally investigated in acutely isolated cerebral cortical slices using stable 13C isotope tracing, whereas the metabolic function of synaptosomes was assessed by the rates of glycolytic activity and mitochondrial respiration. The oxidative metabolism of [U-13C]glucose was extensively reduced in cerebral cortical slices of the CaMKIIα KO mice. In contrast, metabolism of [1,2-13C]acetate, primarily reflecting astrocyte metabolism, was unaffected. Cellular uptake, and subsequent metabolism, of [U-13C]glutamate was decreased in cerebral cortical slices of CaMKIIα KO mice, whereas uptake and metabolism of [U-13C]GABA were unaffected, suggesting selective metabolic impairments of the excitatory system. Synaptic metabolic function was maintained during resting conditions in isolated synaptosomes from CaMKIIα KO mice, but both the glycolytic and mitochondrial capacities became insufficient when the synaptosomes were metabolically challenged. Collectively, this study shows that global deletion of CaMKIIα significantly impairs cellular energy and neurotransmitter metabolism, particularly of neurons, suggesting a metabolic role of CaMKIIα signaling in the brain.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil W Westi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nane Griem-Krey
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels H Skotte
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
106
|
Bonifazi G, Luchena C, Gaminde-Blasco A, Ortiz-Sanz C, Capetillo-Zarate E, Matute C, Alberdi E, De Pittà M. A nonlinear meccano for Alzheimer's emergence by amyloid β-mediated glutamatergic hyperactivity. Neurobiol Dis 2024; 194:106473. [PMID: 38493903 DOI: 10.1016/j.nbd.2024.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
The pathophysiological process of Alzheimer's disease (AD) is believed to begin many years before the formal diagnosis of AD dementia. This protracted preclinical phase offers a crucial window for potential therapeutic interventions, yet its comprehensive characterization remains elusive. Accumulating evidence suggests that amyloid-β (Aβ) may mediate neuronal hyperactivity in circuit dysfunction in the early stages of AD. At the same time, neural activity can also facilitate Aβ accumulation through intricate feed-forward interactions, complicating elucidating the conditions governing Aβ-dependent hyperactivity and its diagnostic utility. In this study, we use biophysical modeling to shed light on such conditions. Our analysis reveals that the inherently nonlinear nature of the underlying molecular interactions can give rise to the emergence of various modes of hyperactivity. This diversity in the mechanisms of hyperactivity may ultimately account for a spectrum of AD manifestations.
Collapse
Affiliation(s)
- Giulio Bonifazi
- Basque Center for Applied Mathematics, Alameda Mazarredo 14, Bilbao 48009, Bizkaia, Spain; Department of Neurosciences, University of the Basque Country, Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain; Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto M5T 0S8, ON, Canada
| | - Celia Luchena
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain; Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain
| | - Adhara Gaminde-Blasco
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain; Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain
| | - Carolina Ortiz-Sanz
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain; Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain
| | - Estibaliz Capetillo-Zarate
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain; Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain; Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain
| | - Elena Alberdi
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain; Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain
| | - Maurizio De Pittà
- Basque Center for Applied Mathematics, Alameda Mazarredo 14, Bilbao 48009, Bizkaia, Spain; Department of Neurosciences, University of the Basque Country, Barrio Sarriena, s/n, Leioa 48940, Bizkaia, Spain; Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto M5T 0S8, ON, Canada; Department of Physiology, University of Toronto, 1 King's College Circle, Toronto M5S 1A8, ON, Canada.
| |
Collapse
|
107
|
Syvänen V, Koistinaho J, Lehtonen Š. Identification of the abnormalities in astrocytic functions as potential drug targets for neurodegenerative disease. Expert Opin Drug Discov 2024; 19:603-616. [PMID: 38409817 DOI: 10.1080/17460441.2024.2322988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Historically, astrocytes were seen primarily as a supportive cell population within the brain; with neurodegenerative disease research focusing exclusively on malfunctioning neurons. However, astrocytes perform numerous tasks that are essential for maintenance of the central nervous system`s complex processes. Disruption of these functions can have negative consequences; hence, it is unsurprising to observe a growing amount of evidence for the essential role of astrocytes in the development and progression of neurodegenerative diseases. Targeting astrocytic functions may serve as a potential disease-modifying drug therapy in the future. AREAS COVERED The present review emphasizes the key astrocytic functions associated with neurodegenerative diseases and explores the possibility of pharmaceutical interventions to modify these processes. In addition, the authors provide an overview of current advancement in this field by including studies of possible drug candidates. EXPERT OPINION Glial research has experienced a significant renaissance in the last quarter-century. Understanding how disease pathologies modify or are caused by astrocyte functions is crucial when developing treatments for brain diseases. Future research will focus on building advanced models that can more precisely correlate to the state in the human brain, with the goal of routinely testing therapies in these models.
Collapse
Affiliation(s)
- Valtteri Syvänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, Helsinki Institute of Life Science, and Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Šárka Lehtonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
108
|
Vaglio-Garro A, Halasz A, Nováková E, Gasser AS, Zavadskis S, Weidinger A, Kozlov AV. Interplay between Energy Supply and Glutamate Toxicity in the Primary Cortical Culture. Biomolecules 2024; 14:543. [PMID: 38785950 PMCID: PMC11118065 DOI: 10.3390/biom14050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Limited substrate availability because of the blood-brain barrier (BBB) has made the brain develop specific molecular mechanisms to survive, using lactate synthesized by astrocytes as a source of energy in neurons. To understand if lactate improves cellular viability and susceptibility to glutamate toxicity, primary cortical cells were incubated in glucose- or lactate-containing media and toxic concentrations of glutamate for 24 h. Cell death was determined by immunostaining and lactate dehydrogenase (LDH) release. Mitochondrial membrane potential and nitric oxide (NO) levels were measured using Tetramethylrhodamine, methyl ester (TMRM) and 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate (DAF-FM) live staining, respectively. LDH activity was quantified in single cells in the presence of lactate (LDH substrate) and oxamate (LDH inhibitor). Nuclei of cells were stained with DAPI and neurons with MAP2. Based on the distance between neurons and glial cells, they were classified as linked (<10 µm) and non-linked (>10 µm) neurons. Lactate increased cell death rate and the mean value of endogenous NO levels compared to glucose incubations. Mitochondrial membrane potential was lower in the cells cultured with lactate, but this effect was reversed when glutamate was added to the lactate medium. LDH activity was higher in linked neurons compared to non-linked neurons, supporting the hypothesis of the existence of the lactate shuttle between astrocytes and at least a portion of neurons. In conclusion, glucose or lactate can equally preserve primary cortical neurons, but those neurons having a low level of LDH activity and incubated with lactate cannot cover high energetic demand solely with lactate and become more susceptible to glutamate toxicity.
Collapse
Affiliation(s)
- Annette Vaglio-Garro
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrea Halasz
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
| | - Ema Nováková
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
| | - Andreas Sebastian Gasser
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
| | - Sergejs Zavadskis
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
109
|
Fontana ACK, Poli AN, Gour J, Srikanth YV, Anastasi N, Ashok D, Khatiwada A, Reeb KL, Cheng MH, Bahar I, Rawls SM, Salvino JM. Synthesis and Structure-Activity Relationships for Glutamate Transporter Allosteric Modulators. J Med Chem 2024; 67:6119-6143. [PMID: 38626917 PMCID: PMC11056993 DOI: 10.1021/acs.jmedchem.3c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Excitatory amino acid transporters (EAATs) are essential CNS proteins that regulate glutamate levels. Excess glutamate release and alteration in EAAT expression are associated with several CNS disorders. Previously, we identified positive allosteric modulators (PAM) of EAAT2, the main CNS transporter, and have demonstrated their neuroprotective properties in vitro. Herein, we report on the structure-activity relationships (SAR) for the analogs identified from virtual screening and from our medicinal chemistry campaign. This work identified several selective EAAT2 positive allosteric modulators (PAMs) such as compounds 4 (DA-023) and 40 (NA-014) from a library of analogs inspired by GT949, an early generation compound. This series also provides nonselective EAAT PAMs, EAAT inhibitors, and inactive compounds that may be useful for elucidating the mechanism of EAAT allosteric modulation.
Collapse
Affiliation(s)
- Andréia C. K. Fontana
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Adi N.R. Poli
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Jitendra Gour
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Yellamelli V.V. Srikanth
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Nicholas Anastasi
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Devipriya Ashok
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Apeksha Khatiwada
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Katelyn L. Reeb
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Mary Hongying Cheng
- Laufer
Center for Physical & Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Ivet Bahar
- Department
of Biochemistry and Cell Biology, College of Arts & Sciences and
School of Medicine, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer
Center for Physical & Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Scott M. Rawls
- Center
for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140United States
| | - Joseph M. Salvino
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
- The
Wistar
Cancer Center Molecular Screening, The Wistar
Institute, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
110
|
Fu TC, Wang GR, Li YX, Xu ZF, Wang C, Zhang RC, Ma QT, Ma YJ, Guo Y, Dai XY, Guo Y. Mobilizing endogenous neuroprotection: the mechanism of the protective effect of acupuncture on the brain after stroke. Front Neurosci 2024; 18:1181670. [PMID: 38737099 PMCID: PMC11084281 DOI: 10.3389/fnins.2024.1181670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Given its high morbidity, disability, and mortality rates, ischemic stroke (IS) is a severe disease posing a substantial public health threat. Although early thrombolytic therapy is effective in IS treatment, the limited time frame for its administration presents a formidable challenge. Upon occurrence, IS triggers an ischemic cascade response, inducing the brain to generate endogenous protective mechanisms against excitotoxicity and inflammation, among other pathological processes. Stroke patients often experience limited recovery stages. As a result, activating their innate self-protective capacity [endogenous brain protection (EBP)] is essential for neurological function recovery. Acupuncture has exhibited clinical efficacy in cerebral ischemic stroke (CIS) treatment by promoting the human body's self-preservation and "Zheng Qi" (a term in traditional Chinese medicine (TCM) describing positive capabilities such as self-immunity, self-recovery, and disease prevention). According to research, acupuncture can modulate astrocyte activity, decrease oxidative stress (OS), and protect neurons by inhibiting excitotoxicity, inflammation, and apoptosis via activating endogenous protective mechanisms within the brain. Furthermore, acupuncture was found to modulate microglia transformation, thereby reducing inflammation and autoimmune responses, as well as promoting blood flow restoration by regulating the vasculature or the blood-brain barrier (BBB). However, the precise mechanism underlying these processes remains unclear. Consequently, this review aims to shed light on the potential acupuncture-induced endogenous neuroprotective mechanisms by critically examining experimental evidence on the preventive and therapeutic effects exerted by acupuncture on CIS. This review offers a theoretical foundation for acupuncture-based stroke treatment.
