101
|
Charles A, Thomas RM. The Influence of the microbiome on the innate immune microenvironment of solid tumors. Neoplasia 2023; 37:100878. [PMID: 36696837 PMCID: PMC9879786 DOI: 10.1016/j.neo.2023.100878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Cancer remains a leading cause of death despite many advances in medical and surgical therapy. In recent decades, the investigation for novel therapeutic strategies with greater efficacy and reduced side effects has led to a deeper understanding of the relationship between the microbiome and the immune system in the context of cancer. The ability of the immune system to detect and kill cancer is now recognized to be greatly influenced by the microbial ecosystem of the host. While most of these studies, as well as currently used immunotherapeutics, focus on the adaptive immune system, this minimizes the impact of the innate immune system in cancer surveillance and its regulation by the host microbiome. In this review, known influences of the microbiome on the innate immune cells in the tumor microenvironment will be discussed in the context of individual innate immune cells. Current and needed areas of investigation will highlight the field and its potential impact in the clinical treatment of solid malignancies.
Collapse
Affiliation(s)
- Angel Charles
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA,Corresponding author at: University of Florida, Department of Surgery, PO Box 100109, Gainesville, FL 32610, USA
| |
Collapse
|
102
|
Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023; 11:294. [PMID: 36830830 PMCID: PMC9953403 DOI: 10.3390/biomedicines11020294] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota-immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota-immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Connor Campbell
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Mrunmayee R. Kandalgaonkar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
103
|
Cartwright IM, Colgan SP. The hypoxic tissue microenvironment as a driver of mucosal inflammatory resolution. Front Immunol 2023; 14:1124774. [PMID: 36742292 PMCID: PMC9890178 DOI: 10.3389/fimmu.2023.1124774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
On the backdrop of all acute inflammatory processes lies the activation of the resolution response. Recent years have witnessed an emerging interest in defining molecular factors that influence the resolution of inflammation. A keystone feature of the mucosal inflammatory microenvironment is hypoxia. The gastrointestinal tract, particularly the colon, exists in a state of physiological hypoxia and during active inflammation, this hypoxic state is enhanced as a result of infiltrating leukocyte oxygen consumption and the activation of oxygen consuming enzymes. Most evidence suggests that mucosal hypoxia promotes the active resolution of inflammation through a variety of mechanisms, including extracellular acidification, purine biosynthesis/salvage, the generation of specialized pro-resolving lipid mediators (ie. resolvins) and altered chemokine/cytokine expression. It is now appreciated that infiltrating innate immune cells (neutrophils, eosinophils, macrophages) have an important role in molding the tissue microenvironment to program an active resolution response. Structural or functional dysregulation of this inflammatory microenvironment can result in the loss of tissue homeostasis and ultimately progression toward chronicity. In this review, we will discuss how inflammatory hypoxia drives mucosal inflammatory resolution and its impact on other microenvironmental factors that influence resolution.
Collapse
Affiliation(s)
- Ian M. Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Sean P. Colgan
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
104
|
Bioinformatics Analysis of Immune Cell Infiltration and Diagnostic Biomarkers between Ankylosing Spondylitis and Inflammatory Bowel Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9065561. [PMID: 36643579 PMCID: PMC9836798 DOI: 10.1155/2023/9065561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/09/2022] [Accepted: 11/26/2022] [Indexed: 01/07/2023]
Abstract
Background Ankylosing spondylitis (AS) and inflammatory bowel disease (IBD) are both autoimmune diseases, and they often occur together in clinical practice, but the pathogenesis is unclear. This study is aimed at identifying the hub genes and explore the related immune molecular mechanisms between AS and IBD by bioinformatics analysis. Methods From the public Gene Expression Omnibus (GEO) database, the AS and IBD datasets (GSE73754, GSE59071, GSE25101, and GSE36807) were obtained. The immune cell infiltration in the peripheral blood tissues of GSE73754 and GSE59071 was assessed using the CIBERSORT algorithm. Then, we used the Weighted Gene Coexpression Network Analysis (WGCNA) to identify the Differentially Expressed Genes (DEGs) related to AS and IBD. Then, the immune genes from the ImmPort database intersected with the DEGs to obtain hub genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyzed the functional correlation of hub genes. Then, hub genes were verified in GSE25101 and GSE36807. The clusterProfiler software and Gene Set Enrichment Analysis (GSEA) were used to conduct functional enrichment and pathway enrichment studies. Finally, the diagnostic efficacy was assessed using Receiver Operating Characteristic (ROC) curve analysis. Results The analysis of immune characteristics showed that both AS and IBD were related to immunity, and neutrophils were positively correlated in both diseases. Nine coexpressed genes, including FCGRT, S100A11, IFNGR1, NFKBIZ, JAK2, LYN, PLAUR, ADM, and IL1RN, were linked to immune cells. The GO and KEGG analyses results showed that enrichment analysis was mainly related to cell transport and migration. Finally, the ROC curve was verified with the validation set, and it was found that PLAUR has clinical diagnostic significance and the most excellent specificity and sensitivity, respectively. Conclusions PLAUR (uPAR) is a promising biomarker and will be an underlying genetic biomarker for diagnosing AS comorbid IBD. Inflammation and immunological modulation mediated by neutrophil infiltration were important in the development of AS and IBD and may be diagnostic and therapeutic targets.
Collapse
|
105
|
Zhang X, Zhang X, Song X, Xiang C, He C, Xie Y, Zhou Y, Wang N, Guo G, Zhang W, Li Y, Liu K, Zou Q, Guo H, Shi Y. Interleukin 17 B regulates colonic myeloid cell infiltration in a mouse model of DSS-induced colitis. Front Immunol 2023; 14:1055256. [PMID: 36814913 PMCID: PMC9940313 DOI: 10.3389/fimmu.2023.1055256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Cytokines play vital roles in the pathogenesis of inflammatory bowel disease. IL17B is protective in the development of colitis. However, how IL17B regulates intestinal inflammation and what cells are regulated by IL17B is still unknown. Here, we aimed to illustrate the IL17B dependent cellular and molecular changes in colon tissue in a mouse colitis model. The results showed that IL17B expression in colon tissues was elevated in inflamed tissues than non-inflamed tissues of IBD patients. Wild type (WT) and Il17b deficient (Il17b -/-) mice were given 2.5% dextran sodium sulfate (DSS) water, and in some case, Il17b -/- mice were treated with recombinant mouse IL17B. IL17B deficiency resulted in severe DSS-induced colitis with exaggerated weight loss, shorter colon length, and elevated proinflammatory cytokines in colon. Reconstitution of Il17b -/- mice with recombinant IL17B alleviated the severity of DSS-induced colitis. Single cell transcriptional analyses of CD45+ immune cells in colonic lamina propria revealed that loss of IL17B resulted in an increased neutrophil infiltration and enhanced inflammatory cytokines in intestinal macrophages in colitis, which were confirmed by real-time PCR and flow cytometry. IL17B treatment also inhibited lipopolysaccharide-induced inflammation in bone marrow-derived macrophages and mice. IL17B inhibits colitis by regulating colonic myeloid cell response. It might represent a novel potential therapeutic approach to treat the colitis.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaokai Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaomei Song
- Department of Gastroenterology, Chongqing General Hospital, Chongqing, China
| | - Chuanying Xiang
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunmei He
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yu Xie
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangyang Zhou
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Wang
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Guo
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yan Li
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiyun Liu
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hong Guo
- Department of Gastroenterology, Chongqing General Hospital, Chongqing, China
| | - Yun Shi
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
106
|
Macleod T, Bridgewood C, McGonagle D. Role of neutrophil interleukin-23 in spondyloarthropathy spectrum disorders. THE LANCET. RHEUMATOLOGY 2023; 5:e47-e57. [PMID: 38251507 DOI: 10.1016/s2665-9913(22)00334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Neutrophilic inflammation is a pervasive characteristic common to spondyloarthropathies and related disorders. This inflammation manifests as Munro's microabscesses of the skin and osteoarticular neutrophilic inflammation in patients with psoriatic arthritis, intestinal crypt abscesses in patients with inflammatory bowel disease, ocular hypopyon in anterior uveitis, and neutrophilic macroscopic and microscopic inflammation in patients with Behçet's disease. Strong MHC class I associations are seen in these diseases, which represent so-called MHC-I-opathies, and these associations indicate an involvement of CD8 T-cell immunopathology that is not yet well understood. In this Personal View, we highlight emerging data suggesting that the T-cell-neutrophil axis involves both a T-cell-mediated and interleukin (IL)-17-mediated (type 17) recruitment and activation of neutrophils, and also a sequestration of activated neutrophils at disease sites that might directly amplify type 17 T-cell responses. This amplification likely involves neutrophilic production of IL-23 and proteases as well as other feedback mechanisms that could be regulated by local microbiota, pathogens, or tissue damage. This crosstalk between innate and adaptive immunity offers a novel explanation for how bacterial and fungal microbes at barrier sites could innately control type 17 T-cell development, with the aim of restoring tissue homoeostasis, and could potentially explain features of clinical disease and treatment response, such as the fast-onset action of the IL-23 pathway blockade in certain patients. This axis could be crucial to understanding non-response to IL-23 inhibitors among patients with ankylosing spondylitis, as the axial skeleton is a site rich in neutrophils and a site of haematopoiesis with myelopoiesis in adults.
Collapse
Affiliation(s)
- Tom Macleod
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Charles Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, UK.
