101
|
Xu X, Goros RA, Dong Z, Meng X, Li G, Chen W, Liu S, Ma J, Zuo YY. Microplastics and Nanoplastics Impair the Biophysical Function of Pulmonary Surfactant by Forming Heteroaggregates at the Alveolar-Capillary Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21050-21060. [PMID: 38055865 DOI: 10.1021/acs.est.3c06668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Microplastics (MPs) are ubiquitous environmental pollutants produced through the degradation of plastic products. Nanoplastics (NPs), commonly coexisting with MPs in the environment, are submicrometer debris incidentally produced from fragmentation of MPs. We studied the biophysical impacts of MPs/NPs derived from commonly used commercial plastic products on a natural pulmonary surfactant extracted from calf lung lavage. It was found that in comparison to MPs/NPs derived from lunch boxes made of polypropylene or from drinking water bottles made of poly(ethylene terephthalate), the MP/NP derived from foam packaging boxes made of polystyrene showed the highest adverse impact on the biophysical function of the pulmonary surfactant. Accordingly, intranasal exposure of MP/NP derived from the foam boxes also induced the most serious proinflammatory responses and lung injury in mice. Atomic force microscopy revealed that NP particles were adsorbed on the air-water surface and heteroaggregated with the pulmonary surfactant film. These results indicate that although the incidentally formed NPs only make up a small mass fraction, they likely play a predominant role in determining the nano-bio interactions and the lung toxicity of MPs/NPs by forming heteroaggregates at the alveolar-capillary interface. These findings may provide novel insights into understanding the health impact of MPs and NPs on the respiratory system.
Collapse
Affiliation(s)
- Xiaojie Xu
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ria A Goros
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101314, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China
| | - Xin Meng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Guangle Li
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101314, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101314, P. R. China
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| |
Collapse
|
102
|
Guo Z, Li P, Yang X, Wang Z, Wu Y, Li G, Liu G, Ritsema CJ, Geissen V, Xue S. Effects of Microplastics on the Transport of Soil Dissolved Organic Matter in the Loess Plateau of China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20138-20147. [PMID: 37934470 DOI: 10.1021/acs.est.3c04023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Microplastics (MPs) pollution and dissolved organic matter (DOM) affect soil quality and functions. However, the effect of MPs on DOM and underlying mechanisms have not been clarified, which poses a challenge to maintaining soil health. Under environmentally relevant conditions, we evaluated the major role of polypropylene particles at four micron-level sizes (20, 200, and 500 μm and mixed) in regulating changes in soil DOM content. We found that an increase in soil aeration by medium and high-intensity (>0.5%) MPs may reduce NH4+ leaching by accelerating soil nitrification. However, MPs have a positive effect on soil nutrient retention through the adsorption of PO43- (13.30-34.46%) and NH4+ (9.03-19.65%) and their leached dissolved organic carbon (MP-leached dissolved organic carbon, MP-DOC), thereby maintaining the dynamic balance of soil nutrients. The regulating ion (Ca2+) is also an important competitor in the MP-DOM adsorption system, and changes in its intensity are dynamically involved in the adsorption process. These findings can help predict the response of soil processes, especially nutrient cycling, to persistent anthropogenic stressors, improve risk management policies on MPs, and facilitate the protection of soil health and function, especially in future agricultural contexts.
Collapse
Affiliation(s)
- Ziqi Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, PR China
| | - Peng Li
- Chendu Engineering Corporation Limited, Power China, Chendu 610072, PR China
| | - Xiaomei Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700 AA Wageningen, Netherlands
| | - Zhanhui Wang
- Drinking Water Safety Testing Technology Innovation Center, Hebei 050000, PR China
| | - Yang Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, PR China
| | - Guanwen Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, PR China
| | - Guobin Liu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Coen J Ritsema
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700 AA Wageningen, Netherlands
| | - Violette Geissen
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700 AA Wageningen, Netherlands
| | - Sha Xue
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, PR China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
103
|
Yang Z, Arakawa H. A beaker method for determination of microplastic concentration by micro-Raman spectroscopy. MethodsX 2023; 11:102251. [PMID: 37448948 PMCID: PMC10336159 DOI: 10.1016/j.mex.2023.102251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/10/2023] [Indexed: 07/18/2023] Open
Abstract
Fourier-transform infrared (FT-IR) spectroscopy method for measuring small microplastic (SMP) concentration in marine environment is time-consuming and labor-intensive due to sample pre-treatment. In contrast, Raman spectroscopy is less influenced by water and can directly measure SMP samples in water, making it a more efficient method to measure SMP concentration. Therefore, a method that can directly estimate the concentration of SMPs in water was developed, and the relationship between SMP concentration and experimental Raman spectra were established by testing with standard polyethylene (PE) samples. It was found that average spectra acquired in water solution could reflect characteristic peaks of the plastic after baseline correction. Further investigation found that there is a significant functional relationship between correlation coefficient of sample spectra and the concentration of PE particles, and such relationship can be modelled by Langmuir model. The empirical functional relationships can be used to estimate SMP concentrations by measuring average Raman spectra. The developed methodology is helpful for developing rapid SMP identification and monitoring methods in a more complex manner.•A method of directly measuring MP concentration in water is proposed.•Experimental procedures are provided.•Data analysis methods are outlined.
Collapse
|
104
|
Abdurahman A, Li S, Li Y, Song X, Gao R. Ecotoxicological effects of antibiotic adsorption behavior of microplastics and its management measures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125370-125387. [PMID: 38006478 DOI: 10.1007/s11356-023-30970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/05/2023] [Indexed: 11/27/2023]
Abstract
Microplastics adsorb heavy metals and organic pollutants to produce combined pollution. Recently, the adsorption behavior of antibiotics on microplastics has received increasing attention. Exploring the sorption behavior of pollutants on microplastics is an important reference in understanding their ecological and environmental risk studies. In this paper, by reviewing the academic literature in recent years, we clarified the current status of research on the adsorption behavior of antibiotics on microplastics, discussed its potential hazards to ecological environment and human health, and summarized the influence of factors on the adsorption mechanisms. The results show that the adsorption behavior of antibiotics on microplastics is controlled by the physical and chemical properties of antibiotics, microplastics, and water environment. Antibiotics are adsorbed on microplastics through physical and chemical interactions, which include hydrophobic interaction, partitioning, electrostatic interaction, and other non-covalent interactions. Intensity of adsorption between them is mainly determined by their physicochemical properties. The basic physicochemical properties of the aqueous environment (e.g., pH, salinity, ionic strength, soluble organic matter content, and temperature) will affect the physicochemical properties of microplastics and antibiotics (e.g., particle size, state of dispersibility, and morphology), leading to differences in the type and strength of their interactions. This paper work is expected to provide a meaningful perspective for better understanding the potential impacts of antibiotic adsorption behavior of microplastics on aquatic ecology and human health. In the meantime, some indications for future related research are provided.
Collapse
Affiliation(s)
- Abliz Abdurahman
- Chemistry Department, College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China.
| | - Shuocong Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yangjie Li
- Guangdong Institute for Drug Control, Guangzhou, 510663, China
| | - Xiaofei Song
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Rui Gao
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
105
|
Shen L, Wang Y, Liu R, Yang Y, Liu Y, Xing B. Aging characteristics of degradable and non-biodegradable microplastics and their adsorption mechanism for sulfonamides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166452. [PMID: 37607636 DOI: 10.1016/j.scitotenv.2023.166452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
As emerging pollutants, microplastics (MPs) and antibiotics (ATs) became a research hotspot in recent years. To evaluate the carrier effect of degradable and non-biodegradable MPs in the aquatic environment, the adsorption behaviors of polyamide (PA) and polylactic acid (PLA) towards two sulfonamide antibiotics (SAs) were investigated. Both chemical and photo-aging were used to handle the virgin MPs. Compared with PA, PLA was aged more drastically, showing the obvious grooves, notches and folds. However, due to the higher temperature during chemical aging, the tiny KPLA (PLA aged by K2S2O8) particles were agglomerated and the specific surface area was reduced to nearly 95 %. For PA, the oxidation of chemical aging was stronger than photo-aging. After aging, the hydrophilicity and polarity of MPs increased. In the adsorption experiments, the adsorption capacity of PA towards SAs was 1.7 times higher than that of PLA. Aging process enabled the adsorption capacity of PLA increased 1.22-3.18 times. Overall, the adsorption capacity of sulfamethoxazole (SMX) by both MPs was superior to sulfamerazine (SMR). These results would help to understand the carrier effects and potential ecological risks of MPs towards co-existing contaminants.
Collapse
Affiliation(s)
- Lezu Shen
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Ruihan Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yanni Yang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yingnan Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
106
|
Liu XY, Wang N, Lv LY, Wang PF, Gao WF, Sun L, Zhang GM, Ren ZJ. Adsorption-desorption behaviors of ciprofloxacin onto aged polystyrene fragments in aquatic environments. CHEMOSPHERE 2023; 341:139995. [PMID: 37652241 DOI: 10.1016/j.chemosphere.2023.139995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
As two emerging pollutants of great concern, microplastics (MPs) and antibiotics inevitably cooccur in various aquatic environments and interact with each other, impacting the fate and ecological risks. Aging obviously complicates their interaction and deserves further study. Therefore, the adsorption-desorption behaviors of ciprofloxacin (CIP) onto polystyrene (PS) fragments with various aging extent were investigated, and the key physiochemical properties influencing the interaction and the interaction mechanisms were clarified by redundancy analysis, FTIR and XPS spectra. The physicochemical properties of PS MPs were significantly changed with aging time, and the morphological and chemical changes seemed to occur asynchronously. The adsorption of CIP onto the pristine PS MPs relied on physisorption, especially the ion-involving electrostatic and cation-π interaction. Due to the hydrogen bonding formed by the C-OH, CO, and O-CO groups of PS and CIP, the adsorption capacities of the aged PS MPs were greatly increased. The desorption efficiency of CIP from MPs in the gastric fluid was closely related to the solution ionic strengths, C-OH and CO groups of MPs, while that in the intestinal fluid was associated with O-CO groups of MPs. The different impact factors could be well described by the differences in the chemical components and pHs of the simulated gastric and intestinal fluids. This study gives a comprehensive understanding of the adsorption-desorption behaviors of antibiotics onto MPs at a molecular level and indicates that MPs could act as Trojan horses to transport antibiotics into aquatic organisms.