Collapse
Affiliation(s)
- Tian-cong Fu
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guan-ran Wang
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu-xuan Li
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhi-fang Xu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Can Wang
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Run-chen Zhang
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qing-tao Ma
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ya-jing Ma
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-yu Dai
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Guo
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
111
|
Nurten A, Gören MZ, Tekin N, Kaşkal M, Enginar N. Assessing effects of tamoxifen on tolerance, dependence, and glutamate and glutamine levels in frontal cortex and hippocampus in chronic morphine treatment. Behav Brain Res 2024; 463:114897. [PMID: 38331101 DOI: 10.1016/j.bbr.2024.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Tamoxifen has been shown to reduce glutamate release from presynaptic glutamatergic nerves and reverse tolerance to morphine-induced respiratory depression. Changes in glutamatergic neurotransmission in the central nervous system contribute to morphine tolerance, dependence, and withdrawal. This study, therefore, evaluated effects of tamoxifen on development of analgesic tolerance and dependence, and brain glutamate and glutamine levels in chronic morphine administration. Mice implanted with placebo or morphine pellets were injected with tamoxifen (0.6-2 mg/kg) or vehicle twice daily for 3 days. Nociceptive response was evaluated in the hot plate and tail immersion tests, 4, 48 and 72 h post-implant, and following a challenge dose of morphine (10 mg/kg). Withdrawal signs were determined after naloxone (1 mg/kg) administration. Morphine increased nociceptive threshold which declined over time. At 72 h, acute morphine elicited tolerance to the analgesic effect in the hot plate test in vehicle or tamoxifen administered animals. In the tail immersion test, however, tolerance to morphine analgesia was observed in tamoxifen, but not vehicle, co-administration. Tamoxifen did not reduce withdrawal signs. In contrast to previous reports, glutamate and glutamine levels in the hippocampus and frontal cortex did not change in the morphine-vehicle group. Confirming previous findings, tamoxifen (2 mg/kg) decreased glutamate and glutamine concentrations in the hippocampus in animals with placebo pellets. Both doses of tamoxifen significantly changed glutamate and/or glutamine concentrations in both regions in morphine pellet implanted animals. These results suggest that tamoxifen has no effect on dependence but may facilitate tolerance development to the antinociception, possibly mediated at the spinal level, in chronic morphine administration.
Collapse
Affiliation(s)
- Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - M Zafer Gören
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Nurdan Tekin
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Mert Kaşkal
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nurhan Enginar
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
112
|
Akkuş Eİ, Bayoğlu B, Kocabaşoğlu N, Yıldız JB, Cengiz M. Association of rs11081062 polymorphism of DLGAP1 gene and levels of SLC1A1 protein with obsessive-compulsive disorder. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-15. [PMID: 38593060 DOI: 10.1080/15257770.2024.2336213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Glutamate is an important neurotransmitter known to be effective in obsessive-compulsive disorder (OCD). The aim of this study is to investigate the relationship between the DLGAP1 gene encoding the scaffold protein of ionotropic glutamate receptors and the SLC1A1 gene encoding the glutamate transporter protein with OCD. Study groups consisted of 95 patients with OCD and 100 healthy controls. The severity of OCD in the patient group was determined by using the Y-BOCS. Single nucleotide polymorphisms of rs11081062 (C/T) in DLGAP1 and rs587777696 (C/T) in SLC1A1 were analyzed by real-time PCR. Levels of SLC1A1 protein were determined by ELISA. A significant difference was found between genotype distributions of rs11081062 in DLGAP1 in study groups (p < 0.001). No significant association was found rs587777696 in SLC1A1 in OCD patients and controls. SLC1A1 protein levels were found to be lower in OCD patients compared to controls (p = 0.005). According to OCD risk estimates for genotypes distributions of rs11081062 in DLGAP1, having CT + TT genotypes was associated with the occurrence of sexual and religious obsessions and counting compulsions (p = 0.038, OR = 2.98; p = 0.033, OR = 3.43; p = 0.035, OR = 2.66, respectively). CT genotype in DLGAP1 rs11081062 polymorphism was found to increase the risk of OCD in the female gender (p = 0.042, OR = 3.01). This study suggests that rs11081062 in DLGAP1 may be associated with OCD and that SLC1A1 protein levels may be involved in the occurrence of OCD. We believe that our research can contribute to the understanding of the importance of glutamate in OCD.
Collapse
Affiliation(s)
- Efruz İrem Akkuş
- Cerrahpaşa Faculty of Medicine, Department of Medical Biology, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Burcu Bayoğlu
- Cerrahpaşa Faculty of Medicine, Department of Medical Biology, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Neşe Kocabaşoğlu
- Cerrahpaşa Faculty of Medicine, Department of Psychiatry, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Jansed Berfin Yıldız
- Cerrahpaşa Faculty of Medicine, Department of Medical Biology, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Müjgan Cengiz
- Cerrahpaşa Faculty of Medicine, Department of Medical Biology, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| |
Collapse
|
113
|
Wong W, Sari Y. Effects of Hydrocodone Overdose and Ceftriaxone on Astrocytic Glutamate Transporters and Glutamate Receptors, and Associated Signaling in Nucleus Accumbens as well as Locomotor Activity in C57/BL Mice. Brain Sci 2024; 14:361. [PMID: 38672013 PMCID: PMC11048659 DOI: 10.3390/brainsci14040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic opioid treatments dysregulate the glutamatergic system, inducing a hyperglutamatergic state in mesocorticolimbic brain regions. This study investigated the effects of exposure to hydrocodone overdose on locomotor activity, expression of target proteins related to the glutamatergic system, signaling kinases, and neuroinflammatory factors in the nucleus accumbens. The locomotor activity of mice was measured using the Comprehensive Laboratory Animal Monitoring System (CLAMS). CLAMS data showed that exposure to hydrocodone overdose increased locomotion activity in mice. This study tested ceftriaxone, known to upregulate major glutamate transporter 1 (GLT-1), in mice exposed to an overdose of hydrocodone. Thus, ceftriaxone normalized hydrocodone-induced hyperlocomotion activity in mice. Furthermore, exposure to hydrocodone overdose downregulated GLT-1, cystine/glutamate antiporter (xCT), and extracellular signal-regulated kinase activity (p-ERK/ERK) expression in the nucleus accumbens. However, exposure to an overdose of hydrocodone increased metabotropic glutamate receptor 5 (mGluR5), neuronal nitric oxide synthase activity (p-nNOS/nNOS), and receptor for advanced glycation end products (RAGE) expression in the nucleus accumbens. Importantly, ceftriaxone treatment attenuated hydrocodone-induced upregulation of mGluR5, p-nNOS/nNOS, and RAGE, as well as hydrocodone-induced downregulation of GLT-1, xCT, and p-ERK/ERK expression. These data demonstrated that exposure to hydrocodone overdose can cause dysregulation of the glutamatergic system, neuroinflammation, hyperlocomotion activity, and the potential therapeutic role of ceftriaxone in attenuating these effects.
Collapse
Affiliation(s)
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
114
|
Xiang X, Li Q, Wan J, Chen C, Guo M, He Z, Wang D, Zhao X, Xu L. The role of amino acid metabolism in autoimmune hepatitis. Biomed Pharmacother 2024; 173:116452. [PMID: 38503235 DOI: 10.1016/j.biopha.2024.116452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Autoimmune hepatitis (AIH) is an inflammatory chronic liver disease with persistent and recurrent immune-mediated liver injury. The exact cause of AIH is still not fully understood, but it is believed to be primarily due to an abnormal activation of the immune system, leading to autoimmune injury caused by the breakdown of autoimmune tolerance. Although the pathogenesis of AIH remains unclear, recent studies have shown that abnormalities in amino acid metabolism play significant roles in its development. These abnormalities in amino acid metabolism can lead to remodeling of metabolic processes, activation of signaling pathways, and immune responses, which may present new opportunities for clinical intervention in AIH. In this paper, we first briefly outline the recent progress of clinically relevant research on AIH, focusing on the role of specific amino acid metabolism (including glutamine, cysteine, tryptophan, branched-chain amino acids, etc.) and their associated metabolites, as well as related pathways, in the development of AIH. Furthermore, we discuss the scientific issues that remain to be resolved regarding amino acid metabolism, AIH development and related clinical interventions, with the aim of contributing to the future development of amino acid metabolism-based as a new target for the clinical diagnosis and treatment of AIH.
Collapse
Affiliation(s)
- Xiaorong Xiang
- Nanshan Class, Zunyi Medical University, Zunyi 563000, China; Guizhou Key Laboratory of Gene Detection and Therapy, Zunyi 563000, China
| | - Qihong Li
- Guizhou Key Laboratory of Gene Detection and Therapy, Zunyi 563000, China
| | - Jiajia Wan
- Guizhou Key Laboratory of Gene Detection and Therapy, Zunyi 563000, China
| | - Chao Chen
- Guizhou Key Laboratory of Gene Detection and Therapy, Zunyi 563000, China
| | - Mengmeng Guo
- Guizhou Key Laboratory of Gene Detection and Therapy, Zunyi 563000, China
| | - Zhixu He
- Innovation Center for Tissue Damage Repair, Ministry of Education, Zunyi, Guizhou 563000, China
| | - Donghong Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Xu Zhao
- Medical College of Guizhou University, Guiyang 550025, China.
| | - Lin Xu
- Guizhou Key Laboratory of Gene Detection and Therapy, Zunyi 563000, China; Innovation Center for Tissue Damage Repair, Ministry of Education, Zunyi, Guizhou 563000, China.
| |
Collapse
|
115
|
Chalmers N, Masouti E, Beckervordersandforth R. Astrocytes in the adult dentate gyrus-balance between adult and developmental tasks. Mol Psychiatry 2024; 29:982-991. [PMID: 38177351 PMCID: PMC11176073 DOI: 10.1038/s41380-023-02386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Astrocytes, a major glial cell type in the brain, are indispensable for the integration, maintenance and survival of neurons during development and adulthood. Both life phases make specific demands on the molecular and physiological properties of astrocytes, and most research projects traditionally focus on either developmental or adult astrocyte functions. In most brain regions, the generation of brain cells and the establishment of neural circuits ends with postnatal development. However, few neurogenic niches exist in the adult brain in which new neurons and glial cells are produced lifelong, and the integration of new cells into functional circuits represent a very special form of plasticity. Consequently, in the neurogenic niche, the astrocytes must be equipped to execute both mature and developmental tasks in order to integrate newborn neurons into the circuit and yet maintain overall homeostasis without affecting the preexisting neurons. In this review, we focus on astrocytes of the hippocampal dentate gyrus (DG), and discuss specific features of the astrocytic compartment that may allow the execution of both tasks. Firstly, astrocytes of the adult DG are molecularly, morphologically and functionally diverse, and the distinct astrocytes subtypes are characterized by their localization to DG layers. This spatial separation may lead to a functional specification of astrocytes subtypes according to the neuronal structures they are embedded in, hence a division of labor. Secondly, the astrocytic compartment is not static, but steadily increasing in numbers due to lifelong astrogenesis. Interestingly, astrogenesis can adapt to environmental and behavioral stimuli, revealing an unexpected astrocyte dynamic that allows the niche to adopt to changing demands. The diversity and dynamic of astrocytes in the adult DG implicate a vital contribution to hippocampal plasticity and represent an interesting model to uncover mechanisms how astrocytes simultaneously fulfill developmental and adult tasks.