| |
Collapse
|
107
|
Adini A, Ko VH, Puder M, Louie SM, Kim CF, Baron J, Matthews BD. PR1P, a VEGF-stabilizing peptide, reduces injury and inflammation in acute lung injury and ulcerative colitis animal models. Front Immunol 2023; 14:1168676. [PMID: 37187742 PMCID: PMC10175756 DOI: 10.3389/fimmu.2023.1168676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) and Ulcerative Colitis (UC) are each characterized by tissue damage and uncontrolled inflammation. Neutrophils and other inflammatory cells play a primary role in disease progression by acutely responding to direct and indirect insults to tissue injury and by promoting inflammation through secretion of inflammatory cytokines and proteases. Vascular Endothelial Growth Factor (VEGF) is a ubiquitous signaling molecule that plays a key role in maintaining and promoting cell and tissue health, and is dysregulated in both ARDS and UC. Recent evidence suggests a role for VEGF in mediating inflammation, however, the molecular mechanism by which this occurs is not well understood. We recently showed that PR1P, a 12-amino acid peptide that binds to and upregulates VEGF, stabilizes VEGF from degradation by inflammatory proteases such as elastase and plasmin thereby limiting the production of VEGF degradation products (fragmented VEGF (fVEGF)). Here we show that fVEGF is a neutrophil chemoattractant in vitro and that PR1P can be used to reduce neutrophil migration in vitro by preventing the production of fVEGF during VEGF proteolysis. In addition, inhaled PR1P reduced neutrophil migration into airways following injury in three separate murine acute lung injury models including from lipopolysaccharide (LPS), bleomycin and acid. Reduced presence of neutrophils in the airways was associated with decreased pro-inflammatory cytokines (including TNF-α, IL-1β, IL-6) and Myeloperoxidase (MPO) in broncho-alveolar lavage fluid (BALF). Finally, PR1P prevented weight loss and tissue injury and reduced plasma levels of key inflammatory cytokines IL-1β and IL-6 in a rat TNBS-induced colitis model. Taken together, our data demonstrate that VEGF and fVEGF may each play separate and pivotal roles in mediating inflammation in ARDS and UC, and that PR1P, by preventing proteolytic degradation of VEGF and the production of fVEGF may represent a novel therapeutic approach to preserve VEGF signaling and inhibit inflammation in acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Avner Adini
- Vascular Biology Program, Children’s Hospital Boston and Harvard Medical School, Boston, MA, United States
- Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
- *Correspondence: Avner Adini,
| | - Victoria H. Ko
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States
| | - Mark Puder
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States
| | - Sharon M. Louie
- Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States
| | - Carla F. Kim
- Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States
| | - Joseph Baron
- Janus Biotherapeutics, Inc, Wellesley, MA, United States
| | - Benjamin D. Matthews
- Vascular Biology Program, Children’s Hospital Boston and Harvard Medical School, Boston, MA, United States
- Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
108
|
Zhou Z, Yang W, Yu T, Yu Y, Zhao X, Yu Y, Gu C, Bilotta AJ, Yao S, Zhao Q, Golovko G, Li M, Cong Y. GPR120 promotes neutrophil control of intestinal bacterial infection. Gut Microbes 2023; 15:2190311. [PMID: 36927391 PMCID: PMC10026904 DOI: 10.1080/19490976.2023.2190311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
G-protein coupled receptor 120 (GPR 120) has been implicated in anti-inflammatory functions. However, how GPR120 regulates the neutrophil function remains unknown. This study investigated the role of GPR120 in the regulation of neutrophil function against enteric bacteria. 16S rRNA sequencing was used for measuring the gut microbiota of wild-type (WT) mice and Gpr120-/- mice. Citrobacter rodentium infection and dextran sulfate sodium (DSS)-induced colitis models were performed in WT and Gpr120-/- mice. Mouse peritoneal-derived primary neutrophils were used to determine the neutrophil functions. Gpr120-/- mice showed altered microbiota composition. Gpr120-/- mice exhibited less capacity to clear intestinal Citrobacter rodentium and more severe intestinal inflammation upon infection or DSS insults. Depletion of neutrophils decreased the intestinal clearance of Citrobacter rodentium. GPR120 agonist, CpdA, enhanced WT neutrophil production of reactive oxygen species (ROS) and extracellular traps (NETs), and GPR120-deficient neutrophils demonstrated a lower level of ROS and NETs. CpdA-treated neutrophils showed an enhanced capacity to inhibit the growth of Citrobacter rodentium, which was abrogated by the inhibition of either NETs or ROS. CpdA promoted neutrophil inhibition of the growth of commensal bacteria Escherichia coli O9:H4 and pathobiont Escherichia coli O83:H1 isolated from a Crohn's disease patient. Mechanically, mTOR activation and glycolysis mediated GPR120 induction of ROS and NETs in neutrophils. Additionally, CpdA promoted the neutrophil production of IL-17 and IL-22, and treatment with a conditioned medium of GPR120-activated neutrophils increased intestinal epithelial cell barrier functions. Our study demonstrated the critical role of GPR120 in neutrophils in protection against enteric bacterial invasion.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
- Department of Gastroenterology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - Tianming Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - Yu Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - Xiaojing Zhao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - Yanbo Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - Chuncai Gu
- Department of Gastroenterology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Anthony J Bilotta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - Qihong Zhao
- Bristol-MyersSquibb, Princeton, New Jersey, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, USA
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|
109
|
Dong D, Su T, Chen W, Wang D, Xue Y, Lu Q, Jiang C, Ni Q, Mao E, Peng Y. Clostridioides difficile aggravates dextran sulfate solution (DSS)-induced colitis by shaping the gut microbiota and promoting neutrophil recruitment. Gut Microbes 2023; 15:2192478. [PMID: 36951545 PMCID: PMC10038061 DOI: 10.1080/19490976.2023.2192478] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Clostridioides difficile is a pathogen contributing to increased morbidity and mortality of patients with inflammatory bowel disease (IBD). To determine how C. difficile affects the severity of colitis, we constructed a dextran sulfate solution-induced colitis model challenged with C. difficile. Without antibiotic administration, C. difficile led to transient colonization in mice with colitis, but still significantly enhanced disease severity as assessed by weight loss, histopathological damages, and inflammatory cytokine concentrations. Because this effect is independent of toxin production as shown by infection with a non-toxigenic strain, we focused on changes in the gut microbiota. The microbiota altered by C.difficile, featured with reduced proportions of g_Prevotellaceae_UCG-001 and g_Muribaculaceae, were confirmed to contribute to disease severity in colitis mice via fecal microbiota transplantations. The inflamed colon showed neutrophil accumulation by flow cytometric analysis and myeloperoxidase immunochemical staining. There was enrichment of upregulated genes in leukocyte chemotaxis or migration as shown by RNA sequencing analysis. The isolated neutrophils from C. difficile-infected mice with colitis showed a robust migratory ability and had enhanced expression of cytokines and chemokines. We observed a detrimental role of neutrophils in the progress of disease by hindering neutrophil recruitment with the CXCR2 inhibitor SB225002. Furthermore, neutrophil recruitment appeared to be regulated by interleukin (IL)-1β, as inhibition of IL-1β production by MCC950 markedly ameliorated inflammation with decreased neutrophil accumulation and neutrophil-derived chemokine expression. In conclusion, our study provides information on the complicated interaction between microbiota and immune responses in C. difficile-induced inflammation in mice with colitis. Our findings could help determine potential therapeutic targets for patients with IBD concurrent with C. difficile infection.
Collapse
Affiliation(s)
- Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tongxuan Su
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daosheng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YiLun Xue
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuya Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Ni
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
110
|
Muñoz L, Caparrós E, Albillos A, Francés R. The shaping of gut immunity in cirrhosis. Front Immunol 2023; 14:1139554. [PMID: 37122743 PMCID: PMC10141304 DOI: 10.3389/fimmu.2023.1139554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Cirrhosis is the common end-stage of chronic liver diseases of different etiology. The altered bile acids metabolism in the cirrhotic liver and the increase in the blood-brain barrier permeability, along with the progressive dysbiosis of intestinal microbiota, contribute to gut immunity changes, from compromised antimicrobial host defense to pro-inflammatory adaptive responses. In turn, these changes elicit a disruption in the epithelial and gut vascular barriers, promoting the increased access of potential pathogenic microbial antigens to portal circulation, further aggravating liver disease. After summarizing the key aspects of gut immunity during homeostasis, this review is intended to update the contribution of liver and brain metabolites in shaping the intestinal immune status and, in turn, to understand how the loss of homeostasis in the gut-associated lymphoid tissue, as present in cirrhosis, cooperates in the advanced chronic liver disease progression. Finally, several therapeutic approaches targeting the intestinal homeostasis in cirrhosis are discussed.
Collapse
Affiliation(s)
- Leticia Muñoz
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Caparrós
- Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Agustín Albillos
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- *Correspondence: Agustín Albillos, ; Rubén Frances,
| | - Rubén Francés
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnologiía Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
- *Correspondence: Agustín Albillos, ; Rubén Frances,
| |
Collapse
|
111
|
Chen H, Wu X, Sun R, Lu H, Lin R, Gao X, Li G, Feng Z, Zhu R, Yao Y, Feng B, Liu Z. Dysregulation of CD177 + neutrophils on intraepithelial lymphocytes exacerbates gut inflammation via decreasing microbiota-derived DMF. Gut Microbes 2023; 15:2172668. [PMID: 36729914 PMCID: PMC9897772 DOI: 10.1080/19490976.2023.2172668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Neutrophils synergize with intestinal resident intraepithelial lymphocytes (IELs) to serve as the first-line defense and maintain intestinal homeostasis. However, the underlying mechanisms whereby neutrophils regulate IELs to inhibit intestinal inflammation are still not completely understood. Here, we found that depletion of neutrophils (especially CD177+ subset) caused expansion of colitogenic TCRγδ+CD8αα+ IELs, increased intestinal inflammation, and dysbiosis after dextran sulfate sodium exposure or Citrobacter rodentium infection in mice. scRNA-seq analysis revealed a pyroptosis-related gene signature and hyperresponsiveness to microbiota in TCRγδ+CD8αα+ IELs from colitic Cd177-/- mice. Microbiota-derived fumarate and its derivative dimethyl fumarate (DMF), as well as fumarate-producing microbiotas, decreased in the feces of colitic Cd177-/- mice. Elimination of dysbiosis by antibiotics treatment or co-housing procedure and DMF supplementation restrained TCRγδ+CD8αα+ IEL activation. Consistently, DMF significantly alleviated intestinal mucosal inflammation in mice through restricting gasdermin D (GSDMD)-induced pyroptosis of TCRγδ+CD8αα+ IELs. Therefore, our data reveal that neutrophils inhibit intestinal inflammation by promoting microbiota-derived DMF to regulate TCRγδ+CD8αα+ IEL activation in a GSDMD-mediated pyroptosis-dependent manner, and that DMF may serve as a therapeutic target for the management of intestinal inflammation.
Collapse
Affiliation(s)
- Huimin Chen
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaohan Wu
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruicong Sun
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huiying Lu
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ritian Lin
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiang Gao
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gengfeng Li
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongsheng Feng
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruixin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yao Yao
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
112
|
Swaminathan A, Borichevsky GM, Edwards TS, Hirschfeld E, Mules TC, Frampton CMA, Day AS, Hampton MB, Kettle AJ, Gearry RB. Faecal Myeloperoxidase as a Biomarker of Endoscopic Activity in Inflammatory Bowel Disease. J Crohns Colitis 2022; 16:1862-1873. [PMID: 35803583 PMCID: PMC9721461 DOI: 10.1093/ecco-jcc/jjac098] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease [IBD], consisting of Crohn's disease [CD] and ulcerative colitis [UC], is a relapsing-remitting illness. Treat-to-target IBD management strategies require monitoring of gastrointestinal inflammation. This study aimed to investigate faecal myeloperoxidase [fMPO], a neutrophil granule enzyme, as a biomarker of IBD activity. METHODS Prospectively recruited participants with IBD, undergoing ileocolonoscopy for disease assessment, provided biological samples and completed symptom questionnaires prior to endoscopy. fMPO, C-reactive protein [CRP], and faecal calprotectin [fCal] were compared with validated endoscopic indices [simple endoscopic score for CD and UC endoscopic index of severity]. Receiver operating characteristic [ROC] curves assessed the performance of fMPO, CRP, and fCal in predicting endoscopic disease activity. Baseline biomarkers were used to predict a composite endpoint of complicated disease at 12 months [need for escalation of biologic/immunomodulator due to relapse, steroid use, IBD-related hospitalisation, and surgery]. RESULTS A total of 172 participants were recruited [91 female, 100 with CD]. fMPO was significantly correlated with endoscopic activity in both CD [r = 0.53, p < 0.01] and UC [r = 0.63, p < 0.01], and with fCal in all patients with IBD [r = 0.82, p < 0.01]. fMPO was effective in predicting moderate-to-severely active CD [AUROC 0.86, p < 0.01] and UC [AUROC 0.92, p < 0.01]. Individuals with a baseline fMPO > 26 µg/g were significantly more likely to reach the composite outcome at 12 months (hazard ratio [HR] 3.71, 95% confidence interval [CI] 2.07-6.64, p < 0.01). CONCLUSIONS Faecal myeloperoxidase is an accurate biomarker of endoscopic activity in IBD and predicted a more complicated IBD course during follow-up.