Collapse
Affiliation(s)
- Xiao-Yang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Ning Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Long-Yi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Peng-Fei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Wen-Fang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Guang-Ming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China.
| | - Zhi-Jun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| |
Collapse
|
107
|
Miao C, Zhang J, Jin R, Li T, Zhao Y, Shen M. Microplastics in aquaculture systems: Occurrence, ecological threats and control strategies. CHEMOSPHERE 2023; 340:139924. [PMID: 37625491 DOI: 10.1016/j.chemosphere.2023.139924] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
With the intensification of microplastic pollution globally, aquaculture environments also face risks of microplastic contamination through various pathways such as plastic fishing gear. Compared to wild aquatic products, cultured aquatic products are more susceptible to microplastic exposure through fishing tackle, thus assessing the impacts of microplastics on farmed species and human health. However, current research on microplastic pollution and its ecological effects in aquaculture environments still remains insufficient. This article comprehensively summarizes the pollution characteristics and interrelationships of microplastics in aquaculture environments. We analyzed the influence of microplastics on the sustainable development of the aquaculture industry. Then, the potential hazards of microplastics on pond ecosystems and consumer health were elucidated. The strategies for removing microplastics in aquaculture environments are also discussed. Finally, an outlook on the current challenge and the promising opportunities in this area was proposed. This review aims to evaluate the value of assessing microplastic pollution in aquaculture environments and provide guidance for the sustainable development of the aquaculture industry.
Collapse
Affiliation(s)
- Chunheng Miao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Jiahao Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Ruixin Jin
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Tianhao Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| |
Collapse
|
108
|
Town RM, van Leeuwen HP, Duval JFL. Effect of Polymer Aging on Uptake/Release Kinetics of Metal Ions and Organic Molecules by Micro- and Nanoplastics: Implications for the Bioavailability of the Associated Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16552-16563. [PMID: 37856883 PMCID: PMC10620988 DOI: 10.1021/acs.est.3c05148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
The main driver of the potential toxicity of micro- and nanoplastics toward biota is often the release of compounds initially present in the plastic, i.e., polymer additives, as well as environmentally acquired metals and/or organic contaminants. Plastic particles degrade in the environment via various mechanisms and at different rates depending on the particle size/geometry, polymer type, and the prevailing physical and chemical conditions. The rate and extent of polymer degradation have obvious consequences for the uptake/release kinetics and, thus, the bioavailability of compounds associated with plastic particles. Herein, we develop a theoretical framework to describe the uptake and release kinetics of metal ions and organic compounds by plastic particles and apply it to the analysis of experimental data for pristine and aged micro- and nanoplastics. In particular, we elucidate the contribution of transient processes to the overall kinetics of plastic reactivity toward aquatic contaminants and demonstrate the paramount importance of intraparticulate contaminant diffusion.
Collapse
Affiliation(s)
- Raewyn M. Town
- ECOSPHERE,
Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Herman P. van Leeuwen
- ECOSPHERE,
Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
- Physical
Chemistry and Soft Matter, Wageningen University
& Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | | |
Collapse
|
109
|
Chen C, Yin G, Li Q, Gu Y, Sun D, An S, Liang X, Li X, Zheng Y, Hou L, Liu M. Effects of microplastics on denitrification and associated N 2O emission in estuarine and coastal sediments: insights from interactions between sulfate reducers and denitrifiers. WATER RESEARCH 2023; 245:120590. [PMID: 37703755 DOI: 10.1016/j.watres.2023.120590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Global estuarine and coastal zones are facing severe microplastics (MPs) pollution. Sulfate reducers (SRB) and denitrifiers (DNB) are two key functional microorganisms in these zones, exhibiting intricate interactions. However, whether and how MPs modulate the interactions between SRB and DNB, with implications for denitrification and associated N2O emissions, remains poorly understood. Here, we simultaneously investigated the spatial response patterns of SRB-DNB interactions and denitrification and associated N2O emissions to different MPs exposure along an estuarine gradient in the Yangtze Estuary. Spatial responses of denitrification to polyvinyl chloride (PVC) and polyadipate/butylene terephthalate (PBAT) MPs exposure were heterogeneous, while those of N2O emissions were not. Gradient-boosted regression tree and multiple regression model analyses showed that sulfide, followed by nitrate (NO3-), controlled the response patterns of denitrification to MPs exposure. Further mechanistic investigation revealed that exposure to MPs resulted in a competitive and toxic (sulfide accumulation) inhibition of SRB on DNB, ultimately inhibiting denitrification at upstream zones with high sulfide but low NO3- levels. Conversely, MPs exposure induced a competitive inhibition of DNB on SRB, generally promoting denitrification at downstream zones with low sulfide but high NO3- levels. These findings advance the current understanding of the impacts of MPs on nitrogen cycle in estuarine and coastal zones, and provide a novel insight for future studies exploring the response of biogeochemical cycles to MPs in various ecosystems.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| | - Qiuxuan Li
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Youran Gu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Dongyao Sun
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Soonmo An
- Department of Oceanography, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| |
Collapse
|
110
|
Zhao J, Miao L, Yao Y, Adyel TM, Cheng H, Liu S, Liu Y, Hou J. Surface modification significantly changed the effects of nano-polystyrene on sediment microbial communities and nitrogen metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132409. [PMID: 37643574 DOI: 10.1016/j.jhazmat.2023.132409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/31/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Nanoplastics are ubiquitous in the natural environment, and their ecological risks have received considerable attention. Surface modification is common for nanoplastics and an essential factor affecting their toxicity. However, studies on the potential effects of nanoplastics and their surface-modified forms on functional communities in aquatic systems are still scarce. This study investigated the effects of nano-polystyrene (nPS), amino-modified nPS (nPS-NH2), and carboxylated nPS (nPS-COOH) particles on sediment bacterial and fungal communities and their functions over a 60-day incubation period. The results showed that the fungal community was significantly inhibited by nPS-NH2 exposure, while the bacterial community diversity remained relatively stable in all nPS treatments. Proteobacteria and Ascomycota were the dominant phyla for the bacterial and fungal communities, respectively. Nitrification was inhibited in all nPS treatments, while denitrification was enhanced for nPS-NH2 and nPS-COOH treatments. The activity of four key denitrification enzymes (NAR, NIR, NOR, and NOS) was also significantly improved by nPS, resulting in increased nitrogen and nitrous oxide gas production, and decreased nitrate concentrations in the overlying water. This showed the total increased effect of nPS on the activity of denitrifiers. Our results suggest that surface modification significantly affects the effects of nPS on microbial communities and functions. The potential impacts of nPS on ecological functions should be elucidated with more attention.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China; The Fu Foundation School of Engineering and Applied Science, Columbia University, 500 W. 120th Street, New York, NY 10027, USA
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Haomiao Cheng
- School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yang Liu
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210036, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
111
|
Liu P, Dai J, Liu J, Zhang H, Wang G, Guo X, Gao S. Microplastics exhibit lower carrying effects on the bioaccessibility and cytotoxicity of lead than montmorillonite clay particles. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132350. [PMID: 37619279 DOI: 10.1016/j.jhazmat.2023.132350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Microplastics (MPs) in the environment are always colonized by microbes, which may have implications for carrying effect of pollutants and exposure risk in organisms. We present the crucial impacts and mechanisms of microbial colonization on the bioaccessibility and toxicity of Pb(II) loaded in disposable box-derived polypropylene (PP) and polystyrene (PS) MPs and montmorillonite (MMT) clay particles. After 45 d incubation, higher biomass measured by crystal violet staining were detected in MMT (1.23) than in PP and PS (0.400 and 0.721) indicating preferential colonization of microbes in clay particles. Microbial colonization further enhanced the sorption ability toward Pb(II), but inhibited the desorption and bioaccessibility of enriched Pb(II) in zebrafish and decreased the toxicity to gastric epithelial cells in an order of MMT > PS ≈ PP. The crucial effects were mainly because microbe-colonized substrates possessed higher oxygen functional groups and specific surface area and exhibited stronger interactions with Pb(II) and digestive component (i.e., pepsin) than pure substrates. This decreased the available soluble pepsin for complexing with sorbed Pb(II). The findings highlight the role of microbial colonization in modulating the exposure risks of artificial and natural substrate-associated pollutants and suggest that the risks of MPs may be overestimated compared to clay particles.
Collapse
Affiliation(s)
- Peng Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Jiamin Dai
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jingxuan Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Haiyu Zhang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Guowei Wang
- School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
112
|
Chen J, Lei Y, Wen J, Zheng Y, Gan X, Liang Q, Huang C, Song Y. The neurodevelopmental toxicity induced by combined exposure of nanoplastics and penicillin in embryonic zebrafish: The role of aging processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122281. [PMID: 37516295 DOI: 10.1016/j.envpol.2023.122281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
As ubiquitous contaminants, nanoplastics and antibiotics are frequently co-presence and widely detected in the freshwater environment and biota, posing a high co-exposure risk to aquatic organisms and even humans. More importantly, how the aging process of nanoplastics affects the joint toxic potential of nanoplastics and antibiotics has not been explored. Here, we generated two aged polystyrene nanoplastics (PS) by UV radiation (UV-PS) and ozonation (O3-PS). Non-teratogenic concentrations of pristine PS (80 nm) and antibiotics penicillin (PNC) co-exposure synergistically suppressed the embryo heart beating and behaviors of spontaneous movement, touch response, and larval swimming behavioral response. Pristine PS and aged UV-PS, but not aged O3-PS, showed similar effects on zebrafish embryo/larval neurodevelopment. However, when co-exposure with PNC, both aged PS, but not pristine PS, showed antagonistic effects. In late-stage juvenile social behavior testing, we found that PS decreased the exploration in light/dark preference assay. The synergistic effect of aged PS with PNC was further explored, including cellular apoptosis, ROS formation, and neurotransmitter metabolite regulation. Mechanistically, aged UV-PS but not O3-PS significantly increased the adsorption rate of PNC compared to pristine PS, which may account for the toxicity difference between the two aged PS. In conclusion, our results confirmed that PS served as a carrier for PNC, and the environmental aging process changed their neurobehavioral toxicity pattern in vivo.
Collapse
Affiliation(s)
- Jiangfei Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Yuhang Lei
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Jing Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Yi Zheng
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Xiufeng Gan
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Qiuju Liang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
113
|
Zheng Z, Huang Y, Liu L, Wang L, Tang J. Interaction between microplastic biofilm formation and antibiotics: Effect of microplastic biofilm and its driving mechanisms on antibiotic resistance gene. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132099. [PMID: 37517232 DOI: 10.1016/j.jhazmat.2023.132099] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
As two pollutants with similar transport pathways, microplastics (MPs) and antibiotics (ATs) inevitably co-exist in water environments, and their interaction has become a topic of intense research interest for scholars over the past few years. This paper comprehensively and systematically reviews the current interaction between MPs and ATs, in particular, the role played by biofilm developed MPs (microplastic biofilm). A summary of the formation process of microplastic biofilm and its unique microbial community structure is presented in the paper. The formation of microplastic biofilm can enhance the adsorption mechanisms of ATs on primary MPs. Moreover, microplastic biofilm system is a diverse and vast reservoir of genetic material, and this paper reviews the mechanisms by which microplastics with biofilm drive the production of antibiotic resistance genes (ARGs) and the processes that selectively enrich for more ARGs. Meanwhile, the enrichment of ARGs may lead to the development of microbial resistance and the gradual loss of the antimicrobial effect of ATs. The transfer pathways of ARGs affected by microplastic biofilm are outlined, and ARGs dependent transfer of antibiotic resistance bacteria (ARB) is mainly through horizontal gene transfer (HGT). Furthermore, the ecological implications of the interaction between microplastic biofilm and ATs and perspectives for future research are reviewed. This review contributes to a new insight into the aquatic ecological environmental risks and the fate of contaminants (MPs, ATs), and is of great significance for controlling the combined pollution of these two pollutants.
