101
|
Han S, Liang Y, Ma Q, Xu Y, Zhang Y, Du W, Wang C, Li Y. LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrinsic composition, structural information and physicochemical property. Brief Bioinform 2020; 20:2009-2027. [PMID: 30084867 PMCID: PMC6954391 DOI: 10.1093/bib/bby065] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/20/2018] [Indexed: 12/31/2022] Open
Abstract
Discovering new long non-coding RNAs (lncRNAs) has been a fundamental step in lncRNA-related research. Nowadays, many machine learning-based tools have been developed for lncRNA identification. However, many methods predict lncRNAs using sequence-derived features alone, which tend to display unstable performances on different species. Moreover, the majority of tools cannot be re-trained or tailored by users and neither can the features be customized or integrated to meet researchers’ requirements. In this study, features extracted from sequence-intrinsic composition, secondary structure and physicochemical property are comprehensively reviewed and evaluated. An integrated platform named LncFinder is also developed to enhance the performance and promote the research of lncRNA identification. LncFinder includes a novel lncRNA predictor using the heterologous features we designed. Experimental results show that our method outperforms several state-of-the-art tools on multiple species with more robust and satisfactory results. Researchers can additionally employ LncFinder to extract various classic features, build classifier with numerous machine learning algorithms and evaluate classifier performance effectively and efficiently. LncFinder can reveal the properties of lncRNA and mRNA from various perspectives and further inspire lncRNA–protein interaction prediction and lncRNA evolution analysis. It is anticipated that LncFinder can significantly facilitate lncRNA-related research, especially for the poorly explored species. LncFinder is released as R package (https://CRAN.R-project.org/package=LncFinder). A web server (http://bmbl.sdstate.edu/lncfinder/) is also developed to maximize its availability.
Collapse
Affiliation(s)
- Siyu Han
- College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Yanchun Liang
- College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China.,Zhuhai Laboratory of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Zhuhai College of Jilin University, Zhuhai, China
| | - Qin Ma
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakot State University, Brookings, SD, USA.,Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, USA
| | - Yangyi Xu
- College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Yu Zhang
- College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Wei Du
- College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Cankun Wang
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, USA
| | - Ying Li
- College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
102
|
uORFs: Important Cis-Regulatory Elements in Plants. Int J Mol Sci 2020; 21:ijms21176238. [PMID: 32872304 PMCID: PMC7503886 DOI: 10.3390/ijms21176238] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 11/17/2022] Open
Abstract
Gene expression is regulated at many levels, including mRNA transcription, translation, and post-translational modification. Compared with transcriptional regulation, mRNA translational control is a more critical step in gene expression and allows for more rapid changes of encoded protein concentrations in cells. Translation is highly regulated by complex interactions between cis-acting elements and trans-acting factors. Initiation is not only the first phase of translation, but also the core of translational regulation, because it limits the rate of protein synthesis. As potent cis-regulatory elements in eukaryotic mRNAs, upstream open reading frames (uORFs) generally inhibit the translation initiation of downstream major ORFs (mORFs) through ribosome stalling. During the past few years, with the development of RNA-seq and ribosome profiling, functional uORFs have been identified and characterized in many organisms. Here, we review uORF identification, uORF classification, and uORF-mediated translation initiation. More importantly, we summarize the translational regulation of uORFs in plant metabolic pathways, morphogenesis, disease resistance, and nutrient absorption, which open up an avenue for precisely modulating the plant growth and development, as well as environmental adaption. Additionally, we also discuss prospective applications of uORFs in plant breeding.
Collapse
|
103
|
Eisenberg AR, Higdon AL, Hollerer I, Fields AP, Jungreis I, Diamond PD, Kellis M, Jovanovic M, Brar GA. Translation Initiation Site Profiling Reveals Widespread Synthesis of Non-AUG-Initiated Protein Isoforms in Yeast. Cell Syst 2020; 11:145-160.e5. [PMID: 32710835 PMCID: PMC7508262 DOI: 10.1016/j.cels.2020.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/18/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
Genomic analyses in budding yeast have helped define the foundational principles of eukaryotic gene expression. However, in the absence of empirical methods for defining coding regions, these analyses have historically excluded specific classes of possible coding regions, such as those initiating at non-AUG start codons. Here, we applied an experimental approach to globally annotate translation initiation sites in yeast and identified 149 genes with alternative N-terminally extended protein isoforms initiating from near-cognate codons upstream of annotated AUG start codons. These isoforms are produced in concert with canonical isoforms and translated with high specificity, resulting from initiation at only a small subset of possible start codons. The non-AUG initiation driving their production is enriched during meiosis and induced by low eIF5A, which is seen in this context. These findings reveal widespread production of non-canonical protein isoforms and unexpected complexity to the rules by which even a simple eukaryotic genome is decoded.
Collapse
Affiliation(s)
- Amy R Eisenberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrea L Higdon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ina Hollerer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexander P Fields
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paige D Diamond
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
104
|
Verkest C, Häfner S, Ávalos Prado P, Baron A, Sandoz G. Migraine and Two-Pore-Domain Potassium Channels. Neuroscientist 2020; 27:268-284. [PMID: 32715910 DOI: 10.1177/1073858420940949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Migraine is a common, disabling neurological disorder with a genetic, environmental, and hormonal component with an annual prevalence estimated at ~15%. It is characterized by attacks of severe, usually unilateral and throbbing headache, and can be accompanied by nausea, vomiting, and photophobia. Migraine is clinically divided into two main subtypes: migraine with aura, when it is preceded by transient neurological disturbances due to cortical spreading depression (CSD), and migraine without aura. Activation and sensitization of trigeminal sensory neurons, leading to the release of pro-inflammatory peptides, is likely a key component in headache pain initiation and transmission in migraine. In the present review, we will focus on the function of two-pore-domain potassium (K2P) channels, which control trigeminal sensory neuron excitability and their potential interest for developing new drugs to treat migraine.
Collapse
Affiliation(s)
- Clément Verkest
- CNRS, INSERM, iBV, Université Cote d'Azur, Nice, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France.,Université Cote d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Stephanie Häfner
- CNRS, INSERM, iBV, Université Cote d'Azur, Nice, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France
| | - Pablo Ávalos Prado
- CNRS, INSERM, iBV, Université Cote d'Azur, Nice, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France
| | - Anne Baron
- Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France.,Université Cote d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Guillaume Sandoz
- CNRS, INSERM, iBV, Université Cote d'Azur, Nice, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France
| |
Collapse
|
105
|
Translation initiation downstream from annotated start codons in human mRNAs coevolves with the Kozak context. Genome Res 2020; 30:974-984. [PMID: 32669370 PMCID: PMC7397870 DOI: 10.1101/gr.257352.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic translation initiation involves preinitiation ribosomal complex 5′-to-3′ directional probing of mRNA for codons suitable for starting protein synthesis. The recognition of codons as starts depends on the codon identity and on its immediate nucleotide context known as Kozak context. When the context is weak (i.e., nonoptimal), leaky scanning takes place during which a fraction of ribosomes continues the mRNA probing. We explored the relationship between the context of AUG codons annotated as starts of protein-coding sequences and the next AUG codon occurrence. We found that AUG codons downstream from weak starts occur in the same frame more frequently than downstream from strong starts. We suggest that evolutionary selection on in-frame AUGs downstream from weak start codons is driven by the advantage of the reduction of wasteful out-of-frame product synthesis and also by the advantage of producing multiple proteoforms from certain mRNAs. We confirmed translation initiation downstream from weak start codons using ribosome profiling data. We also tested translation of alternative start codons in 10 specific human genes using reporter constructs. In all tested cases, initiation at downstream start codons was more productive than at the annotated ones. In most cases, optimization of Kozak context did not completely abolish downstream initiation, and in the specific example of CMPK1 mRNA, the optimized start remained unproductive. Collectively, our work reveals previously uncharacterized forces shaping the evolution of protein-coding genes and points to the plurality of translation initiation and the existence of sequence features influencing start codon selection, other than Kozak context.
Collapse
|
106
|
Wang P, Xu L, Gao Y, Han R. BEON: A Functional Fluorescence Reporter for Quantification and Enrichment of Adenine Base-Editing Activity. Mol Ther 2020; 28:1696-1705. [PMID: 32353322 PMCID: PMC7335737 DOI: 10.1016/j.ymthe.2020.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/12/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Adenine base editor (ABE) is a new generation of genome-editing technology through fusion of Cas9 nickase with an evolved E. coli TadA (TadA∗) and holds great promise as novel genome-editing therapeutics for treating genetic disorders. ABEs can directly convert A-T to G-C in specific genomic DNA targets without introducing double-strand breaks (DSBs). We recently showed that computer program-assisted analysis of Sanger sequencing traces can be used as a low-cost and rapid alternative of deep sequencing to assess base-editing outcomes. Here we developed a rapid fluorescence-based reporter assay (Base Editing ON [BEON]) to quantify ABE efficiency. The assay relies on the restoration of the downstream green fluorescent protein (GFP) in ABE-mediated editing of a stop codon located within the guide RNA (gRNA). We showed that this assay can be used to screen for effective ABE variants, characterize the protospacer adjacent motif (PAM) requirement of a novel NNG-targeting ABE based on ScCas9, and enrich for edited cells. Finally, we demonstrated that the reporter assay allowed us to assess the feasibility of ABE editing to correct point mutations associated with dysferlinopathy. Taken together, the BEON assay would facilitate and simplify the studies with ABEs.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Li Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yandi Gao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
107
|
Diament A, Weiner I, Shahar N, Landman S, Feldman Y, Atar S, Avitan M, Schweitzer S, Yacoby I, Tuller T. ChimeraUGEM: unsupervised gene expression modeling in any given organism. Bioinformatics 2020; 35:3365-3371. [PMID: 30715207 DOI: 10.1093/bioinformatics/btz080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/07/2019] [Accepted: 01/30/2019] [Indexed: 01/06/2023] Open
Abstract
MOTIVATION Regulation of the amount of protein that is synthesized from genes has proved to be a serious challenge in terms of analysis and prediction, and in terms of engineering and optimization, due to the large diversity in expression machinery across species. RESULTS To address this challenge, we developed a methodology and a software tool (ChimeraUGEM) for predicting gene expression as well as adapting the coding sequence of a target gene to any host organism. We demonstrate these methods by predicting protein levels in seven organisms, in seven human tissues, and by increasing in vivo the expression of a synthetic gene up to 26-fold in the single-cell green alga Chlamydomonas reinhardtii. The underlying model is designed to capture sequence patterns and regulatory signals with minimal prior knowledge on the host organism and can be applied to a multitude of species and applications. AVAILABILITY AND IMPLEMENTATION Source code (MATLAB, C) and binaries are freely available for download for non-commercial use at http://www.cs.tau.ac.il/~tamirtul/ChimeraUGEM/, and supported on macOS, Linux and Windows. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alon Diament
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel
| | - Iddo Weiner
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel.,School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Noam Shahar
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Shira Landman
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Yael Feldman
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Shimshi Atar
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel
| | - Meital Avitan
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel.,School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Shira Schweitzer
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
108
|
Tollerson R, Ibba M. Translational regulation of environmental adaptation in bacteria. J Biol Chem 2020; 295:10434-10445. [PMID: 32518156 DOI: 10.1074/jbc.rev120.012742] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/08/2020] [Indexed: 01/26/2023] Open
Abstract
Bacteria must rapidly respond to both intracellular and environmental changes to survive. One critical mechanism to rapidly detect and adapt to changes in environmental conditions is control of gene expression at the level of protein synthesis. At each of the three major steps of translation-initiation, elongation, and termination-cells use stimuli to tune translation rate and cellular protein concentrations. For example, changes in nutrient concentrations in the cell can lead to translational responses involving mechanisms such as dynamic folding of riboswitches during translation initiation or the synthesis of alarmones, which drastically alter cell physiology. Moreover, the cell can fine-tune the levels of specific protein products using programmed ribosome pausing or inducing frameshifting. Recent studies have improved understanding and revealed greater complexity regarding long-standing paradigms describing key regulatory steps of translation such as start-site selection and the coupling of transcription and translation. In this review, we describe how bacteria regulate their gene expression at the three translational steps and discuss how translation is used to detect and respond to changes in the cellular environment. Finally, we appraise the costs and benefits of regulation at the translational level in bacteria.