Collapse
Affiliation(s)
- Nicholas Chalmers
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Evangelia Masouti
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
116
|
Weber FB, Santos CL, da Silva A, Schmitz I, Rezena E, Gonçalves CA, Quincozes-Santos A, Bobermin LD. Differences between cultured astrocytes from neonatal and adult Wistar rats: focus on in vitro aging experimental models. In Vitro Cell Dev Biol Anim 2024; 60:420-431. [PMID: 38546817 DOI: 10.1007/s11626-024-00896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
Astrocytes play key roles regulating brain homeostasis and accumulating evidence has suggested that glia are the first cells that undergo functional changes with aging, which can lead to a decline in brain function. In this context, in vitro models are relevant tools for studying aged astrocytes and, here, we investigated functional and molecular changes in cultured astrocytes obtained from neonatal or adult animals submitted to an in vitro model of aging by an additional period of cultivation of cells after confluence. In vitro aging induced different metabolic effects regarding glucose and glutamate uptake, as well as glutamine synthetase activity, in astrocytes obtained from adult animals compared to those obtained from neonatal animals. In vitro aging also modulated glutathione-related antioxidant defenses and increased reactive oxygen species and cytokine release especially in astrocytes from adult animals. Interestingly, in vitro aged astrocytes from adult animals exposed to pro-oxidant, inflammatory, and antioxidant stimuli showed enhanced oxidative and inflammatory responses. Moreover, these functional changes were correlated with the expression of the senescence marker p21, cytoskeleton markers, glutamate transporters, inflammatory mediators, and signaling pathways such as nuclear factor κB (NFκB)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1). Alterations in these genes are remarkably associated with a potential neurotoxic astrocyte phenotype. Therefore, considering the experimental limitations due to the need for long-term maintenance of the animals for studying aging, astrocyte cultures obtained from adult animals further aged in vitro can provide an improved experimental model for understanding the mechanisms associated with aging-related astrocyte dysfunction.
Collapse
Affiliation(s)
- Fernanda Becker Weber
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Camila Leite Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ester Rezena
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
117
|
Long Y, Zhao Z, Xie W, Shi J, Yang F, Zhu D, Jiang P, Tang Q, Ti Z, Jiang B, Yang X, Gao G, Qi W. Kallistatin leads to cognition impairment via downregulating glutamine synthetase. Pharmacol Res 2024; 202:107145. [PMID: 38492829 DOI: 10.1016/j.phrs.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
In many neurodegenerative disorders, such as Alzheimer's disease (AD), glutamate-mediated neuronal excitotoxicity is considered the basis for cognitive impairment. The mRNA and protein expression of SERPINA4(Kallistatin) are higher in patients with AD. However, whether Kallistatin plays a regulatory role in glutamate-glutamine cycle homeostasis remains unclear. In this study, we identified impaired cognitive function in Kallistatin transgenic (KAL-TG) mice. Baseline glutamate levels were elevated and miniature excitatory postsynaptic current (mEPSC) frequency was increased in the hippocampus, suggesting the impairment of glutamate homeostasis in KAL-TG mice. Mechanistically, we demonstrated that Kallistatin promoted lysine acetylation and ubiquitination of glutamine synthetase (GS) and facilitated its degradation via the proteasome pathway, thereby downregulating GS. Fenofibrate improved cognitive memory in KAL-TG mice by downregulating serum Kallistatin. Collectively, our study findings provide insights the mechanism by which Kallistatin regulates cognitive impairment, and suggest the potential of fenofibrate to prevente and treat of AD patients with high levels of Kallistatin.
Collapse
Affiliation(s)
- Yanlan Long
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhen Zhao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanting Xie
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinhui Shi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fengyu Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dan Zhu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Jiang
- Department of Clinical Medical Laboratory, Guangzhou First People Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qilong Tang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhou Ti
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Xia Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China.
| | - Weiwei Qi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products (Sun Yat-sen University), Guangzhou, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
118
|
Harvey T, Rios M. The Role of BDNF and TrkB in the Central Control of Energy and Glucose Balance: An Update. Biomolecules 2024; 14:424. [PMID: 38672441 PMCID: PMC11048226 DOI: 10.3390/biom14040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The global rise in obesity and related health issues, such as type 2 diabetes and cardiovascular disease, is alarming. Gaining a deeper insight into the central neural pathways and mechanisms that regulate energy and glucose homeostasis is crucial for developing effective interventions to combat this debilitating condition. A significant body of evidence from studies in humans and rodents indicates that brain-derived neurotrophic factor (BDNF) signaling plays a key role in regulating feeding, energy expenditure, and glycemic control. BDNF is a highly conserved neurotrophin that signals via the tropomyosin-related kinase B (TrkB) receptor to facilitate neuronal survival, differentiation, and synaptic plasticity and function. Recent studies have shed light on the mechanisms through which BDNF influences energy and glucose balance. This review will cover our current understanding of the brain regions, neural circuits, and cellular and molecular mechanisms underlying the metabolic actions of BDNF and TrkB.
Collapse
Affiliation(s)
- Theresa Harvey
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
119
|
Silva-Parra J, Ramírez-Martínez L, Palafox-Gómez C, Sandu C, López-Bayghen E, Vega L, Elizondo G, Loaeza-Loaeza J, Hernández-Sotelo D, Hernández-Kelly LC, Felder-Schmittbuhl MP, Ortega A. Aryl Hydrocarbon Receptor Involvement in the Sodium-Dependent Glutamate/Aspartate Transporter Regulation in Cerebellar Bergmann Glia Cells. ACS Chem Neurosci 2024; 15:1276-1285. [PMID: 38454572 PMCID: PMC10958506 DOI: 10.1021/acschemneuro.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
Glutamate, the major excitatory neurotransmitter in the vertebrate brain, exerts its functions through the activation of specific plasma membrane receptors and transporters. Overstimulation of glutamate receptors results in neuronal cell death through a process known as excitotoxicity. A family of sodium-dependent glutamate plasma membrane transporters is responsible for the removal of glutamate from the synaptic cleft, preventing an excitotoxic insult. Glial glutamate transporters carry out more than 90% of the brain glutamate uptake activity and are responsible for glutamate recycling through the GABA/Glutamate/Glutamine shuttle. The aryl hydrocarbon receptor is a ligand-dependent transcription factor that integrates environmental clues through its ability to heterodimerize with different transcription factors. Taking into consideration the fundamental role of glial glutamate transporters in glutamatergic synapses and that these transporters are regulated at the transcriptional, translational, and localization levels in an activity-dependent fashion, in this contribution, we explored the involvement of the aryl hydrocarbon receptor, as a model of environmental integrator, in the regulation of the glial sodium-dependent glutamate/aspartate transporter. Using the model of chick cerebellar Bergmann glia cells, we report herein that the aryl hydrocarbon receptors exert a time-dependent decrease in the transporter mRNA levels and a diminution of its uptake activity. The nuclear factor kappa light chain enhancer of the activated B cell signaling pathway is involved in this regulation. Our results favor the notion of an environmentally dependent regulation of glutamate removal in glial cells and therefore strengthen the notion of the involvement of glial cells in xenobiotic neurotoxic effects.
Collapse
Affiliation(s)
- Janisse Silva-Parra
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Leticia Ramírez-Martínez
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Cecilia Palafox-Gómez
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Cristina Sandu
- Centre
National de la Recherche Scientifique, Université
de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg 00000, France
| | - Esther López-Bayghen
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Libia Vega
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Guillermo Elizondo
- Departamento
de Biología Celular, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Jaqueline Loaeza-Loaeza
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Daniel Hernández-Sotelo
- Facultad
de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39070, Guerrero, Mexico
| | - Luisa C. Hernández-Kelly
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| | - Marie-Paule Felder-Schmittbuhl
- Centre
National de la Recherche Scientifique, Université
de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg 00000, France
| | - Arturo Ortega
- Departamento
de Toxicología, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico
| |
Collapse
|
120
|
Shahid SS, Dzemidzic M, Butch ER, Jarvis EE, Snyder SE, Wu YC. Estimating the synaptic density deficit in Alzheimer's disease using multi-contrast CEST imaging. PLoS One 2024; 19:e0299961. [PMID: 38483851 PMCID: PMC10939256 DOI: 10.1371/journal.pone.0299961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
In vivo noninvasive imaging of neurometabolites is crucial to improve our understanding of the underlying pathophysiological mechanism in neurodegenerative diseases. Abnormal changes in synaptic organization leading to synaptic degradation and neuronal loss is considered as one of the primary factors driving Alzheimer's disease pathology. Magnetic resonance based molecular imaging techniques such as chemical exchange saturation transfer (CEST) and magnetic resonance spectroscopy (MRS) can provide neurometabolite specific information which may relate to underlying pathological and compensatory mechanisms. In this study, CEST and short echo time single voxel MRS was performed to evaluate the sensitivity of cerebral metabolites to beta-amyloid (Aβ) induced synaptic deficit in the hippocampus of a mouse model of Alzheimer's disease. The CEST based spectra (Z-spectra) were acquired on a 9.4 Tesla small animal MR imaging system with two radiofrequency (RF) saturation amplitudes (1.47 μT and 5.9 μT) to obtain creatine-weighted and glutamate-weighted CEST contrasts, respectively. Multi-pool Lorentzian fitting and quantitative T1 longitudinal relaxation maps were used to obtain metabolic specific apparent exchange-dependent relaxation (AREX) maps. Short echo time (TE = 12 ms) single voxel MRS was acquired to quantify multiple neurometabolites from the right hippocampus region. AREX contrasts and MRS based metabolite concentration levels were examined in the ARTE10 animal model for Alzheimer's disease and their wild type (WT) littermate counterparts (age = 10 months). Using MRS voxel as a region of interest, group-wise analysis showed significant reduction in Glu-AREX and Cr-AREX in ARTE10, compared to WT animals. The MRS based results in the ARTE10 mice showed significant decrease in glutamate (Glu) and glutamate-total creatine (Glu/tCr) ratio, compared to WT animals. The MRS results also showed significant increase in total creatine (tCr), phosphocreatine (PCr) and glutathione (GSH) concentration levels in ARTE10, compared to WT animals. In the same ROI, Glu-AREX and Cr-AREX demonstrated positive associations with Glu/tCr ratio. These results indicate the involvement of neurotransmitter metabolites and energy metabolism in Aβ-mediated synaptic degradation in the hippocampus region. The study also highlights the feasibility of CEST and MRS to identify and track multiple competing and compensatory mechanisms involved in heterogeneous pathophysiology of Alzheimer's disease in vivo.