Collapse
Affiliation(s)
- Akhilesh Swaminathan
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Department of Gastroenterology, Christchurch Hospital, Christchurch, New Zealand
| | - Grace M Borichevsky
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Teagan S Edwards
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Esther Hirschfeld
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Thomas C Mules
- Department of Gastroenterology, Christchurch Hospital, Christchurch, New Zealand
| | | | - Andrew S Day
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Richard B Gearry
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Department of Gastroenterology, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
113
|
Pan G, Zhang P, Yang J, Wu Y. The regulatory effect of specialized pro-resolving mediators on immune cells. Biomed Pharmacother 2022; 156:113980. [DOI: 10.1016/j.biopha.2022.113980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
|
114
|
Leppkes M, Lindemann A, Gößwein S, Paulus S, Roth D, Hartung A, Liebing E, Zundler S, Gonzalez-Acera M, Patankar JV, Mascia F, Scheibe K, Hoffmann M, Uderhardt S, Schauer C, Foersch S, Neufert C, Vieth M, Schett G, Atreya R, Kühl AA, Bleich A, Becker C, Herrmann M, Neurath MF. Neutrophils prevent rectal bleeding in ulcerative colitis by peptidyl-arginine deiminase-4-dependent immunothrombosis. Gut 2022; 71:2414-2429. [PMID: 34862250 PMCID: PMC9667856 DOI: 10.1136/gutjnl-2021-324725] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Bleeding ulcers and erosions are hallmarks of active ulcerative colitis (UC). However, the mechanisms controlling bleeding and mucosal haemostasis remain elusive. DESIGN We used high-resolution endoscopy and colon tissue samples of active UC (n = 36) as well as experimental models of physical and chemical mucosal damage in mice deficient for peptidyl-arginine deiminase-4 (PAD4), gnotobiotic mice and controls. We employed endoscopy, histochemistry, live-cell microscopy and flow cytometry to study eroded mucosal surfaces during mucosal haemostasis. RESULTS Erosions and ulcerations in UC were covered by fresh blood, haematin or fibrin visible by endoscopy. Fibrin layers rather than fresh blood or haematin on erosions were inversely correlated with rectal bleeding in UC. Fibrin layers contained ample amounts of neutrophils coaggregated with neutrophil extracellular traps (NETs) with detectable activity of PAD. Transcriptome analyses showed significantly elevated PAD4 expression in active UC. In experimentally inflicted wounds, we found that neutrophils underwent NET formation in a PAD4-dependent manner hours after formation of primary blood clots, and remodelled clots to immunothrombi containing citrullinated histones, even in the absence of microbiota. PAD4-deficient mice experienced an exacerbated course of dextrane sodium sulfate-induced colitis with markedly increased rectal bleeding (96 % vs 10 %) as compared with controls. PAD4-deficient mice failed to remodel blood clots on mucosal wounds eliciting impaired healing. Thus, NET-associated immunothrombi are protective in acute colitis, while insufficient immunothrombosis is associated with rectal bleeding. CONCLUSION Our findings uncover that neutrophils induce secondary immunothrombosis by PAD4-dependent mechanisms. Insufficient immunothrombosis may favour rectal bleeding in UC.
Collapse
Affiliation(s)
- Moritz Leppkes
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany .,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Aylin Lindemann
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Stefanie Gößwein
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Susanne Paulus
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Dominik Roth
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Anne Hartung
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Eva Liebing
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Sebastian Zundler
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Jay V Patankar
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Fabrizio Mascia
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Kristina Scheibe
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Markus Hoffmann
- Medical Clinic 3, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Stefan Uderhardt
- Deutsches Zentrum Immuntherapie, Erlangen, Germany,Medical Clinic 3, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Christine Schauer
- Medical Clinic 3, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | | | - Clemens Neufert
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Michael Vieth
- Friedrich Alexander University, Institute of Pathology, Klinikum Bayreuth, Erlangen, Germany
| | - Georg Schett
- Deutsches Zentrum Immuntherapie, Erlangen, Germany,Medical Clinic 3, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Raja Atreya
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Christoph Becker
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Martin Herrmann
- Medical Clinic 3, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Markus F Neurath
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| |
Collapse
|
115
|
Sui GY, Wang F, Lee J, Roh YS. Mitochondrial Control in Inflammatory Gastrointestinal Diseases. Int J Mol Sci 2022; 23:14890. [PMID: 36499214 PMCID: PMC9736936 DOI: 10.3390/ijms232314890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mitochondria play a central role in the pathophysiology of inflammatory bowel disease (IBD) and colorectal cancer (CRC). The maintenance of mitochondrial function is necessary for a stable immune system. Mitochondrial dysfunction in the gastrointestinal system leads to the excessive activation of multiple inflammatory signaling pathways, leading to IBD and increased severity of CRC. In this review, we focus on the mitochondria and inflammatory signaling pathways and its related gastrointestinal diseases.
Collapse
Affiliation(s)
- Guo-Yan Sui
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Feng Wang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yoon Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
116
|
Mohamed Husien H, Peng W, Su H, Zhou R, Tao Y, Huang J, Liu M, Bo R, Li J. Moringa oleifera leaf polysaccharide alleviates experimental colitis by inhibiting inflammation and maintaining intestinal barrier. Front Nutr 2022; 9:1055791. [PMID: 36438754 PMCID: PMC9686441 DOI: 10.3389/fnut.2022.1055791] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/20/2022] [Indexed: 07/24/2023] Open
Abstract
The characteristic of ulcerative colitis (UC) is extensive colonic mucosal inflammation. Moringa oleifera (M. oleifera) is a medicine food homology plant, and the polysaccharide from M. oleifera leaves (MOLP) exhibits antioxidant and anti-inflammatory activity. The aim of this study to investigate the potential effect of MOLP on UC in a mouse model as well as the underlying mechanism. Dextran sulfate sodium (DSS) 4% in drinking water was given for 7 days to mice with UC, at the same time, MOLP (25, 50, and 100 mg/kg/day) was intragastric administered once daily during the experiment. Structural analysis revealed that MOLP had an average molecular weight (Mw) of 182,989 kDa and consisted of fucose, arabinose, rhamnose, galactose, glucose, xylose, mannose, galactose uronic acid, glucuronic acid, glucose uronic acid and mannose uronic acid, with a percentage ratio of 1.64, 18.81, 12.04, 25.90, 17.57, 12.01, 3.51, 5.28, 0.55, 1.27, and 1.43%, respectively. In addition, the features of MOLP were identified by Fourier-transform infrared (FT-IR) and spectra, X-ray diffraction (XRD). The results showed that MOLP exhibited protective efficacy against UC by alleviating colonic pathological alterations, decreasing goblet cells, crypt destruction, and infiltration of inflammatory cells caused by DSS. Furthermore, MOLP notably repressed the loss of zonula occludens-1 (ZO-1) and occludin proteins in mucosal layer, as well as up-regulating the mRNA expression of interleukin-10 (IL-10) and peroxisome proliferator-activated receptor-γ (PPAR-γ), whereas down-regulating the activation of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor-kappa B (NF-κB) signaling pathway and the production of pro-inflammatory cytokines. Therefore, these results will help understand the protective action procedure of MOLP against UC, thereby providing significance for the development of MOLP.
Collapse
Affiliation(s)
- Hosameldeen Mohamed Husien
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- College of Veterinary Medicine, University of Albutana, Albutana, Sudan
| | - WeiLong Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hongrui Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - RuiGang Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ya Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - JunJie Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - MingJiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - RuoNan Bo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - JinGui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
117
|
Takahashi T, Kato S, Ito J, Shimizu N, Parida IS, Itaya-Takahashi M, Sakaino M, Imagi J, Yoshinaga K, Yoshinaga-Kiriake A, Gotoh N, Ikeda I, Nakagawa K. Dietary triacylglycerol hydroperoxide is not absorbed, yet it induces the formation of other triacylglycerol hydroperoxides in the gastrointestinal tract. Redox Biol 2022; 57:102471. [PMID: 36137475 PMCID: PMC9493066 DOI: 10.1016/j.redox.2022.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022] Open
Abstract
The in vivo presence of triacylglycerol hydroperoxide (TGOOH), a primary oxidation product of triacylglycerol (TG), has been speculated to be involved in various diseases. Thus, considerable attention has been paid to whether dietary TGOOH is absorbed from the intestine. In this study, we performed the lymph duct-cannulation study in rats and analyzed the level of TGOOH in lymph following administration of a TG emulsion containing TGOOH. As we successfully detected TGOOH from the lymph, we hypothesized that this might be originated from the intestinal absorption of dietary TGOOH [hypothesis I] and/or the in situ formation of TGOOH [hypothesis II]. To determine the validity of these hypotheses, we then performed another cannulation study using a TG emulsion containing a deuterium-labeled TGOOH (D2-TGOOH) that is traceable in vivo. After administration of this emulsion to rats, we clearly detected unlabeled TGOOH instead of D2-TGOOH from the lymph, indicating that TGOOH is not absorbed from the intestine but is more likely to be produced in situ. By discriminating the isomeric structures of TGOOH present in lymph, we predicted the mechanism by which the intake of dietary TGOOH triggers oxidative stress (e.g., via generation of singlet oxygen) and induces in situ formation of TGOOH. The results of this study hereby provide a foothold to better understand the physiological significance of TGOOH on human health.
Collapse
Affiliation(s)
- Takumi Takahashi
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Shunji Kato
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan; J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Junya Ito
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Naoki Shimizu
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Isabella Supardi Parida
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Mayuko Itaya-Takahashi
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Masayoshi Sakaino
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Jun Imagi
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Kazuaki Yoshinaga
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Aya Yoshinaga-Kiriake
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Ikeda
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan; J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan.
| |
Collapse
|
118
|
Xu R, Weber MC, Hu X, Neumann PA, Kamaly N. Annexin A1 based inflammation resolving mediators and nanomedicines for inflammatory bowel disease therapy. Semin Immunol 2022; 61-64:101664. [PMID: 36306664 DOI: 10.1016/j.smim.2022.101664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel diseases (IBD) such as Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic, progressive, and relapsing disorders of the gastrointestinal tract (GIT), characterised by intestinal epithelial injury and inflammation. Current research shows that in addition to traditional anti-inflammatory therapy, resolution of inflammation and repair of the epithelial barrier are key biological requirements in combating IBD. Resolution mediators include endogenous lipids that are generated during inflammation, e.g., lipoxins, resolvins, protectins, maresins; and proteins such as Annexin A1 (ANXA1). Nanoparticles can specifically deliver these potent inflammation resolving mediators in a spatiotemporal manner to IBD lesions, effectively resolve inflammation, and promote a return to homoeostasis with minimal collateral damage. We discuss these exciting and timely concepts in this review.