Collapse
Affiliation(s)
- Rodney Tollerson
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Michael Ibba
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
109
|
Ren Z, Ding T, Zuo Z, Xu Z, Deng J, Wei Z. Regulation of MAVS Expression and Signaling Function in the Antiviral Innate Immune Response. Front Immunol 2020; 11:1030. [PMID: 32536927 PMCID: PMC7267026 DOI: 10.3389/fimmu.2020.01030] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infection is controlled by host innate immune cells that express specialized receptors for viral components. Engagement of these pattern recognition receptors triggers a series of signaling pathways that culminate in the production of antiviral mediators such as type I interferons. Mitochondrial antiviral-signaling protein (MAVS) acts as a central hub for signal transduction initiated by RIG-I-like receptors, which predominantly recognize viral RNA. MAVS expression and function are regulated by both post-transcriptional and post-translational mechanisms, of which ubiquitination and phosphorylation play the most important roles in modulating MAVS function. Increasing evidence indicates that viruses can escape the host antiviral response by interfering at multiple points in the MAVS signaling pathways, thereby maintaining viral survival and replication. This review summarizes recent studies on the mechanisms by which MAVS expression and signaling are normally regulated and on the various strategies employed by viruses to antagonize MAVS activity, which may provide new insights into the design of novel antiviral agents.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhanyong Wei
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
110
|
Messenger RNAs with large numbers of upstream open reading frames are translated via leaky scanning and reinitiation in the asexual stages of Plasmodium falciparum. Parasitology 2020; 147:1100-1113. [DOI: 10.1017/s0031182020000840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe genome of Plasmodium falciparum has one of the most skewed base-pair compositions of any eukaryote, with an AT content of 80–90%. As start and stop codons are AT-rich, the probability of finding upstream open reading frames (uORFs) in messenger RNAs (mRNAs) is high and parasite mRNAs have an average of 11 uORFs in their leader sequences. Similar to other eukaryotes, uORFs repress the translation of the downstream open reading frame (dORF) in P. falciparum, yet the parasite translation machinery is able to bypass these uORFs and reach the dORF to initiate translation. This can happen by leaky scanning and/or reinitiation.In this report, we assessed leaky scanning and reinitiation by studying the effect of uORFs on the translation of a dORF, in this case, the luciferase reporter gene, and showed that both mechanisms are employed in the asexual blood stages of P. falciparum. Furthermore, in addition to the codon usage of the uORF, translation of the dORF is governed by the Kozak sequence and length of the uORF, and inter-cistronic distance between the uORF and dORF. Based on these features whole-genome data was analysed to uncover classes of genes that might be regulated by uORFs. This study indicates that leaky scanning and reinitiation appear to be widespread in asexual stages of P. falciparum, which may require modifications of existing factors that are involved in translation initiation in addition to novel, parasite-specific proteins.
Collapse
|
111
|
Denzer L, Schroten H, Schwerk C. From Gene to Protein-How Bacterial Virulence Factors Manipulate Host Gene Expression During Infection. Int J Mol Sci 2020; 21:ijms21103730. [PMID: 32466312 PMCID: PMC7279228 DOI: 10.3390/ijms21103730] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacteria evolved many strategies to survive and persist within host cells. Secretion of bacterial effectors enables bacteria not only to enter the host cell but also to manipulate host gene expression to circumvent clearance by the host immune response. Some effectors were also shown to evade the nucleus to manipulate epigenetic processes as well as transcription and mRNA procession and are therefore classified as nucleomodulins. Others were shown to interfere downstream with gene expression at the level of mRNA stability, favoring either mRNA stabilization or mRNA degradation, translation or protein stability, including mechanisms of protein activation and degradation. Finally, manipulation of innate immune signaling and nutrient supply creates a replicative niche that enables bacterial intracellular persistence and survival. In this review, we want to highlight the divergent strategies applied by intracellular bacteria to evade host immune responses through subversion of host gene expression via bacterial effectors. Since these virulence proteins mimic host cell enzymes or own novel enzymatic functions, characterizing their properties could help to understand the complex interactions between host and pathogen during infections. Additionally, these insights could propose potential targets for medical therapy.
Collapse
|
112
|
Xiao J, Peng B, Su Z, Liu A, Hu Y, Nomura CT, Chen S, Wang Q. Facilitating Protein Expression with Portable 5'-UTR Secondary Structures in Bacillus licheniformis. ACS Synth Biol 2020; 9:1051-1058. [PMID: 32302094 DOI: 10.1021/acssynbio.9b00355] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 5'-untranslated region (5'-UTR) of prokaryotic mRNAs plays an essential role in post-transcriptional regulation. Bacillus species, such as Bacillus subtilis and Bacillus licheniformis, have gained considerable attention as microbial cell factories for the production of various valuable chemicals and industrial proteins. In this work, we developed a portable 5'-UTR sequence for enhanced protein output in the industrial strain B. licheniformis DW2. This sequence contains only ∼30 nt and forms a hairpin structure located right before the open reading frame. The optimized Shine-Dalgarno (SD) sequence was presented as a single strand on the loop of the hairpin for better ribosome recognition and recruitment. By optimizing the free energy of folding, this 5'-element could effectively enhance the expression of eGFP by ∼50-fold and showed good adaptability for other target proteins, including RFP, nattokinase, and keratinase. This 5'-UTR could promote the accessibility of both the SD sequence and start codon, leading to improved efficiency of translation initiation. Furthermore, the hairpin structure protected mRNA against 5'-exonucleases, resulting in enhanced mRNA stability. It is well-known that the stable structure at a ribosome binding site (RBS) impedes initiation in Escherichia coli. In this study, we presented a unique structure at a RBS that can effectively enhance protein production, which is an exception of this prevailing concept. By adjusting a single thermodynamic parameter and holding the other factors affecting protein output constant, a series of 5'-UTR elements with different expression strengths could be rationally designed for wide use in Bacillus sp.
Collapse
Affiliation(s)
- Jun Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Bing Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhaowei Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Ankun Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Yajing Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Christopher T. Nomura
- Department of Chemistry, The State University of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, New York 13210, United States
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Qin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
113
|
Galili M, Tuller T. CSN: unsupervised approach for inferring biological networks based on the genome alone. BMC Bioinformatics 2020; 21:190. [PMID: 32414319 PMCID: PMC7227238 DOI: 10.1186/s12859-020-3479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most organisms cannot be cultivated, as they live in unique ecological conditions that cannot be mimicked in the lab. Understanding the functionality of those organisms' genes and their interactions by performing large-scale measurements of transcription levels, protein-protein interactions or metabolism, is extremely difficult and, in some cases, impossible. Thus, efficient algorithms for deciphering genome functionality based only on the genomic sequences with no other experimental measurements are needed. RESULTS In this study, we describe a novel algorithm that infers gene networks that we name Common Substring Network (CSN). The algorithm enables inferring novel regulatory relations among genes based only on the genomic sequence of a given organism and partial homolog/ortholog-based functional annotation. It can specifically infer the functional annotation of genes with unknown homology. This approach is based on the assumption that related genes, not necessarily homologs, tend to share sub-sequences, which may be related to common regulatory mechanisms, similar functionality of encoded proteins, common evolutionary history, and more. We demonstrate that CSNs, which are based on S. cerevisiae and E. coli genomes, have properties similar to 'traditional' biological networks inferred from experiments. Highly expressed genes tend to have higher degree nodes in the CSN, genes with similar protein functionality tend to be closer, and the CSN graph exhibits a power-law degree distribution. Also, we show how the CSN can be used for predicting gene interactions and functions. CONCLUSIONS The reported results suggest that 'silent' code inside the transcript can help to predict central features of biological networks and gene function. This approach can help researchers to understand the genome of novel microorganisms, analyze metagenomic data, and can help to decipher new gene functions. AVAILABILITY Our MATLAB implementation of CSN is available at https://www.cs.tau.ac.il/~tamirtul/CSN-Autogen.