Collapse
Affiliation(s)
- Zhijie Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
114
|
Yang Z, DeLoid GM, Zarbl H, Baw J, Demokritou P. Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs. NANOIMPACT 2023; 32:100481. [PMID: 37717636 PMCID: PMC10841092 DOI: 10.1016/j.impact.2023.100481] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plastic waste has been produced at a rapidly growing rate over the past several decades. The environmental impacts of plastic waste on marine and terrestrial ecosystems have been recognized for years. Recently, researchers found that micro- and nanoplastics (MNPs), micron (100 nm - 5 mm) and nanometer (1 - 100 nm) scale particles and fibers produced by degradation and fragmentation of plastic waste in the environment, have become an important emerging environmental and food chain contaminant with uncertain consequences for human health. This review provides a comprehensive summary of recent findings from studies of potential toxicity and adverse health impacts of MNPs in terrestrial mammals, including studies in both in vitro cellular and in vivo mammalian models. Also reviewed here are recently released biomonitoring studies that have characterized the bioaccumulation, biodistribution, and excretion of MNPs in humans. The majority MNPs in the environment to which humans are most likely to be exposed, are of irregular shapes, varied sizes, and mixed compositions, and are defined as secondary MNPs. However, the MNPs used in most toxicity studies to date were commercially available primary MNPs of polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and other polymers. The emerging in vitro and in vivo evidence reviewed here suggests that MNP toxicity and bioactivity are largely determined by MNP particle physico-chemical characteristics, including size, shape, polymer type, and surface properties. For human exposure, MNPs have been identified in human blood, urine, feces, and placenta, which pose potential health risks. The evidence to date suggests that the mechanisms underlying MNP toxicity at the cellular level are primarily driven by oxidative stress. Nonetheless, large knowledge gaps in our understanding of MNP toxicity and the potential health impacts of MNP exposures still exist and much further study is needed to bridge those gaps. This includes human population exposure studies to determine the environmentally relevant MNP polymers and exposure concentrations and durations for toxicity studies, as well as toxicity studies employing environmentally relevant MNPs, with surface chemistries and other physico-chemical properties consistent with MNP particles in the environment. It is especially important to obtain comprehensive toxicological data for these MNPs to understand the range and extent of potential adverse impacts of microplastic pollutants on humans and other organisms.
Collapse
Affiliation(s)
- Zhenning Yang
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Joshua Baw
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
115
|
Zhu S, Qin L, Li Z, Hu X, Yin D. Effects of nanoplastics and microplastics on the availability of pharmaceuticals and personal care products in aqueous environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131999. [PMID: 37459762 DOI: 10.1016/j.jhazmat.2023.131999] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Nanoplastics (NPs) and microplastics (MPs) could act as potential carriers for pharmaceuticals and personal care products (PPCPs) and alter the bioavailability in the aquatic environment. The effects of NPs and MPs of polystyrene (PS) and polyethylene (PE) on the availability of five PPCPs including carbamazepine, bisphenol A, estrone, triclocarban and 4-tert-octylphenol were investigated by negligible depletion solid- phase microextraction (nd-SPME). The freely dissolved concentrations of PPCPs decreased with the increasing concentrations of NPs/MPs. The overall order of the sorption coefficients (logKNP / logKMP) of PPCPs was as follows: 100 nm PS > 50 nm PS > 1 µm PS > 100 µm PS > 100 µm PE. Sorption of PPCPs by NPs was generally 1-2 orders of magnitude stronger than to MPs. The log KNP / log KMP values (3.16-5.21) increased with the log KOW (2.45-5.28) of PPCPs, however, linear correlation was only observed between log KMP and log KOW. The particle size, specific surface area, aggregation state as well as hydrophobicity played an important role in the sorption. Coexistence of fulic acid (FA) with NPs inhibited the sorption due to the fouling of FA on NPs. This study suggests that sorption of PPCPs to MPs/NPs could reduce bioavailability of PPCPs in the aquatic environment.
Collapse
Affiliation(s)
- Sihan Zhu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lanxue Qin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhiwei Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
116
|
Shi Y, Almuhtaram H, Andrews RC. Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) and Microcystins by Virgin and Weathered Microplastics in Freshwater Matrices. Polymers (Basel) 2023; 15:3676. [PMID: 37765530 PMCID: PMC10535594 DOI: 10.3390/polym15183676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Microplastics and per- and polyfluoroalkyl substances (PFAS) both represent persistent groups of environmental contaminants that have been associated with human health risks. Microcystin toxins are produced and stored in the cells of cyanobacteria and may be released into sources of drinking water. Recent concerns have emerged regarding the ability of microplastics to adsorb a range of organic contaminants, including PFAS and microcystins. This study examined the adsorption of two long-chain and two short-chain PFAS, as well as two common microcystins, by both virgin and weathered microplastics in freshwater. Natural weathering of microplastic surfaces may decrease adsorption by introducing hydrophilic oxygen-containing functional groups. Up to 50% adsorption of perfluorooctanesulfonic acid (PFOS) was observed for virgin PVC compared to 38% for weathered PVC. In contrast, adsorption capacities for microcystins by virgin LDPE were approximately 5.0 µg/g whereas no adsorption was observed following weathering. These results suggest that adsorption is driven by specific polymer types and dominated by hydrophobic interactions. This is the first known study to quantify PFAS and microcystins adsorption when considering environmentally relevant concentrations as well as weathered microplastics.
Collapse
Affiliation(s)
| | - Husein Almuhtaram
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4, Canada
| | | |
Collapse
|
117
|
Wu X, Zhao X, Wang X, Chen R, Liu P, Liang W, Wang J, Shi D, Gao S. Bioaccessibility of polypropylene microfiber-associated tetracycline and ciprofloxacin in simulated human gastrointestinal fluids. ENVIRONMENT INTERNATIONAL 2023; 179:108193. [PMID: 37703772 DOI: 10.1016/j.envint.2023.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Microplastics residues in natural waters can adsorb organic contaminants owing to their rough surface morphology and high specific surface area, potentially harming human health when ingested. Although humans inevitably ingest microplastics, the bioaccessibility of microplastic-associated chemicals in the human gastric and intestinal fluids remains unresolved. This study investigated the mechanism and primary factor controlling the bioaccessibility of polypropylene (PP) microplastic fiber-associated tetracycline (TC) and ciprofloxacin (CIP) in simulated human gastrointestinal fluids. After mixing 0.1 g of PP microfiber with 10 mg/L of TC (or CIP) for 96 h and exposure to simulated human gastrointestinal fluids, the TC concentrations were 0.440, 0.678, and 1.840 mg/L and the CIP concentrations were 0.700, 1.367, and 3.281 mg/L CIP in the simulated human saliva, gastric, and intestinal fluids after incubation for 60 s, 4 h, and 8 h, respectively. This indicated that the antibiotics TC and CIP adsorbed onto microfiber surface are readily released into human gastrointestinal fluids upon ingestion. Gastric and intestinal fluids showed enhanced bioaccessibility to TC/CIP adhered to PP microfiber. The primary factors affecting the bioaccessibility to TC/CIP adhered to PP microfiber surfaces were found to be pepsin in human gastric fluid and trypsin in human intestinal fluid. Molecular docking and simulated molecular dynamic analyses results showed that pepsin and trypsin stablish connections with TC via hydrogen bonds (reaction sites: pepsin TC: T139, T136, S97, D94, D277 and Y251; trypsin TC: S257, H120, K235, G274, and G276) and CIP via hydrophobic interactions (reaction sites: pepsin CIP: Y137, T136, T139, F173, I362, V353, and I275; trypsin CIP: W273, I161, C253, and C277). Our findings highlight that microplastic ingestion increases the risk of microplastics and the co-contaminants adsorbed to human health; thus, these findings are helpful to assess the risk of microplastics and co-contaminants to human health.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rouzheng Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Di Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
118
|
Hu J, Li S, Zhang W, Helbling DE, Xu N, Sun W, Ni J. Animal production predominantly contributes to antibiotic profiles in the Yangtze River. WATER RESEARCH 2023; 242:120214. [PMID: 37329718 DOI: 10.1016/j.watres.2023.120214] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Human-induced antibiotic pollution in the world's large rivers poses significant risk to riverine ecosystems, water quality, and human health. This study identified geophysical and socioeconomic factors driving antibiotic pollution in the Yangtze River by quantifying 83 target antibiotics in water and sediment samples collected in its 6300-km-long reach, followed by source apportionment and statistical modeling. Total antibiotic concentrations ranged between 2.05-111 ng/L in water samples and 0.57-57.9 ng/g in sediment samples, contributed predominantly by veterinary antibiotics, sulfonamides and tetracyclines, respectively. Antibiotic compositions were clustered according to three landform regions (plateau, mountain-basin-foothill, and plains), resulting from varying animal production practices (cattle, sheep, pig, poultry, and aquaculture) in the sub-basins. Population density, animal production, total nitrogen concentration, and river water temperature are directly associated with antibiotic concentrations in the water samples. This study revealed that the species and production of food animals are key determinants of the geographic distribution pattern of antibiotics in the Yangtze River. Therefore, effective strategies to mitigate antibiotic pollution in the Yangtze River should include proper management of antibiotic use and waste treatment in animal production.