Collapse
Affiliation(s)
- Runxin Xu
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, United Kingdom
| | - Marie-Christin Weber
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Surgery, Germany
| | - Xinkai Hu
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, United Kingdom
| | - Philipp-Alexander Neumann
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Surgery, Germany.
| | - Nazila Kamaly
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, United Kingdom.
| |
Collapse
|
119
|
Azcutia V, Kelm M, Kim S, Luissint AC, Flemming S, Abernathy-Close L, Young VB, Nusrat A, Miller MJ, Parkos CA. Distinct stimulus-dependent neutrophil dynamics revealed by real-time imaging of intestinal mucosa after acute injury. PNAS NEXUS 2022; 1:pgac249. [PMID: 36712325 PMCID: PMC9802210 DOI: 10.1093/pnasnexus/pgac249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Clinical symptoms in many inflammatory diseases of the intestine are directly related to neutrophil (PMN) migration across colonic mucosa and into the intestinal lumen, yet in-vivo studies detailing this process are lacking. Using real-time intravital microscopy and a new distal colon loop model, we report distinct PMN migratory dynamics in response to several models of acute colonic injury. PMNs exhibited rapid swarming responses after mechanically induced intestinal wounds. Similar numbers of PMNs infiltrated colonic mucosa after wounding in germ-free mice, suggesting microbiota-independent mechanisms. By contrast, acute mucosal injury secondary to either a treatment of mice with dextran sodium sulfate or an IL-10 receptor blockade model of colitis resulted in lamina propria infiltration with PMNs that were largely immotile. Biopsy wounding of colonic mucosa in DSS-treated mice did not result in enhanced PMN swarming however, intraluminal application of the neutrophil chemoattractant LTB4 under such conditions resulted in enhanced transepithelial migration of PMNs. Analyses of PMNs that had migrated into the colonic lumen revealed that the majority of PMNs were directly recruited from the circulation and not from the immotile pool in the mucosa. Decreased PMN motility parallels upregulation of the receptor CXCR4 and apoptosis. Similarly, increased expression of CXCR4 on human PMNs was observed in colonic biopsies from people with active ulcerative colitis. This new approach adds an important tool to investigate mechanisms regulating PMN migration across mucosa within the distal intestine and will provide new insights for developing future anti-inflammatory and pro-repair therapies.
Collapse
Affiliation(s)
- Veronica Azcutia
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Matthias Kelm
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Seonyoung Kim
- Department of Internal Medicine, Washington University School of Medicine; Saint Louis, MO 63110, USA
| | | | - Sven Flemming
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Lisa Abernathy-Close
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan; Ann Arbor, MI 48109, USA
| | - Vincent B Young
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan; Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| | - Mark J Miller
- Department of Internal Medicine, Washington University School of Medicine; Saint Louis, MO 63110, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan; Ann Arbor, MI 48109, USA
| |
Collapse
|
120
|
Hussain Z, Park H. Inflammation and Impaired Gut Physiology in Post-operative Ileus: Mechanisms and the Treatment Options. J Neurogastroenterol Motil 2022; 28:517-530. [PMID: 36250359 PMCID: PMC9577567 DOI: 10.5056/jnm22100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Post-operative ileus (POI) is the transient cessation of coordinated gastrointestinal motility after abdominal surgical intervention. It decreases quality of life, prolongs length of hospital stay, and increases socioeconomic costs. The mechanism of POI is complex and multifactorial, and has been broadly categorized into neurogenic and inflammatory phase. Neurogenic phase mediated release of corticotropin-releasing factor (CRF) plays a central role in neuroinflammation, and affects both central autonomic response as well hypothalamic-pituitary-adrenal (HPA) axis. HPA-stress axis associated cortisol release adversely affects gut microbiota and permeability. Peripheral CRF (pCRF) is a key player in stress induced gastric emptying and colonic transit. It functions as a local effector and interacts with the CRF receptors on the mast cell to release chemical mediators of inflammation. Mast cells proteases disrupt epithelial barrier via protease activated receptor-2 (PAR-2). PAR-2 facilitates cytoskeleton contraction to reorient tight junction proteins such as occludin, claudins, junctional adhesion molecule, and zonula occludens-1 to open epithelial barrier junctions. Barrier opening affects the selectivity, and hence permeation of luminal antigens and solutes in the gastrointestinal tract. Translocation of luminal antigens perturbs mucosal immune system to further exacerbate inflammation. Stress induced dysbiosis and decrease in production of short chain fatty acids add to the inflammatory response and barrier disintegration. This review discusses potential mechanisms and factors involved in the pathophysiology of POI with special reference to inflammation and interlinked events such as epithelial barrier dysfunction and dysbiosis. Based on this review, we recommend CRF, mast cells, macrophages, and microbiota could be targeted concurrently for efficient POI management.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
121
|
Le HD, Pflaum T, Labrenz J, Sari S, Bretschneider F, Tran F, Lassen A, Nikolaus S, Szymczak S, Kormilez D, Rosenstiel P, Schreiber S, Aden K, Röcken C. Interobserver reliability of the Nancy index for ulcerative colitis: An assessment of the practicability and ease of use in a single-centre real-world setting. J Crohns Colitis 2022; 17:389-395. [PMID: 36282973 DOI: 10.1093/ecco-jcc/jjac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Histological disease severity assessment in ulcerative colitis (UC) has become a mainstay in clinical endpoints definition ("histologic remission") in clinical trials of UC. Several scores are established in the microscopical assessment of disease activity, but the Nancy index (NI) stands out being a histological index with the least amount of scoring items among these scores. To which extent histologic assessment using NI is affected by interobserver reliability in a real word setting, is poorly understood. We therefore performed a single-center retrospective analysis of NI assessment in patients with UC. METHODS We retrospectively evaluated the NI in two independent cohorts (total: 1085 biopsies, 547 UC patients) of clinically diagnosed UC patients, who underwent colonoscopy between 2007 and 2020. Cohort #1 consisted of 637 biopsies from 312 patients, Cohort #2 consisted of 448 biopsies from 235 patients. Two blinded pathologists with different levels of expertise scored all biopsies of each cohort. A consensus conference was held for cases with discrepant scoring results. Finally, an overall consensus scoring was obtained from both cohorts. RESULTS The interobserver-agreement of the NI was substantial after the assessment of 1085 biopsy samples (κ = 0.796 [95%-CI: 0.771-0.820]). An improvement of the interobserver-agreement was found with growing numbers of samples evaluated by both observers (Cohort #1: κ = 0.772 [95%-CI: 0.739-0.805]; Cohort #2: κ = 0.829 [95%-CI: 0.793-0.864]). The interobserver discordance was the highest in NI grade 1 (observer 1: n=128; observer 2: n=236). Interobserver discordance was the lowest in NI grades 0 (observer 1: n=504; observer 2: n=479) and 3 (observer 1: n=71; observer 2: n=66). CONCLUSION The NI is an easy-to-use index with high interobserver reliability to assess the histological disease activity of UC patients in a real-world setting. While NI grades 0 and 3 had a high level of agreement between the observers, NI grade 1 had a poorer agreement-level. This highlights the clinical need to specify histological characteristics leading to NI grade 1.
Collapse
Affiliation(s)
- Huy Duc Le
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Theresa Pflaum
- Department of Pathology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Johannes Labrenz
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Soner Sari
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Fabienne Bretschneider
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Arne Lassen
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Susanna Nikolaus
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Silke Szymczak
- Institute for Medical Biometry and Statistics, University of Luebeck University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Diana Kormilez
- Institute for Medical Biometry and Statistics, University of Luebeck University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
122
|
Yadav SK, Ito N, Mindur JE, Kumar H, Youssef M, Suresh S, Kulkarni R, Rosario Y, Balashov KE, Dhib-Jalbut S, Ito K. Fecal Lcn-2 level is a sensitive biological indicator for gut dysbiosis and intestinal inflammation in multiple sclerosis. Front Immunol 2022; 13:1015372. [PMID: 36341389 PMCID: PMC9634083 DOI: 10.3389/fimmu.2022.1015372] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/04/2022] [Indexed: 07/30/2023] Open
Abstract
Multiple Sclerosis (MS) has been reported to be associated with intestinal inflammation and gut dysbiosis. To elucidate the underlying biology of MS-linked gut inflammation, we investigated gut infiltration of immune cells during the development of spontaneous experimental autoimmune encephalomyelitis (EAE) in humanized transgenic (Tg) mice expressing HLA-DR2a and human T cell receptor (TCR) specific for myelin basic protein peptide (MBP87-99)/HLA-DR2a complexes. Strikingly, we noted the simultaneous development of EAE and colitis, suggesting a link between autoimmune diseases of the central nervous system (CNS) and intestinal inflammation. Examination of the colon in these mice revealed the infiltration of MBP-specific Th17 cells as well as recruitment of neutrophils. Furthermore, we observed that fecal Lipocalin-2 (Lcn-2), a biomarker of intestinal inflammation, was significantly elevated and predominantly produced by the gut-infiltrating neutrophils. We then extended our findings to MS patients and demonstrate that their fecal Lcn-2 levels are significantly elevated compared to healthy donors (HDs). The elevation of fecal Lcn-2 levels correlated with reduced bacterial diversity and increased levels of other intestinal inflammation markers including neutrophil elastase and calprotectin. Of interest, bacteria thought to be beneficial for inflammatory bowel disease (IBD) such as Anaerobutyricum, Blautia, and Roseburia, were reduced in fecal Lcn-2-high MS patients. We also observed a decreasing trend in serum acetate (a short-chain fatty acid) levels in MS Lcn-2-high patients compared to HDs. Furthermore, a decrease in the relative abundance of Blautia massiliensis was significantly associated with a reduction of acetate in the serum of MS patients. This study suggests that gut infiltration of Th17 cells and recruitment of neutrophils are associated with the development of gut dysbiosis and intestinal inflammation, and that fecal Lcn-2 level is a sensitive biological indicator for gut dysbiosis in multiple sclerosis.
Collapse
Affiliation(s)
- Sudhir K. Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Naoko Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - John E. Mindur
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Hetal Kumar
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Mysra Youssef
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
- Department of Clinical and Chemical Pathology, National Research Centre, Dokki, Egypt
| | - Shradha Suresh
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Ratuja Kulkarni
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Yaritza Rosario
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Konstantin E. Balashov
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
- Department of Neurology, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| |
Collapse
|
123
|
Qin F, Yuan M, Zhang C, Zhu C, Dong H, Xu F. Association of neutropenia at disease onset with severe surgical necrotizing enterocolitis and higher mortality: A retrospective study. Front Surg 2022; 9:971898. [PMID: 36303851 PMCID: PMC9592859 DOI: 10.3389/fsurg.2022.971898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neutrophils are among the earliest immune cells recruited to the site of an intestinal injury, but their predictive role in the progression of necrotizing enterocolitis (NEC) has not been fully elucidated. This study aimed to evaluate if a reduction in neutrophils at the onset of NEC is associated with severe surgical NEC and/or NEC-associated deaths. Methods This is a retrospective cohort study in which neonates underwent surgery due to NEC during 2015-2020. The data on absolute neutrophil count (ANC), before and at the onset of NEC, were collected from the complete blood count results. The primary exposure was the difference in absolute neutrophil count (ΔANC) at NEC onset. The primary outcome was severe surgical NEC, defined as the residual small bowel length after intestinal resection of <30 cm. Results A total of 157 neonates were included in this study, of which 53 were diagnosed with severe surgical NEC. A decrease in ANC at the onset of NEC was associated with an increased probability of severe surgical NEC (crude odds ratio [OR] 1.248, 95% CI 1.107-1.407; P = 0.000). ΔANC (area under the curve [AUC] 0.729, 95% CI 0.653-0.797; P < 0.001] was a good predictor for severe surgical NEC. The addition of platelets to ΔANC at NEC onset (AUC 0.738, 95% CI 0.662-0.808; P < 0.001) resulted in a higher AUC and specificity for severe surgical NEC prediction than ΔANC alone. A reduction in the neutrophil count at NEC onset (ΔANC > 0) was associated with adverse outcomes (hazard ratio [HR] 3.48, 95% CI 1.64-7.36) and a lower survival probability (χ2 10.63; P < 0.001). Conclusion A reduction in the ANC at the onset of NEC was associated with severe surgical NEC and higher mortality. The addition of platelets to ΔANC at NEC onset resulted in a higher predictive value of severe surgical NEC. This study may provide a new insight into the bedside evaluation of NEC by analyzing data from the day of NEC onset.