Collapse
Affiliation(s)
- Maya Galili
- Biomedical Engineering Department, Tel Aviv University, Tel-Aviv, Israel
- Department of Molecular Microbiology & Biotechnology, Tel Aviv University, Tel-Aviv, Israel
| | - Tamir Tuller
- Biomedical Engineering Department, Tel Aviv University, Tel-Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
114
|
Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD. Root of the Tree: The Significance, Evolution, and Origins of the Ribosome. Chem Rev 2020; 120:4848-4878. [PMID: 32374986 DOI: 10.1021/acs.chemrev.9b00742] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ribosome is an ancient molecular fossil that provides a telescope to the origins of life. Made from RNA and protein, the ribosome translates mRNA to coded protein in all living systems. Universality, economy, centrality and antiquity are ingrained in translation. The translation machinery dominates the set of genes that are shared as orthologues across the tree of life. The lineage of the translation system defines the universal tree of life. The function of a ribosome is to build ribosomes; to accomplish this task, ribosomes make ribosomal proteins, polymerases, enzymes, and signaling proteins. Every coded protein ever produced by life on Earth has passed through the exit tunnel, which is the birth canal of biology. During the root phase of the tree of life, before the last common ancestor of life (LUCA), exit tunnel evolution is dominant and unremitting. Protein folding coevolved with evolution of the exit tunnel. The ribosome shows that protein folding initiated with intrinsic disorder, supported through a short, primitive exit tunnel. Folding progressed to thermodynamically stable β-structures and then to kinetically trapped α-structures. The latter were enabled by a long, mature exit tunnel that partially offset the general thermodynamic tendency of all polypeptides to form β-sheets. RNA chaperoned the evolution of protein folding from the very beginning. The universal common core of the ribosome, with a mass of nearly 2 million Daltons, was finalized by LUCA. The ribosome entered stasis after LUCA and remained in that state for billions of years. Bacterial ribosomes never left stasis. Archaeal ribosomes have remained near stasis, except for the superphylum Asgard, which has accreted rRNA post LUCA. Eukaryotic ribosomes in some lineages appear to be logarithmically accreting rRNA over the last billion years. Ribosomal expansion in Asgard and Eukarya has been incremental and iterative, without substantial remodeling of pre-existing basal structures. The ribosome preserves information on its history.
Collapse
Affiliation(s)
- Jessica C Bowman
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton S Petrov
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Moran Frenkel-Pinter
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petar I Penev
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Loren Dean Williams
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
115
|
Azam MS, Vanderpool CK. Translation inhibition from a distance: The small RNA SgrS silences a ribosomal protein S1-dependent enhancer. Mol Microbiol 2020; 114:391-408. [PMID: 32291821 DOI: 10.1111/mmi.14514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022]
Abstract
Many bacterial small RNAs (sRNAs) efficiently inhibit translation of target mRNAs by forming a duplex that sequesters the Shine-Dalgarno (SD) sequence or start codon and prevents formation of the translation initiation complex. There are a growing number of examples of sRNA-mRNA binding interactions distant from the SD region, but how these mediate translational regulation remains unclear. Our previous work in Escherichia coli and Salmonella identified a mechanism of translational repression of manY mRNA by the sRNA SgrS through a binding interaction upstream of the manY SD. Here, we report that SgrS forms a duplex with a uridine-rich translation-enhancing element in the manY 5' untranslated region. Notably, we show that the enhancer is ribosome-dependent and that the small ribosomal subunit protein S1 interacts with the enhancer to promote translation of manY. In collaboration with the chaperone protein Hfq, SgrS interferes with the interaction between the translation enhancer and ribosomal protein S1 to repress translation of manY mRNA. Since bacterial translation is often modulated by enhancer-like elements upstream of the SD, sRNA-mediated enhancer silencing could be a common mode of gene regulation.
Collapse
Affiliation(s)
- Muhammad S Azam
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
116
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
117
|
Shi Y, Wu J, Zhong T, Zhu W, She G, Tang H, Du W, Ye BC, Qi N. Upstream ORFs Prevent MAVS Spontaneous Aggregation and Regulate Innate Immune Homeostasis. iScience 2020; 23:101059. [PMID: 32339989 PMCID: PMC7190755 DOI: 10.1016/j.isci.2020.101059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/08/2020] [Accepted: 04/08/2020] [Indexed: 11/24/2022] Open
Abstract
The monomer-to-filament transition of MAVS is essential for the RIG-I/MDA5-mediated antiviral signaling. In quiescent cells, monomeric MAVS is under strict regulation for preventing its spontaneous aggregation, which would result in dysregulated interferon (IFN-α/β) production and autoimmune diseases like systemic lupus erythematosus. However, the detailed mechanism by which MAVS is kept from spontaneous aggregation remains largely unclear. Here, we show that upstream open reading frames (uORFs) within the MAVS transcripts exert a post-transcriptional regulation for preventing MAVS spontaneous aggregation and auto-activation. Mechanistically, we demonstrate that uORFs are cis-acting elements initiating leaky ribosome scanning of the downstream ORF codons, thereby repressing the full-length MAVS translation. We further uncover that endogenous MAVS generated from the uORF-deprived transcript spontaneously aggregates, triggering the Nix-mediated mitophagic clearance of damaged mitochondria and aggregated MAVS. Our findings reveal the uORF-mediated quantity and quality control of MAVS, which prevents aberrant protein aggregation and maintains innate immune homeostasis. uORFs are safety checks preventing MAVS spontaneous aggregation and auto-activation uORFs exert the quantity and quality control of MAVS Spontaneously aggregated MAVS induces an antiviral state in quiescent cells Nix mediates the cargo selection and mitophagic clearance of MAVS aggregates
Collapse
Affiliation(s)
- Yuheng Shi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 20032, China
| | - Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Tiansheng Zhong
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wenting Zhu
- Materials Interfaces Center Institute of Advanced Materials Science and Engineering Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guolan She
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wei Du
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Nan Qi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
118
|
Cloning and characterization of two chlorophyll A/B binding protein genes and analysis of their gene family in Camellia sinensis. Sci Rep 2020; 10:4602. [PMID: 32165676 PMCID: PMC7067855 DOI: 10.1038/s41598-020-61317-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
In this study, two chlorophyll A/B binding protein (CAB) genes (CsCP1 and CsCP2) in tea plant were cloned. The proteins encoded by these genes belong to the external or internal antenna proteins of PS II, respectively. They may be the targets of physiological regulation for tea leaf cell PS II because they all contain multiple functional domains and modifiable sites. The CAB gene family in the tea genome consists of 25 homologous genes. We measured the expression patterns of ten genes in the CsCP1 and CsCP2 subfamily under six different stresses. CsCP1 expression was inhibited in response to 6 kinds of stress; CsCP2 expression was slightly upregulated only after cold stress and ABA treatment. However, the expression levels of CSA016997 and CSA030476 were upregulated significantly in the six stresses. The results suggested that the 10 CAB genes may have different functions in tea leaves. Moreover, changes in the expression of the 10 genes under stress appear to be related to ABA- and MeJA-dependent signalling pathways, and their responses to MeJA treatment is faster than those to ABA. In addition, we introduced our experiences for cloning the genes in the context of complex genomes.
Collapse
|
119
|
A Negative Regulator of Carotenogenesis in Blakeslea trispora. Appl Environ Microbiol 2020; 86:AEM.02462-19. [PMID: 31953331 DOI: 10.1128/aem.02462-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/07/2020] [Indexed: 11/20/2022] Open
Abstract
As an ideal carotenoid producer, Blakeslea trispora has gained much attention due to its large biomass and high production of β-carotene and lycopene. However, carotenogenesis regulation in B. trispora still needs to be clarified, as few investigations have been conducted at the molecular level in B. trispora In this study, a gene homologous to carotenogenesis regulatory gene (crgA) was cloned from the mating type (-) of B. trispora, and the deduced CrgA protein was analyzed for its primary structure and domains. To clarify the crgA-mediated regulation in B. trispora, we used the strategies of gene knockout and complementation to investigate the effect of crgA expression on the phenotype of B. trispora In contrast to the wild-type strain, the crgA null mutant (ΔcrgA) was defective in sporulation but accumulated much more β-carotene (31.2% improvement at the end) accompanied by enhanced transcription of three structural genes (hmgR, carB, and carRA) for carotenoids throughout the culture time. When the wild-type copy of crgA was complemented into the crgA null mutant, sporulation, transcription of structural genes, and carotenoid production were restored to those of the wild-type strain. A gas chromatography-mass spectrometry (GC-MS)-based metabolomic approach and multivariate statistical analyses were performed to investigate the intracellular metabolite profiles. The reduced levels of tricarboxylic acid (TCA) cycle components and some amino acids and enhanced levels of glycolysis intermediates and fatty acids indicate that more metabolic flux was driven into the mevalonate (MVA) pathway; thus, the increase of precursors and fat content contributes to the accumulation of carotenoids.IMPORTANCE The zygomycete Blakeslea trispora is an important strain for the production of carotenoids on a large scale. However, the regulation mechanism of carotenoid biosynthesis is still not well understood in this filamentous fungus. In the present study, we sought to investigate how crgA influences the expression of structural genes for carotenoids, carotenoid biosynthesis, and other anabolic phenotypes. This will lead to a better understanding of the global regulation mechanism of carotenoid biosynthesis and facilitate engineering this strain in the future for enhanced production of carotenoids.
Collapse
|
120
|
Identification of prokaryotic promoters and their strength by integrating heterogeneous features. Genomics 2020; 112:1396-1403. [DOI: 10.1016/j.ygeno.2019.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/31/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022]
|
121
|
Ding X, Meng S, Zhou J, Yang J, Li H, Zhou W. Translational Inhibition of α-Neurexin 2. Sci Rep 2020; 10:3403. [PMID: 32099033 PMCID: PMC7042298 DOI: 10.1038/s41598-020-60289-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
Neurexins are extensively investigated presynaptic cell-adhesion molecules which play important roles in transmitting signals and processing information at synapses that connect neurons into a vast network of cellular communications. Synaptic transmission of information is a fast and dynamic process which relies on rapid and tight regulation of synaptic protein expression. However, the mechanism underlying those regulation is still not fully understood. Therefore, we explore how the expression of NRXN2α, one of encoding genes for neurexins, is regulated at the translational level. NRXN2α transcript has a long and conserved 5'-untranslated region (5'UTR) suggestive of the rapid regulation of protein expression at the translational level. We first demonstrate that the 5'UTR has negative effects on the expression of the NRXN2α and find a critical subregion responsible for the major inhibitory function. Then we identify a particular secondary structure of G-quadruplex in the 5'UTR. Moreover, we find that the synergistic roles of G-quadruplex and upstream AUGs are responsible for most of NRXN2α-5'UTR inhibitory effects. In conclusion, we uncovered 5' UTR of neurexin2 potentially inhibits neurexin2 translation by multiple mechanisms. In addition, this study underscores the importance of direct protein quantitation in experiments rather than using mRNA as an indirect estimate of protein expression.
