101
|
Dunn TA, Wang CT, Colicos MA, Zaccolo M, DiPilato LM, Zhang J, Tsien RY, Feller MB. Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades. J Neurosci 2006; 26:12807-15. [PMID: 17151284 PMCID: PMC2931275 DOI: 10.1523/jneurosci.3238-06.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recent evidence demonstrates that low-frequency oscillations of intracellular calcium on timescales of seconds to minutes drive distinct aspects of neuronal development, but the mechanisms by which these calcium transients are coupled to signaling cascades are not well understood. Here we test the hypothesis that spontaneous electrical activity activates protein kinase A (PKA). We use live-cell indicators to observe spontaneous and evoked changes in cAMP levels and PKA activity in developing retinal neurons. Expression of cAMP and PKA indicators in neonatal rat retinal explants reveals spontaneous oscillations in PKA activity that are temporally correlated with spontaneous depolarizations associated with retinal waves. In response to short applications of forskolin, dopamine, or high-potassium concentration, we image an increase in cAMP levels and PKA activity, indicating that this second-messenger pathway can be activated quickly by neural activity. Depolarization-evoked increases in PKA activity were blocked by the removal of extracellular calcium, indicating that they are mediated by a calcium-dependent mechanism. These findings demonstrate for the first time that spontaneous activity in developing circuits is correlated with activation of the cAMP/PKA pathway and that PKA activity is turned on and off on the timescale of tens of seconds. These results show a link between neural activity and an intracellular biochemical cascade associated with plasticity, axon guidance, and neural differentiation.
Collapse
Affiliation(s)
| | - Chih-Tien Wang
- Neurobiology Section, Division of Biological Sciences, and
| | | | - Manuela Zaccolo
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, I-35129 Padua, Italy, and
| | - Lisa M. DiPilato
- Departments of Pharmacology and
- Molecular Sciences and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jin Zhang
- Departments of Pharmacology and Chemistry/Biochemistry and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093, and
- Departments of Pharmacology and
- Molecular Sciences and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Roger Y. Tsien
- Departments of Pharmacology and Chemistry/Biochemistry and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093, and
| | | |
Collapse
|
102
|
Garaschuk O, Milos RI, Grienberger C, Marandi N, Adelsberger H, Konnerth A. Optical monitoring of brain function in vivo: from neurons to networks. Pflugers Arch 2006; 453:385-96. [PMID: 17047983 DOI: 10.1007/s00424-006-0150-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 08/02/2006] [Indexed: 01/20/2023]
Abstract
The precise understanding of the cellular and molecular basis of brain function requires the direct assessment of the activity of defined cells in vivo. A promising approach for such analyses is two-photon microscopy in combination with appropriate cell labeling techniques. Here, we review the multi-cell bolus loading (MCBL) method that involves the use of membrane-permeant fluorescent indicator dyes. We show that this approach is useful for the functional analysis of clusters of neurons and glial cells in vivo. Work from our and other laboratories shows that the techniques that were previously feasible only in brain slices, like targeted patch clamp recordings from identified cells or pharmacological manipulations in confined brain regions, can now be used also in vivo. We also show that MCBL and two-photon imaging can be easily combined with other labeling techniques, particularly with those involving the use of genetically encoded, green-fluorescent-protein-based indicators. Finally, we examine recent applications of MCBL/two-photon imaging for the analysis of various brain regions, including the somatosensory and the visual cortex.
Collapse
Affiliation(s)
- Olga Garaschuk
- Institut für Neurowissenschaften, Technische Universität München, Biedersteinerstr. 29, 80802, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
103
|
Willoughby D, Cooper DMF. Use of single-cell imaging techniques to assess the regulation of cAMP dynamics. Biochem Soc Trans 2006; 34:468-71. [PMID: 16856834 DOI: 10.1042/bst0340468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
cAMP is a ubiquitous intracellular signalling molecule that can regulate a wide array of cellular processes. The diversity of action of this second messenger owes much to the localized generation, action and hydrolysis of cAMP within discrete subcellular regions. Further signalling specificity can be achieved by the ability of cells to modulate the frequency or incidence of such cAMP signals. Here, we discuss the use of two cAMP biosensors that measure real-time cAMP changes in the single cell, to address the mechanisms underlying the generation of dynamic cAMP signals. The first method monitors sub-plasmalemmal cAMP changes using mutant cyclic nucleotide-gated channels and identifies an AKAP (A-kinase-anchoring protein)-protein kinase A-PDE4 (phosphodiesterase-4) signalling complex that is central to the generation of dynamic cAMP transients in this region of the cell. The second study uses a fluorescence resonance energy transfer-based cAMP probe, based on Epac1 (exchange protein directly activated by cAMP 1), to examine interplay between Ca(2+) and cAMP signals. This study demonstrates real-time oscillations in cAMP driven by a Ca(2+)-stimulated AC (adenylate cyclase) (AC8) and subsequent PDE4 activity. These studies, using two very different single-cell cAMP probes, broaden our understanding of the specific spatiotemporal characteristics of agonist-evoked cAMP signals in a model cell system.