Collapse
Affiliation(s)
- Fanyue Qin
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjie Yuan
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Zhang
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chu Zhu
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huifang Dong
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Advanced Medical Research Center of Zhengzhou University, Zhengzhou, China
| | - Falin Xu
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Advanced Medical Research Center of Zhengzhou University, Zhengzhou, China,Correspondence: Falin Xu
| |
Collapse
|
124
|
Sequestration of gut pathobionts in intraluminal casts, a mechanism to avoid dysregulated T cell activation by pathobionts. Proc Natl Acad Sci U S A 2022; 119:e2209624119. [PMID: 36201539 PMCID: PMC9565271 DOI: 10.1073/pnas.2209624119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T cells that express the transcription factor RORγ, regulatory (Treg), or conventional (Th17) are strongly influenced by intestinal symbionts. In a genetic approach to identify mechanisms underlying this influence, we performed a screen for microbial genes implicated, in germfree mice monocolonized with Escherichia coli Nissle. The loss of capsule-synthesis genes impaired clonal expansion and differentiation of intestinal RORγ+ T cells. Mechanistic exploration revealed that the capsule-less mutants remained able to induce species-specific immunoglobulin A (IgA) and were highly IgA-coated. They could still trigger myeloid cells, and more effectively damaged epithelial cells in vitro. Unlike wild-type microbes, capsule-less mutants were mostly engulfed in intraluminal casts, large agglomerates composed of myeloid cells extravasated into the gut lumen. We speculate that sequestration in luminal casts of potentially harmful microbes, favored by IgA binding, reduces the immune system's actual exposure, preserving host-microbe equilibrium. The variable immunostimulation by microbes that has been charted in recent years may not solely be conditioned by triggering molecules or metabolites but also by physical limits to immune system exposure.
Collapse
|
125
|
Neutrophils in Intestinal Inflammation: What We Know and What We Could Expect for the Near Future. GASTROINTESTINAL DISORDERS 2022. [DOI: 10.3390/gidisord4040025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neutrophils are short-lived cells that play a crucial role in inflammation. As in other tissues, these polymorphonuclear phagocytes are involved in the intestinal inflammatory response, on the one hand, contributing to the activation and recruitment of other immune cells, but on the other hand, facilitating intestinal mucosa repair by releasing mediators that aid in the resolution of inflammation. Even though these responses are helpful in physiological conditions, excessive recruitment of activated neutrophils in the gut correlates with increased mucosal damage and severe symptoms in patients with inflammatory bowel disease (IBD) and pre-clinical models of colitis. Thus, there is growing interest in controlling their biology to generate novel therapeutic approaches capable of reducing exacerbated intestinal inflammation. However, the beneficial and harmful effects of neutrophils on intestinal inflammation are still controversial. With this review, we summarise and discuss the most updated literature showing how neutrophils (and neutrophil extracellular traps) contribute to developing and resolving intestinal inflammation and their putative use as therapeutic targets.
Collapse
|
126
|
Lawrence ALE, Berger RP, Hill DR, Huang S, Yadagiri VK, Bons B, Fields C, Sule GJ, Knight JS, Wobus CE, Spence JR, Young VB, O’Riordan MX, Abuaita BH. Human neutrophil IL1β directs intestinal epithelial cell extrusion during Salmonella infection. PLoS Pathog 2022; 18:e1010855. [PMID: 36191054 PMCID: PMC9578578 DOI: 10.1371/journal.ppat.1010855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/18/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Infection of the human gut by Salmonella enterica Typhimurium (STM) results in a localized inflammatory disease that is not mimicked in murine infections. To determine mechanisms by which neutrophils, as early responders to bacterial challenge, direct inflammatory programming of human intestinal epithelium, we established a multi-component human intestinal organoid (HIO) model of STM infection. HIOs were micro-injected with STM and seeded with primary human polymorphonuclear leukocytes (PMN-HIOs). PMNs did not significantly alter luminal colonization of Salmonella, but their presence reduced intraepithelial bacterial burden. Adding PMNs to infected HIOs resulted in substantial accumulation of shed TUNEL+ epithelial cells that was driven by PMN Caspase-1 activity. Inhibition of Caspases-1, -3 or -4 abrogated epithelial cell death and extrusion in the infected PMN-HIOs but only Caspase-1 inhibition significantly increased bacterial burden in the PMN-HIO epithelium. Thus, PMNs promote cell death in human intestinal epithelial cells through multiple caspases as a protective response to infection. IL-1β was necessary and sufficient to induce cell shedding in the infected HIOs. These data support a critical innate immune function for human neutrophils in amplifying cell death and extrusion of human epithelial cells from the Salmonella-infected intestinal monolayer. Neutrophils are early responders to Salmonella intestinal infection, but how they influence infection progression and outcome is unknown. Here we use a co-culture model of human intestinal organoids and human primary neutrophils to study the contribution of human neutrophils to Salmonella infection of the intestinal epithelium. We found that neutrophils markedly enhanced epithelial defenses, including enhancing cell extrusion to reduce intraepithelial burden of Salmonella and close association with the epithelium. These findings reveal an early role for neutrophils in the gut in shaping the gut environment to control epithelial infection.
Collapse
Affiliation(s)
- Anna-Lisa E. Lawrence
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ryan P. Berger
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - David R. Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sha Huang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Veda K. Yadagiri
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Brooke Bons
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Courtney Fields
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gautam J. Sule
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jason S. Knight
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jason R. Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vincent B. Young
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mary X. O’Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (MXO); (BHA)
| | - Basel H. Abuaita
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (MXO); (BHA)
| |
Collapse
|
127
|
Lin MK, Yang YT, Lin LJ, Yu WH, Chen HY. Pulsatilla decoction suppresses matrix metalloproteinase-7-mediated leukocyte recruitment in dextran sulfate sodium-induced colitis mouse model. BMC Complement Med Ther 2022; 22:211. [PMID: 35933374 PMCID: PMC9356479 DOI: 10.1186/s12906-022-03696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Intestinal inflammation is considered to be an important characteristic of ulcerative colitis (UC) and the current medical treatments for UC are usually proposed to suppress abnormal intestinal immune responses. Pulsatilla decoction (PD), a traditional Chinese medicine, is frequently used in UC treatments in Asian countries; however, the mechanism of the action of PD remains unclear. In the present study, the mechanism of the action of PD was elucidated in the dextran sulfate sodium (DSS)-induced colitis mouse model, a model to mimic UC. Methods Murine colitis was evaluated by comparing the disease activity index score. The intestinal inflammation was examined by histology analyses. The leukocyte infiltration in the colonic tissues was examined by immunohistochemistry analyses. The cytokines level in colonic tissues was examined by Multi-Plex immunoassay. The epithelial proliferation was evaluated by histological analyses. Immunofluorescence double staining was used to examine the expression of MMP-7 in the immune cells. Results In the DSS-induced colitis mouse model, administration of PD attenuated the intestinal inflammation, with a marked decrease in colonic infiltration of innate immune cells. Immunohistochemical analyses further showed that matrix metalloproteinase-7 (MMP-7) expressed by the infiltrating leukocytes, including neutrophils and macrophages was inhibited by PD treatment. PD increases the cytokine level of IL-6 in colonic tissues. Conclusion PD suppresses intestinal inflammation, with a marked decrease in colonic infiltration of innate immune cells, through decreasing MMP-7 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03696-w.
Collapse
|
128
|
Kim K, Song M, Liu Y, Ji P. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front Immunol 2022; 13:885253. [PMID: 35990617 PMCID: PMC9389069 DOI: 10.3389/fimmu.2022.885253] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infection induced post-weaning diarrhea is one of the leading causes of morbidity and mortality in newly weaned pigs and one of the significant drivers for antimicrobial use in swine production. ETEC attachment to the small intestine initiates ETEC colonization and infection. The secretion of enterotoxins further disrupts intestinal barrier function and induces intestinal inflammation in weaned pigs. ETEC infection can also aggravate the intestinal microbiota dysbiosis due to weaning stress and increase the susceptibility of weaned pigs to other enteric infectious diseases, which may result in diarrhea or sudden death. Therefore, the amount of antimicrobial drugs for medical treatment purposes in major food-producing animal species is still significant. The alternative practices that may help reduce the reliance on such antimicrobial drugs and address animal health requirements are needed. Nutritional intervention in order to enhance intestinal health and the overall performance of weaned pigs is one of the most powerful practices in the antibiotic-free production system. This review summarizes the utilization of several categories of feed additives or supplements, such as direct-fed microbials, prebiotics, phytochemicals, lysozyme, and micro minerals in newly weaned pigs. The current understanding of these candidates on intestinal health and disease resistance of pigs under ETEC infection are particularly discussed, which may inspire more research on the development of alternative practices to support food-producing animals.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| |
Collapse
|
129
|
Sui C, Tao L, Bai C, Shao L, Miao J, Chen K, Wang M, Hu Q, Wang F. Molecular and cellular mechanisms underlying postoperative paralytic ileus by various immune cell types. Front Pharmacol 2022; 13:929901. [PMID: 35991871 PMCID: PMC9385171 DOI: 10.3389/fphar.2022.929901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Postoperative ileus (POI) is a well-known complication following gut manipulation or surgical trauma, leading to an impaired gut motility and prolonged postoperative recovery time. Few current therapeutic strategies can prevent POI, and this disorder remains to be a major clinical challenge for patients undergoing surgery. Comprehensive understanding of cellular and molecular mechanisms related to the pathogenesis of POI stimulates the discovery of more promising targets for treatment. POI is closely associated with a series of inflammatory events within the bowel wall, and as key components of inflammatory mechanisms, different types of immune cells, including macrophages, dendritic cells, and T lymphocytes, play significant roles during the development of POI. A variety of immune cells are recruited into the manipulation sites after surgery, contributing to early inflammatory events or impaired gut motility. Our review intends to summarize the specific relationship between different immune cells and POI, mainly focusing on the relevant mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Chao Sui
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Liang Tao
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chunhua Bai
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Lihua Shao
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ji Miao
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Kai Chen
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Meng Wang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Meng Wang, ; Qiongyuan Hu, ; Feng Wang,
| | - Qiongyuan Hu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
- *Correspondence: Meng Wang, ; Qiongyuan Hu, ; Feng Wang,
| | - Feng Wang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Meng Wang, ; Qiongyuan Hu, ; Feng Wang,
| |
Collapse
|
130
|
Sun H, Tang C, Chung SH, Ye XQ, Makusheva Y, Han W, Kubo M, Shichino S, Ueha S, Matsushima K, Ikeo K, Asano M, Iwakura Y. Blocking DCIR mitigates colitis and prevents colorectal tumors by enhancing the GM-CSF-STAT5 pathway. Cell Rep 2022; 40:111158. [PMID: 35926458 DOI: 10.1016/j.celrep.2022.111158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/26/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
Dendritic cell immunoreceptor (DCIR; Clec4a2), a member of the C-type lectin receptor family, plays important roles in homeostasis of the immune and bone systems. However, the intestinal role of this molecule is unclear. Here, we show that dextran sodium sulfate (DSS)-induced colitis and azoxymethane-DSS-induced intestinal tumors are reduced in Clec4a2-/- mice independently of intestinal microbiota. STAT5 phosphorylation and expression of Csf2 and tight junction genes are enhanced, while Il17a and Cxcl2 are suppressed in the Clec4a2-/- mouse colon, which exhibits reduced infiltration of neutrophils and myeloid-derived suppressor cells. Granulocyte-macrophage colony-stimulating factor (GM-CSF) administration ameliorates DSS colitis associated with reduced Il17a and enhanced tight junction gene expression, whereas anti-GM-CSF exacerbates symptoms. Furthermore, anti-NA2, a ligand for DCIR, ameliorates colitis and prevents colorectal tumors. These observations indicate that blocking DCIR signaling ameliorates colitis and suppresses colonic tumors, suggesting DCIR as a possible target for the treatment of these diseases.