Collapse
Affiliation(s)
- Xiaoting Ding
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, 400014, China
| | - Shasha Meng
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, 400014, China
| | - Jiahong Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, 400014, China
| | - Juan Yang
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, 400014, China
| | - Hongmei Li
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, 400014, China.,Dermatology Department of Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, 400014, China
| | - Weihui Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
122
|
Cohen S, Kramarski L, Levi S, Deshe N, Ben David O, Arbely E. Nonsense mutation-dependent reinitiation of translation in mammalian cells. Nucleic Acids Res 2020; 47:6330-6338. [PMID: 31045216 PMCID: PMC6614817 DOI: 10.1093/nar/gkz319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 11/14/2022] Open
Abstract
In-frame stop codons mark the termination of translation. However, post-termination ribosomes can reinitiate translation at downstream AUG codons. In mammals, reinitiation is most efficient when the termination codon is positioned close to the 5′-proximal initiation site and around 78 bases upstream of the reinitiation site. The phenomenon was studied mainly in the context of open reading frames (ORFs) found within the 5′-untranslated region, or polycicstronic viral mRNA. We hypothesized that reinitiation of translation following nonsense mutations within the main ORF of p53 can promote the expression of N-truncated p53 isoforms such as Δ40, Δ133 and Δ160p53. Here, we report that expression of all known N-truncated p53 isoforms by reinitiation is mechanistically feasible, including expression of the previously unidentified variant Δ66p53. Moreover, we found that significant reinitiation of translation can be promoted by nonsense mutations located even 126 codons downstream of the 5′-proximal initiation site, and observed when the reinitiation site is positioned between 6 and 243 bases downstream of the nonsense mutation. We also demonstrate that reinitiation can stabilise p53 mRNA transcripts with a premature termination codon, by allowing such transcripts to evade the nonsense mediated decay pathway. Our data suggest that the expression of N-truncated proteins from alleles carrying a premature termination codon is more prevalent than previously thought.
Collapse
Affiliation(s)
- Sarit Cohen
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Lior Kramarski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shahar Levi
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Noa Deshe
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Oshrit Ben David
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Eyal Arbely
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
123
|
Klann K, Tascher G, Münch C. Functional Translatome Proteomics Reveal Converging and Dose-Dependent Regulation by mTORC1 and eIF2α. Mol Cell 2020; 77:913-925.e4. [PMID: 31812349 PMCID: PMC7033560 DOI: 10.1016/j.molcel.2019.11.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022]
Abstract
Regulation of translation is essential during stress. However, the precise sets of proteins regulated by the key translational stress responses-the integrated stress response (ISR) and mTORC1-remain elusive. We developed multiplexed enhanced protein dynamics (mePROD) proteomics, adding signal amplification to dynamic-SILAC and multiplexing, to enable measuring acute changes in protein synthesis. Treating cells with ISR/mTORC1-modulating stressors, we showed extensive translatome modulation with ∼20% of proteins synthesized at highly reduced rates. Comparing translation-deficient sub-proteomes revealed an extensive overlap demonstrating that target specificity is achieved on protein level and not by pathway activation. Titrating cap-dependent translation inhibition confirmed that synthesis of individual proteins is controlled by intrinsic properties responding to global translation attenuation. This study reports a highly sensitive method to measure relative translation at the nascent chain level and provides insight into how the ISR and mTORC1, two key cellular pathways, regulate the translatome to guide cellular survival upon stress.
Collapse
Affiliation(s)
- Kevin Klann
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Frankfurt am Main, Germany; Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
124
|
Deobald D, Hanna R, Shahryari S, Layer G, Adrian L. Identification and characterization of a bacterial core methionine synthase. Sci Rep 2020; 10:2100. [PMID: 32034217 PMCID: PMC7005905 DOI: 10.1038/s41598-020-58873-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/20/2020] [Indexed: 11/18/2022] Open
Abstract
Methionine synthases are essential enzymes for amino acid and methyl group metabolism in all domains of life. Here, we describe a putatively anciently derived type of methionine synthase yet unknown in bacteria, here referred to as core-MetE. The enzyme appears to represent a minimal MetE form and transfers methyl groups from methylcobalamin instead of methyl-tetrahydrofolate to homocysteine. Accordingly, it does not possess the tetrahydrofolate binding domain described for canonical bacterial MetE proteins. In Dehalococcoides mccartyi strain CBDB1, an obligate anaerobic, mesophilic, slowly growing organohalide-respiring bacterium, it is encoded by the locus cbdbA481. In line with the observation to not accept methyl groups from methyl-tetrahydrofolate, all known genomes of bacteria of the class Dehalococcoidia lack metF encoding for methylene-tetrahydrofolate reductase synthesizing methyl-tetrahydrofolate, but all contain a core-metE gene. We heterologously expressed core-MetECBDB in E. coli and purified the 38 kDa protein. Core-MetECBDB exhibited Michaelis-Menten kinetics with respect to methylcob(III)alamin (KM ≈ 240 µM) and L-homocysteine (KM ≈ 50 µM). Only methylcob(III)alamin was found to be active as methyl donor with a kcat ≈ 60 s-1. Core-MetECBDB did not functionally complement metE-deficient E. coli strain DH5α (ΔmetE::kan) suggesting that core-MetECBDB and the canonical MetE enzyme from E. coli have different enzymatic specificities also in vivo. Core-MetE appears to be similar to a MetE-ancestor evolved before LUCA (last universal common ancestor) using methylated cobalamins as methyl donor whereas the canonical MetE consists of a tandem repeat and might have evolved by duplication of the core-MetE and diversification of the N-terminal part to a tetrahydrofolate-binding domain.
Collapse
Affiliation(s)
- Darja Deobald
- Leipzig University, Institute of Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Permoserstraße 15, 04318, Leipzig, Germany
| | - Rafael Hanna
- Leipzig University, Institute of Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany
- Freiburg University, Institute of Pharmaceutical Sciences, Stefan-Meier-Straße 19, 79104, Freiburg im Breisgau, Germany
| | - Shahab Shahryari
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Permoserstraße 15, 04318, Leipzig, Germany
| | - Gunhild Layer
- Leipzig University, Institute of Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany
- Freiburg University, Institute of Pharmaceutical Sciences, Stefan-Meier-Straße 19, 79104, Freiburg im Breisgau, Germany
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Permoserstraße 15, 04318, Leipzig, Germany.
- Technische Universität Berlin, Chair of Geobiotechnology, Ackerstraße 76, 13355, Berlin, Germany.
| |
Collapse
|
125
|
Dao Duc K, Batra SS, Bhattacharya N, Cate JHD, Song YS. Differences in the path to exit the ribosome across the three domains of life. Nucleic Acids Res 2019; 47:4198-4210. [PMID: 30805621 PMCID: PMC6486554 DOI: 10.1093/nar/gkz106] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/22/2019] [Indexed: 01/07/2023] Open
Abstract
The ribosome exit tunnel is an important structure involved in the regulation of translation and other essential functions such as protein folding. By comparing 20 recently obtained cryo-EM and X-ray crystallography structures of the ribosome from all three domains of life, we here characterize the key similarities and differences of the tunnel across species. We first show that a hierarchical clustering of tunnel shapes closely reflects the species phylogeny. Then, by analyzing the ribosomal RNAs and proteins, we explain the observed geometric variations and show direct association between the conservations of the geometry, structure and sequence. We find that the tunnel is more conserved in the upper part close to the polypeptide transferase center, while in the lower part, it is substantially narrower in eukaryotes than in bacteria. Furthermore, we provide evidence for the existence of a second constriction site in eukaryotic exit tunnels. Overall, these results have several evolutionary and functional implications, which explain certain differences between eukaryotes and prokaryotes in their translation mechanisms. In particular, they suggest that major co-translational functions of bacterial tunnels were externalized in eukaryotes, while reducing the tunnel size provided some other advantages, such as facilitating the nascent chain elongation and enabling antibiotic resistance.
Collapse
Affiliation(s)
- Khanh Dao Duc
- Computer Science Division, University of California, Berkeley, CA 94720, USA
| | - Sanjit S Batra
- Computer Science Division, University of California, Berkeley, CA 94720, USA
| | | | - Jamie H D Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, CA 94720, USA.,Department of Statistics, University of California, Berkeley, CA 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
126
|
Feiner RC, Teschner J, Teschner KE, Radukic MT, Baumann T, Hagen S, Hannappel Y, Biere N, Anselmetti D, Arndt KM, Müller KM. rAAV Engineering for Capsid-Protein Enzyme Insertions and Mosaicism Reveals Resilience to Mutational, Structural and Thermal Perturbations. Int J Mol Sci 2019; 20:ijms20225702. [PMID: 31739438 PMCID: PMC6887778 DOI: 10.3390/ijms20225702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Recombinant adeno-associated viruses (rAAV) provide outstanding options for customization and superior capabilities for gene therapy. To access their full potential, facile genetic manipulation is pivotal, including capsid loop modifications. Therefore, we assessed capsid tolerance to modifications of the structural VP proteins in terms of stability and plasticity. Flexible glycine-serine linkers of increasing sizes were, at the genetic level, introduced into the 587 loop region of the VP proteins of serotype 2, the best studied AAV representative. Analyses of biological function and thermal stability with respect to genome release of viral particles revealed structural plasticity. In addition, insertion of the 29 kDa enzyme β-lactamase into the loop region was tested with a complete or a mosaic modification setting. For the mosaic approach, investigation of VP2 trans expression revealed that a Kozak sequence was required to prevent leaky scanning. Surprisingly, even the full capsid modification with β-lactamase allowed for the assembly of capsids with a concomitant increase in size. Enzyme activity assays revealed lactamase functionality for both rAAV variants, which demonstrates the structural robustness of this platform technology.