Collapse
Affiliation(s)
- Jingrun Hu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences; Environmental Science, and Policy Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Nan Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Jinren Ni
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| |
Collapse
|
119
|
Wu J, Liu C, Wang R, Yan S, Chen B, Zhu X. Enhanced bacterial adhesion force by rifampicin resistance promotes microbial colonization on PE plastic compared to non-resistant biofilm formation. WATER RESEARCH 2023; 242:120319. [PMID: 37441870 DOI: 10.1016/j.watres.2023.120319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The microbial biofilm formed on plastics, is ubiquitous in the environment. However, the effects of antibiotic resistance on the development of the biofilm on plastics, especially with regard to initial cell attachment, remain unclear. In this study, we investigated the initial bacterial adhesion and subsequent biofilm growth of a rifampin (Rif) resistant E. coli (RRE) and a normal gram-positive B. subtilis on a typical plastic (polyethylene, PE). The experiments were conducted in different antibiotic solutions, including Rif, sulfamethoxazole (SMX), and kanamycin (KM), with concentrations ranging from 1 to 1000 μg/L to simulate different aquatic environments. The AFM-based single-cell adhesion force determination revealed that Rif resistance strengthened the adhesion force of RRE to PE in the environment rich in Rif rather than SMX and KM. The enhanced adhesion force may be due to the higher secretion of extracellular polymeric substances (EPS), particularly proteins, by RRE in the presence of Rif compared to the other two antibiotics. In addition, the higher ATP level of RRE would facilitate the initial adhesion and subsequent biofilm growth. Transcriptome analysis of RRE separately cultured in Rif and SMX environments demonstrated a clear correlation between the expression of Rif resistance and the augmented bacterial adhesion and cellular activity. Biofilm biomass analysis confirmed the promotion effect of Rif resistance on biofilm growth when compared to non-resistant biofilms, establishing a novel association with the augmentation of microbial adhesion force. Our study highlights concerns related to the dissemination of antibiotic resistance during microbial colonization on plastic that may arise from antibiotic resistance.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rui Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Saitao Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
120
|
Li Y, Zhu Y, Yan X, Zhang G, Yan G, Li H. Strategy and mechanisms of sulfamethoxazole removal from aqueous systems by single and combined Shewanella oneidensis MR-1 and nanoscale zero-valent iron-enriched biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163676. [PMID: 37100153 DOI: 10.1016/j.scitotenv.2023.163676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
Sulfamethoxazole (SMX, a sulfonamide antibiotic) is ubiquitously present in various aqueous systems, which can accelerate the spread of antibiotic resistance genes, induce genetic mutations, and even disrupt the ecological equilibrium. Considering the potential eco-environmental risk of SMX, this study explored an effective technology using Shewanella oneidensis MR-1 (MR-1) and nanoscale zero-valent iron-enriched biochar (nZVI-HBC) to remove SMX from aqueous systems with different pollution levels (1-30 mg·L-1). SMX removal by nZVI-HBC and nZVI-HBC + MR-1 (55-100 %) under optimal conditions (iron/HBC ratio of 1:5, 4 g·L-1 nZVI-HBC, and 10 % v/v MR-1) was more effective than its removal by MR-1 and biochar (HBC) (8-35 %). This was due to the catalytic degradation of SMX in the nZVI-HBC and nZVI-HBC + MR-1 reaction systems because of accelerated electron transfer during oxidation of nZVI and reduction of Fe(III) to Fe(II). When SMX concentration was lower than 10 mg·L-1, nZVI-HBC + MR-1 effectively removed SMX (removal rate of approximately 100 %) when compared to nZVI-HBC (removal rate of 56-79 %). In addition to oxidation degradation of SMX by nZVI in the nZVI-HBC + MR-1 reaction system, MR-1-driven dissimilatory iron reduction accelerated electron transfer to SMX, thereby enhancing reductive degradation of SMX. However, a considerable decline in SMX removal from the nZVI-HBC + MR-1 system (42 %) was observed when SMX concentrations ranged 15-30 mg·L-1, which was due to the toxicity of accumulated degradation products of SMX. A high interaction probability between SMX and nZVI-HBC promoted the catalytic degradation of SMX in the nZVI-HBC reaction system. The results of this study provide promising strategies and insights for enhancing antibiotic removal from aqueous systems with different pollution levels.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Yuen Zhu
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Xiurong Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China.
| | - Guanyu Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Hua Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| |
Collapse
|
121
|
Pencik O, Durdakova M, Molnarova K, Kucsera A, Klofac D, Kolackova M, Adam V, Huska D. Microplastics and nanoplastics toxicity assays: A revision towards to environmental-relevance in water environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131476. [PMID: 37172431 DOI: 10.1016/j.jhazmat.2023.131476] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Plastic pollution poses a serious risk to the oceans, freshwater ecosystems, and land-based agricultural production. Most plastic waste enters rivers and then reaches the oceans, where its fragmentation process begins and the forming of microplastics (MPs) and nanoplastics (NPs). These particles increase their toxicity by the exposition to external factors and binding environmental pollutants, including toxins, heavy metals, persistent organic pollutants (POPs), halogenated hydrocarbons (HHCs), and other chemicals, which further and cumulatively increase the toxicity of these particles. A major disadvantage of many MNPs in vitro studies is that they do not use environmentally relevant microorganisms, which play a vital role in geobiochemical cycles. In addition, factors such as the polymer type, shapes, and sizes of the MPs and NPs, their exposure times and concentrations must be taken into account in in vitro experiments. Last but not least, it is important to ask whether to use aged particles with bound pollutants. All these factors affect the predicted effects of these particles on living systems, which may not be realistic if they are insufficiently considered. In this article, we summarize the latest findings on MNPs in the environment and propose some recommendations for future in vitro experiments on bacteria, cyanobacteria, and microalgae in water ecosystems.
Collapse
Affiliation(s)
- Ondrej Pencik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Michaela Durdakova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Katarina Molnarova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Attila Kucsera
- Department of Molecular Biology and Radiobiology, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Daniel Klofac
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic.
| |
Collapse
|
122
|
Qiu Y, Zhang T, Zhang P. Fate and environmental behaviors of microplastics through the lens of free radical. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131401. [PMID: 37086675 DOI: 10.1016/j.jhazmat.2023.131401] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), as plastics with a size of less than 5 mm, are ubiquitously present in the environment and become an increasing environmental concern. The fate and environmental behavior of MPs are significantly influenced by the presence of free radicals. Free radicals can cause surface breakage, chemical release, change in crystallinity and hydrophilicity, and aggregation of MPs. On the other hand, the generation of free radicals with a high concentration and oxidation potential can effectively degrade MPs. There is a limited review article to bridge the fate and environmental behaviors of MP with free radicals and their reactions. This paper reviews the sources, types, detection methods, generation mechanisms, and influencing factors of free radicals affecting the environmental processes of MPs, the environmental effects of MPs controlled by free radicals, and the degradation strategies of MPs based on free radical-associated technologies. Moreover, this review elaborates on the limitations of the current research and provides ideas for future research on the interactions between MPs and free radicals to better explain their environmental impacts and control their risks. This article aims to keep the reader abreast of the latest development in the fate and environmental behaviors of MP with free radicals and their reactions and to bridge free radical chemistry with MP control methodology.
Collapse
Affiliation(s)
- Ye Qiu
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China.
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
123
|
Yao J, Li H, Yang HY. Predicting adsorption capacity of pharmaceuticals and personal care products on long-term aged microplastics using machine learning. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131963. [PMID: 37406525 DOI: 10.1016/j.jhazmat.2023.131963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
We investigated the adsorption mechanism of 66 coexisting pharmaceuticals and personal care products (PPCPs) on microplastics treated with potassium persulfate, potassium hydroxide, and Fenton reagent for 54, 110, and 500 days. The total adsorption capacity (qe) of 66 PPCPs on 15 original microplastics was 171.8 - 1043.7 μg/g, far below that of 177 long-term aged microplastics (7114.0 - 13,114.4 μg/g). Around 69.8% of qe was primarily influenced by the total energy, energy of the highest occupied molecular orbital, and energy gap of PPCPs, calculated using the B3LYP/6-31 G* level. Furthermore, 111 aged microplastics exhibited similar total qe values. Additionally, we developed predictive models based on attenuated total reflectance Fourier transform infrared spectroscopy to predict the individual and total qe on 192 microplastics. These models, including the maximal information coefficient and gradient boosting decision tree regression, exhibited high accuracy with Rtraining2 values of 0.9772 and 0.9661, respectively, and p-values below 0.001. Spectroscopic analysis and machine learning models highlighted surface functional group alterations and the importance of the 1528-1700 cm-1 spectral region and carbon skeleton in the adsorption process. In summary, our findings contribute to understanding the adsorption of PPCPs on microplastics, particularly in the context of long-term aging effects.
Collapse
Affiliation(s)
- Jingjing Yao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China; Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| |
Collapse
|
124
|
Wu J, Ye Q, Sun L, Liu J, Huang M, Wang T, Wu P, Zhu N. Impact of persistent rain on microplastics distribution and plastisphere community: A field study in the Pearl River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163066. [PMID: 37004292 DOI: 10.1016/j.scitotenv.2023.163066] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Microplastic contamination is a global problem which has been threatening human health and the environment. There is still a knowledge gap about the effect of persistent rain on microplastics distribution and plastisphere community in fluvial environments. In this study, the abundance and composition of microplastics in the sediment and surface water from the Pearl River was investigated. Thirty polymers (10-500 μm) were identified from thirty-eight samples collected at ten sites using the newly developed laser direct infrared (LDIR) technique. The average concentrations of microplastics in the sediment and surface water were 1974 particles kg-1 and 290 particles L-1, respectively. Abnormally high concentrations of polyurethanes (PU) were possibly due to particulate pollution from ship antifouling. The persistent rain increased the abundance and diversity of microplastics in the surface water, whereas an opposite trend was observed in the sediment. Sediments could temporarily switch from microplastics sinks to potential sources under the effect of violent hydrodynamic disturbances. Additionally, plastisphere communities and predicted functional profiles indicated significant differences before and after the rain. Our study highlights the important impact of persistent rain on microplastic contamination in the environment.
Collapse
Affiliation(s)
- Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Quanyun Ye
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jieyu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Minye Huang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Tianming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China.
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
125
|
Lin W, Li Y, Xiao X, Fan F, Jiang J, Jiang R, Shen Y, Ouyang G. The effect of microplastics on the depuration of hydrophobic organic contaminants in Daphnia magna: A quantitative model analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162813. [PMID: 36940747 DOI: 10.1016/j.scitotenv.2023.162813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 05/06/2023]
Abstract
Microplastics are emerging pollutants that can absorb large amounts of hydrophobic organic contaminants (HOCs). However, no biodynamic model has yet been proposed to estimate their effects on HOC depuration in aquatic organisms, where the HOC concentrations are time-varying. In this work, a microplastic-inclusive biodynamic model was developed to estimate the depuration of HOCs via ingestion of microplastics. Several key parameters of the model were redefined to determine the dynamic HOC concentrations. Through the parameterized model, the relative contributions of dermal and intestinal pathways can be distinguished. Moreover, the model was verified and the vector effect of microplastics was confirmed by studying the depuration of polychlorinated biphenyl (PCB) in Daphnia magna (D. magna) with different sizes of polystyrene (PS) microplastics. The results showed that microplastics contributed to the elimination kinetics of PCBs because of the fugacity gradient between the ingested microplastics and the biota lipids, especially for the less hydrophobic PCBs. The intestinal elimination pathway via microplastics would promote overall PCB elimination, contributing 37-41 % and 29-35 % to the total flux in the 100 nm and 2 μm polystyrene (PS) microplastic suspensions, respectively. Furthermore, the contribution of microplastic uptake to total HOC elimination increased with decreasing microplastic size in water, suggesting that microplastics may protect organisms from HOC risks. In conclusion, this work demonstrated that the proposed biodynamic model is capable of estimating the dynamic depuration of HOCs for aquatic organisms. The results can shed light on a better understanding of the vector effects of microplastics.