Collapse
Affiliation(s)
- Haiyang Sun
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Ce Tang
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, Guangzhou, Guangdong Province 510080, China
| | - Soo-Hyun Chung
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Xiao-Qi Ye
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Yulia Makusheva
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Wei Han
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Koji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan.
| |
Collapse
|
131
|
Villablanca EJ, Selin K, Hedin CRH. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? NATURE REVIEWS. GASTROENTEROLOGY & HEPATOLOGY 2022. [PMID: 35440774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Almost all currently available treatments for inflammatory bowel disease (IBD) act by inhibiting inflammation, often blocking specific inflammatory molecules. However, given the infectious and neoplastic disease burden associated with chronic immunosuppressive therapy, the goal of attaining mucosal healing without immunosuppression is attractive. The absence of treatments that directly promote mucosal healing and regeneration in IBD could be linked to the lack of understanding of the underlying pathways. The range of potential strategies to achieve mucosal healing is diverse. However, the targeting of regenerative mechanisms has not yet been achieved for IBD. Stem cells provide hope as a regenerative treatment and are used in limited clinical situations. Growth factors are available for the treatment of short bowel syndrome but have not yet been applied in IBD. The therapeutic application of organoid culture and stem cell therapy to generate new intestinal tissue could provide a novel mechanism to restore barrier function in IBD. Furthermore, blocking key effectors of barrier dysfunction (such as MLCK or damage-associated molecular pattern molecules) has shown promise in experimental IBD. Here, we review the diversity of molecular targets available to directly promote mucosal healing, experimental models to identify new potential pathways and some of the anticipated potential therapies for IBD.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| | - Katja Selin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte R H Hedin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
132
|
Villablanca EJ, Selin K, Hedin CRH. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? Nat Rev Gastroenterol Hepatol 2022; 19:493-507. [PMID: 35440774 DOI: 10.1038/s41575-022-00604-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Almost all currently available treatments for inflammatory bowel disease (IBD) act by inhibiting inflammation, often blocking specific inflammatory molecules. However, given the infectious and neoplastic disease burden associated with chronic immunosuppressive therapy, the goal of attaining mucosal healing without immunosuppression is attractive. The absence of treatments that directly promote mucosal healing and regeneration in IBD could be linked to the lack of understanding of the underlying pathways. The range of potential strategies to achieve mucosal healing is diverse. However, the targeting of regenerative mechanisms has not yet been achieved for IBD. Stem cells provide hope as a regenerative treatment and are used in limited clinical situations. Growth factors are available for the treatment of short bowel syndrome but have not yet been applied in IBD. The therapeutic application of organoid culture and stem cell therapy to generate new intestinal tissue could provide a novel mechanism to restore barrier function in IBD. Furthermore, blocking key effectors of barrier dysfunction (such as MLCK or damage-associated molecular pattern molecules) has shown promise in experimental IBD. Here, we review the diversity of molecular targets available to directly promote mucosal healing, experimental models to identify new potential pathways and some of the anticipated potential therapies for IBD.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| | - Katja Selin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte R H Hedin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
133
|
Bamias G, Zampeli E, Domènech E. Targeting neutrophils in inflammatory bowel disease: revisiting the role of adsorptive granulocyte and monocyte apheresis. Expert Rev Gastroenterol Hepatol 2022; 16:721-735. [PMID: 35833363 DOI: 10.1080/17474124.2022.2100759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is a chronic immune-mediated disease of the gastrointestinal tract comprising Crohn's disease (CD) and ulcerative colitis (UC). While any part of the digestive tract can be affected in CD, mucosal inflammation in UC is limited to the colon. Differences and similarities between the two conditions are reflected by their pathophysiology. AREAS COVERED An overview of immunological aspects, pharmacological management, and biomarkers of IBD is provided. The role of adsorptive granulocyte and monocyte apheresis (GMA) is reviewed including its primary and secondary effects on the immune system, as well as clinical studies in IBD (mainly UC), and potential biomarkers for adsorptive GMA. EXPERT OPINION In UC, adsorptive GMA with Adacolumn (Adacolumn®, JIMRO Co., Ltd. Takasaki, Gunma, Japan) selectively depletes elevated myeloid lineage leukocytes and has a range of beneficial secondary immune effects. Adsorptive GMA is a safe and effective non-pharmacological treatment option for UC. Pilot studies have reported promising results for adsorptive GMA in combination with biological agents, although larger studies are required. Fecal calprotectin concentrations, neutrophil counts in histological samples and/or the neutrophil/lymphocyte ratio in peripheral blood may prove to be useful biomarkers for predicting GMA effectiveness in the future.
Collapse
Affiliation(s)
- Giorgos Bamias
- GI-Unit, 3rd Department of Internal Medicine National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Evanthia Zampeli
- Gastroenterology Department, Alexandra General Hospital, Athens, Greece
| | - Eugeni Domènech
- Gastroenterology Department, Hospital Universitari Germans Trias I Pujol, Badalona, Catalonia, Spain, and Centro de Investigación Biomédica En Red de Enfermedades Hepáticas Y Digestivas (CIBEREHD), Madrid, Spain
| |
Collapse
|
134
|
Myeloperoxidase as a Marker to Differentiate Mouse Monocyte/Macrophage Subsets. Int J Mol Sci 2022; 23:ijms23158246. [PMID: 35897821 PMCID: PMC9330004 DOI: 10.3390/ijms23158246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
Macrophages are present in every tissue in the body and play essential roles in homeostasis and host defense against microorganisms. Some tissue macrophages derive from the yolk sac/fetal liver that populate tissues for life. Other tissue macrophages derive from monocytes that differentiate in the bone marrow and circulate through tissues via the blood and lymphatics. Circulating monocytes are very plastic and differentiate into macrophages with specialized functions upon entering tissues. Specialized monocyte/macrophage subsets have been difficult to differentiate based on cell surface markers. Here, using a combination of "pan" monocyte/macrophage markers and flow cytometry, we asked whether myeloperoxidase (MPO) could be used as a marker of pro-inflammatory monocyte/macrophage subsets. MPO is of interest because of its potent microbicidal activity. In wild-type SPF housed mice, we found that MPO+ monocytes/macrophages were present in peripheral blood, spleen, small and large intestines, and mesenteric lymph nodes, but not the central nervous system. Only monocytes/macrophages that expressed cell surface F4/80 and/or Ly6C co-expressed MPO with the highest expression in F4/80HiLy6CHi subsets regardless of tissue. These cumulative data indicate that MPO expression can be used as an additional marker to differentiate between monocyte/macrophage subsets with pro-inflammatory and microbicidal activity in a variety of tissues.
Collapse
|
135
|
Manoharan I, Swafford D, Shanmugam A, Patel N, Prasad PD, Mohamed R, Wei Q, Dong Z, Thangaraju M, Manicassamy S. Genetic Deletion of LRP5 and LRP6 in Macrophages Exacerbates Colitis-Associated Systemic Inflammation and Kidney Injury in Response to Intestinal Commensal Microbiota. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:368-378. [PMID: 35760519 PMCID: PMC9387749 DOI: 10.4049/jimmunol.2101172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Extraintestinal manifestations are common in inflammatory bowel disease and involve several organs, including the kidney. However, the mechanisms responsible for renal manifestation in inflammatory bowel disease are not known. In this study, we show that the Wnt-lipoprotein receptor-related proteins 5 and 6 (LRP5/6) signaling pathway in macrophages plays a critical role in regulating colitis-associated systemic inflammation and renal injury in a murine dextran sodium sulfate-induced colitis model. Conditional deletion of the Wnt coreceptors LRP5/6 in macrophages in mice results in enhanced susceptibility to dextran sodium sulfate colitis-induced systemic inflammation and acute kidney injury (AKI). Furthermore, our studies show that aggravated colitis-associated systemic inflammation and AKI observed in LRP5/6LysM mice are due to increased bacterial translocation to extraintestinal sites and microbiota-dependent increased proinflammatory cytokine levels in the kidney. Conversely, depletion of the gut microbiota mitigated colitis-associated systemic inflammation and AKI in LRP5/6LysM mice. Mechanistically, LRP5/6-deficient macrophages were hyperresponsive to TLR ligands and produced higher levels of proinflammatory cytokines, which are associated with increased activation of MAPKs. These results reveal how the Wnt-LRP5/6 signaling in macrophages controls colitis-induced systemic inflammation and AKI.
Collapse
Affiliation(s)
- Indumathi Manoharan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA
| | - Daniel Swafford
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA
| | | | - Nikhil Patel
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA
| | - Riyaz Mohamed
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA; and
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Santhakumar Manicassamy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA;
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
136
|
Shipa SJ, Khandokar L, Bari MS, Qais N, Rashid MA, Haque MA, Mohamed IN. An insight into the anti-ulcerogenic potentials of medicinal herbs and their bioactive metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115245. [PMID: 35367330 DOI: 10.1016/j.jep.2022.115245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/12/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peptic ulcer disease (PUD) ranks top among the most prominent gastrointestinal problems prevalent around the world. Long-term use of non-steroidal anti-inflammatory drugs, pathogenic infection by Helicobacter pylori, imbalances between gastrointestinal regulatory factors and pathological hyperacidity are major contributors towards the development of peptic ulcers. Although synthetic drugs of multiple pharmacological classes are abundantly available, inadequacy of such agents in ensuring complete recovery in not uncommon. Therefore, pharmacological explorations of herbal products including plant extracts and their respective isolated phytoconstituents, for potential gastroprotective and antiulcer properties, are regular practice among the scientific community. Moreover, the historical preferences of a significant share of world population towards herbal-based medication over modern synthetic drugs also contribute significantly to such endeavors. AIM OF THE REVIEW This review has endeavored to present ethnomedicinal and pharmacological prospects of a significant number of authenticated plant species in terms of their capacity to exert gastroprotection and antiulcer activities both in vitro and in vivo. The information delineated along the way was further subjected to critical analysis to ascertain the possible future prospects of such findings into designing plant-derived products in future for the treatment of peptic ulcer. MATERIALS AND METHODS Electronic version of prominent bibliographic databases, including Google Scholar, PubMed, Scopus, ScienceDirect, Wiley Online Library, SpringerLink, Web of Science, and MEDLINE were explored extensively for the identification and compilation of relevant information. The plant names and respective family names were verified through the Plant List (version 1.1) and World Flora Online 2021. All relevant chemical structures were verified through PubChem and SciFinder databases and illustrated with ChemDraw Ultra 12.0. RESULTS A colossal number of 97 plant species categorized under 58 diverse plant families have been discussed in the review for their gastroprotective and antiulcer properties. In vivo illustrations of the pharmacological properties were achieved for almost all the species under consideration. 29 individual phytoconstituents from these sources were also characterized with similar pharmacological potentials. Majority of the plant extracts as well as their constituents were found to exert their gastroprotective effects through antioxidative pathway featuring both enzymatic and nonenzymatic mechanism. Moreover, active inhibition of acid secretion, upregulation of gastroprotective mediators and downregulation of pro-inflammatory cytokines, were also associated with a prominent number of plants or products thereof. CONCLUSIONS Comparative evaluations of the plant sources for their antiulcer activities, both as individual and as combination formulations, are necessary to be conducted in human subjects under properly regulated clinical conditions. Moreover, the efficacy and safety of such products should also be evaluated against those of the currently available treatment options. This will further facilitate in ascertaining their suitability and superiority, if any, in the treatment of peptic ulcer diseases. Implementation of these endeavors may eventually lead to development of more efficient treatment options in the future.