Collapse
Affiliation(s)
- Syed Salman Shahid
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Mario Dzemidzic
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Elizabeth R. Butch
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Erin E. Jarvis
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Scott E. Snyder
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Weldon School of Biomedical Engineering at Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
121
|
Sidoryk-Węgrzynowicz M, Adamiak K, Strużyńska L. Astrocyte-Neuron Interaction via the Glutamate-Glutamine Cycle and Its Dysfunction in Tau-Dependent Neurodegeneration. Int J Mol Sci 2024; 25:3050. [PMID: 38474295 DOI: 10.3390/ijms25053050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Astroglia constitute the largest group of glial cells and are involved in numerous actions that are critical to neuronal development and functioning, such as maintaining the blood-brain barrier, forming synapses, supporting neurons with nutrients and trophic factors, and protecting them from injury. These properties are deeply affected in the course of many neurodegenerative diseases, including tauopathies, often before the onset of the disease. In this respect, the transfer of essential amino acids such as glutamate and glutamine between neurons and astrocytes in the glutamate-glutamine cycle (GGC) is one example. In this review, we focus on the GGC and the disruption of this cycle in tau-dependent neurodegeneration. A profound understanding of the complex functions of the GGC and, in the broader context, searching for dysfunctions in communication pathways between astrocytes and neurons via GGC in health and disease, is of critical significance for the development of novel mechanism-based therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Kamil Adamiak
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| |
Collapse
|
122
|
Sánchez-Cano F, Hernández-Kelly LC, Ortega A. Silica Nanoparticles Decrease Glutamate Uptake in Blood-Brain Barrier Components. Neurotox Res 2024; 42:20. [PMID: 38436780 PMCID: PMC10912144 DOI: 10.1007/s12640-024-00696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Glutamate is the major excitatory amino acid in the vertebrate brain, playing an important role in most brain functions. It exerts its activity through plasma membrane receptors and transporters, expressed both in neurons and glia cells. Overstimulation of neuronal glutamate receptors is linked to cell death in a process known as excitotoxicity, that is prevented by the efficient removal of the neurotransmitter through glutamate transporters enriched in the glia plasma membrane and in the components of the blood-brain barrier (BBB). Silica nanoparticles (SiO2-NPs) have been widely used in biomedical applications and directed to enter the circulatory system; however, little is known about the potential adverse effects of SiO2-NPs exposure on the BBB transport systems that support the critical isolation function between the central nervous system (CNS) and the peripheral circulation. In this contribution, we investigated the plausible SiO2-NPs-mediated disruption of the glutamate transport system expressed by BBB cell components. First, we evaluated the cytotoxic effect of SiO2-NPs on human brain endothelial (HBEC) and Uppsala 87 Malignant glioma (U-87MG) cell lines. Transport kinetics were evaluated, and the exposure effect of SiO2-NPs on glutamate transport activity was determined in both cell lines. Exposure of the cells to different SiO2-NP concentrations (0.4, 4.8, 10, and 20 µg/ml) and time periods (3 and 6 h) did not affect cell viability. We found that the radio-labeled D-aspartate ([3H]-D-Asp) uptake is mostly sodium-dependent, and downregulated by its own substrate (glutamate). Furthermore, SiO2-NPs exposure on endothelial and astrocytes decreases [3H]-D-Asp uptake in a dose-dependent manner. Interestingly, a decrease in the transporter catalytic efficiency, probably linked to a diminution in the affinity of the transporter, was detected upon SiO2-NPs. These results favor the notion that exposure to SiO2-NPs could disrupt BBB function and by these means shed some light into our understanding of the deleterious effects of air pollution on the CNS.
Collapse
Affiliation(s)
- Fredy Sánchez-Cano
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México.
| |
Collapse
|
123
|
Tremblay TL, Alata W, Slinn J, Baumann E, Delaney CE, Moreno M, Haqqani AS, Stanimirovic DB, Hill JJ. The proteome of the blood-brain barrier in rat and mouse: highly specific identification of proteins on the luminal surface of brain microvessels by in vivo glycocapture. Fluids Barriers CNS 2024; 21:23. [PMID: 38433215 PMCID: PMC10910681 DOI: 10.1186/s12987-024-00523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The active transport of molecules into the brain from blood is regulated by receptors, transporters, and other cell surface proteins that are present on the luminal surface of endothelial cells at the blood-brain barrier (BBB). However, proteomic profiling of proteins present on the luminal endothelial cell surface of the BBB has proven challenging due to difficulty in labelling these proteins in a way that allows efficient purification of these relatively low abundance cell surface proteins. METHODS Here we describe a novel perfusion-based labelling workflow: in vivo glycocapture. This workflow relies on the oxidation of glycans present on the luminal vessel surface via perfusion of a mild oxidizing agent, followed by subsequent isolation of glycoproteins by covalent linkage of their oxidized glycans to hydrazide beads. Mass spectrometry-based identification of the isolated proteins enables high-confidence identification of endothelial cell surface proteins in rats and mice. RESULTS Using the developed workflow, 347 proteins were identified from the BBB in rat and 224 proteins in mouse, for a total of 395 proteins in both species combined. These proteins included many proteins with transporter activity (73 proteins), cell adhesion proteins (47 proteins), and transmembrane signal receptors (31 proteins). To identify proteins that are enriched in vessels relative to the entire brain, we established a vessel-enrichment score and showed that proteins with a high vessel-enrichment score are involved in vascular development functions, binding to integrins, and cell adhesion. Using publicly-available single-cell RNAseq data, we show that the proteins identified by in vivo glycocapture were more likely to be detected by scRNAseq in endothelial cells than in any other cell type. Furthermore, nearly 50% of the genes encoding cell-surface proteins that were detected by scRNAseq in endothelial cells were also identified by in vivo glycocapture. CONCLUSIONS The proteins identified by in vivo glycocapture in this work represent the most complete and specific profiling of proteins on the luminal BBB surface to date. The identified proteins reflect possible targets for the development of antibodies to improve the crossing of therapeutic proteins into the brain and will contribute to our further understanding of BBB transport mechanisms.
Collapse
Affiliation(s)
- Tammy-Lynn Tremblay
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Wael Alata
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
- Biology Program, New York University Abu Dhabi, Saadiyat Island Campus, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Jacqueline Slinn
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Ewa Baumann
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Christie E Delaney
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Maria Moreno
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Jennifer J Hill
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
124
|
Pietrobon D, Conti F. Astrocytic Na +, K + ATPases in physiology and pathophysiology. Cell Calcium 2024; 118:102851. [PMID: 38308916 DOI: 10.1016/j.ceca.2024.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The Na+, K+ ATPases play a fundamental role in the homeostatic functions of astrocytes. After a brief historic prologue and discussion of the subunit composition and localization of the astrocytic Na+, K+ ATPases, the review focuses on the role of the astrocytic Na+, K+ pumps in extracellular K+ and glutamate homeostasis, intracellular Na+ and Ca2+ homeostasis and signaling, regulation of synaptic transmission and neurometabolic coupling between astrocytes and neurons. Loss-of-function mutations in the gene encoding the astrocytic α2 Na+, K+ ATPase cause a rare monogenic form of migraine with aura (familial hemiplegic migraine type 2). On the other hand, the α2 Na+, K+ ATPase is upregulated in spinal cord and brain samples from amyotrophic lateral sclerosis and Alzheimer disease patients, respectively. In the last part, the review focuses on i) the migraine relevant phenotypes shown by familial hemiplegic migraine type 2 knock-in mice with 50 % reduced expression of the astrocytic α2 Na+, K+ ATPase and the insights into the pathophysiology of migraine obtained from these genetic mouse models, and ii) the evidence that upregulation of the astrocytic α2 Na+, K+ ATPase in mouse models of amyotrophic lateral sclerosis and Alzheimer disease promotes neuroinflammation and contributes to progressive neurodegeneration.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center (PNC), University of Padova, Padova 35131, Italy.
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
125
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
126
|
Krzyściak W, Bystrowska B, Karcz P, Chrzan R, Bryll A, Turek A, Mazur P, Śmierciak N, Szwajca M, Donicz P, Furman K, Pilato F, Kozicz T, Popiela T, Pilecki M. Association of Blood Metabolomics Biomarkers with Brain Metabolites and Patient-Reported Outcomes as a New Approach in Individualized Diagnosis of Schizophrenia. Int J Mol Sci 2024; 25:2294. [PMID: 38396971 PMCID: PMC10888632 DOI: 10.3390/ijms25042294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Given its polygenic nature, there is a need for a personalized approach to schizophrenia. The aim of the study was to select laboratory biomarkers from blood, brain imaging, and clinical assessment, with an emphasis on patients' self-report questionnaires. Metabolomics studies of serum samples from 51 patients and 45 healthy volunteers, based on the liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS), led to the identification of 3 biochemical indicators (cortisol, glutamate, lactate) of schizophrenia. These metabolites were sequentially correlated with laboratory tests results, imaging results, and clinical assessment outcomes, including patient self-report outcomes. The hierarchical cluster analysis on the principal components (HCPC) was performed to identify the most homogeneous clinical groups. Significant correlations were noted between blood lactates and 11 clinical and 10 neuroimaging parameters. The increase in lactate and cortisol were significantly associated with a decrease in immunological parameters, especially with the level of reactive lymphocytes. The strongest correlations with the level of blood lactate and cortisol were demonstrated by brain glutamate, N-acetylaspartate and the concentrations of glutamate and glutamine, creatine and phosphocreatine in the prefrontal cortex. Metabolomics studies and the search for associations with brain parameters and self-reported outcomes may provide new diagnostic evidence to specific schizophrenia phenotypes.
Collapse
Affiliation(s)
- Wirginia Krzyściak
- Department of Medical Diagnostics, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Beata Bystrowska
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Paulina Karcz
- Department of Electroradiology, Jagiellonian University Medical College, Faculty of Health Sciences, 31-126 Krakow, Poland;
| | - Robert Chrzan
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Aleksander Turek
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Paulina Mazur
- Department of Medical Diagnostics, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Natalia Śmierciak
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Marta Szwajca
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Paulina Donicz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Katarzyna Furman
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Fabio Pilato
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Tamas Kozicz
- Department of Clinical Genomics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Tadeusz Popiela
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Maciej Pilecki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| |
Collapse
|
127
|
Ning JY, Ma B, Huang JY, Han L, Shao YH, Wang FY. Integrated network pharmacology and metabolomics reveal the action mechanisms of vincristine combined with celastrol against colon cancer. J Pharm Biomed Anal 2024; 239:115883. [PMID: 38044218 DOI: 10.1016/j.jpba.2023.115883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Colon cancer is associated with a high mortality rate. Vincristine (VCR) is a commonly used chemotherapeutic drug. Celastrol (CEL) is an effective component which exerts inhibitory effects on colon cancer. Combination treatment improves resistance to chemotherapeutic drugs and enhances their efficacy. Therefore, we aimed to explore the molecular mechanisms of VCR combined with CEL in colon cancer treatment. We verified the effects of VCR combined with CEL on the proliferation, cell cycle, and apoptosis of HCT-8 cells. Non-targeted metabolomic techniques were used to analyse the changes in cellular metabolites after administration. Finally, network pharmacology technology was used to screen the potential targets and pathways. VCR combined with CEL had synergistic inhibitory effects on HCT-8 colon cancer cells. Cell metabolomics identified 12 metabolites enriched in metabolic pathways, such as the phenylalanine, tyrosine and tryptophan biosynthesis pathways. Network pharmacology revealed that MAPK1, AKT1, PIK3CB, EGFR, and VEGFA were the key targets. Western blotting revealed that VCR combined with CEL activated the P53 pathway by suppressing the PI3K/AKT signalling pathway activation and Bcl-2 expression, promoting the Bax expression. Therefore, VCR combined with CEL potentially treats colon cancer by increasing the apoptosis, improving energy metabolism, and inhibiting PI3K/AKT pathway in colon cancer cells.