Collapse
Affiliation(s)
- Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Li
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xiaoying Xiao
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; Shantou Power Supply Bureau of Guangdong Power Grid Co., Ltd., Shantou 515000, China
| | - Fuqiang Fan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Jiakun Jiang
- Center for Statistics and Data Science, Beijing Normal University, Zhuhai 519087, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Yong Shen
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
126
|
Kiki C, Adéoyé ABE, Li X, Yan X, Feng J, Yu CP, Sun Q. Contrasting effects of phytoplankton aging on microplastic antibiotic adsorption depending on species tolerance, and biofouling level. WATER RESEARCH 2023; 237:119992. [PMID: 37099873 DOI: 10.1016/j.watres.2023.119992] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023]
Abstract
Recent studies have reported conflicting results on the effects of biofouling on the adsorption behavior of microplastics (MPs). However, the underlying mechanisms driving the adsorption of MPs undergoing biofouling in aquatic environments remain unclear. This study examined the interactions between polyamide (PA), polyvinyl chloride (PVC) and polyethylene (PE) with two phytoplankton, namely cyanobacteria Microcystis aeruginosa and microalgae Chlorella vulgaris. Results indicated that MP effects on phytoplankton were dose- and crystalline-type dependent, with M. aeruginosa being more sensitive to MP exposure than C. vulgaris in the inhibitory order PA > PE > PVC. Analysis of antibiotic adsorption of the MPs showed significant contributions from CH/π interactions on PE and PVC and hydrogen bonding on PA, which decreased with phytoplankton biofouling and aging. Meanwhile, higher levels of extracellular polymeric substances on microalgae-aged MPs compared to cyanobacteria-aged MPs were conducive to adsorption of antibiotics, mainly through hydrophobic interactions. Overall, promotional and anti-promotional adsorption of antibiotics on MPs was induced by biofouling and aging of microalgae and cyanobacteria, respectively. This study provides deep insights into the specific mechanisms by which biofouling affects MP adsorption in aquatic environments, thus advancing our understanding of this critical environmental issue.
Collapse
Affiliation(s)
- Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of WatershedEcology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China; National Institute of Water, University of Abomey-Calavi, Cotonou 01 BP: 526, Benin
| | - Adénikè Bernice Eloise Adéoyé
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Xi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of WatershedEcology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaopeng Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of WatershedEcology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Jinlu Feng
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of WatershedEcology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of WatershedEcology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of WatershedEcology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
127
|
Li B, Xu D, Zhou X, Yin Y, Feng L, Liu Y, Zhang L. Environmental behaviors of emerging contaminants in freshwater ecosystem dominated by submerged plants: A review. ENVIRONMENTAL RESEARCH 2023; 227:115709. [PMID: 36933641 DOI: 10.1016/j.envres.2023.115709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/25/2023] [Accepted: 03/15/2023] [Indexed: 05/08/2023]
Abstract
Persistent exposure of emerging contaminants (ECs) in freshwater ecosystem has initiated intense global concerns. Freshwater ecosystem dominated by submerged plants (SP-FES) has been widely constructed to control eutrophic water. However, the environmental behaviors (e.g. migration, transformation, and degradation) of ECs in SP-FES have rarely been concerned and summarized. This review briefly introduced the sources of ECs, the pathways of ECs entering into SP-FES, and the constituent elements of SP-FES. And then the environmental behaviors of dissolved ECs and refractory solid ECs in SP-FES were comprehensively summarized, and the feasibility of removing ECs from SP-FES was critically evaluated. Finally, the challenges and perspectives on the future development for ECs removal from SP-FES were prospected, giving possible research gaps and key directions. This review will provide theoretical and technical support for the effective removal of ECs in freshwater ecosystem, especially in SP-FES.
Collapse
Affiliation(s)
- Benhang Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China; School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Dandan Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohong Zhou
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yijun Yin
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
128
|
Feng Z, Deng L, Guo Y, Guo G, Wang L, Zhou G, Huan Y, Liang T. The spatial analysis, risk assessment and source identification for mercury in a typical area with multiple pollution sources in southern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4057-4069. [PMID: 36478236 DOI: 10.1007/s10653-022-01436-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/11/2022] [Indexed: 06/01/2023]
Abstract
Mercury (Hg) has always been a research hot spot because of its high toxicity. This study conducted in farmland near rare earth mining area and traffic facilities, which considered multiple pollution sources innovatively. It not only analyzed Hg spatial characteristics using inverse distance weighting and self-organizing map (SOM), but also assessed its pollution risk by potential ecological risk index (Er) as well as geoaccumulation index (Igeo), and identified the pollution sources with positive matrix factorization. The results showed that there was no heavy Hg pollution in most farmland, while a few sampling sites with Hg pollution were close to highway, railway station and petrol station in Xinfeng or in the farmland of Anyuan, which were divided into the cluster with highest Hg concentration in SOM. The vehicle exhaust emission and pesticide as well as fertilizer additions significantly contributed to the local Hg pollution. Besides, there was moderate pollution and high ecological risk in Anyuan assessed by Igeo and Er, respectively. In contrast, Xinfeng had the moderate and considerable ecological risks in a larger scale. The enriched Hg might harmed not only the nearby ecological environment, but also the human health when it entered human body through food chain. The three factors that contributed to mercury concentration in this area according to positive matrix factorization were natural source, traffic source and agricultural source, respectively. This study about Hg pollution in the typical area would provide scientific evidence for the particular treatment of Hg pollution from various pollution sources like traffic source, agricultural source, etc.
Collapse
Affiliation(s)
- Zhaohui Feng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Deng
- Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining, 810007, China
| | - Yikai Guo
- Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining, 810007, China
| | - Guanghui Guo
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guangjin Zhou
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yizhong Huan
- School of Public Policy and Management, Tsinghua University, Beijing, 100084, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
129
|
Huang J, Li Z, Wang Z, Ma H, Wang J, Xing B. Aging, characterization and sorption behavior evaluation of tire wear particles for tetracycline in aquatic environment. CHEMOSPHERE 2023; 335:139116. [PMID: 37270042 DOI: 10.1016/j.chemosphere.2023.139116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
Accounting for more than half of the total primary microplastic (MP) emissions, and one-sixth of the total marine MP pollution in China in 2015, tire wear particles (TWP) are inevitable to age and interact with co-existing species, thus pose a potential risk to the surroundings. The impacts of simulated ultraviolet radiation weathering and liquid-phase potassium persulfate oxidation of TWP on the surface physicochemical properties were comparatively explored. The characterization results demonstrated that the content of carbon black, particle size and specific surface area of the aged TWP all decreased, while the changes of the hydrophobicity and polarity were inconsistent. The interfacial interactions with tetracycline (TC) in aqueous were investigated, the well fitted pseudo-second-order kinetics, Dual-mode Langmuir and Scatchard isotherm models indicated the attachment of TC dominated by surface adsorption at lower concentration, and there's a positive synergistic effect among the main sorption domains. Moreover, the results of the influences of co-existing salts and natural organic matter revealed that the potential risks of TWP elevated by the adjacent media in natural compartment. This work provides new insights into the way that TWP interact with contaminants in the real environment.
Collapse
Affiliation(s)
- Jiongjun Huang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi, 710119, PR China.
| | - Zhiqiang Li
- Today Think Tank Energy Co. LTD, Taiyuan, Shanxi, 030024, PR China
| | - Zhuo Wang
- Today Think Tank Energy Co. LTD, Taiyuan, Shanxi, 030024, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi, 710119, PR China.
| | - Jiayi Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi, 710119, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
130
|
Zhang Y, Chen Z, Shi Y, Ma Q, Mao H, Li Y, Wang H, Zhang Y. Revealing the sorption mechanisms of carbamazepine on pristine and aged microplastics with extended DLVO theory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162480. [PMID: 36858211 DOI: 10.1016/j.scitotenv.2023.162480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The co-occurrence of microplastics (MPs) and organic contaminants in aquatic environment can complexify their environmental fate via sorption interactions, especially when the properties of MPs can even vary due to the aging effect. Thus, quantitatively clarifying the sorption mechanisms is required to understand their environmental impacts. This study selected popularly occurring carbamazepine (CBZ) and four types of MPs as model systems, including polyethylene, polyvinyl chloride, polyethylene terephthalate and polystyrene in their pristine and aged forms, to investigate the sorption isotherms, kinetics, and desorption. The variation of MPs during the aging process were analyzed with scanning electron microscopy, contact angle, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. It was found that the aging process elevated the sorption capacity and intensified the desorption hysteresis of CBZ on MPs via increasing the surface roughness, decreasing the particle size, and altering the surficial chemistry of all MPs. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was innovatively applied hereby to calculate the interfacial free energies and revealed that the hydrophobic interaction was significantly lessened after aging for all MPs with the slightly enhanced van der Waals interaction. Then the total interfacial free energies were dropped down for all MPs, which resulted in their declined specific sorption capacity. This work reveals the sorption mechanisms of CBZ on pristine and aged MPs with XDLVO and provides a useful reference to study the sorption of other neutral organics onto MPs.
Collapse
Affiliation(s)
- Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zihao Chen
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Yuexiao Shi
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Qing Ma
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Haoran Mao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Ying Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Hao Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China.
| |
Collapse
|
131
|
Wu J, Lu L, Wang R, Pan L, Chen B, Zhu X. Influence of microplastics on the transport of antibiotics in sand filtration investigated by AFM force spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162344. [PMID: 36813196 DOI: 10.1016/j.scitotenv.2023.162344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Microplastics and antibiotics were frequently detected in the effluent of sand filtration, while the presence of microplastics may change the interactions between the antibiotics and the quartz sands. However, the influence of microplastics on the transport of antibiotics in sand filtration has not been revealed. In this study, ciprofloxacin (CIP) and sulfamethoxazole (SMX) were respectively grafted on AFM probes to determine the adhesion forces to the representative microplastics (PS and PE) and the quartz sand. CIP and SMX exhibited low and high mobilities in the quartz sands, respectively. Compositional analysis of the adhesion forces indicated that the lower mobility of CIP in sand filtration columns could be attributed to the electrostatic attraction between the quartz sand and CIP compared with repulsion for SMX. Moreover, the significant hydrophobic interaction between the microplastics and the antibiotics could be responsible for the competitive adsorption of the antibiotics to the microplastics from the quartz sands; meanwhile, the π-π interaction further enhanced the adsorption of PS to the antibiotics. As a result of the high mobility of microplastics in the quartz sands, the carrying effect of microplastics enhanced the transport of antibiotics in the sand filtration columns regardless of their original mobilities. This study provided insights into the mechanism of the microplastics on enhancing the transport of antibiotics in sand filtration systems from the perspective of the molecular interaction.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Lun Lu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Rui Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Liuyi Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
132
|
Kuang B, Chen X, Zhan J, Zhou L, Zhong D, Wang T. Interaction behaviors of sulfamethoxazole and microplastics in marine condition: Focusing on the synergistic effects of salinity and temperature. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115009. [PMID: 37182302 DOI: 10.1016/j.ecoenv.2023.115009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Microplastics and antibiotics are two common pollutants in the ocean. However, due to changes of salinity and temperature in the ocean, their interaction are significantly different from that of fresh water, and the mechanism remains unclear. Here, the interactions of sulfamethoxazole (SMZ) and microplastics were studied at different temperatures and salinities. The saturation adsorption capacity of SMZ in polypropylene (PP), polyethylene (PE), styrene (PS), polyvinyl chloride (PVC), and synthetic resins (ABS) were highest at the temperature of 20 °C, with 0.118 ± 0.002 mg·g-1, 0.106 ± 0.004 mg·g-1, 0.083 ± 0.002 mg·g-1, 0.062 ± 0.007 mg·g-1 and 0.056 ± 0.003 mg·g-1, respectively. The effect of temperature reduction is more significant than temperature rise. The intraparticle diffusion model is appropriate to PP, when film diffusion model suited for PS. The salinity has a more significant effect than temperature on different microplastics, due to the electrostatic adsorption and iron exchange. With the increase in salinity from 0.05% to 3.5%, the adsorption capacity of microplastics on SMZ fell by 53.3 ± 5%, and there was no discernible difference of various microplastics. The hydrogen bond and π-π conjugation of microplastics play an important role in the adsorption of SMZ. These findings further deepen the understanding of the interaction between microplastics and antibiotics in the marine environment.