Collapse
Affiliation(s)
- Rebecca C. Feiner
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
| | - Julian Teschner
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
| | - Kathrin E. Teschner
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
| | - Marco T. Radukic
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
| | - Tobias Baumann
- Biocatalysis group, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany;
| | | | - Yvonne Hannappel
- Physical and Biophysical Chemistry (PCIII), Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany;
| | - Niklas Biere
- Experimental Biophysics and Applied Nanoscience, Physics Department, Bielefeld University, 33615 Bielefeld, Germany; (N.B.); (D.A.)
| | - Dario Anselmetti
- Experimental Biophysics and Applied Nanoscience, Physics Department, Bielefeld University, 33615 Bielefeld, Germany; (N.B.); (D.A.)
| | - Katja M. Arndt
- Molecular Biotechnology, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany;
| | - Kristian M. Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
- Correspondence: ; Tel.: +49-521-106-6323
| |
Collapse
|
127
|
Mishra B, Chowdhury D. Biologically motivated three-species exclusion model: Effects of leaky scanning and overlapping genes on initiation of protein synthesis. Phys Rev E 2019; 100:022106. [PMID: 31574638 DOI: 10.1103/physreve.100.022106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Indexed: 11/07/2022]
Abstract
The totally asymmetric simple exclusion process was originally introduced as a model for the trafficlike collective movement of ribosomes on a messenger RNA (mRNA) that serves as the track for the motorlike forward stepping of individual ribosomes. In each step, a ribosome elongates a protein by a single unit using the track also as a template for protein synthesis. But, prefabricated functionally competent ribosomes are not available to begin synthesis of protein; a subunit directionally scans the mRNA in search of the predesignated site where it is supposed to bind with the other subunit and begin the synthesis of the corresponding protein. However, because of "leaky" scanning, a fraction of the scanning subunits miss the target site and continue their search beyond the first target. Sometimes such scanners successfully identify the site that marks the site for initiation of the synthesis of a different protein. In this paper, we develop an exclusion model with three interconvertible species of hard rods to capture some of the key features of these biological phenomena and study the effects of the interference of the flow of the different species of rods on the same lattice. More specifically, we identify the mean time for the initiation of protein synthesis as appropriate mean first-passage time that we calculate analytically using the formalism of backward master equations. Despite the approximations made, our analytical predictions are in reasonably good agreement with the numerical data that we obtain by performing Monte Carlo simulations.
Collapse
Affiliation(s)
- Bhavya Mishra
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Debashish Chowdhury
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
128
|
Royal P, Sandoz G. [Ion channels and mechanisms of inherited disease transmission causing migraine]. Med Sci (Paris) 2019; 35:608-610. [PMID: 31539490 DOI: 10.1051/medsci/2019121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Perrine Royal
- Université Côte d'Azur, CNRS, Inserm, iBV, Campus Valrose, 28, avenue de Valrose, 06108 Nice, France. - Laboratories of excellence, ion channel science and therapeutics, 06108 Nice, France
| | - Guillaume Sandoz
- Université Côte d'Azur, CNRS, Inserm, iBV, Campus Valrose, 28, avenue de Valrose, 06108 Nice, France. - Laboratories of excellence, ion channel science and therapeutics, 06108 Nice, France
| |
Collapse
|
129
|
Bencun M, Klinke O, Hotz-Wagenblatt A, Klaus S, Tsai MH, Poirey R, Delecluse HJ. Translational profiling of B cells infected with the Epstein-Barr virus reveals 5' leader ribosome recruitment through upstream open reading frames. Nucleic Acids Res 2019. [PMID: 29529302 PMCID: PMC5887285 DOI: 10.1093/nar/gky129] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Epstein-Barr virus (EBV) genome encodes several hundred transcripts. We have used ribosome profiling to characterize viral translation in infected cells and map new translation initiation sites. We show here that EBV transcripts are translated with highly variable efficiency, owing to variable transcription and translation rates, variable ribosome recruitment to the leader region and coverage by monosomes versus polysomes. Some transcripts were hardly translated, others mainly carried monosomes, showed ribosome accumulation in leader regions and most likely represent non-coding RNAs. A similar process was visible for a subset of lytic genes including the key transactivators BZLF1 and BRLF1 in cells infected with weakly replicating EBV strains. This suggests that ribosome trapping, particularly in the leader region, represents a new checkpoint for the repression of lytic replication. We could identify 25 upstream open reading frames (uORFs) located upstream of coding transcripts that displayed 5′ leader ribosome trapping, six of which were located in the leader region shared by many latent transcripts. These uORFs repressed viral translation and are likely to play an important role in the regulation of EBV translation.
Collapse
Affiliation(s)
- Maja Bencun
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Olaf Klinke
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- German Cancer Research Center (DKFZ), Core Facility Genomics & Proteomics, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Severina Klaus
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Ming-Han Tsai
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Remy Poirey
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| |
Collapse
|
130
|
Li Z, Bock R. Rapid functional activation of a horizontally transferred eukaryotic gene in a bacterial genome in the absence of selection. Nucleic Acids Res 2019; 47:6351-6359. [PMID: 31106341 PMCID: PMC6614815 DOI: 10.1093/nar/gkz370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/07/2019] [Accepted: 04/30/2019] [Indexed: 12/02/2022] Open
Abstract
Horizontal gene transfer has occurred between organisms of all domains of life and contributed substantially to genome evolution in both prokaryotes and eukaryotes. Phylogenetic evidence suggests that eukaryotic genes horizontally transferred to bacteria provided useful new gene functions that improved metabolic plasticity and facilitated adaptation to new environments. How these eukaryotic genes evolved into functional bacterial genes is not known. Here, we have conducted a genetic screen to identify the mechanisms involved in functional activation of a eukaryotic gene after its transfer into a bacterial genome. We integrated a eukaryotic selectable marker gene cassette driven by expression elements from the red alga Porphyridium purpureum into the genome of Escherichia coli. Following growth under non-selective conditions, gene activation events were indentified by antibiotic selection. We show that gene activation in the bacterial recipient occurs at high frequency and involves two major types of spontaneous mutations: deletion and gene amplification. We further show that both mechanisms result in promoter capture and are frequently triggered by microhomology-mediated recombination. Our data suggest that horizontally transferred genes have a high probability of acquiring functionality, resulting in their maintenance if they confer a selective advantage.
Collapse
Affiliation(s)
- Zhichao Li
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
131
|
Royal P, Ávalos Prado P, Wdziekonski B, Sandoz G. [Two-pore-domain potassium channels and molecular mechanisms underlying migraine]. Biol Aujourdhui 2019; 213:51-57. [PMID: 31274103 DOI: 10.1051/jbio/2019020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 11/14/2022]
Abstract
Migraine is a common, disabling neurological disorder with genetic, environmental and hormonal components and a prevalence estimated at ∼15%. Migraine episodes are notably related, among several factors, to electric hyperexcitability in sensory neurons. Their electrical activity is controlled by ion channels that generate current, specifically by the two-pore-domain potassium, K2P, channels, which inhibit electrical activity. Mutation in the gene encoding TRESK, a K2P channel, causes the formation of TRESK-MT1, the expected non-functional C-terminal truncated TRESK channel, and an additional unexpected protein, TRESK-MT2, which corresponds to a non-functional N-terminal truncated TRESK channel, through a mechanism called frameshift mutation-induced Alternative Translation Initiation (fsATI). TRESK-MT1 is inactive but TRESK-M2 targets two other ion channels, TREK1 and TREK2, inducing a great stimulation of the neuronal electrical activity that may cause migraines. These findings identify TREK1 and TREK2 as potential molecular targets for migraine treatment and suggest that fsATI should be considered as a distinct class of mutations.
Collapse
Affiliation(s)
- Perrine Royal
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France - Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Pablo Ávalos Prado
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France - Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Brigitte Wdziekonski
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France - Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| | - Guillaume Sandoz
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France - Laboratories of Excellence, Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
132
|
Cardon T, Salzet M, Franck J, Fournier I. Nuclei of HeLa cells interactomes unravel a network of ghost proteins involved in proteins translation. Biochim Biophys Acta Gen Subj 2019; 1863:1458-1470. [PMID: 31128158 DOI: 10.1016/j.bbagen.2019.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/18/2019] [Accepted: 05/14/2019] [Indexed: 11/29/2022]
Abstract
Ghost proteins are issued from alternative Open Reading Frames (ORFs) and are missing a genome annotation. Indeed, historical filters applied for the detection of putative translated ORFs led to a wrong classification of transcripts considered as non-coding although translated proteins can be detected by proteomics. This Ghost (also called Alternative) proteome was neglected, and one major issue is to identify the implication of the Ghost proteins in the biological processes. In this context, we aimed to identify the protein-protein interactions (PPIs) of the Ghost proteins. For that, we re-explored a cross-link MS study performed on nuclei of HeLa cells using cross-linking mass spectrometry (XL-MS) associated with the HaltOrf database. Among 1679 cross-link interactions identified, 292 are involving Ghost Proteins. Forty-Four of these Ghost proteins are found to interact with 7 Reference proteins related to ribonucleoproteins, ribosome subunits and zinc finger proteins network. We, thus, have focused our attention on the heterotrimer between the RE/poly(U)-binding/degradation factor 1 (AUF1), the Ribosomal protein 10 (RPL10) and AltATAD2. Using I-Tasser software we performed docking models from which we could suggest the attachment of AUF1 on the external part of RPL10 and the interaction of AltATAD2 on the RPL10 region interacting with 5S ribosomal RNA as a mechanism of regulation of the ribosome. Taken together, these results reveal the importance of Ghost Proteins within known protein interaction networks.
Collapse
Affiliation(s)
- Tristan Cardon
- Inserm, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
| | - Michel Salzet
- Inserm, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France.
| | - Julien Franck
- Inserm, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France.
| | - Isabelle Fournier
- Inserm, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France.
| |
Collapse
|
133
|
Kim YC, Kwon WJ, Min JG, Kim KI, Jeong HD. Complete genome sequence and pathogenic analysis of a new betanodavirus isolated from shellfish. JOURNAL OF FISH DISEASES 2019; 42:519-531. [PMID: 30694526 DOI: 10.1111/jfd.12950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
We determined the complete genomic RNA sequence of a new type of betanodavirus Korea shellfish nervous necrosis virus (KSNNV) isolated from shellfish. Compared with other isolates representing four genotypes of betanodaviruses, the identity of the whole nucleotide sequence of the virus was in the range of 76%-83% with the presence of specific genetic motifs and formed a separate new branch in the phylogenetic analysis. In pathogenic analysis by immersion method, KSNNV-KOR1 shows 100% cumulative mortality like SFRG10/2012BGGa1 (RGNNV) in newly hatched sevenband grouper and mandarin fish, which is clearly different from those found in negative control groups. There were no significant differences in increasing rates of mortality and viral intra-tissue concentration of larval fishes infected with KSNNV-KOR1 at both 20 and 25°C water temperature. Histopathological examination of each fish species in the moribund stage revealed the presence of clear vacuoles in both brain and retinal tissues similar to typical histopathology features of RGNNV. In the present study, we first report a new betanodavirus from shellfish as the aetiological agent of viral nervous necrosis disease in fish with complete genomic nucleotide sequence and pathogenic analysis.