Collapse
Affiliation(s)
- Jin-Yu Ning
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bo Ma
- Department of Gastroenterology, The East Division of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510700, China
| | - Jing-Yi Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liang Han
- School of Health, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan-Hua Shao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Feng-Yun Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
128
|
Al-Akl NS, Khalifa O, Ponirakis G, Parray A, Ramadan M, Khan S, Chandran M, Ayadathil R, Elsotouhy A, Own A, Al Hamad H, Decock J, Alajez NM, Albagha O, Malik RA, El-Agnaf OMA, Arredouani A. Untargeted Metabolomic Profiling Reveals Differentially Expressed Serum Metabolites and Pathways in Type 2 Diabetes Patients with and without Cognitive Decline: A Cross-Sectional Study. Int J Mol Sci 2024; 25:2247. [PMID: 38396924 PMCID: PMC10889568 DOI: 10.3390/ijms25042247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Diabetes is recognized as a risk factor for cognitive decline, but the underlying mechanisms remain elusive. We aimed to identify the metabolic pathways altered in diabetes-associated cognitive decline (DACD) using untargeted metabolomics. We conducted liquid chromatography-mass spectrometry-based untargeted metabolomics to profile serum metabolite levels in 100 patients with type 2 diabetes (T2D) (54 without and 46 with DACD). Multivariate statistical tools were used to identify the differentially expressed metabolites (DEMs), and enrichment and pathways analyses were used to identify the signaling pathways associated with the DEMs. The receiver operating characteristic (ROC) analysis was employed to assess the diagnostic accuracy of a set of metabolites. We identified twenty DEMs, seven up- and thirteen downregulated in the DACD vs. DM group. Chemometric analysis revealed distinct clustering between the two groups. Metabolite set enrichment analysis found significant enrichment in various metabolite sets, including galactose metabolism, arginine and unsaturated fatty acid biosynthesis, citrate cycle, fructose and mannose, alanine, aspartate, and glutamate metabolism. Pathway analysis identified six significantly altered pathways, including arginine and unsaturated fatty acid biosynthesis, and the metabolism of the citrate cycle, alanine, aspartate, glutamate, a-linolenic acid, and glycerophospholipids. Classifier models with AUC-ROC > 90% were developed using individual metabolites or a combination of individual metabolites and metabolite ratios. Our study provides evidence of perturbations in multiple metabolic pathways in patients with DACD. The distinct DEMs identified in this study hold promise as diagnostic biomarkers for DACD patients.
Collapse
Affiliation(s)
- Neyla S. Al-Akl
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation (QF), Doha P.O. Box 24144, Qatar
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Marwan Ramadan
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Shafi Khan
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Mani Chandran
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Raheem Ayadathil
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Ahmed Elsotouhy
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
- Department of Clinical Radiology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Ahmed Own
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
- Neuroradiology Department, Hamad General Hospital, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Hanadi Al Hamad
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Julie Decock
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Nehad M. Alajez
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Omar Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Rayaz A. Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation (QF), Doha P.O. Box 24144, Qatar
| | - Omar M. A. El-Agnaf
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| |
Collapse
|
129
|
Li L, Li W, Jiang W, Xu R. Sulbactam protects neurons against double neurotoxicity of amyloid beta and glutamate load by upregulating glial glutamate transporter 1. Cell Death Discov 2024; 10:64. [PMID: 38320997 PMCID: PMC10847450 DOI: 10.1038/s41420-024-01827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Amyloid beta (Abeta) synergistically enhances excitotoxicity of glutamate load by impairing glutamate transporter 1 (GLT1) expression and function, which exacerbates the development of Alzheimer's disease (AD). Our previous studies suggested that sulbactam can upregulate the expression levels and capacity of GLT1. Therefore, this study aims to investigate whether sulbactam improves neuronal tolerance against neurotoxicity of Abeta and glutamate load by up-regulating GLT1 in primary neuron-astrocyte co-cultures. Early postnatal P0-P1 Wistar rat pups' cortices were collected for primary neuron-astrocyte cultures. Hoechst-propidium iodide (HO-PI) stain and lactate dehydrogenase (LDH) assays were used to analyze neuronal death. Cell counting kit 8 (CCK8) was applied to determine cell viability. Immunofluorescence staining and western blotting were used to assess protein expressions including GLT1, B-cell lymphoma 2 (BCL2), BCL2 associated X (BAX), and cleaved caspase 3 (CCP3). Under the double effect of Abeta and glutamate load, more neurons were lost than that induced by Abeta or glutamate alone, shown as decreased cell viability, increased LDH concentration in the cultural medium, HO-PI positive stains, high CCP3 expression, and high BAX/BCL2 ratio resulting from increased BAX and decreased BCL2 expressions. Notably, pre-incubation with sulbactam significantly attenuated the neuronal loss and activation of apoptosis induced by both Abeta and glutamate in a dose-dependent manner. Simultaneously, both astrocytic and neuronal GLT1 expressions were upregulated after sulbactam incubation. Taken together, it could be concluded that sulbactam protected neurons against double neurotoxicity of Abeta and glutamate load by upregulating GLT1 expression. The conclusion provides evidence for potential intervention using sulbactam in AD research.
Collapse
Affiliation(s)
- Li Li
- The Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Wenbin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Jiang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Vascular Homeostasis Key Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Renhao Xu
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Vascular Homeostasis Key Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
130
|
Escalada P, Ezkurdia A, Ramírez MJ, Solas M. Essential Role of Astrocytes in Learning and Memory. Int J Mol Sci 2024; 25:1899. [PMID: 38339177 PMCID: PMC10856373 DOI: 10.3390/ijms25031899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
One of the most biologically relevant functions of astrocytes within the CNS is the regulation of synaptic transmission, i.e., the physiological basis for information transmission between neurons. Changes in the strength of synaptic connections are indeed thought to be the cellular basis of learning and memory. Importantly, astrocytes have been demonstrated to tightly regulate these processes via the release of several gliotransmitters linked to astrocytic calcium activity as well as astrocyte-neuron metabolic coupling. Therefore, astrocytes seem to be integrators of and actors upon learning- and memory-relevant information. In this review, we focus on the role of astrocytes in learning and memory processes. We delineate the recognized inputs and outputs of astrocytes and explore the influence of manipulating astrocytes on behaviour across diverse learning paradigms. We conclude that astrocytes influence learning and memory in various manners. Appropriate astrocytic Ca2+ dynamics are being increasingly identified as central contributors to memory formation and retrieval. In addition, astrocytes regulate brain rhythms essential for cognition, and astrocyte-neuron metabolic cooperation is required for memory consolidation.
Collapse
Affiliation(s)
- Paula Escalada
- Department of Pharmaceutical Sciences, University of Navarra, 31008 Pamplona, Spain; (P.E.); (A.E.); (M.J.R.)
| | - Amaia Ezkurdia
- Department of Pharmaceutical Sciences, University of Navarra, 31008 Pamplona, Spain; (P.E.); (A.E.); (M.J.R.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María Javier Ramírez
- Department of Pharmaceutical Sciences, University of Navarra, 31008 Pamplona, Spain; (P.E.); (A.E.); (M.J.R.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Maite Solas
- Department of Pharmaceutical Sciences, University of Navarra, 31008 Pamplona, Spain; (P.E.); (A.E.); (M.J.R.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
131
|
Zhang D, Hua Z, Li Z. The role of glutamate and glutamine metabolism and related transporters in nerve cells. CNS Neurosci Ther 2024; 30:e14617. [PMID: 38358002 PMCID: PMC10867874 DOI: 10.1111/cns.14617] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Glutamate and glutamine are the most abundant amino acids in the blood and play a crucial role in cell survival in the nervous system. Various transporters found in cell and mitochondrial membranes, such as the solute carriers (SLCs) superfamily, are responsible for maintaining the balance of glutamate and glutamine in the synaptic cleft and within cells. This balance affects the metabolism of glutamate and glutamine as non-essential amino acids. AIMS This review aims to provide an overview of the transporters and enzymes associated with glutamate and glutamine in neuronal cells. DISCUSSION We delve into the function of glutamate and glutamine in the nervous system by discussing the transporters involved in the glutamate-glutamine cycle and the key enzymes responsible for their mutual conversion. Additionally, we highlight the role of glutamate and glutamine as carbon and nitrogen donors, as well as their significance as precursors for the synthesis of reduced glutathione (GSH). CONCLUSION Glutamate and glutamine play a crucial role in the brain due to their special effects. It is essential to focus on understanding glutamate and glutamine metabolism to comprehend the physiological behavior of nerve cells and to treat nervous system disorders and cancer.
Collapse
Affiliation(s)
- Dongyang Zhang
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhongyan Hua
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhijie Li
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
132
|
Dewa KI, Arimura N, Kakegawa W, Itoh M, Adachi T, Miyashita S, Inoue YU, Hizawa K, Hori K, Honjoya N, Yagishita H, Taya S, Miyazaki T, Usui C, Tatsumoto S, Tsuzuki A, Uetake H, Sakai K, Yamakawa K, Sasaki T, Nagai J, Kawaguchi Y, Sone M, Inoue T, Go Y, Ichinohe N, Kaibuchi K, Watanabe M, Koizumi S, Yuzaki M, Hoshino M. Neuronal DSCAM regulates the peri-synaptic localization of GLAST in Bergmann glia for functional synapse formation. Nat Commun 2024; 15:458. [PMID: 38302444 PMCID: PMC10834496 DOI: 10.1038/s41467-023-44579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.
Collapse
Affiliation(s)
- Ken-Ichi Dewa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Nariko Arimura
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan.
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masayuki Itoh
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Toma Adachi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Kento Hizawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Natsumi Honjoya
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan
| | - Haruya Yagishita
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
- Division of Behavioural Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Taisuke Miyazaki
- Department of Health Sciences, School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Chika Usui
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Akiko Tsuzuki
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Hirotomo Uetake
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Saitama, 274-8510, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medicine, Nagoya, Aichi, 467-8601, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan
| | - Jun Nagai
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Yoshiya Kawaguchi
- Department of Life Science Frontiers, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Saitama, 274-8510, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
- Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
- Graduate School of Information Science, University of Hyogo, Kobe, Hyogo, 650-0047, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
- The University of Texas at Austin, Austin, Texas, 78712-0805, USA
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan.
| |
Collapse
|
133
|
Leek AN, Quinn JA, Krapf D, Tamkun MM. GLT-1a glutamate transporter nanocluster localization is associated with astrocytic actin and neuronal Kv2 clusters at sites of neuron-astrocyte contact. Front Cell Dev Biol 2024; 12:1334861. [PMID: 38362041 PMCID: PMC10867268 DOI: 10.3389/fcell.2024.1334861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction: Astrocytic GLT-1 glutamate transporters ensure the fidelity of glutamic neurotransmission by spatially and temporally limiting glutamate signals. The ability to limit neuronal hyperactivity relies on the localization and diffusion of GLT-1 on the astrocytic surface, however, little is known about the underlying mechanisms. We show that two isoforms of GLT-1, GLT-1a and GLT-1b, form nanoclusters on the surface of transfected astrocytes and HEK-293 cells. Methods: We used both fixed and live cell super-resolution imaging of fluorescent protein and epitope tagged proteins in co-cultures of rat astrocytes and neurons. Immunofluorescence techniques were also used. GLT1 diffusion was assessed via single particle tracking and fluorescence recovery after photobleach (FRAP). Results: We found GLT-1a, but not GLT-1b, nanoclusters concentrated adjacent to actin filaments which was maintained after addition of glutamate. GLT-1a nanocluster concentration near actin filaments was prevented by expression of a cytosolic GLT-1a C-terminus, suggesting the C-terminus is involved in the localization adjacent to cortical actin. Using super-resolution imaging, we show that astrocytic GLT-1a and actin co-localize in net-like structures around neuronal Kv2.1 clusters at points of neuron/astrocyte contact. Conclusion: Overall, these data describe a novel relationship between GLT-1a and cortical actin filaments, which localizes GLT-1a near neuronal structures responsive to ischemic insult.