Collapse
Affiliation(s)
- Bin Kuang
- Jiangmen Polytechnic, Jiangmen 529020, PR China; Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom.
| | - Xuanhao Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Jianing Zhan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Lilin Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | | | - Tao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
133
|
Chen Z, Yang J, Huang D, Wang S, Jiang K, Sun W, Chen Z, Cao Z, Ren Y, Wang Q, Liu H, Zhang X, Sun X. Adsorption behavior of aniline pollutant on polystyrene microplastics. CHEMOSPHERE 2023; 323:138187. [PMID: 36806808 DOI: 10.1016/j.chemosphere.2023.138187] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Microplastic contamination is ubiquitous in aquatic environments. As global plastic production increases, the abundance of microplastic contaminants released into the environment has also continued to soar. The hydrophobic surfaces of plastic particles can adsorb a variety of chemical pollutants, and could therefore facilitate toxin accumulation through the food chain. In this study, the adsorption behavior of aniline, a priority environmental pollutant from industrial production, on the surface of polystyrene microplastics (mPS) was investigated. The results showed that the maximum adsorption capacity of mPS was 0.060 mg/g. Adsorption equilibrium was reached after 24 h, and the pseudo-second-order model was employed to explain the adsorption kinetics of aniline on the mPS particles. The Freundlich models could describe the adsorption isotherms. The potential adsorption mechanisms may include π-π interactions and hydrophobic interactions. pH, ionic strength, and ambient temperature of the solution played important roles in the adsorption process.
Collapse
Affiliation(s)
- Zhenyu Chen
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jinchan Yang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Shuni Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kai Jiang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Weimin Sun
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhihua Chen
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Youhua Ren
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xin Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China.
| | - Xiaoxu Sun
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
134
|
Liu Y, Shi H, Chen L, Teng X, Xue C, Li Z. An overview of microplastics in oysters: Analysis, hazards, and depuration. Food Chem 2023; 422:136153. [PMID: 37130454 DOI: 10.1016/j.foodchem.2023.136153] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Microplastic pollution has become an emergent global environmental issue because of its ubiquitous nature and everlasting ecological impacts. In marine ecosystems, microplastics can serve as carriers to absorb various contaminants and the ingestion of microplastics in oysters is of concern because they can induce several adverse effects. The analytical process of microplastics in oysters commonly consists of separation, quantification, and identification. Quantification of microplastics is difficult since information regarding the analytical methods is incoherent, therefore, standard microplastic analytical methods for shellfish should be established in the future. The depuration process can be used to reduce the level of microplastics in oysters to ensure safe consumption of oysters and longer depuration time facilitates improved depuration efficacy. In summary, this review aims to help better understand microplastic pollution in oysters and provide useful suggestions and guidance for future research.
Collapse
Affiliation(s)
- Yu Liu
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Haohao Shi
- College of Food Science and Technology, Hainan University, Hainan 570228, PR China
| | - Lipin Chen
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China.
| | - Xiaoyu Teng
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
135
|
Wu J, Ye Q, Li P, Sun L, Huang M, Liu J, Ahmed Z, Wu P. The heteroaggregation behavior of nanoplastics on goethite: Effects of surface functionalization and solution chemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161787. [PMID: 36706999 DOI: 10.1016/j.scitotenv.2023.161787] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastics have attracted extensive attention in recent years. However, little is known about the heteroaggregation behavior of nanoplastics on goethite (FeOOH), especially the contribution of surface functional groups. In this study, the heteroaggregation behavior between polystyrene nanoplastics (PSNPs) and FeOOH was systematically investigated under different reaction conditions. Moreover, the effect of different functional groups (-NH2, -COOH, and bare) of PSNPs and solution chemistry was evaluated. The results showed that PSNPs could heteroaggregate with FeOOH, and the heteroaggregation rate of PSNPs with surface functionalization was significantly faster. The removal of suspended PSNPs was enhanced with increasing NaCl or CaCl2 concentration. However, heteroaggregation was significantly inhibited with the increase of solution pH. The zeta potentials analysis, time-resolved dynamic light scattering (DLS) and heteroaggregation experiments suggested that the electrostatic force affected the heteroaggregation process significantly. Fourier transform infrared (FTIR) spectra proved that the adsorption affinity between PSNPs and FeOOH was stronger after surface functionalization, especially for CH, O-C=O, and -CH2- groups, indicating that chemical bonding also made a contribution during the heteroaggregation process. This work is expected to provide a theoretical basis for predicting the environmental behavior between PSNPs and FeOOH.
Collapse
Affiliation(s)
- Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Quanyun Ye
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Peiran Li
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Minye Huang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jieyu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Zubair Ahmed
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China.
| |
Collapse
|
136
|
Zhang F, Wang J, Tian Y, Liu C, Zhang S, Cao L, Zhou Y, Zhang S. Effective removal of tetracycline antibiotics from water by magnetic functionalized biochar derived from rice waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121681. [PMID: 37087086 DOI: 10.1016/j.envpol.2023.121681] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
The effective removal of tetracycline antibiotics (TCs) from water is of great significance and remains a big challenge. In this work, a novel magnetized biochar (magnetic functionalized carbon microsphere, MF-CMS) was prepared by the coupling hydrothermal carbonization and pyrolysis activation of starch-rich rice waste using ZnCl2 and FeCl3 as activators. As the MF-CMS dose was 2.0 g/L, the initial concentration of TCs was 100 mg/L, the removal rates of tetracycline, doxycycline, oxytetracycline, and chlortetracycline were 96.02%, 96.10%, 96.52%, and 85.88%, respectively. The best modeled on pseudo second order, Langmuir adsorption model, and intraparticle diffusion kinetic models suggested that both chemisorption and physisorption occurred in all removal processes, in which chemisorption dominated. TCs were efficiently adsorbed through the combined effects of pore filling, electrostatic attraction, π-π interactions, and complexation reactions of surface functional groups (such as γ-Fe2O3 and FeOOH). The removal rates of TCs after five cycles approximately decreased by 20%. And the cycling and metal ion release experiments of MF-CMS indicated that MF-CMS had good reusability, stability, and safety. The estimated cost of preparing MF-CMS is 5.91 USD per kg, and 1 kg of MF-CMS (consuming 8 kg of waste rice) can approximately treat 0.55 tons of TCs wastewater. Overall, the magnetic biochar derived from starch-rich rice waste as an adsorbent has promising and effective for the removal of TCs from water, but also provides a new idea for the resourceful treatment of solid waste.
Collapse
Affiliation(s)
- Fangfang Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Jieni Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Yijun Tian
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Chenxiao Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Shuqin Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng, 475004, China; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
137
|
Duan L, Qin Y, Meng X, Liu Y, Zhang T, Chen W. Sulfide- and UV-induced aging differentially affect contaminant-binding properties of microplastics derived from commercial plastic products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161800. [PMID: 36708829 DOI: 10.1016/j.scitotenv.2023.161800] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Microplastics in the environments can undergo various aging processes that alter their physicochemical properties and consequently their affinities for environmental contaminants. Here, we compare the effects of sulfide-induced aging (a common process in anoxic environments) and UV-induced aging on contaminant binding of polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET) microplastics derived from commercial plastic products. The two aging processes differentially affect adsorption of pyrene (a model nonionic, nonpolar organic) and ciprofloxacin (CIP, a zwitterion under the conditions tested) by modulating the hydrophobicity, surface charges and polarity of the microplastics to different extents. The effects of the two treatments on Cd(II) adsorption correlate well with their modulation on ζ potential and surface (O + S)/C ratio of the microplastics. For all three microplastics sulfide treatment results in stronger adsorption of Cr(VI) and its subsequent conversion to Cr(III) than does UV treatment, as the thiol groups formed during sulfide treatment strongly regulate the complexation and reduction of Cr(VI). Notably, both sulfide and UV treatments result in the flattening of the PET microplastics, significantly enhancing the adsorption of all four contaminants, by increasing surface area for adsorption. The findings of this study further underline the importance of understanding environmental aging/weathering processes of microplastics, particularly, those readily occur in anoxic environments but were previously not well studied.
Collapse
Affiliation(s)
- Lin Duan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yiyuan Qin
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Xin Meng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China.
| |
Collapse
|
138
|
Baysal A, Saygin H. Multispectroscopic Characterization of Surface Interaction between Antibiotics and Micro(nano)-sized Plastics from Surgical Masks and Plastic Bottles. ACS OMEGA 2023; 8:12739-12751. [PMID: 37065040 PMCID: PMC10099137 DOI: 10.1021/acsomega.2c07927] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Recent studies have shown that plastic particles can sorb antibiotics, and these sorption properties have been examined in various studies; however, the possible mechanism responsible for the interactions requires a deeper investigation in terms of further interaction with living systems. Moreover, the usage of disposable surgical masks and plastic bottles has increased the plastic pollution risk for living systems like humans. Therefore, this study aimed to examine the sorption characteristics between antibiotics (amoxicillin and spiramycin) and plastic particles from surgical masks and plastic bottles through batch sorption experiments. In the study, their surface interactions were characterized using multispectroscopic approaches including FTIR, Raman spectrometry, and SEM-EDX, and various surface indicators (e.g., surface oxidation, deformation, and biological potential) were examined. The sorption results showed that adsorption kinetics and the isotherm of amoxicillin and spiramycin on micro(nano)plastics from surgical masks and plastic bottles closely fit the pseudo-second-order kinetic model and Langmiur isotherm. These results indicated that the evidence for the antibiotic interaction with particles was changes in the surface functional group intensities and up-shifting, and this correlated with the sorption of antibiotics on micro(nano)-sized plastics. The C/N ratio of the plastic particles before and after antibiotic treatment was used as an indicator for the surface biological interaction, and the results showed that C/N ratios of surgical mask particles increased with both types of antibiotic sorption. However, the C/N of the particles from plastic bottles showed antibiotic type-dependence. The surface deformation indicators (e.g., O/C, C=O, C=C, and O-H indices) showed that the O/C ratios of micro(nano)plastics from surgical masks were higher with the amoxicillin and spiramycin sorption, and the C=O indices were positively linked with the amoxicillin sorption stages, whereas the C=C and O-H had a negative correlation with the amoxicillin sorption stages. Moreover, amoxicillin sorption influenced the O/C ratio and indices of O-H and C=C of micro(nano)plastics from plastic bottles in a limited manner. The C=O groups of the micro(nano)plastics from plastic bottles were positively influenced by the spiramycin sorption stages, whereas it was negatively linked with amoxicillin sorption stages. Overall, the findings from surface indicators indicated that the micro(nano)plastics from surgical masks can be more influenced with antibiotic sorption compared to plastic bottles.