Collapse
Affiliation(s)
- Sowkat Jahan Shipa
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Labony Khandokar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Sazzadul Bari
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Nazmul Qais
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mohammad Abdur Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| |
Collapse
|
137
|
Lartey NL, Vargas-Robles H, Guerrero-Fonseca IM, Nava P, Kumatia EK, Ocloo A, Schnoor M. Annickia polycarpa extract attenuates inflammation, neutrophil recruitment, and colon damage during colitis. Immunol Lett 2022; 248:99-108. [PMID: 35841974 DOI: 10.1016/j.imlet.2022.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Inflammatory bowel diseases (IBD) including Crohn's disease (CD) and ulcerative colitis (UC) are complex inflammatory disorders of the digestive tract. Dysfunctional intestinal epithelial barrier, uncontrolled neutrophil recruitment into the colon, and oxidative stress are major features of IBD. IBD cannot be cured, but symptoms can be alleviated with anti-inflammatory drugs, which often show adverse effects. Thus, safer alternative treatment options are needed. Given the known anti-inflammatory properties of Annickia polycarpa extract (APE), we hypothesized that APE improves the outcome of the inflammatory response during colitis. We assessed APE effects on colon histology, epithelial barrier function and neutrophil recruitment during DSS-induced colitis in mice treated with APE. APE treatment significantly reduced the disease activity index and prevented DSS-induced colon damage as evidenced by reduced colon shortening, ulcerations, crypt dysplasia, edema formation, and leukocyte infiltration. Expression of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β were significantly diminished in APE-treated mice. Importantly, APE administration reduced neutrophil infiltration into the lamina propria leading to reduced oxidative stress, tight junction disruption and epithelial permeability in the colon. Thus, we propose APE as additional treatment strategy to attenuate colitis symptoms and enhance life quality of individuals with IBD.
Collapse
Affiliation(s)
- Nathaniel L Lartey
- Department of Molecular Biomedicine, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico; Department of Health and Allied Sciences, Baldwin University College, Osu-Accra, Ghana
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico
| | | | - Porfirio Nava
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico
| | - Emmanuel K Kumatia
- Department of Phytochemistry, Centre for Plant Medicine Research. Akuapem-Mampong, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, LG 54, Legon, Ghana
| | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico.
| |
Collapse
|
138
|
The Importance of CXCL1 in the Physiological State and in Noncancer Diseases of the Oral Cavity and Abdominal Organs. Int J Mol Sci 2022; 23:ijms23137151. [PMID: 35806156 PMCID: PMC9266754 DOI: 10.3390/ijms23137151] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023] Open
Abstract
CXCL1 is a CXC chemokine, CXCR2 ligand and chemotactic factor for neutrophils. In this paper, we present a review of the role of the chemokine CXCL1 in physiology and in selected major non-cancer diseases of the oral cavity and abdominal organs (gingiva, salivary glands, stomach, liver, pancreas, intestines, and kidneys). We focus on the importance of CXCL1 on implantation and placentation as well as on human pluripotent stem cells. We also show the significance of CXCL1 in selected diseases of the abdominal organs, including the gastrointestinal tract and oral cavity (periodontal diseases, periodontitis, Sjögren syndrome, Helicobacter pylori infection, diabetes, liver cirrhosis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), HBV and HCV infection, liver ischemia and reperfusion injury, inflammatory bowel disease (Crohn’s disease and ulcerative colitis), obesity and overweight, kidney transplantation and ischemic-reperfusion injury, endometriosis and adenomyosis).
Collapse
|
139
|
Epithelial and Neutrophil Interactions and Coordinated Response to Shigella in a Human Intestinal Enteroid-Neutrophil Coculture Model. mBio 2022; 13:e0094422. [PMID: 35652591 PMCID: PMC9239269 DOI: 10.1128/mbio.00944-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) are recruited to the gastrointestinal mucosa in response to inflammation, injury, and infection. Here, we report the development and the characterization of an ex vivo tissue coculture model consisting of human primary intestinal enteroid monolayers and PMN, and a mechanistic interrogation of PMN-epithelial cell interaction and response to Shigella, a primary cause of childhood dysentery. Cellular adaptation and tissue integration, barrier function, PMN phenotypic and functional attributes, and innate immune responses were examined. PMN within the enteroid monolayers acquired a distinct activated/migratory phenotype that was influenced by direct epithelial cell contact as well as by molecular signals. Seeded on the basal side of the intestinal monolayer, PMN were intercalated within the epithelial cells and moved paracellularly toward the apical side. Cocultured PMN also increased basal secretion of interleukin 8 (IL-8). Shigella added to the apical surface of the monolayers evoked additional PMN phenotypic adaptations, including increased expression of cell surface markers associated with chemotaxis and cell degranulation (CD47, CD66b, and CD88). Apical Shigella infection triggered rapid transmigration of PMN to the luminal side, neutrophil extracellular trap (NET) formation, and bacterial phagocytosis and killing. Shigella infection modulated cytokine production in the coculture; apical monocyte chemoattractant protein (MCP-1), tumor necrosis factor alpha (TNF-α), and basolateral IL-8 production were downregulated, while basolateral IL-6 secretion was increased. We demonstrated, for the first time, PMN phenotypic adaptation and mobilization and coordinated epithelial cell-PMN innate response upon Shigella infection in the human intestinal environment. The enteroid monolayer-PMN coculture represents a technical innovation for mechanistic interrogation of gastrointestinal physiology, host-microbe interaction, innate immunity, and evaluation of preventive/therapeutic tools.
Collapse
|
140
|
Dopkins N, Miranda K, Wilson K, Holloman BL, Nagarkatti P, Nagarkatti M. Effects of Orally Administered Cannabidiol on Neuroinflammation and Intestinal Inflammation in the Attenuation of Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 2022; 17:15-32. [PMID: 34757526 DOI: 10.1007/s11481-021-10023-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/18/2021] [Indexed: 02/06/2023]
Abstract
Cannabidiol (CBD) is a bioactive compound isolated from Cannabis plants that has garnered attention within the medical community due to its potent anti-inflammatory properties. To better understand how CBD limits excessive neuroinflammation we administered CBD via oral gavage (20 mg/kg) in a murine model of multiple sclerosis (MS) known as experimental autoimmune encephalomyelitis (EAE). Using single cell RNA sequencing (scRNA Seq) and array-based transcriptomics we were able to delineate how CBD limits excessive inflammation within the central nervous system (CNS) as well as within the intestinal lining in EAE. In-depth scRNA Seq analysis of CNS tissue demonstrated that CBD treatment resulted in a significant reduction in CXCL9, CXCL10 and IL-1β expression within the CNS, leading to inhibited infiltration of inflammatory macrophages. CBD inhibited IL-1β production independent of the classical cannabinoid receptors, CB1 and CB2. CBD treatment also led to induction of Myeloid-derived Suppressor Cells (MDSCs) both in the CNS and periphery. Interestingly, CBD treatment of EAE mice revealed significant suppression of inflammation in the gastrointestinal (GI) tract. The intestinal epithelial cells (IECs) of CBD treated mice demonstrated a transcriptional inhibition of a family of pyroptosis initiators that drive localized inflammation known as gasdermins (GSDMs). Further investigation into the GI tract via 16s sequencing of cecal and fecal contents demonstrated that oral administration of CBD resulted in no significant changes in the intestinal microbiota composition. These findings demonstrate the beneficial effect of CBD treatment on autoimmune neuroinflammation by ablating expression of pro-inflammatory chemoattractants, regulating inflammatory macrophage activity, promoting MDSC expansion, and limiting the systemic low-grade inflammation in the GI tract, culminating in the attenuation of EAE.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia SC, 29208, USA
| | - Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia SC, 29208, USA
| | - Kiesha Wilson
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia SC, 29208, USA
| | - Bryan L Holloman
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia SC, 29208, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia SC, 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia SC, 29208, USA.
| |
Collapse
|
141
|
Wang P, Lu YQ. Ferroptosis: A Critical Moderator in the Life Cycle of Immune Cells. Front Immunol 2022; 13:877634. [PMID: 35619718 PMCID: PMC9127082 DOI: 10.3389/fimmu.2022.877634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is a form of programmed cell death that was only recognized in 2012. Until recently, numerous researchers have turned their attention to the mechanism and function of ferroptosis. A large number of studies have shown potential links between cell ferroptosis and infection, inflammation, and tumor. At the same time, immune cells are vital players in these above-mentioned processes. To date, there is no comprehensive literature review to summarize the relationship between ferroptosis and immune cells. Therefore, it is of great significance to explore the functional relationship between the two. This review will attempt to explain the link between ferroptosis and various immune cells, as well as determine the role ferroptosis plays in infection, inflammation, and malignancies. From this, we may find the potential therapeutic targets of these diseases.
Collapse
Affiliation(s)
- Ping Wang
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
142
|
Li Y, Lee AQ, Lu Z, Sun Y, Lu JW, Ren Z, Zhang N, Liu D, Gong Z. Systematic Characterization of the Disruption of Intestine during Liver Tumor Progression in the xmrk Oncogene Transgenic Zebrafish Model. Cells 2022; 11:cells11111810. [PMID: 35681505 PMCID: PMC9180660 DOI: 10.3390/cells11111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
The crosstalk between tumors and their local microenvironment has been well studied, whereas the effect of tumors on distant tissues remains understudied. Studying how tumors affect other tissues is important for understanding the systemic effect of tumors and for improving the overall health of cancer patients. In this study, we focused on the changes in the intestine during liver tumor progression, using a previously established liver tumor model through inducible expression of the oncogene xmrk in zebrafish. Progressive disruption of intestinal structure was found in the tumor fish, displaying villus damage, thinning of bowel wall, increase in goblet cell number, decrease in goblet cell size and infiltration of eosinophils, most of which were observed phenotypes of an inflammatory intestine. Intestinal epithelial cell renewal was also disrupted, with decreased cell proliferation and increased cell death. Analysis of intestinal gene expression through RNA-seq suggested deregulation of genes related to intestinal function, epithelial barrier and homeostasis and activation of pathways in inflammation, epithelial mesenchymal transition, extracellular matrix organization, as well as hemostasis. Gene set enrichment analysis showed common gene signatures between the intestine of liver tumor fish and human inflammatory bowel disease, the association of which with cancer has been recently noticed. Overall, this study represented the first systematic characterization of the disruption of intestine under the liver tumor condition and suggested targeting intestinal inflammation as a potential approach for managing cancer cachexia.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Correspondence: (Y.L.); (Z.G.)
| | - Ai Qi Lee
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Zhiyuan Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxi Sun
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Ziheng Ren
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Na Zhang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Dong Liu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Correspondence: (Y.L.); (Z.G.)
| |
Collapse
|
143
|
Li M, Zhang R, Li J, Li J. The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Front Immunol 2022; 13:894445. [PMID: 35619716 PMCID: PMC9127077 DOI: 10.3389/fimmu.2022.894445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
As a subset of pattern recognition receptors (PRRs), C-type lectin-like receptors (CLRs) are mainly expressed by myeloid cells as both transmembrane and soluble forms. CLRs recognize not only pathogen associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs) to promote innate immune responses and affect adaptive immune responses. Upon engagement by PAMPs or DAMPs, CLR signaling initiates various biological activities in vivo, such as cytokine secretion and immune cell recruitment. Recently, several CLRs have been implicated as contributory to the pathogenesis of intestinal inflammation, which represents a prominent risk factor for colorectal cancer (CRC). CLRs function as an interface among microbiota, intestinal epithelial barrier and immune system, so we firstly discussed the relationship between dysbiosis caused by microbiota alteration and inflammatory bowel disease (IBD), then focused on the role of CLRs signaling in pathogenesis of IBD (including Mincle, Dectin-3, Dectin-1, DCIR, DC-SIGN, LOX-1 and their downstream CARD9). Given that CLRs mediate intricate inflammatory signals and inflammation plays a significant role in tumorigenesis, we finally highlight the specific effects of CLRs on CRC, especially colitis-associated cancer (CAC), hoping to open new horizons on pathogenesis and therapeutics of IBD and CAC.