Collapse
Affiliation(s)
- Ashley N. Leek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, United States
| | - Josiah A. Quinn
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, United States
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, United States
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
134
|
Končeková J, Kotorová K, Gottlieb M, Bona M, Bonová P. Changes in excitatory amino acid transporters in response to remote ischaemic preconditioning and glutamate excitotoxicity. Neurochem Int 2024; 173:105658. [PMID: 38135159 DOI: 10.1016/j.neuint.2023.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The successful implementation of remote ischaemic conditioning as a clinical neuroprotective strategy requires a thorough understanding of its basic principles, which can be modified for each patient. The mechanisms of glutamate homeostasis appear to be a key component. In the current study, we focused on the brain-to-blood glutamate shift mediated by glutamate transporters (excitatory amino acid transports [EAATs]) and the effect of remote ischaemic preconditioning (RIPC) as a mediator of ischaemic tolerance. We used model mimicking ischaemia-mediated excitotoxicity (intracerebroventricular administration of glutamate) to avoid the indirect effect of ischaemia-triggered mechanisms. We found quantitative changes in EAAT2 and EAAT3 and altered membrane trafficking of EAAT1 on the cells of the choroid plexus. These changes could underlie the beneficial effects of ischaemic tolerance. There was reduced oxidative stress and increased glutathione level after RIPC treatment. Moreover, we determined the stimulus-specific response on EAATs. While glutamate overdose stimulated EAAT2 and EAAT3 overexpression, RIPC induced membrane trafficking of EAAT1 and EAAT2 rather than a change in their expression. Taken together, mechanisms related to glutamate homeostasis, especially EAAT-mediated transport, represents a powerful tool of ischaemic tolerance and allow a certain amount of flexibility based on the stimulus used.
Collapse
Affiliation(s)
- Jana Končeková
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic
| | - Klaudia Kotorová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic
| | - Miroslav Gottlieb
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Košice, 040 01, Slovak Republic
| | - Petra Bonová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, Košice, 040 01, Slovak Republic.
| |
Collapse
|
135
|
Leung HH, Mansour C, Rousseau M, Nakhla A, Kiselyov K, Venkatachalam K, Wong CO. Drosophila tweety facilitates autophagy to regulate mitochondrial homeostasis and bioenergetics in Glia. Glia 2024; 72:433-451. [PMID: 37870193 PMCID: PMC10842981 DOI: 10.1002/glia.24484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
Mitochondria support the energetic demands of the cells. Autophagic turnover of mitochondria serves as a critical pathway for mitochondrial homeostasis. It is unclear how bioenergetics and autophagy are functionally connected. Here, we identify an endolysosomal membrane protein that facilitates autophagy to regulate ATP production in glia. We determined that Drosophila tweety (tty) is highly expressed in glia and localized to endolysosomes. Diminished fusion between autophagosomes and endolysosomes in tty-deficient glia was rescued by expressing the human Tweety Homolog 1 (TTYH1). Loss of tty in glia attenuated mitochondrial turnover, elevated mitochondrial oxidative stress, and impaired locomotor functions. The cellular and organismal defects were partially reversed by antioxidant treatment. We performed live-cell imaging of genetically encoded metabolite sensors to determine the impact of tty and autophagy deficiencies on glial bioenergetics. We found that tty-deficient glia exhibited reduced mitochondrial pyruvate consumption accompanied by a shift toward glycolysis for ATP production. Likewise, genetic inhibition of autophagy in glia resulted in a similar glycolytic shift in bioenergetics. Furthermore, the survival of mutant flies became more sensitive to starvation, underlining the significance of tty in the crosstalk between autophagy and bioenergetics. Together, our findings uncover the role for tty in mitochondrial homeostasis via facilitating autophagy, which determines bioenergetic balance in glia.
Collapse
Affiliation(s)
- Ho Hang Leung
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
- Present address: South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Christina Mansour
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Morgan Rousseau
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Anwar Nakhla
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Ching-On Wong
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
136
|
Suryavanshi P, Sawant-Pokam P, Clair S, Brennan KC. Increased presynaptic excitability in a migraine with aura mutation. Brain 2024; 147:680-697. [PMID: 37831655 PMCID: PMC10834252 DOI: 10.1093/brain/awad326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 10/15/2023] Open
Abstract
Migraine is a common and disabling neurological disorder. The headache and sensory amplifications of migraine are attributed to hyperexcitable sensory circuits, but a detailed understanding remains elusive. A mutation in casein kinase 1 delta (CK1δ) was identified in non-hemiplegic familial migraine with aura and advanced sleep phase syndrome. Mice carrying the CK1δT44A mutation were more susceptible to spreading depolarization (the phenomenon that underlies migraine aura), but mechanisms underlying this migraine-relevant phenotype were not known. We used a combination of whole-cell electrophysiology and multiphoton imaging, in vivo and in brain slices, to compare CK1δT44A mice (adult males) to their wild-type littermates. We found that despite comparable synaptic activity at rest, CK1δT44A neurons were more excitable upon repetitive stimulation than wild-type, with a reduction in presynaptic adaptation at excitatory but not inhibitory synapses. The mechanism of this adaptation deficit was a calcium-dependent enhancement of the size of the readily releasable pool of synaptic vesicles, and a resultant increase in glutamate release, in CK1δT44A compared to wild-type synapses. Consistent with this mechanism, CK1δT44A neurons showed an increase in the cumulative amplitude of excitatory post-synaptic currents, and a higher excitation-to-inhibition ratio during sustained activity compared to wild-type. At a local circuit level, action potential bursts elicited in CK1δT44A neurons triggered an increase in recurrent excitation compared to wild-type, and at a network level, CK1δT44A mice showed a longer duration of 'up state' activity, which is dependent on recurrent excitation. Finally, we demonstrated that the spreading depolarization susceptibility of CK1δT44A mice could be returned to wild-type levels with the same intervention (reduced extracellular calcium) that normalized presynaptic adaptation. Taken together, these findings show a stimulus-dependent presynaptic gain of function at glutamatergic synapses in a genetic model of migraine, that accounts for the increased spreading depolarization susceptibility and may also explain the sensory amplifications that are associated with the disease.
Collapse
Affiliation(s)
- Pratyush Suryavanshi
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Punam Sawant-Pokam
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Sarah Clair
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - K C Brennan
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
137
|
Hristov M, Nankova A, Andreeva-Gateva P. Alterations of the glutamatergic system in diabetes mellitus. Metab Brain Dis 2024; 39:321-333. [PMID: 37747631 DOI: 10.1007/s11011-023-01299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Diabetes mellitus (DM) is a chronic disease characterized by elevated blood glucose levels caused by a lack of insulin production (type 1 diabetes) or insulin resistance (type 2 diabetes). It is well known that DM is associated with cognitive deficits and metabolic and neurophysiological changes in the brain. Glutamate is the main excitatory neurotransmitter in the central nervous system that plays a key role in synaptic plasticity, learning, and memory processes. An increasing number of studies have suggested that abnormal activity of the glutamatergic system is implicated in the pathophysiology of DM. Dysfunction of glutamatergic neurotransmission in the central nervous system can provide an important neurobiological substrate for many disorders. Magnetic resonance spectroscopy (MRS) is a non-invasive technique that allows a better understanding of the central nervous system factors by measuring in vivo the concentrations of brain metabolites within the area of interest. Here, we briefly review the MRS studies that have examined glutamate levels in the brain of patients with DM. The present article also summarizes the available data on abnormalities in glutamatergic neurotransmission observed in different animal models of DM. In addition, the role of gut microbiota in the development of glutamatergic alterations in DM is addressed. We speculate that therapeutic strategies targeting the glutamatergic system may be beneficial in the treatment of central nervous system-related changes in diabetic patients.
Collapse
Affiliation(s)
- Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" St, Sofia, 1431, Bulgaria.
| | - Anelia Nankova
- Department of Endocrinology, Faculty of Medicine, Medical University of Sofia, Sofia, 1431, Bulgaria
| | - Pavlina Andreeva-Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" St, Sofia, 1431, Bulgaria
| |
Collapse
|
138
|
Morais MÍ, Braga AV, Silva RRL, Barbosa BCM, Costa SOAM, Rodrigues FF, Melo ISF, Matos RC, Carobin NV, Sabino AP, Coelho MM, Machado RR. Metformin inhibits paclitaxel-induced mechanical allodynia by activating opioidergic pathways and reducing cytokines production in the dorsal root ganglia and thalamus. Cytokine 2024; 174:156468. [PMID: 38101167 DOI: 10.1016/j.cyto.2023.156468] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
It has been shown that AMP-activated protein kinase (AMPK) is involved in the nociceptive processing. This observation has prompted us to investigate the effects of the AMPK activator metformin on the paclitaxel-induced mechanical allodynia, a well-established model of neuropathic pain. Mechanical allodynia was induced by four intraperitoneal (i.p) injections of paclitaxel (2 mg/kg.day) in mice. Metformin was administered per os (p.o.). Naltrexoneandglibenclamide were used to investigate mechanisms mediating metformin activity. Concentrations of cytokines in the dorsal root ganglia (DRG) and thalamus were determined. After a single p.o. administration, the two highest doses of metformin (500 and 1000 mg/kg) attenuated the mechanical allodynia. This response was attenuated by all doses of metformin (250, 500 and 1000 mg/kg) when two administrations, 2 h apart, were carried out. Naltrexone (5 and 10 mg/kg, i.p.), but not glibenclamide (20 and 40 mg/kg, p.o.), attenuated metformin activity. Concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and CXCL-1 in the DRG were increased after administration of paclitaxel. Metformin (1000 mg/kg) reduced concentrations of TNF-α, IL-1β and CXCL-1 in the DRG. Concentration of IL-6, but not TNF-α, in the thalamus was increased after administration of paclitaxel. Metformin (1000 mg/kg) reduced concentration of IL-6 in the thalamus. In summary, metformin exhibits activity in the model of neuropathic pain induced by paclitaxel. This activity may be mediated by activation of opioidergic pathways and reduced production of TNF-α, IL-1β and CXCL-1 in the DRG and IL-6 in the thalamus.
Collapse
Affiliation(s)
- Marcela Í Morais
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alysson V Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roger R L Silva
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara C M Barbosa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sarah O A M Costa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe F Rodrigues
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ivo S F Melo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rafael C Matos
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natália V Carobin
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriano P Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Márcio M Coelho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
139
|
Ossoliński K, Ruman T, Copié V, Tripet BP, Kołodziej A, Płaza-Altamer A, Ossolińska A, Ossoliński T, Krupa Z, Nizioł J. Metabolomic profiling of human bladder tissue extracts. Metabolomics 2024; 20:14. [PMID: 38267657 DOI: 10.1007/s11306-023-02076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Bladder cancer is a common malignancy affecting the urinary tract and effective biomarkers and for which monitoring therapeutic interventions have yet to be identified. OBJECTIVES Major aim of this work was to perform metabolomic profiling of human bladder cancer and adjacent normal tissue and to evaluate cancer biomarkers. METHODS This study utilized nuclear magnetic resonance (NMR) and high-resolution nanoparticle-based laser desorption/ionization mass spectrometry (LDI-MS) methods to investigate polar metabolite profiles in tissue samples from 99 bladder cancer patients. RESULTS Through NMR spectroscopy, six tissue metabolites were identified and quantified as potential indicators of bladder cancer, while LDI-MS allowed detection of 34 compounds which distinguished cancer tissue samples from adjacent normal tissue. Thirteen characteristic tissue metabolites were also found to differentiate bladder cancer tumor grades and thirteen metabolites were correlated with tumor stages. Receiver-operating characteristics analysis showed high predictive power for all three types of metabolomics data, with area under the curve (AUC) values greater than 0.853. CONCLUSION To date, this is the first study in which bladder human normal tissues adjacent to cancerous tissues are analyzed using both NMR and MS method. These findings suggest that the metabolite markers identified in this study may be useful for the detection and monitoring of bladder cancer stages and grades.