Collapse
Affiliation(s)
- Asli Baysal
- Istanbul
Technical University, Science and Letters
Faculty, Chemistry Department, Maslak, Sariyer, Istanbul 34467, Turkey
| | - Hasan Saygin
- Istanbul
Aydin University, Application and
Research Center for Advanced Studies, Sefakoy, Kucukcekmece, Istanbul 34295, Turkey
| |
Collapse
|
139
|
Araújo AM, Ringeard H, Nunes B. Do microplastics influence the long-term effects of ciprofloxacin on the polychaete Hediste diversicolor? An integrated behavioral and biochemical approach. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104088. [PMID: 36841270 DOI: 10.1016/j.etap.2023.104088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Ciprofloxacin (CPX), the most commonly used fluoroquinolone antibiotic, and microplastics (MPs) are two classes of emerging contaminants with severe adverse impacts on aquatic organisms. Previous studies suggest that both CPX and MPs induce deleterious changes in exposed aquatic biota, but the characterization of a chronic and combined ecotoxicological response is not well known, especially in organisms from estuarine ecosystems. Thus, in this study, we investigated the behavioral and biochemical effects of environmentally relevant levels of CPX alone and in combination with polyethylene terephthalate (PET) microplastics over 28 days of exposure, using the polychaete Hediste diversicolor as a model. In addition to behavioral parameters, different biochemical endpoints were also evaluated, namely the levels of metabolic enzymes of phase I (7-ethoxy-resorufin-O-deethylase, EROD), and phase II (glutathione-S-transferase, GSTs), antioxidant defense (catalase, CAT; glutathione peroxidase, GPx; superoxide dismutase, SOD), oxidative damage (lipid peroxidation, by means of levels of thiobarbituric acid reactive substances [TBARS]) and acetylcholinesterase (AChE). Chronic exposure to ciprofloxacin caused a decrease in burrowing time and a significant increase in SOD activity. In animals exposed to the combination of CPX and PET MPs, effects on behavioral traits were also observed, with higher concentrations of MPs leading to a marked delay in the animals' burrowing time. In addition, these animals showed changes in their antioxidant defenses, namely, a significant increase in SOD activity, while GPx activity was severely compromised. For none of the experimental groups, significant alterations were observed in the metabolic enzymes, TBARS or AChE. These findings provide the first insights into the responses of H. diversicolor when exposed to the combination of CPX and PET MPs, highlighting that, although the here studied conditions, there was no evidence of oxidative damage or neurotoxicity, these organisms are not risk-free in co-exposure scenarios, even at low environmental relevant concentrations.
Collapse
Affiliation(s)
- Ana Margarida Araújo
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Henri Ringeard
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
140
|
Tian Y, Zhu J, Ying C, Luo H, Zhang S, Zhang L, Li R, Li J. Photoaging processes of polyvinyl chloride microplastics enhance the adsorption of tetracycline and facilitate the formation of antibiotic resistance. CHEMOSPHERE 2023; 320:137820. [PMID: 36736841 DOI: 10.1016/j.chemosphere.2023.137820] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs), antibiotics and microorganism ubiquitously coexist in aquatic environments. MPs inevitably undergo photoaging processes in aquatic environments, affecting the interactions between MPs and antibiotics and the antibiotic resistance of microorganism. In this study, the impact of photoaging processes of MPs on their adsorption behavior of tetracycline (TC) and related formation of antibiotic resistance were investigated. It was found that the photoaging processes significantly increased the adsorption capacity of TC onto MPs, with the Qe increasing from 0.387 to 0.507 mg/g at 288 K and from 0.507 to 0.688 mg/g at 308 K. The site energy distribution (SED) analysis further confirmed that the enhanced adsorption capacity was attributed to more high-energy adsorption sites acquired from MPs photoaging processes. Moreover, the enhanced adsorption of TC further facilitated the formation of seven antibiotic resistance genes (i.e., tetA, tetB, tetC, tetD, tetE, tetG, tetK) when MPs adsorbed with TC was covered by biofilm. This study helps comprehensively understand the environmental behaviors of co-existing MPs, antibiotics and microorganisms, providing a theoretical basis for evaluating and mitigating their coexistence risks.
Collapse
Affiliation(s)
- Yajun Tian
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China; College of Environment Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jianyu Zhu
- Zhejiang University, 866 Yuhangtang Road, Zheda Road, Hangzhou, Zhejiang, 310058, China
| | - Chuhan Ying
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Shoufeng Zhang
- National Marine Environmental Monitoring Center, 42 Linghe Street, Dalian, 116023, China
| | - Liqiu Zhang
- College of Environment Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Renna Li
- Zhejiang University, 866 Yuhangtang Road, Zheda Road, Hangzhou, Zhejiang, 310058, China.
| | - Jun Li
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China.
| |
Collapse
|
141
|
Chen H, Jiang Y, Gu Y, Ding P, Wang C, Pan R, Shi C, Zeng L, Chen X, Li H. The generation of environmentally persistent free radicals on photoaged microbeads from cosmetics enhances the toxicity via oxidative stress. ENVIRONMENT INTERNATIONAL 2023; 174:107875. [PMID: 36933305 DOI: 10.1016/j.envint.2023.107875] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Microbeads used in personal care products have been one of the important sources of microplastics (MPs), and little has been reported on their environmental behaviors and health risks. The characteristics of environmentally persistent free radicals (EPFRs) and the toxicity assessment of MPs (environmentally relevant concentrations) from cosmetics during photoaging remains largely unknown. In this study, the formation of EPFRs on polyethylene (PE) microbeads from facial scrubs under light irradiation and their toxicity were investigated using C. elegans as a model organism. The results suggested that light irradiation induced the generation of EPFRs, which accelerates the aging process and alters the physicochemical properties of PE microbeads. Acute exposure to PE (1 mg/L) at photoaged times of 45-60 d significantly decreased the physiological indicators (e.g., head thrashes, body bends, and brood size). The oxidative stress response and stress-related gene expression were also enhanced in nematodes. The addition of N-acetyl-l-cysteine induced significant inhibition of toxicity and oxidative stress in nematodes exposed to 45-60 d of photoaged PE. The Pearson correlation results showed that the concentration of EPFRs was significantly correlated with physiological indicators, oxidative stress, and related-genes expression in nematodes. The data confirmed that the generation of EPFRs combined with heavy metals and organics contributed to toxicity induced by photoaged PE, and oxidative stress might be involved in regulating adverse effects in C. elegans. The study provides new insight into the potential risks of microbeads released into the environment during photoaging. The findings also highlight the necessity for considering the role of EPFRs formation in evaluating the impacts of microbeads.
Collapse
Affiliation(s)
- Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ruolin Pan
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lingjun Zeng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
142
|
Ivanova B. Stochastic Dynamic Mass Spectrometric Quantitative and Structural Analyses of Pharmaceutics and Biocides in Biota and Sewage Sludge. Int J Mol Sci 2023; 24:6306. [PMID: 37047279 PMCID: PMC10094044 DOI: 10.3390/ijms24076306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Mass spectrometric innovations in analytical instrumentation tend to be accompanied by the development of a data-processing methodology, expecting to gain molecular-level insights into real-life objects. Qualitative and semi-quantitative methods have been replaced routinely by precise, accurate, selective, and sensitive quantitative ones. Currently, mass spectrometric 3D molecular structural methods are attractive. As an attempt to establish a reliable link between quantitative and 3D structural analyses, there has been developed an innovative formula [DSD″,tot=∑inDSD″,i=∑in2.6388.10-17×Ii2¯-Ii¯2] capable of the exact determination of the analyte amount and its 3D structure. It processed, herein, ultra-high resolution mass spectrometric variables of paracetamol, atenolol, propranolol, and benzalkonium chlorides in biota, using mussel tissue and sewage sludge. Quantum chemistry and chemometrics were also used. Results: Data on mixtures of antibiotics and surfactants in biota and the linear dynamic range of concentrations 2-80 ng.(mL)-1 and collision energy CE = 5-60 V are provided. Quantitative analysis of surfactants in biota via calibration equation ln[D″SD] = f(conc.) yields the exact parameter |r| = 0.99991, examining the peaks of BAC-C12 at m/z 212.209 ± 0.1 and 211.75 ± 0.15 for tautomers of fragmentation ions. Exact parameter |r| = 1 has been obtained, correlating the theory and experiments in determining the 3D molecular structures of ions of paracetamol at m/z 152, 158, 174, 301, and 325 in biota.
Collapse
Affiliation(s)
- Bojidarka Ivanova
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Nordrhein-Westfalen, Germany
| |
Collapse
|
143
|
Li N, Zeng Z, Zhang Y, Zhang H, Tang N, Guo Y, Lu L, Li X, Zhu Z, Gao X, Liang J. Higher toxicity induced by co-exposure of polystyrene microplastics and chloramphenicol to Microcystis aeruginosa: Experimental study and molecular dynamics simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161375. [PMID: 36621494 DOI: 10.1016/j.scitotenv.2022.161375] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Antibiotics and microplastics (MPs) inevitably coexist in natural waters, but their combined effect on aquatic organisms is still ambiguous. This study investigated the individual and combined toxicity of chloramphenicol (CAP) and micro-polystyrene (mPS) particles to Microcystis aeruginosa by physiological biomarkers, related gene expression, and molecular dynamics simulation. The results indicated that both individual and joint treatments threatened algal growth, while combined toxicity was higher than the former. Photosynthetic pigments and gene expression were inhibited by single CAP and mPS exposure, but CAP dominated and aggravated photosynthetic toxicity in combined exposure. Additionally, mPS damaged cell membranes and induced oxidative stress, which might further facilitate the entry of CAP into cells during co-exposure. The synergistic effect of CAP and mPS might be explained by the common photosynthetic toxicity target of CAP and mPS as well as oxidative stress. Furthermore, the molecular dynamics simulation revealed that CAP altered conformations of photosynthetic assembly protein YCF48 and SOD enzyme, and competed for functional sites of SOD, thus disturbing photosynthesis and antioxidant systems. These findings provide useful insights into the combined toxicity mechanism of antibiotics and MPs as well as highlight the importance of co-pollutant toxicity in the aquatic environment.