Collapse
Affiliation(s)
- D Willoughby
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | |
Collapse
|
104
|
Abstract
cAMP is an important second messenger with a plethora of cellular effects and biological roles. To monitor and visualize cAMP in intact living cells, electrophysiological and fluorescent methods have been developed based on activation of all three types of cAMP effectors: protein kinase A, cyclic nucleotide-gated channels, and exchange protein directly activated by cAMP. In this review, we describe and compare these techniques in terms of their robustness, sensitivity and spatio-temporal resolution.
Collapse
|
105
|
Haedo RJ, Golowasch J. Ionic mechanism underlying recovery of rhythmic activity in adult isolated neurons. J Neurophysiol 2006; 96:1860-76. [PMID: 16807346 PMCID: PMC3555141 DOI: 10.1152/jn.00385.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neurons exhibit long-term excitability changes necessary for maintaining proper cell and network activity in response to various inputs and perturbations. For instance, the adult crustacean pyloric network can spontaneously recover rhythmic activity after complete shutdown resulting from permanent removal of neuromodulatory inputs. Dissociated lobster stomatogastric ganglion (STG) neurons have been shown to spontaneously develop oscillatory activity via excitability changes. Rhythmic electrical stimulation can eliminate these oscillatory patterns in some cells. The ionic mechanisms underlying these changes are only partially understood. We used dissociated crab STG neurons to study the ionic mechanisms underlying spontaneous recovery of rhythmic activity and stimulation-induced activity changes. Similar to lobster neurons, rhythmic activity spontaneously develops in crab STG neurons. Rhythmic hyperpolarizing stimulation can eliminate, but more commonly accelerate, the emergence of stable oscillatory activity depending on Ca(2+) influx at hyperpolarized voltages. Our main finding is that upregulation of a Ca(2+) current and downregulation of a high-threshold K(+) current underlies the spontaneous homeostatic development of oscillatory activity. However, because of a nonlinear dependence on stimulus frequency, hyperpolarization-induced oscillations appear to be inconsistent with a homeostatic regulation of activity. We find no difference in the activity patterns or the underlying ionic currents involved between neurons of the fast pyloric and the slow gastric mill networks during the first 10 days in isolation. Dynamic-clamp experiments confirm that these conductance modifications can explain the observed activity changes. We conclude that spontaneous and stimulation-induced excitability changes in STG neurons can both result in intrinsic oscillatory activity via regulation of the same two conductances.
Collapse
Affiliation(s)
- Rodolfo J. Haedo
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102
| | - Jorge Golowasch
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102
| |
Collapse
|
106
|
Borodinsky LN, Spitzer NC. Second messenger pas de deux: the coordinated dance between calcium and cAMP. Sci Signal 2006; 2006:pe22. [PMID: 16720840 DOI: 10.1126/stke.3362006pe22] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Dynamic calcium signaling is a well-established precept in biology. Different cell types exhibit spontaneous as well as stimulus-triggered transient changes in the concentration of intracellular calcium. Does this behavior extend to other second messengers? Optical dissection of various signal transduction pathways with fluorescent reporter molecules that enable visualization of changes in concentration of other second messengers is well under way. Recent research using technologically refined probes provides improved temporal and spatial resolution of adenosine 3',5'-monophosphate (cAMP) dynamics to generate insights into the bidirectional interplay between intracellular fluctuations of cAMP and calcium. cAMP oscillations are generated in response to hormones, and cells can recognize and differentially respond to transient versus sustained changes in this second messenger. Second messenger reporters are now available to track multiple players and so provide a dynamic picture of signaling networks.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Neurobiology Section, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
107
|
Young JJ, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder JI. CO(2) signaling in guard cells: calcium sensitivity response modulation, a Ca(2+)-independent phase, and CO(2) insensitivity of the gca2 mutant. Proc Natl Acad Sci U S A 2006; 103:7506-11. [PMID: 16651523 PMCID: PMC1464368 DOI: 10.1073/pnas.0602225103] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Indexed: 11/18/2022] Open