Collapse
Affiliation(s)
- Krzysztof Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Tomasz Ruman
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Valérie Copié
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Brian P Tripet
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Artur Kołodziej
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Aneta Płaza-Altamer
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Anna Ossolińska
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Tadeusz Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100, Kolbuszowa, Poland
| | - Zuzanna Krupa
- Doctoral School of Engineering and Technical Sciences, Rzeszów University of Technology, 8 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Joanna Nizioł
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland.
| |
Collapse
|
140
|
Lin TK, Yeh KC, Pai MS, Hsieh PW, Wang SJ. Ursolic acid inhibits the synaptic release of glutamate and prevents glutamate excitotoxicity in rats. Eur J Pharmacol 2024; 963:176280. [PMID: 38113967 DOI: 10.1016/j.ejphar.2023.176280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The present study evaluated the effect of ursolic acid, a natural pentacyclic triterpenoid, on glutamate release in rat cortical nerve terminals (synaptosomes) and its neuroprotection in a kainic acid-induced excitotoxicity rat model. In cortical synaptosomes, ursolic acid produced a concentration-dependent inhibition of evoked glutamate release with a half-maximum inhibition of release value of 9.5 μM, and calcium-free medium and the P/Q -type Ca2+ channel blocker, ω-agatoxin IVA, but not ω-conotoxin GVIA, an N-type Ca2+ channel blocker, prevented the ursoloic acid effect. The molecular docking study indicated that ursolic acid interacted with P/Q-type Ca2+ channels. Ursolic acid also significantly decreased the depolarization-induced activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the subsequent phosphorylation of synapsin I, and the ursolic acid effect on evoked glutamate release was inhibited by the CaMKII inhibitor KN 62 in synaptosomes. In addition, in rats that were intraperitoneally injected with ursolic acid 30 min before kainic acid intraperitoneal injection, cortical neuronal degeneration was attenuated. This effect of ursolic acid in the improvement of kainic acid-induced neuronal damage was associated with the reduction of kainic acid-induced glutamate increase in the cortex of rats; this was characterized by the reduction of glutamate and glutaminase levels and elevation of glutamate dehydrogenase, glutamate transporter 1, glutamate-aspartate transporter, and glutamine synthetase protein levels. These results suggest that ursolic acid inhibits glutamate release from cortical synaptosomes by decreasing P/Q-type Ca2+ channel activity and subsequently suppressing CaMKII and exerts a preventive effect against glutamate neurotoxicity by controlling glutamate levels.
Collapse
Affiliation(s)
- Tzu-Kang Lin
- Department of Neurosurgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan
| | - Kun-Chieh Yeh
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan; Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Department of Surgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Ming-Shang Pai
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan; Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, 33303, Taiwan
| | - Pei-Wen Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33303, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| |
Collapse
|
141
|
Tsai T, Reinehr S, Deppe L, Strubbe A, Kluge N, Dick HB, Joachim SC. Glaucoma Animal Models beyond Chronic IOP Increase. Int J Mol Sci 2024; 25:906. [PMID: 38255979 PMCID: PMC10815097 DOI: 10.3390/ijms25020906] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glaucoma is a complex and multifactorial disease defined as the loss of retinal ganglion cells (RGCs) and their axons. Besides an elevated intraocular pressure (IOP), other mechanisms play a pivotal role in glaucoma onset and progression. For example, it is known that excitotoxicity, immunological alterations, ischemia, and oxidative stress contribute to the neurodegeneration in glaucoma disease. To study these effects and to discover novel therapeutic approaches, appropriate animal models are needed. In this review, we focus on various glaucoma animal models beyond an elevated IOP. We introduce genetically modified mice, e.g., the optineurin E50K knock-in or the glutamate aspartate transporter (GLAST)-deficient mouse. Excitotoxicity can be mimicked by injecting the glutamate analogue N-methyl-D-aspartate intravitreally, which leads to rapid RGC degeneration. To explore the contribution of the immune system, the experimental autoimmune glaucoma model can serve as a useful tool. Here, immunization with antigens led to glaucoma-like damage. The ischemic mechanism can be mimicked by inducing a high IOP for a certain amount of time in rodents, followed by reperfusion. Thereby, damage to the retina and the optic nerve occurs rapidly after ischemia/reperfusion. Lastly, we discuss the importance of optic nerve crush models as model systems for normal-tension glaucoma. In summary, various glaucoma models beyond IOP increase can be utilized.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (T.T.); (S.R.); (L.D.); (N.K.); (H.B.D.)
| |
Collapse
|
142
|
Benson CA, Olson KL, Patwa S, Kauer SD, King JF, Waxman SG, Tan AM. Conditional Astrocyte Rac1KO Attenuates Hyperreflexia after Spinal Cord Injury. J Neurosci 2024; 44:e1670222023. [PMID: 37963762 PMCID: PMC10851682 DOI: 10.1523/jneurosci.1670-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 11/16/2023] Open
Abstract
Spasticity is a hyperexcitability disorder that adversely impacts functional recovery and rehabilitative efforts after spinal cord injury (SCI). The loss of evoked rate-dependent depression (RDD) of the monosynaptic H-reflex is indicative of hyperreflexia, a physiological sign of spasticity. Given the intimate relationship between astrocytes and neurons, that is, the tripartite synapse, we hypothesized that astrocytes might have a significant role in post-injury hyperreflexia and plasticity of neighboring neuronal synaptic dendritic spines. Here, we investigated the effect of selective Rac1KO in astrocytes (i.e., adult male and female mice, transgenic cre-flox system) on SCI-induced spasticity. Three weeks after a mild contusion SCI, control Rac1wt animals displayed a loss of H-reflex RDD, that is, hyperreflexia. In contrast, transgenic animals with astrocytic Rac1KO demonstrated near-normal H-reflex RDD similar to pre-injury levels. Reduced hyperreflexia in astrocytic Rac1KO animals was accompanied by a loss of thin-shaped dendritic spine density on α-motor neurons in the ventral horn. In SCI-Rac1wt animals, as expected, we observed the development of dendritic spine dysgenesis on α-motor neurons associated with spasticity. As compared with WT animals, SCI animals with astrocytic Rac1KO expressed increased levels of the glial-specific glutamate transporter, glutamate transporter-1 in the ventral spinal cord, potentially enhancing glutamate clearance from the synaptic cleft and reducing hyperreflexia in astrocytic Rac1KO animals. Taken together, our findings show for the first time that Rac1 activity in astrocytes can contribute to hyperreflexia underlying spasticity following SCI. These results reveal an opportunity to target cell-specific molecular regulators of H-reflex excitability to manage spasticity after SCI.Significance Statement Spinal cord injury leads to stretch reflex hyperexcitability, which underlies the clinical symptom of spasticity. This study shows for the first time that astrocytic Rac1 contributes to the development of hyperreflexia after SCI. Specifically, astrocytic Rac1KO reduced SCI-related H-reflex hyperexcitability, decreased dendritic spine dysgenesis on α-motor neurons, and elevated the expression of the astrocytic glutamate transporter-1 (GLT-1). Overall, this study supports a distinct role for astrocytic Rac1 signaling within the spinal reflex circuit and the development of SCI-related spasticity.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Kai-Lan Olson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Siraj Patwa
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510,
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| |
Collapse
|
143
|
Rose CR, Verkhratsky A. Sodium homeostasis and signalling: The core and the hub of astrocyte function. Cell Calcium 2024; 117:102817. [PMID: 37979342 DOI: 10.1016/j.ceca.2023.102817] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/20/2023]
Abstract
Neuronal activity and neurochemical stimulation trigger spatio-temporal changes in the cytoplasmic concentration of Na+ ions in astrocytes. These changes constitute the substrate for Na+ signalling and are fundamental for astrocytic excitability. Astrocytic Na+ signals are generated by Na+ influx through neurotransmitter transporters, with primary contribution of glutamate transporters, and through cationic channels; whereas recovery from Na+ transients is mediated mainly by the plasmalemmal Na+/K+ ATPase. Astrocytic Na+ signals regulate the activity of plasmalemmal transporters critical for homeostatic function of astrocytes, thus providing real-time coordination between neuronal activity and astrocytic support.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Alexej Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| |
Collapse
|
144
|
Sahu R, Shah K. Schiff Bases: A Captivating Scaffold with Potential Anticonvulsant Activity. Mini Rev Med Chem 2024; 24:1632-1650. [PMID: 38629363 DOI: 10.2174/0113895575302197240408121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 08/28/2024]
Abstract
One of the most important organic compounds, also known as a Schiff base, imine, or azomethine, has been associated with several biological processes. The group is a component of both natural or synthetic chemicals and functions as both a precursor and an intermediary in the synthesis of therapeutically active substances. The review highlights the various non-metal Schiff bases' structure-activity relationship (SAR) studies, general model, docking, and design approach for anticonvulsant actions. Schiff bases serve as linkers in numerous synthetic compounds with a variety of activities, according to the findings of several investigations. As a result, the current review will give readers a thorough understanding of the key ideas put forth by different researchers regarding the anticonvulsant properties of Schiff bases. It will serve as a valuable information source for those planning to synthesize new anticonvulsant molecules that contain Schiff bases as pharmacophores or biologically active moieties.
Collapse
Affiliation(s)
- Rakesh Sahu
- Department of Pharmaceutical Chemistry, School of Medical and Allied Sciences, Galgotias University, Greater Noida-201310, India
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Kamal Shah
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
145
|
Zielewicz LJ, Wang J, Ndaru E, Maney B, Yu X, Albers T, Grewer C. Design and Characterization of Prodrug-like Inhibitors for Preventing Glutamate Efflux through Reverse Transport. ACS Chem Neurosci 2023; 14:4252-4263. [PMID: 37994790 DOI: 10.1021/acschemneuro.3c00651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
Glutamate transporters are responsible for active transport of the major excitatory neurotransmitter glutamate across the cell membrane, regulating the extracellular glutamate concentration in the mammalian brain. Extracellular glutamate levels in the brain are usually in the submicromolar range but can increase by exocytosis, inhibition of cellular uptake, or through glutamate release by reverse transport, as well as other mechanisms, which can lead to neurodegeneration and neuronal cell death. Such conditions can be encountered upon energy deprivation during an ischemic stroke. Here, we developed acetoxymethyl (AM) ester prodrug-like derivatives of excitatory amino acid transporter (EAAT) inhibitors that permeate the cell membrane and are activated, most likely through hydrolysis by endogenous cellular esterases, to form the active EAAT inhibitor. Upon increase in external K+ concentration, the inhibitors block glutamate efflux by EAAT reverse transport. Using a novel high-affinity fluorescent prodrug-like inhibitor, dl-threo-9-anthracene-methoxy-aspartate (TAOA) AM ester, we demonstrate that the precursor rapidly accumulates inside cells. Electrophysiological methods and fluorescence assays utilizing the iGluSnFR external glutamate sensor were used to demonstrate the efficacy of AM ester-protected inhibitors in inhibiting K+-mediated glutamate release. Together, our results provide evidence for a novel method to potentially prevent glutamate release by reverse transport under pathophysiological conditions in a model cell system, as well as in human astrocytes, while leaving glutamate uptake under physiological conditions operational. This method could have wide-ranging applications in the prevention of glutamate-induced neuronal cell death.