Collapse
Affiliation(s)
- Young Chul Kim
- Aquatic Disease Control Division, National Institute of Fisheries Science, Busan, Korea
| | - Woo Ju Kwon
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | - Joon Gyu Min
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | - Kwang Il Kim
- Pathology Research Division, Aquaculture Research Department, National Institute of Fisheries Science, Busan, Korea
| | - Hyun Do Jeong
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| |
Collapse
|
134
|
The Triticum Mosaic Virus Internal Ribosome Entry Site Relies on a Picornavirus-Like YX-AUG Motif To Designate the Preferred Translation Initiation Site and To Likely Target the 18S rRNA. J Virol 2019; 93:JVI.01705-18. [PMID: 30541835 DOI: 10.1128/jvi.01705-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022] Open
Abstract
Several viruses encode an internal ribosome entry site (IRES) at the 5' end of their RNA, which, unlike most cellular mRNAs, initiates translation in the absence of a 5' m7GpppG cap. Here, we report a uniquely regulated translation enhancer found in the 739-nucelotide (nt) sequence of the Triticum mosaic virus (TriMV) leader sequence that distinguishes the preferred initiation site from a plethora of IRES-encoded AUG triplets. Through deletion mutations of the TriMV 5' untranslated region (UTR), we show that the TriMV 5' UTR encodes a cis-acting picornaviral Y16-X11-AUG-like motif with a 16-nt polypyrimidine CU-tract (Y16), at a precise, 11-nt distance (X11) from the preferred 13th AUG. Phylogenetic analyses indicate that this motif is conserved among potyviral leader sequences with multiple AUGs. Consistent with a broadly conserved mechanism, the motif could be functionally replaced with known picornavirus YX-AUG motifs and is predicted to function as target sites for the 18S rRNA by direct base pairing. Accordingly, mutations that disrupted overall complementarity to the 18S rRNA markedly reduced TriMV IRES activity, as did the delivery of antisense oligonucleotides designed to block YX-AUG accessibility. To our knowledge, this is the first report of a plant viral IRES YX-AUG motif, and our findings suggest that a conserved mechanism regulates translation for multiple economically important plant and animal positive single-stranded RNA viruses.IMPORTANCE Uncapped viral RNAs often rely on their 5' leader sequences to initiate translation, and the Triticum mosaic virus (TriMV) devotes an astonishing 7% of its genome to directing ribosomes to the correct AUG. Here we uncover a novel mechanism by which a TriMV cis-regulatory element controls cap-independent translation. The upstream region of the functional AUG contains a 16-nt polypyrimidine tract located 11 nt from the initiation site. Based on functional redundancy with similar motifs derived from human picornaviruses, the motif is likely to operate by directing ribosome targeting through base pairing with 18S rRNA. Our results provide the first report of a broad-spectrum mechanism regulating translation initiation for both plant- and animal-hosted picornaviruses.
Collapse
|
135
|
Xie Z, Hou Y, Yu M, Liu Y, Fan Y, Zhang W, Wang Z, Xiong H, Yuan Y. Clinical and genetic spectrum of sarcoglycanopathies in a large cohort of Chinese patients. Orphanet J Rare Dis 2019; 14:43. [PMID: 30764848 PMCID: PMC6376703 DOI: 10.1186/s13023-019-1021-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/03/2019] [Indexed: 11/20/2022] Open
Abstract
Background Sarcoglycanopathies comprise four subtypes of autosomal recessive limb-girdle muscular dystrophy (LGMD2C, LGMD2D, LGMD2E, and LGMD2F) that are caused, respectively, by mutations in the SGCG, SGCA, SGCB, and SGCD genes. Knowledge about the clinical and genetic features of sarcoglycanopathies in Chinese patients is limited. The aims of this study were to investigate in detail the clinical manifestations, sarcoglycan expression, and gene mutations in Chinese patients with sarcoglycanopathies and to identify possible correlations between them. Results Of 3638 patients for suspected neuromuscular diseases (1733 with inherited myopathies, 1557 with acquired myopathies, and 348 unknown), 756 patients had next-generation sequencing (NGS) diagnostic panel. Twenty-five patients with sarcoglycanopathies (11.5%) were identified from 218 confirmed LGMDs, comprising 18 with LGMD2D, 6 with LGMD2E, and one with LGMD2C. One patient with LGMD2D also had Charcot-Marie-Tooth 1A. The clinical phenotypes of the patients with LGMD2D or LGMD2E were markedly heterogeneous. Muscle biopsy showed a dystrophic pattern in 19 patients and mild myopathic changes in 6. The percentage of correct prediction of genotype based on expression of sarcoglycan was 36.0% (4 LGMD2D, 4 LGMD2E, and one LGMD2C). There was a statistically significant positive correlation between reduction of α-sarcoglycan level and disease severity in LGMD2D. Thirty-five mutations were identified in SGCA, SGCB, SGCG, and PMP22, 16 of which were novel. Exon 3 of SGCA was a hotspot region for mutations in LGMD2D. The missense mutation c.662G > A (p.R221H) was the most common mutation in SGCA. Missense mutations in both alleles of SGCA were associated with a relative benign disease course. No obvious clinical, sarcoglycan expression, and genetic correlation was found in LGMD2E. Conclusions This study expands the clinical and genetic spectrum of sarcoglycanopathies in Chinese patients and provides evidence that disease severity of LGMD2D may be predicted by α-sarcoglycan expression and SGCA mutation. Electronic supplementary material The online version of this article (10.1186/s13023-019-1021-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiying Xie
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, China
| | - Yue Hou
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, China
| | - Yilin Liu
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, China
| | - Yanbin Fan
- Department of Pediatrics, Peking University First Hospital, Xishiku St, Xicheng District, Beijing, 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Xishiku St, Xicheng District, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
136
|
Grymová T, Grodecká L, Souček P, Freiberger T. SERPING1 exon 3 splicing variants using alternative acceptor splice sites. Mol Immunol 2019; 107:91-96. [PMID: 30685616 DOI: 10.1016/j.molimm.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
Abstract
Mutations in the C1 inhibitor (C1INH) encoding gene, SERPING1, are associated with hereditary angioedema (HAE) which manifests as recurrent submucosal and subcutaneous edema episodes. The major C1INH function is the complement system inhibition, preventing its spontaneous activation. The presented study is focused on SERPING1 exon 3, an alternative and extraordinarily long exon (499 bp). Endogenous expression analysis performed in the HepG2, human liver, and human peripheral blood cells revealed several exon 3 splicing variants alongside exon inclusion: a highly prevalent exon skipping variant and less frequent +38 and -15 variants with alternative 3' splice sites (ss) located 38 and 15 nucleotides downstream and upstream from the authentic 3' ss, respectively. An exon skipping variant introducing a premature stop codon, represented nearly one third of all splicing variants and surprisingly appeared not to be degraded by NMD. The alternative -15 3' ss was used to a small extent, although predicted to be extremely weak. Its use was shown to be independent of its strength and highly sensitive to any changes in the surrounding sequence. -15 3' ss seems to be co-regulated with the authentic 3' ss, whose use is dependent mainly on its strength and less on the presence of intronic regulatory motifs. Subtle SERPING1 exon 3 splicing regulation can contribute to overall C1INH plasma levels and HAE pathogenesis.
Collapse
Affiliation(s)
- Tereza Grymová
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
| | - Lucie Grodecká
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
| | - Přemysl Souček
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic; CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic; Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
137
|
Mohanta TK, Khan AL, Hashem A, Allah EFA, Yadav D, Al-Harrasi A. Genomic and evolutionary aspects of chloroplast tRNA in monocot plants. BMC PLANT BIOLOGY 2019; 19:39. [PMID: 30669974 PMCID: PMC6341768 DOI: 10.1186/s12870-018-1625-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/28/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Chloroplasts are one of the most indispensable organelles that make life forms on the earth possible by their capacity to photosynthesize. These organelles possess a circular genome with a number of coding genes responsible for self-regulation. tRNAs are an important evolutionary-conserved gene family that are responsible for protein translation. However, within the chloroplast genome, tRNA machinery are poorly understood. RESULTS In the present study, the chloroplast genome of six monocot plants, Oryza nivara (NC_005973), Oryza sativa (NC_001320), Sachharum officinarum (NC_006084), Sorghum bicolor (NC_008602), Triticum aestivum (NC_002762), and Zea mays (NC_001666) were downloaded and analyzed to identify tRNA sequences. Further analysis of the tRNA sequences in the chloroplast genomes of the monocot plants resulted in the identification of several novel features. The length of tRNAs in the chloroplast genome of the monocot plants ranged from 59 to 155 nucleotides. Pair-wise sequence alignment revealed the presence of a conserved A-C-x-U-A-x-U-A-x-U-x5-U-A-A nucleotide consensus sequence. In addition, the tRNAs in chloroplast genomes of the monocot plants also contain 21-28 anti-codons against 61 sense codons in the genome. They also contain a group I intron and a C-A-U anti-codon for tRNAIle, which is a common anti-codon of tRNAMet. Evolutionary analysis indicates that tRNAs in the chloroplast genome have evolved from multiple common ancestors, and tRNAMet appears to be the ancestral tRNA that underwent duplication and diversification to give rise to other tRNAs. CONCLUSION The results obtained from the study of chloroplast tRNA will greatly help to increase our understanding of tRNA biology at a new level. Functional studies of the reported novel aspects of the chloroplast tRNA of the monocot plants will greatly help to decipher their roles in diverse cellular processes.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza, Egypt
| | - Elsayed Fathi Abd_ Allah
- Plant Production Department, College of Food and Agriculture Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541 Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Nizwa, Oman
| |
Collapse
|
138
|
Groher AC, Jager S, Schneider C, Groher F, Hamacher K, Suess B. Tuning the Performance of Synthetic Riboswitches using Machine Learning. ACS Synth Biol 2019; 8:34-44. [PMID: 30513199 DOI: 10.1021/acssynbio.8b00207] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Riboswitch development for clinical, technological, and synthetic biology applications constantly seeks to optimize regulatory behavior. Here, we present a machine learning approach to improve the regulation of a tetracycline (tc)-dependent riboswitch device composed of two individual tc aptamers. We developed a bioinformatics model that combines random forest analysis with a convolutional neural network to predict the switching behavior of such tandem riboswitches. We found that both biophysical parameters and the hydrogen bond pattern influence regulation. Our new design pipeline led to significant improvement of the tc riboswitch device with a dynamic range extension from 8.5 to 40-fold. We are confident that our novel method not only results in an excellent tc-dependent riboswitch device but further holds great promise and potential for the optimization of other riboswitches.