Abstract
Leaf stomata close in response to high carbon dioxide levels and open at low CO(2). CO(2) concentrations in leaves are altered by daily dark/light cycles, as well as the continuing rise in atmospheric CO(2). Relative to abscisic acid and blue light signaling, little is known about the molecular, cellular, and genetic mechanisms of CO(2) signaling in guard cells. Interestingly, we report that repetitive Ca(2+) transients were observed during the stomatal opening stimulus, low [CO(2)]. Furthermore, low/high [CO(2)] transitions modulated the cytosolic Ca(2+) transient pattern in Arabidopsis guard cells (Landsberg erecta). Inhibition of cytosolic Ca(2+) transients, achieved by loading guard cells with the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid and not adding external Ca(2+), attenuated both high CO(2)-induced stomatal closing and low CO(2)-induced stomatal opening, and also revealed a Ca(2+)-independent phase of the CO(2) response. Furthermore, the mutant, growth controlled by abscisic acid (gca2) shows impairment in [CO(2)] modulation of the cytosolic Ca(2+) transient rate and strong impairment in high CO(2)-induced stomatal closing. Our findings provide insights into guard cell CO(2) signaling mechanisms, reveal Ca(2+)-independent events, and demonstrate that calcium elevations can participate in opposed signaling events during stomatal opening and closing. A model is proposed in which CO(2) concentrations prime Ca(2+) sensors, which could mediate specificity in Ca(2+) signaling.
Collapse
Affiliation(s)
- Jared J. Young
- *Division of Biological Sciences, Cell and Developmental Biology Section and Center for Molecular Genetics 0116, and
| | - Samar Mehta
- Department of Physics and Graduate Program in Neurosciences, University of California at San Diego, La Jolla, CA 92093-0116; and
| | - Maria Israelsson
- *Division of Biological Sciences, Cell and Developmental Biology Section and Center for Molecular Genetics 0116, and
| | - Jan Godoski
- *Division of Biological Sciences, Cell and Developmental Biology Section and Center for Molecular Genetics 0116, and
| | - Erwin Grill
- Technische Universität München, Lehrstuhl für Botanik, D-85350 Freising-Weihenstephan, Germany
| | - Julian I. Schroeder
- *Division of Biological Sciences, Cell and Developmental Biology Section and Center for Molecular Genetics 0116, and
| |
Collapse
|
108
|
Gonzalez-Iglesias AE, Jiang Y, Tomić M, Kretschmannova K, Andric SA, Zemkova H, Stojilkovic SS. Dependence of electrical activity and calcium influx-controlled prolactin release on adenylyl cyclase signaling pathway in pituitary lactotrophs. Mol Endocrinol 2006; 20:2231-46. [PMID: 16645040 DOI: 10.1210/me.2005-0363] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pituitary lactotrophs in vitro fire extracellular Ca2+-dependent action potentials spontaneously through still unidentified pacemaking channels, and the associated voltage-gated Ca2+influx (VGCI) is sufficient to maintain basal prolactin (PRL) secretion high and steady. Numerous plasma membrane channels have been characterized in these cells, but the mechanism underlying their pacemaking activity is still not known. Here we studied the relevance of cyclic nucleotide signaling pathways in control of pacemaking, VGCI, and PRL release. In mixed anterior pituitary cells, both VGCI-inhibitable and -insensitive adenylyl cyclase (AC) subtypes contributed to the basal cAMP production, and soluble guanylyl cyclase was exclusively responsible for basal cGMP production. Inhibition of basal AC activity, but not soluble guanylyl cyclase activity, reduced PRL release. In contrast, forskolin stimulated cAMP and cGMP production as well as pacemaking, VGCI, and PRL secretion. Elevation in cAMP and cGMP levels by inhibition of phosphodiesterase activity was also accompanied with increased PRL release. The AC inhibitors attenuated forskolin-stimulated cyclic nucleotide production, VGCI, and PRL release. The cell-permeable 8-bromo-cAMP stimulated firing of action potentials and PRL release and rescued hormone secretion in cells with inhibited ACs in an extracellular Ca2+-dependent manner, whereas 8-bromo-cGMP and 8-(4-chlorophenylthio)-2'-O-methyl-cAMP were ineffective. Protein kinase A inhibitors did not stop spontaneous and forskolin-stimulated pacemaking, VGCI, and PRL release. These results indicate that cAMP facilitates pacemaking, VGCI, and PRL release in lactotrophs predominantly in a protein kinase A- and Epac cAMP receptor-independent manner.