Collapse
Affiliation(s)
- Na Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Yafei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hui Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yihui Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lan Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
144
|
Huang Z, Cui Q, Yang X, Wang F, Zhang X. An evaluation model to predict microplastics generation from polystyrene foams and experimental verification. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130673. [PMID: 36580782 DOI: 10.1016/j.jhazmat.2022.130673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) have caused global concerns due to their detrimental effects on ecosystems and even humans. Recycling aged plastic products ahead of MPs generation can be an effective approach to mitigate increasingly serious microplastic pollution. However, predicting MPs generation remains a great challenge. In this regard, we report a simulation method through associating plastics aging with mechanical failure on a time scale to predict MPs generation and give an experimental verification. The results indicate that the proposed evaluation method has high accuracy for predicting MPs generation from aged polystyrene foams. Under conditions of ultraviolet (UV) irradiation and heat for 1000 h, the aged polystyrene foam generate significant microplastics (6.78 × 106 particles/cm3) by water scouring force after the expected aging time (400 h). Furthermore, the experiment results verify the synergistic effect of UV irradiation and heat on polystyrene MPs generation. This work suggests a new strategy to predict MPs generation from aged plastics in complex environments, which provides meaningful guidance for the use and recycling of plastic products.
Collapse
Affiliation(s)
- Zhuo Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Qinke Cui
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
145
|
Sun Y, Peng BY, Wang X, Li Y, Wang Y, Zhang Y, Xia S, Zhao J. Adsorption and desorption mechanisms of oxytetracycline on poly(butylene adipate-co-terephthalate) microplastics after degradation: The effects of biofilms, Cu(II), water pH, and dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160866. [PMID: 36526173 DOI: 10.1016/j.scitotenv.2022.160866] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As the application of biodegradable polymers has grown, so has the interest in exploring the environmental behaviors of biodegradable microplastics (MPs). In this study, we investigated the interaction of oxytetracycline (OTC) with poly(butylene adipate-co-terephthalate) (PBAT) MPs after biodegradation, and explored the effect of the coexisting Cu(II) on OTC adsorption and desorption processes. The maximum adsorption amounts of virgin PBAT, biofilm PBAT, and degraded PBAT reached 692.05 μg·g-1, 1396.21 μg·g-1, and 1869.93 μg·g-1, respectively, and the presence of Cu(II) increased the OTC adsorption capacities by 431.16 %, 165.99 %, and 132.94 %, respectively. The enhanced adsorption capacities were attributed to the formation of PBAT-Cu-OTC complexes. The remarkable desorption hysteresis of OTC was observed on the degraded PBAT but not on the biofilm PBAT when Cu(II) was present, due to the complexation between Cu(II) and biofilms. The effect of Cu(II) varied depending on the MP physiochemical properties (e.g., surface areas, zeta potentials, and functional groups) and the environmental factors (e.g., the solution pH and coexisting dissolved organic matter). Fourier transform infrared spectroscopy (FTIR) coupled with X-ray photoelectron spectroscopy (XPS) identified the Cu(II) bridging effect, and various interaction forces between PBAT and OTC, including hydrogen-bonding, π-π, cation-π, and electrostatic interactions.
Collapse
Affiliation(s)
- Ying Sun
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bo-Yu Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xuejiang Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yuan Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuan Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Yanan Zhang
- College of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Siqing Xia
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jianfu Zhao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
146
|
Yu Y, Xie D, Yang Y, Tan S, Li H, Dang Y, Xiang M, Chen H. Carboxyl-modified polystyrene microplastics induces neurotoxicity by affecting dopamine, glutamate, serotonin, and GABA neurotransmission in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130543. [PMID: 36493651 DOI: 10.1016/j.jhazmat.2022.130543] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are ubiquitous in various environmental media and have potential toxicity. However, the neurotoxicity of carboxyl-modified polystyrene microplastics (PS-COOH) and their mechanisms remain unclear. In this study, Caenorhabditis elegans was used as a model to examine the neurotoxicity of polystyrene microplastic (PS) and PS-COOH concentrations ranging from 0.1 to 100 μg/L. Locomotion behavior, neuron development, neurotransmitter level, and neurotransmitter-related gene expression were selected as assessment endpoints. Exposure to low concentrations (1 μg/L) of PS-COOH caused more severe neurotoxicity than exposure to pristine PS. In transgenic nematodes, exposure to PS-COOH at 10-100 μg/L significantly increased the fluorescence intensity of dopaminergic, glutamatergic, serotonergic, and aminobutyric acid (GABA)ergic neurons compared to that of the control. Further studies showed that exposure to 100 μg/L PS-COOH can significantly affect the levels of glutamate, serotonin, dopamine, and GABA in nematodes. Likewise, in the present study, the expression of genes involved in neurotransmission was altered in worms. These results suggest that PS-COOH exerts neurotoxicity by affecting neurotransmission of dopamine, glutamate, serotonin, and GABA. This study provides new insights into the underlying mechanisms and potential risks associated with PS-COOH.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Dongli Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Yue Yang
- Xi 'an Jiaotong University Second Affiliated Hospital, Xi 'an 710004, China
| | - Shihui Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Liaoning 110122, China
| | - Hongyan Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
147
|
Liu W, Tang H, Yang B, Li C, Chen Y, Huang T. Molecular level insight into the different interaction intensity between microplastics and aromatic hydrocarbon in pure water and seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160786. [PMID: 36502687 DOI: 10.1016/j.scitotenv.2022.160786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The interaction of MPs and aromatic hydrocarbons in seawater and pure water was examined using experimental measurements, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations in light of the potential health risks posed by microplastic (MPs)-associated aromatic hydrocarbon pollutants. Isothermal studies and MD simulations suggested that MPs have a stronger affinity for aromatic hydrocarbons in seawater. To uncover the mechanism, MPs' surface characteristics and their intermolecular interactions with aromatic hydrocarbons were examined. According to the research, MPs in seawater have less compact structure, bigger pores, and a higher specific surface area, all of which contribute to more sorption sites. Analysis of the intermolecular interaction indicated that MPs have a greater ability for molecular interactions in seawater and the interaction energy between MPs and aromatic hydrocarbons in seawater is higher. Additionally, seawater cations may act as bridges, which also accelerate sorption in seawater. In summary, this study provides a molecular-level understanding of MPs-aromatic hydrocarbons interaction and demonstrates that the interaction is stronger in seawater.
Collapse
Affiliation(s)
- Wenjin Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huan Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Beichen Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chenyang Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ying Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
148
|
Li JJ, Yue YX, Jiang JF, Shi SJ, Wu HX, Zhao YH, Che FF. Assessment of toxic mechanisms and mode of action to three different levels of species for 14 antibiotics based on interspecies correlation, excess toxicity, and QSAR. CHEMOSPHERE 2023; 317:137795. [PMID: 36632953 DOI: 10.1016/j.chemosphere.2023.137795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Antibiotics have received much attention owing to their ecotoxicity toward nontarget aquatic creatures. However, the mode of action (MOA) of toxicity against nontarget organisms is unclear in some aquatic organisms. In this study, the comparison of toxicities through interspecies correlations, excess toxicity calculated from toxicity ratio, and quantitative structure-activity relationship (QSAR) was carried out to investigate the MOAs for 14 antibiotics among Daphnia magna, Vibrio fischeri, and Pseudokirchneriella subcapitata. The results showed that interspecies toxicity correlations were very poor between any two of the three species for the 14 antibiotics. The toxicity ratio revealed that most antibiotics exhibited excess toxicity to algae and Daphnia magna but not to V. fischeri, demonstrating that some antibiotics share the same MOA, but some antibiotics share different MOAs among the three different levels of species. P. subcapitata was the most sensitive species, and V. fischeri was the least sensitive species. This is because of the differences in the biouptake and interactions of antibiotics with the target receptors between the three different trophic levels of the species. Molecular docking simulations suggested that the toxicity of antibiotics depends highly on their interactions with target receptors through hydrogen bonds, electrostatic or polar interactions, π bond interactions, and van der Waals forces. QSAR models demonstrated that hydrogen bonding and electrophilicity/nucleophilicity play key roles in the interaction of antibiotics with different receptors in the three species. The toxic mechanisms of antibiotics are attributed to the interactions between electrophilic antibiotics and biological nucleophiles, and hydrogen-bond interactions. These results are valuable for understanding the toxic mechanisms and MOA of the three different levels of species.
Collapse
Affiliation(s)
- Jin J Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Ya X Yue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Jie F Jiang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Sheng J Shi
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Hui X Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China.
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Fei F Che
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| |
Collapse
|
149
|
Wang W, Weng Y, Luo T, Wang Q, Yang G, Jin Y. Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. TOXICS 2023; 11:185. [PMID: 36851059 PMCID: PMC9965714 DOI: 10.3390/toxics11020185] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance.
Collapse
Affiliation(s)
- Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
150
|
Lu S, Wang J, Wang B, Xin M, Lin C, Gu X, Lian M, Li Y. Comprehensive profiling of the distribution, risks and priority of pharmaceuticals and personal care products: A large-scale study from rivers to coastal seas. WATER RESEARCH 2023; 230:119591. [PMID: 36638740 DOI: 10.1016/j.watres.2023.119591] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) have captured global concern due to their detrimental effects on aquatic organisms. Thirty PPCPs were analyzed in the water of the Jiaozhou Bay watershed, the Yellow Sea (YS) and the East China Sea (ECS) in China to investigate the distribution and risk of PPCPs from rivers to coastal seas, which are not yet well documented. The results showed the prevalence of the target PPCPs with a downward trend in detection frequencies and total concentrations from rivers (675 ng/L on average) to bay (166 ng/L) and to coastal seas (103 ng/L). Antibiotics and personal care products (PCPs) were dominated by amoxicillin (AMOX) and p-hydroxybenzoic acid, respectively, while the dominant estrogens were inconsistent in different regions. Spatially, the total PPCP concentrations were higher in the ECS than that in the YS due to the larger quantity of sewage flowing into the ECS. Additionally, higher total PPCP concentrations were appeared in the southeastern waters outside the Yangtze estuary and Hangzhou Bay of the ECS. The PPCP mixtures might pose medium to high risk to aquatic organisms in general. The total risk quotient (RQT) of antibiotics and PCPs to algae was higher than that to crustacean and fish, while estrogens may cause the greatest damage to fish. Despite the higher PPCP concentrations in river water than in seawater, the RQT of PPCPs in bay water was generally higher than that in river water, which may be associated with the susceptibility of marine organisms. Furthermore, the high-risk pollutants that need special concern in different regions were clarified, showing that AMOX, 17ß-estradiol, and estriol deserve the highest-priority in rivers, bay, and coastal waters, respectively.
Collapse
Affiliation(s)
- Shuang Lu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Jing Wang
- Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chunye Lin
- Beijing Normal University, Beijing 100875, China.
| | - Xiang Gu
- Beijing Normal University, Beijing 100875, China
| | - Maoshan Lian
- Beijing Normal University, Beijing 100875, China
| | - Yun Li
- Beijing Normal University, Beijing 100875, China
| |
Collapse
|