Collapse
|
139
|
Sapkota D, Lake AM, Yang W, Yang C, Wesseling H, Guise A, Uncu C, Dalal JS, Kraft AW, Lee JM, Sands MS, Steen JA, Dougherty JD. Cell-Type-Specific Profiling of Alternative Translation Identifies Regulated Protein Isoform Variation in the Mouse Brain. Cell Rep 2019; 26:594-607.e7. [PMID: 30650354 PMCID: PMC6392083 DOI: 10.1016/j.celrep.2018.12.077] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/23/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
Alternative translation initiation and stop codon readthrough in a few well-studied cases have been shown to allow the same transcript to generate multiple protein variants. Because the brain shows a particularly abundant use of alternative splicing, we sought to study alternative translation in CNS cells. We show that alternative translation is widespread and regulated across brain transcripts. In neural cultures, we identify alternative initiation on hundreds of transcripts, confirm several N-terminal protein variants, and show the modulation of the phenomenon by KCl stimulation. We also detect readthrough in cultures and show differential levels of normal and readthrough versions of AQP4 in gliotic diseases. Finally, we couple translating ribosome affinity purification to ribosome footprinting (TRAP-RF) for cell-type-specific analysis of neuronal and astrocytic translational readthrough in the mouse brain. We demonstrate that this unappreciated mechanism generates numerous and diverse protein isoforms in a cell-type-specific manner in the brain.
Collapse
Affiliation(s)
- Darshan Sapkota
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison M Lake
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chengran Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hendrik Wesseling
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Guise
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ceren Uncu
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasbir S Dalal
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew W Kraft
- Departments of Neurology, Radiology, and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin-Moo Lee
- Departments of Neurology, Radiology, and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark S Sands
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Deparment of Medicine, Washington University School of Medicine, St. Louis, MO 63112, USA
| | - Judith A Steen
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
140
|
Diamos AG, Mason HS. Modifying the Replication of Geminiviral Vectors Reduces Cell Death and Enhances Expression of Biopharmaceutical Proteins in Nicotiana benthamiana Leaves. FRONTIERS IN PLANT SCIENCE 2019; 9:1974. [PMID: 30687368 PMCID: PMC6333858 DOI: 10.3389/fpls.2018.01974] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/19/2018] [Indexed: 05/23/2023]
Abstract
Plants are a promising platform to produce biopharmaceutical proteins, however, the toxic nature of some proteins inhibits their accumulation. We previously created a replicating geminiviral expression system based on bean yellow dwarf virus (BeYDV) that enables very high-level production of recombinant proteins. To study the role of replication in this system, we generated vectors that allow separate and controlled expression of BeYDV Rep and RepA proteins. We show that the ratio of Rep and RepA strongly affects the efficiency of replication. Rep, RepA, and vector replication all elicit the plant hypersensitive response, resulting in cell death. We find that a modest reduction in expression of Rep and RepA reduces plant leaf cell death which, despite reducing the accumulation of viral replicons, increases target protein accumulation. A single nucleotide change in the 5' untranslated region (UTR) reduced Rep/RepA expression, reduced cell death, and enhanced the production of monoclonal antibodies. We also find that replicating vectors achieve optimal expression with lower Agrobacterium concentrations than non-replicating vectors, further reducing cell death. Viral UTRs are also shown to contribute substantially to cell death, while a native plant-derived 5' UTR does not.
Collapse
|
141
|
Thornbury M, Sicheri J, Slaine P, Getz LJ, Finlayson-Trick E, Cook J, Guinard C, Boudreau N, Jakeman D, Rohde J, McCormick C. Characterization of novel lignocellulose-degrading enzymes from the porcupine microbiome using synthetic metagenomics. PLoS One 2019; 14:e0209221. [PMID: 30601862 PMCID: PMC6314593 DOI: 10.1371/journal.pone.0209221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Plant cell walls are composed of cellulose, hemicellulose, and lignin, collectively known as lignocellulose. Microorganisms degrade lignocellulose to liberate sugars to meet metabolic demands. Using a metagenomic sequencing approach, we previously demonstrated that the microbiome of the North American porcupine (Erethizon dorsatum) is replete with genes that could encode lignocellulose-degrading enzymes. Here, we report the identification, synthesis and partial characterization of four novel genes from the porcupine microbiome encoding putative lignocellulose-degrading enzymes: β-glucosidase, α-L-arabinofuranosidase, β-xylosidase, and endo-1,4-β-xylanase. These genes were identified via conserved catalytic domains associated with cellulose- and hemicellulose-degradation. Phylogenetic trees were created for each of these putative enzymes to depict genetic relatedness to known enzymes. Candidate genes were synthesized and cloned into plasmid expression vectors for inducible protein expression and secretion. The putative β-glucosidase fusion protein was efficiently secreted but did not permit Escherichia coli (E. coli) to use cellobiose as a sole carbon source, nor did the affinity purified enzyme cleave p-Nitrophenyl β-D-glucopyranoside (p-NPG) substrate in vitro over a range of physiological pH levels (pH 5–7). The putative hemicellulose-degrading β-xylosidase and α-L-arabinofuranosidase enzymes also lacked in vitro enzyme activity, but the affinity purified endo-1,4-β-xylanase protein cleaved a 6-chloro-4-methylumbelliferyl xylobioside substrate in acidic and neutral conditions, with maximal activity at pH 7. At this optimal pH, KM, Vmax, and kcat were determined to be 32.005 ± 4.72 μM, 1.16x10-5 ± 3.55x10-7 M/s, and 94.72 s-1, respectively. Thus, our pipeline enabled successful identification and characterization of a novel hemicellulose-degrading enzyme from the porcupine microbiome. Progress towards the goal of introducing a complete lignocellulose-degradation pathway into E. coli will be accelerated by combining synthetic metagenomic approaches with functional metagenomic library screening, which can identify novel enzymes unrelated to those found in available databases.
Collapse
Affiliation(s)
- Mackenzie Thornbury
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jacob Sicheri
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Patrick Slaine
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Landon J. Getz
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emma Finlayson-Trick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jamie Cook
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Caroline Guinard
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nicholas Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David Jakeman
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John Rohde
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
142
|
Focus on Translation Initiation of the HIV-1 mRNAs. Int J Mol Sci 2018; 20:ijms20010101. [PMID: 30597859 PMCID: PMC6337239 DOI: 10.3390/ijms20010101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
To replicate and disseminate, viruses need to manipulate and modify the cellular machinery for their own benefit. We are interested in translation, which is one of the key steps of gene expression and viruses that have developed several strategies to hijack the ribosomal complex. The type 1 human immunodeficiency virus is a good paradigm to understand the great diversity of translational control. Indeed, scanning, leaky scanning, internal ribosome entry sites, and adenosine methylation are used by ribosomes to translate spliced and unspliced HIV-1 mRNAs, and some require specific cellular factors, such as the DDX3 helicase, that mediate mRNA export and translation. In addition, some viral and cellular proteins, including the HIV-1 Tat protein, also regulate protein synthesis through targeting the protein kinase PKR, which once activated, is able to phosphorylate the eukaryotic translation initiation factor eIF2α, which results in the inhibition of cellular mRNAs translation. Finally, the infection alters the integrity of several cellular proteins, including initiation factors, that directly or indirectly regulates translation events. In this review, we will provide a global overview of the current situation of how the HIV-1 mRNAs interact with the host cellular environment to produce viral proteins.
Collapse
|
143
|
Szpotkowska J, Swiatkowska A, Ciesiołka J. Length and secondary structure of the 5' non-coding regions of mouse p53 mRNA transcripts - mouse as a model organism for p53 gene expression studies. RNA Biol 2018; 16:25-41. [PMID: 30518296 DOI: 10.1080/15476286.2018.1556084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Transcription initiation sites of Trp53 gene in mice were determined using the 5'RACE method. Based on sequence alignment of the 5'-terminal regions of p53 mRNA in mammals, the site for the most abundant transcript turned out to be essentially identical with that determined for human TP53 gene and slightly differed for the longest transcripts, in mice and humans. Secondary structures of the 5' -terminal regions of the shorter, most abundant and the longest mouse transcripts were determined in vitro and the shorter transcript was also mapped in transfected mouse cells. For the first time, secondary structure models of the 5' terminus of two mouse p53 mRNAs were proposed. Comparing these models with the conservativeness of the nucleotide sequence of the 5'-terminal region of mRNA in mouse and other mammals, the possible function of the selected structural domains of this region was discussed. To elucidate the translation mechanisms, the two studied mRNAs were translated in the presence of an increasing concentration of the cap analog. For the longest transcript, the data suggested that IRES element(s) was/were involved in translation initiation. Additionally, changes in p53 synthesis under genotoxic and endoplasmic reticulum stress conditions in mouse cells were analyzed.
Collapse
Affiliation(s)
- Joanna Szpotkowska
- a Polish Academy of Sciences , Institute of Bioorganic Chemistry , Poznan , Poland
| | - Agata Swiatkowska
- a Polish Academy of Sciences , Institute of Bioorganic Chemistry , Poznan , Poland
| | - Jerzy Ciesiołka
- a Polish Academy of Sciences , Institute of Bioorganic Chemistry , Poznan , Poland
| |
Collapse
|
144
|
Migraine-Associated TRESK Mutations Increase Neuronal Excitability through Alternative Translation Initiation and Inhibition of TREK. Neuron 2018; 101:232-245.e6. [PMID: 30573346 DOI: 10.1016/j.neuron.2018.11.039] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/03/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
It is often unclear why some genetic mutations to a given gene contribute to neurological disorders and others do not. For instance, two mutations have previously been found to produce a dominant negative for TRESK, a two-pore-domain K+ channel implicated in migraine: TRESK-MT, a 2-bp frameshift mutation, and TRESK-C110R. Both mutants inhibit TRESK, but only TRESK-MT increases sensory neuron excitability and is linked to migraine. Here, we identify a new mechanism, termed frameshift mutation-induced alternative translation initiation (fsATI), that may explain why only TRESK-MT is associated with migraine. fsATI leads to the production of a second protein fragment, TRESK-MT2, which co-assembles with and inhibits TREK1 and TREK2, two other two-pore-domain K+ channels, to increase trigeminal sensory neuron excitability, leading to a migraine-like phenotype in rodents. These findings identify TREK1 and TREK2 as potential molecular targets in migraine and suggest that fsATI should be considered as a distinct class of mutations.