Collapse
Affiliation(s)
- Laura J Zielewicz
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Jiali Wang
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Elias Ndaru
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Brien Maney
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Xiaozhen Yu
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Thomas Albers
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Christof Grewer
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| |
Collapse
|
146
|
Quintanilla ME, Morales P, Santapau D, Ávila A, Ponce C, Berrios-Cárcamo P, Olivares B, Gallardo J, Ezquer M, Herrera-Marschitz M, Israel Y, Ezquer F. Chronic Voluntary Morphine Intake Is Associated with Changes in Brain Structures Involved in Drug Dependence in a Rat Model of Polydrug Use. Int J Mol Sci 2023; 24:17081. [PMID: 38069404 PMCID: PMC10707256 DOI: 10.3390/ijms242317081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic opioid intake leads to several brain changes involved in the development of dependence, whereby an early hedonistic effect (liking) extends to the need to self-administer the drug (wanting), the latter being mostly a prefrontal-striatal function. The development of animal models for voluntary oral opioid intake represents an important tool for identifying the cellular and molecular alterations induced by chronic opioid use. Studies mainly in humans have shown that polydrug use and drug dependence are shared across various substances. We hypothesize that an animal bred for its alcohol preference would develop opioid dependence and further that this would be associated with the overt cortical abnormalities clinically described for opioid addicts. We show that Wistar-derived outbred UChB rats selected for their high alcohol preference additionally develop: (i) a preference for oral ingestion of morphine over water, resulting in morphine intake of 15 mg/kg/day; (ii) marked opioid dependence, as evidenced by the generation of strong withdrawal signs upon naloxone administration; (iii) prefrontal cortex alterations known to be associated with the loss of control over drug intake, namely, demyelination, axonal degeneration, and a reduction in glutamate transporter GLT-1 levels; and (iv) glial striatal neuroinflammation and brain oxidative stress, as previously reported for chronic alcohol and chronic nicotine use. These findings underline the relevance of polydrug animal models and their potential in the study of the wide spectrum of brain alterations induced by chronic morphine intake. This study should be valuable for future evaluations of therapeutic approaches for this devastating condition.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, Universidad de Chile, Santiago 7610658, Chile; (M.E.Q.); (P.M.); (M.H.-M.); (Y.I.)
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, Universidad de Chile, Santiago 7610658, Chile; (M.E.Q.); (P.M.); (M.H.-M.); (Y.I.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 7610658, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 7610658, Chile
| | - Daniela Santapau
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile; (D.S.); (A.Á.); (P.B.-C.); (J.G.); (M.E.)
| | - Alba Ávila
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile; (D.S.); (A.Á.); (P.B.-C.); (J.G.); (M.E.)
| | - Carolina Ponce
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 7610658, Chile
| | - Pablo Berrios-Cárcamo
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile; (D.S.); (A.Á.); (P.B.-C.); (J.G.); (M.E.)
| | - Belén Olivares
- Center for Medical Chemistry, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile;
| | - Javiera Gallardo
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile; (D.S.); (A.Á.); (P.B.-C.); (J.G.); (M.E.)
| | - Marcelo Ezquer
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile; (D.S.); (A.Á.); (P.B.-C.); (J.G.); (M.E.)
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, Universidad de Chile, Santiago 7610658, Chile; (M.E.Q.); (P.M.); (M.H.-M.); (Y.I.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 7610658, Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, Universidad de Chile, Santiago 7610658, Chile; (M.E.Q.); (P.M.); (M.H.-M.); (Y.I.)
| | - Fernando Ezquer
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 7610658, Chile
- Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile; (D.S.); (A.Á.); (P.B.-C.); (J.G.); (M.E.)
| |
Collapse
|
147
|
Fort TD, Cain ME. Inefficacy of N-acetylcysteine in mitigating cue-induced amphetamine-seeking. ADDICTION NEUROSCIENCE 2023; 8:100119. [PMID: 38213396 PMCID: PMC10783794 DOI: 10.1016/j.addicn.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Glutamatergic imbalances are characteristic of SUDs. Astrocytic and neuronal transporters help regulate glutamate homeostasis and disruptions in this homeostasis engender SUD. The cysteine-glutamate exchanger (xCT) is primarily localized on astrocytes and maintains glutamate concentrations. This process is disrupted by cocaine use, and the therapeutic N-acetylcysteine (NAC) lowers cue-induced relapse to cocaine by restoring xCT function. However, little research has shown how these effects extend to other psychostimulants, such as amphetamine (AMP). Here, we assessed xCT expression following relapse to AMP cues, and if NAC can attenuate relapse via changes to astrocyte and xCT expression. We administered NAC (100 mg/kg ip) daily during a 14-day abstinence period following AMP (0.1 mg/kg/infusion; 2 h sessions) self-administration. Relapse was tested following one (WD 1) or 14 days (WD 14) of withdrawal. The overall number of astrocytes was also quantified within the medial prefrontal cortex (mPFC) and nucleus accumbens (ACb). NAC failed to lower cue-induced AMP craving via cue-induced relapse and reinstatement testing. Cue-induced craving did not increase from WD 1 to WD 14. AMP-exposed rats had greater astrocyte counts in the mPFC and ACb when compared AMP-naïve rats. Repeated injection with NAC decreased xCT expression within the mPFC and ACb. Overall, these results suggest that NAC may be an ineffective treatment option for lowering cue-induced relapse to AMP. Further, the results suggest that stimulating xCT via NAC may not be an effective therapeutic approach for decreasing cue-seeking for AMP.
Collapse
|
148
|
Joghataei MT, Bakhtiarzadeh F, Dehghan S, Ketabforoush AHME, Golab F, Zarbakhsh S, Ahmadirad N. The role of neurotransmitters in glioblastoma multiforme-associated seizures. Int J Dev Neurosci 2023; 83:677-690. [PMID: 37563091 DOI: 10.1002/jdn.10294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
GBM, or glioblastoma multiforme, is a brain tumor that poses a great threat to both children and adults, being the primary cause of death related to brain tumors. GBM is often associated with epilepsy, which can be debilitating. Seizures and the development of epilepsy are the primary symptoms that have a severe impact on the quality of life for GBM patients. It is increasingly apparent that the nervous system plays an essential role in the tumor microenvironment for all cancer types, including GBM. In recent years, there has been a growing understanding of how neurotransmitters control the progression of gliomas. Evidence suggests that neurotransmitters and neuromodulators found in the tumor microenvironment play crucial roles in the excitability, proliferation, quiescence, and differentiation of neurons, glial cells, and neural stem cells. The involvement of neurotransmitters appears to play a significant role in various stages of GBM. In this review, the focus is on presenting updated knowledge and emerging ideas regarding the interplay between neurotransmitters and neuromodulators, such as glutamate, GABA, norepinephrine, dopamine, serotonin, adenosine, and their relationship with GBM and the seizures induced by this condition. The review aims to explore the current understanding and provide new insights into the complex interactions between these neurotransmitters and neuromodulators in the context of GBM-related seizures.
Collapse
Affiliation(s)
| | - Fatemeh Bakhtiarzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Dehghan
- Eye Research Center, The Five Senses Institute, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
149
|
McNair LM, Andersen JV, Waagepetersen HS. Stable isotope tracing reveals disturbed cellular energy and glutamate metabolism in hippocampal slices of aged male mice. Neurochem Int 2023; 171:105626. [PMID: 37838084 DOI: 10.1016/j.neuint.2023.105626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Neurons and astrocytes work in close metabolic collaboration, linking neurotransmission to brain energy and neurotransmitter metabolism. Dysregulated energy metabolism is a hallmark of the aging brain and may underlie the progressive age-dependent cognitive decline. However, astrocyte and neurotransmitter metabolism remains understudied in aging brain research. In particular, how aging affects metabolism of glutamate, being the primary excitatory neurotransmitter, is still poorly understood. Here we investigated critical aspects of cellular energy metabolism in the aging male mouse hippocampus using stable isotope tracing in vitro. Metabolism of [U-13C]glucose demonstrated an elevated glycolytic capacity of aged hippocampal slices, whereas oxidative [U-13C]glucose metabolism in the TCA cycle was significantly reduced with aging. In addition, metabolism of [1,2-13C]acetate, reflecting astrocyte energy metabolism, was likewise reduced in the hippocampal slices of old mice. In contrast, uptake and subsequent metabolism of [U-13C]glutamate was elevated, suggesting increased capacity for cellular glutamate handling with aging. Finally, metabolism of [15N]glutamate was maintained in the aged slices, demonstrating sustained glutamate nitrogen metabolism. Collectively, this study reveals fundamental alterations in cellular energy and neurotransmitter metabolism in the aging brain, which may contribute to age-related hippocampal deficits.
Collapse
Affiliation(s)
- Laura Mikél McNair
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Jens Velde Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Helle Sønderby Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
150
|
Salavatian S, Robbins EM, Kuwabara Y, Castagnola E, Cui XT, Mahajan A. Real-time in vivo thoracic spinal glutamate sensing during myocardial ischemia. Am J Physiol Heart Circ Physiol 2023; 325:H1304-H1317. [PMID: 37737733 PMCID: PMC10908408 DOI: 10.1152/ajpheart.00299.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
In the spinal cord, glutamate serves as the primary excitatory neurotransmitter. Monitoring spinal glutamate concentrations offers valuable insights into spinal neural processing. Consequently, spinal glutamate concentration has the potential to emerge as a useful biomarker for conditions characterized by increased spinal neural network activity, especially when uptake systems become dysfunctional. In this study, we developed a multichannel custom-made flexible glutamate-sensing probe for the large-animal model that is capable of measuring extracellular glutamate concentrations in real time and in vivo. We assessed the probe's sensitivity and specificity through in vitro and ex vivo experiments. Remarkably, this developed probe demonstrates nearly instantaneous glutamate detection and allows continuous monitoring of glutamate concentrations. Furthermore, we evaluated the mechanical and sensing performance of the probe in vivo, within the pig spinal cord. Moreover, we applied the glutamate-sensing method using the flexible probe in the context of myocardial ischemia-reperfusion (I/R) injury. During I/R injury, cardiac sensory neurons in the dorsal root ganglion transmit excitatory signals to the spinal cord, resulting in sympathetic activation that potentially leads to fatal arrhythmias. We have successfully shown that our developed glutamate-sensing method can detect this spinal network excitation during myocardial ischemia. This study illustrates a novel technique for measuring spinal glutamate at different spinal cord levels as a surrogate for the spinal neural network activity during cardiac interventions that engage the cardio-spinal neural pathway.NEW & NOTEWORTHY In this study, we have developed a new flexible sensing probe to perform an in vivo measurement of spinal glutamate signaling in a large animal model. Our initial investigations involved precise testing of this probe in both in vitro and ex vivo environments. We accurately assessed the sensitivity and specificity of our glutamate-sensing probe and demonstrated its performance. We also evaluated the performance of our developed flexible probe during the insertion and compared it with the stiff probe during animal movement. Subsequently, we used this innovative technique to monitor the spinal glutamate signaling during myocardial ischemia and reperfusion that can cause fatal ventricular arrhythmias. We showed that glutamate concentration increases during the myocardial ischemia, persists during the reperfusion, and is associated with sympathoexcitation and increases in myocardial substrate excitability.
Collapse
Affiliation(s)
- Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Elaine Marie Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|