Collapse
Affiliation(s)
- Muhan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runfeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
144
|
Adamkova P, Hradicka P, Kupcova Skalnikova H, Cizkova V, Vodicka P, Farkasova Iannaccone S, Kassayova M, Gancarcikova S, Demeckova V. Dextran Sulphate Sodium Acute Colitis Rat Model: A Suitable Tool for Advancing Our Understanding of Immune and Microbial Mechanisms in the Pathogenesis of Inflammatory Bowel Disease. Vet Sci 2022; 9:238. [PMID: 35622766 PMCID: PMC9147231 DOI: 10.3390/vetsci9050238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders causing inflammation in the digestive tract. Recent data suggest that dysbiosis may play a pivotal role in the IBD pathogenesis. As microbiome-based therapeutics that modulate the gut ecology have been proposed as a novel strategy for preventing IBD, the aim of presenting study was to evaluate the dextran sulphate sodium (DSS) rat model mainly in terms of microbial shifts to confirm its suitability for dysbiosis study in IBD. Acute colitis was induced using 5% DSS solution for seven days and rats were euthanized five days after DSS removal. The faecal/caecal microbiota was analyzed by next generation sequencing. Disease activity index (DAI) score was evaluated daily. Blood and colon tissue immunophenotyping was assessed by flow cytometry and histological, haematological, and biochemical parameters were also evaluated. The colitis induction was reflected in a significantly higher DAI score and changes in all parameters measured. This study demonstrated significant shifts in the colitis-related microbial species after colitis induction. The characteristic inflammation-associated microbiota could be detected even after a five day-recovery period. Moreover, the DSS-model might contribute to an understanding of the effect of different treatments on extraintestinal organ impairments. The observation that certain bacterial species in the gut microbiota are associated with colitis raises the question of whether these organisms are contributors to, or a consequence of the disease. Despite some limitations, we confirmed the suitability of DSS-induced colitis model to monitor microbial changes during acute colitis, in order to test attractive new microbiome-based therapies.
Collapse
Affiliation(s)
- Petra Adamkova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Petra Hradicka
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Veronika Cizkova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Silvia Farkasova Iannaccone
- Department of Forensic Medicine, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia;
| | - Monika Kassayova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Vlasta Demeckova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| |
Collapse
|
145
|
Sirisereephap K, Maekawa T, Tamura H, Hiyoshi T, Domon H, Isono T, Terao Y, Maeda T, Tabeta K. Osteoimmunology in Periodontitis: Local Proteins and Compounds to Alleviate Periodontitis. Int J Mol Sci 2022; 23:5540. [PMID: 35628348 PMCID: PMC9146968 DOI: 10.3390/ijms23105540] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/25/2023] Open
Abstract
Periodontitis is one of the most common oral diseases resulting in gingival inflammation and tooth loss. Growing evidence indicates that it results from dysbiosis of the oral microbiome, which interferes with the host immune system, leading to bone destruction. Immune cells activate periodontal ligament cells to express the receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL) and promote osteoclast activity. Osteocytes have active roles in periodontitis progression in the bone matrix. Local proteins are involved in bone regeneration through functional immunological plasticity. Here, we discuss the current knowledge of cellular and molecular mechanisms in periodontitis, the roles of local proteins, and promising synthetic compounds generating a periodontal regeneration effect. It is anticipated that this may lead to a better perception of periodontitis pathophysiology.
Collapse
Affiliation(s)
- Kridtapat Sirisereephap
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
- Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tomoki Maekawa
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Hikaru Tamura
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
| | - Takumi Hiyoshi
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Hisanori Domon
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Toshihito Isono
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Yutaka Terao
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
| |
Collapse
|
146
|
Abstract
The interleukin-23 [IL-23] cytokine, derived predominantly from macrophages and dendritic cells in response to microbial stimulation, has emerged as a critical promoter of chronic intestinal inflammation. Genome-wide association studies linking variants in IL23R to disease protection, bolstered by experimental evidence from colitis models, and the successful application of therapies against the IL-12/IL-23 shared p40 subunit in the treatment of inflammatory bowel disease [IBD] all provide compelling evidence of a crucial role for IL-23 in disease pathogenesis. Moreover, targeting the p19 subunit specific for IL-23 has shown considerable promise in recent phase 2 studies in IBD. The relative importance of the diverse immunological pathways downstream of IL-23 in propagating mucosal inflammation in the gut, however, remains contentious. Here we review current understanding of IL-23 biology and explore its pleiotropic effects on T cells, and innate lymphoid, myeloid and intestinal epithelial cells in the context of the pathogenesis of IBD. We furthermore discuss these pathways in the light of recent evidence from clinical trials and indicate emerging targets amenable to therapeutic intervention and translation into clinical practice.
Collapse
Affiliation(s)
- Gavin W Sewell
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
147
|
Wu S, Luo W, Wu X, Shen Z, Wang X. Functional Phenotypes of Peritoneal Macrophages Upon AMD3100 Treatment During Colitis-Associated Tumorigenesis. Front Med (Lausanne) 2022; 9:840704. [PMID: 35615089 PMCID: PMC9126482 DOI: 10.3389/fmed.2022.840704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
CXCL12 and its receptor CXCR4 are independent prognostic factors in colorectal cancer. AMD3100 is the most frequently used FDA-approved antagonist that targets the CXCL12-CXCR4 axis in clinical trials. We aimed to explore the role of AMD3100 and its effect on peritoneal macrophages' functional phenotypes during colitis-associated tumorigenesis. We treated AMD3100 in a colitis-associated colon cancer mouse model and evaluated its effect on tumorigenesis. The phagocytosis activities of peritoneal macrophages were measured by flow cytometry. The proportions of macrophages and M1/M2 subpopulations were investigated by flow cytometry, ELISA, and immunochemistry. Serum levels of pro-inflammatory and anti-inflammatory cytokines were measured by LEGENDplex™ kits. Transwell assay and qRT-PCR were performed to investigate the direct effect of CXCL12 on macrophages in vitro. We demonstrated that AMD3100 treatment reduced the inflammatory damages in the colonic mucosal and ameliorated tumor development in experimental mice. We found that the phagocytosis activities of peritoneal macrophages fluctuated during colitis-associated tumorigenesis. The proportions of peritoneal macrophages and M1/M2 subpopulations, together with their metabolite and cytokines, changed dynamically in the process. Moreover, AMD3100 regulated the functional phenotypes of macrophages, including reducing the recruiting activity, promoting polarization to the M1 subpopulation, and reducing IL-12 and IL-23 levels in serum. Our study contributes to understanding dynamic changes of peritoneal macrophages upon AMD3100 treatment during tumorigenesis and sheds light on the potential therapeutic target of AMD3100 and peritoneal macrophages against colitis-associated colon cancer.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xing Wu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohua Shen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoyan Wang
| |
Collapse
|
148
|
Golusda L, Kühl AA, Siegmund B, Paclik D. Reducing Pain in Experimental Models of Intestinal Inflammation Affects the Immune Response. Inflamm Bowel Dis 2022; 28:801-807. [PMID: 34871378 PMCID: PMC9074866 DOI: 10.1093/ibd/izab290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/09/2022]
Abstract
The incidence of inflammatory bowel disease with its two main manifestations, colitis ulcerosa and Crohn's disease, is rising globally year after year. There is still a tremendous need to study the underlying pathomechanisms and a well-established tool in order to better understand the disease are colitis models in rodents. Since the concept of the 3Rs was proposed by Russell and Burch, this would include pain medication in animal models of intestinal inflammation as a reduction of suffering. This review argues against pain medication because the administration of pain medication in its current form has an impact on the inflammatory process and the immune response, thus falsifying the results and the reproducibility and therefore leading to misconceptions.
Collapse
Affiliation(s)
- Laura Golusda
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, and Rheumatology, Berlin, Germanyand
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Anja A Kühl
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin, Berlin, Germany
| | - Britta Siegmund
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, and Rheumatology, Berlin, Germanyand
| | - Daniela Paclik
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, and Rheumatology, Berlin, Germanyand
| |
Collapse
|
149
|
Tisch N, Mogler C, Stojanovic A, Luck R, Korhonen EA, Ellerkmann A, Adler H, Singhal M, Schermann G, Erkert L, Patankar JV, Karakatsani A, Scherr AL, Fuchs Y, Cerwenka A, Wirtz S, Köhler BC, Augustin HG, Becker C, Schmidt T, Ruiz de Almodóvar C. Caspase-8 in endothelial cells maintains gut homeostasis and prevents small bowel inflammation in mice. EMBO Mol Med 2022; 14:e14121. [PMID: 35491615 PMCID: PMC9174885 DOI: 10.15252/emmm.202114121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
The gut has a specific vascular barrier that controls trafficking of antigens and microbiota into the bloodstream. However, the molecular mechanisms regulating the maintenance of this vascular barrier remain elusive. Here, we identified Caspase-8 as a pro-survival factor in mature intestinal endothelial cells that is required to actively maintain vascular homeostasis in the small intestine in an organ-specific manner. In particular, we find that deletion of Caspase-8 in endothelial cells results in small intestinal hemorrhages and bowel inflammation, while all other organs remained unaffected. We also show that Caspase-8 seems to be particularly needed in lymphatic endothelial cells to maintain gut homeostasis. Our work demonstrates that endothelial cell dysfunction, leading to the breakdown of the gut-vascular barrier, is an active driver of chronic small intestinal inflammation, highlighting the role of the intestinal vasculature as a safeguard of organ function.
Collapse
Affiliation(s)
- Nathalie Tisch
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Ana Stojanovic
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert Luck
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Emilia A Korhonen
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Ellerkmann
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Heike Adler
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mahak Singhal
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Géza Schermann
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Erkert
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Jay V Patankar
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Andromachi Karakatsani
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna-Lena Scherr
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology & Regenerative Medicine, Department of Biology, Technion -Israel Institute of Technology, Haifa, Israel
| | - Adelheid Cerwenka
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Bruno Christian Köhler
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Hellmut G Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany.,Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine with University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carmen Ruiz de Almodóvar
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
150
|
Cai X, Golubkova A, Hunter CJ. Advances in our understanding of the molecular pathogenesis of necrotizing enterocolitis. BMC Pediatr 2022; 22:225. [PMID: 35468817 PMCID: PMC9036771 DOI: 10.1186/s12887-022-03277-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a multifactorial and complex disease. Our knowledge of the cellular and genetic basis of NEC have expanded considerably as new molecular mechanisms have been identified. This article will focus on the current understanding of the molecular pathogenesis of NEC with a focus on the inflammatory, immune, infectious, and genetic mechanisms that drive disease development.
Collapse
Affiliation(s)
- Xue Cai
- Division of Pediatric Surgery, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Alena Golubkova
- Division of Pediatric Surgery, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Catherine J Hunter
- Division of Pediatric Surgery, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|