Collapse
|
145
|
Gao F, Alekhina OM, Vassilenko KS, Simon AE. Unusual dicistronic expression from closely spaced initiation codons in an umbravirus subgenomic RNA. Nucleic Acids Res 2018; 46:11726-11742. [PMID: 30272199 PMCID: PMC6294492 DOI: 10.1093/nar/gky871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/24/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022] Open
Abstract
Translation commencing at closely spaced initiation codons is common in RNA viruses with limited genome space. In the subgenomic RNA (sgRNA) of Pea enation mosaic virus 2, two closely spaced, out-of-frame start codons direct synthesis of movement/stability proteins p26 and p27. Efficient translation from AUG26/AUG27 is dependent on three 3'-proximal cap-independent translation enhancers (3'CITEs), whereas translation of the genomic (gRNA) requires only two. Contrary to strictly scanning-dependent initiation at the gRNA, sequence context of AUG26/AUG27 does not conform with Kozak requirements and insertion of efficient upstream AUGs had pronounced effects for AUG26 but only moderate effects for AUG27. Insertion of a hairpin within an extended 5' UTR did not significantly impact translation from AUG26/AUG27. Furthermore, AUG27 repressed translation from upstream AUG26 and this effect was mitigated when inter-codon spacing was reduced. Addition of a stable hairpin to the very 5' end of the sgRNA severely restricted translation, testifying that this 3'CITE-driven initiation is 5' end-dependent. Similar to gRNA, sgRNA reporter transcripts were nearly exclusively associated with light polysomes and 3'CITE-promoted long-distance interaction connecting the sgRNA ends affected the number of templates translated and not the initiation rate. We propose a non-canonical, 3'CITE-driven mechanism for efficient dicistronic expression from umbravirus sgRNAs.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Olga M Alekhina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Konstantin S Vassilenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
146
|
Alizad-Rahvar AR, Sadeghi M. Ambiguity in logic-based models of gene regulatory networks: An integrative multi-perturbation analysis. PLoS One 2018; 13:e0206976. [PMID: 30458000 PMCID: PMC6245684 DOI: 10.1371/journal.pone.0206976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023] Open
Abstract
Most studies of gene regulatory network (GRN) inference have focused extensively on identifying the interaction map of the GRNs. However, in order to predict the cellular behavior, modeling the GRN in terms of logic circuits, i.e., Boolean networks, is necessary. The perturbation techniques, e.g., knock-down and over-expression, should be utilized for identifying the underlying logic behind the interactions. However, we will show that by using only transcriptomic data obtained by single-perturbation experiments, we cannot observe all regulatory interactions, and this invisibility causes ambiguity in our model. Consequently, we need to employ the data of multiple omics layers (genome, transcriptome, and proteome) as well as multiple perturbation experiments to reduce or eliminate ambiguity in our modeling. In this paper, we introduce a multi-step perturbation experiment to deal with ambiguity. Moreover, we perform a thorough analysis to investigate which types of perturbations and omics layers play the most important role in the unambiguous modeling of the GRNs and how much ambiguity will be eliminated by considering more perturbations and more omics layers. Our analysis shows that performing both knock-down and over-expression is necessary in order to achieve the least ambiguous model. Moreover, the more steps of the perturbation are taken, the more ambiguity is eliminated. In addition, we can even achieve an unambiguous model of the GRN by using multi-step perturbation and integrating transcriptomic, protein-protein interaction, and cis-element data. Finally, we demonstrate the effect of utilizing different types of perturbation experiment and integrating multi-omics data on identifying the logic behind the regulatory interactions in a synthetic GRN. In conclusion, relying on the results of only knock-down experiments and not including as many omics layers as possible in the GRN inference, makes the results ambiguous, unreliable, and less accurate.
Collapse
Affiliation(s)
- Amir Reza Alizad-Rahvar
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- * E-mail: (ARA); (MS)
| | - Mehdi Sadeghi
- National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
- * E-mail: (ARA); (MS)
| |
Collapse
|
147
|
Bernier SC, Morency LP, Najmanovich R, Salesse C. Identification of an alternative translation initiation site in the sequence of the commonly used Glutathione S-Transferase tag. J Biotechnol 2018; 286:14-16. [DOI: 10.1016/j.jbiotec.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/30/2022]
|
148
|
The 5' Untranslated Region of Human Bocavirus Capsid Transcripts Regulates Viral mRNA Biogenesis and Alternative Translation. J Virol 2018; 92:JVI.00443-18. [PMID: 30111560 PMCID: PMC6189511 DOI: 10.1128/jvi.00443-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Alternative translation of HBoV1 capsid mRNAs is vital for the viral life cycle, as capsid proteins perform essential functions in genome packaging, assembly, and antigenicity. The 5′ untranslated regions (UTRs) of capsid mRNAs are generated by alternative splicing, and they contain different exons. Our study shows that the 5′ UTR not only modulates mRNA abundance but also regulates capsid expression. Two upstream ATGs (uATGs) that were upstream of the capsid translation initiation site in the 5′ UTR were found to affect viral capsid mRNA polyadenylation, alternative translation, and progeny virus production. The results reveal that uATGs play an important role in the viral life cycle and represent a new layer to regulate HBoV1 RNA processing, which could be a target for gene therapy. The capsid mRNA transcripts of human bocavirus 1 (HBoV1) can be generated by alternative splicing from the mRNA precursor transcribed from the P5 promoter. However, the alternative translation regulation mechanism of capsid mRNA transcripts is largely unknown. Here we report that the polycistronic capsid mRNA transcripts encode VP1, VP2, and VP3 in vitro and in vivo. The 5′ untranslated regions (UTRs) of capsid mRNA transcripts, which consist of exons, affected not only the abundance of mRNA but also the translation pattern of capsid proteins. Further study showed that exons 2 and 3 were critical for the abundance of mRNA, while exon 4 regulated capsid translation. Alternative translation of capsid mRNA involved a leaky scan mechanism. Mutating the upstream ATGs (uATGs) located in exon 4 resulted in more mRNA transcripts polyadenylated at the proximal polyadenylation [(pA)p] site, leading to increased capsid mRNA transcripts. Moreover, uATG mutations induced more VP1 expression, while VP3 expression was decreased, which resulted in less progeny virus production. Our data show that the 5′ UTR of HBoV1 plays a critical role in the modulation of mRNA abundance, alternative RNA processing, alternative translation, and progeny virus production. IMPORTANCE Alternative translation of HBoV1 capsid mRNAs is vital for the viral life cycle, as capsid proteins perform essential functions in genome packaging, assembly, and antigenicity. The 5′ untranslated regions (UTRs) of capsid mRNAs are generated by alternative splicing, and they contain different exons. Our study shows that the 5′ UTR not only modulates mRNA abundance but also regulates capsid expression. Two upstream ATGs (uATGs) that were upstream of the capsid translation initiation site in the 5′ UTR were found to affect viral capsid mRNA polyadenylation, alternative translation, and progeny virus production. The results reveal that uATGs play an important role in the viral life cycle and represent a new layer to regulate HBoV1 RNA processing, which could be a target for gene therapy.
Collapse
|
149
|
James CC, Smyth JW. Alternative mechanisms of translation initiation: An emerging dynamic regulator of the proteome in health and disease. Life Sci 2018; 212:138-144. [PMID: 30290184 DOI: 10.1016/j.lfs.2018.09.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023]
Abstract
Eukaryotic mRNAs were historically thought to rely exclusively on recognition and binding of their 5' cap by initiation factors to effect protein translation. While internal ribosome entry sites (IRESs) are well accepted as necessary for the cap-independent translation of many viral genomes, there is now recognition that eukaryotic mRNAs also undergo non-canonical modes of translation initiation. Recently, high-throughput assays have identified thousands of mammalian transcripts with translation initiation occurring at non-canonical start codons, upstream of and within protein coding regions. In addition to IRES-mediated events, regulatory mechanisms of translation initiation have been described involving alternate 5' cap recognition, mRNA sequence elements, and ribosome selection. These mechanisms ensure translation of specific mRNAs under conditions where cap-dependent translation is shut down and contribute to pathological states including cardiac hypertrophy and cancer. Such global and gene-specific dynamic regulation of translation presents us with an increasing number of novel therapeutic targets. While these newly discovered modes of translation initiation have been largely studied in isolation, it is likely that several act on the same mRNA and exquisite coordination is necessary to maintain 'normal' translation. In this short review, we summarize the current state of knowledge of these alternative mechanisms of eukaryotic protein translation, their contribution to normal and pathological cell biology, and the potential of targeting translation initiation therapeutically in human disease.
Collapse
Affiliation(s)
- Carissa C James
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - James W Smyth
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA, USA; Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA.
| |
Collapse
|
150
|
Interaction of rRNA with mRNA and tRNA in Translating Mammalian Ribosome: Functional Implications in Health and Disease. Biomolecules 2018; 8:biom8040100. [PMID: 30261607 PMCID: PMC6316650 DOI: 10.3390/biom8040100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023] Open
Abstract
RNA-RNA interaction slowly emerges as a critical component for the smooth functioning of gene expression processes, in particular in translation where the central actor is an RNA powered molecular machine. Overall, ribosome dynamic results from sequential interactions between three main RNA species: ribosomal, transfer and messenger RNA (rRNA, tRNA and mRNA). In recent decades, special attention has been paid to the physical principles governing codon-anticodon pairing, whereas individual RNA positioning mostly relies on ribosomal RNA framework. Here, we provide a brief overview on the actual knowledge of RNA infrastructure throughout the process of translation in mammalian cells: where and how do these physical contacts occur? What are their potential roles and functions? Are they involved in disease development? What will be the main challenges ahead?
Collapse
|