Collapse
Affiliation(s)
- Arturo E Gonzalez-Iglesias
- Section on Cellular Signaling, Endocrinology and Reproduction Research Branch/National Institute of Child Health and Human Development/National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Barsanti C, Pellegrini M, Pellegrino M. Regulation of the mechanosensitive cation channels by ATP and cAMP in leech neurons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:666-72. [PMID: 16725106 DOI: 10.1016/j.bbamem.2006.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 03/08/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
Single-channel recordings were used to study the modulation of stretch-activated channels (SACs) by intracellular adenosine nucleotides in identified leech neurons. These channels exhibited two activity modes, spike-like (SL) and multiconductance (MC), displaying different polymodal activation. In the absence of mechanical stimulation, internal perfusion of excised patches with ATP induced robust and reversible activation of the MC but not of the SL mode. The ATP effect on channel activity was dose-dependent within a range of 1 microM-1 mM and was induced at different values of intracellular pH and Ca2+. The non-hydrolyzable ATP analog AMP-PNP, ATP without Mg2+ or ADP also effectively enhanced MC activity. Adenosine mimicked the effect of its nucleotides. At negative membrane potentials, both ATP and adenosine activated the channel. Moreover, ATP but not adenosine induced a flickering block. Addition of cAMP during maximal ATP activation completely and reversibly inhibited the channel, with activation and deactivation times of minutes. However, cAMP alone only induced a weak and rapid channel activation, without inhibitory effects. The expression of these channels in the growth cones of leech neurons, their permeability to Ca2+ and their sensitivity to intracellular cAMP are consistent with a role in the Ca2+ oscillations associated with cell growth.
Collapse
Affiliation(s)
- Cristina Barsanti
- Dipartimento di Fisiologia e Biochimica G. Moruzzi, Università di Pisa, Via S. Zeno 31, 56127, Pisa, Italy
| | | | | |
Collapse
|
110
|
Abstract
Ca(2+) signals have profound and varied effects on growth cone motility and guidance. Modulation of Ca(2+) influx and release from stores by guidance cues shapes Ca(2+) signals, which determine the activation of downstream targets. Although the precise molecular mechanisms that underlie distinct Ca(2+)-mediated effects on growth cone behaviours remain unclear, recent studies have identified important players in both the regulation and targets of Ca(2+) signals in growth cones.
Collapse
Affiliation(s)
- Timothy M Gomez
- Department of Anatomy, University of Wisconsin School of Medicine, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
111
|
Nicol X, Muzerelle A, Rio JP, Métin C, Gaspar P. Requirement of adenylate cyclase 1 for the ephrin-A5-dependent retraction of exuberant retinal axons. J Neurosci 2006; 26:862-72. [PMID: 16421306 PMCID: PMC6675379 DOI: 10.1523/jneurosci.3385-05.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The calcium-stimulated adenylate cyclase 1 (AC1) has been shown to be required for the refinement of the retinotopic map, but the mechanisms involved are not known. To investigate this question, we devised a retinotectal coculture preparation that reproduces the gradual acquisition of topographic specificity along the rostrocaudal axis of the superior colliculus (SC). Temporal retinal axons invade the entire SC at 4 d in vitro (DIV) and eliminate exuberant branches caudally by 12 DIV. Temporal and nasal axons form branches preferentially in the rostral or caudal SC, respectively. Retinal explants from AC1-deficient mice, AC1(brl/brl), maintain exuberant branches and lose the regional selectivity of branching when confronted with wild-type (WT) SC. Conversely, WT retinas correctly target AC1(brl/brl) collicular explants. The effects of AC1 loss of function in the retina are mimicked by the blockade of ephrin-A5 signaling in WT cocultures. Video microscopic analyses show that AC1(brl/brl) axons have modified responses to ephrin-A5: the collapse of the growth cones occurs, but the rearward movement of the axon is arrested. Our results demonstrate a presynaptic, cell autonomous role of AC1 in the retina and further indicate that AC1 is necessary to enact a retraction response of the retinal axons to ephrin-A5 during the refinement of the retinotopic map.
Collapse
Affiliation(s)
- Xavier Nicol
- Institut National de la Santé et de la Recherche Médicale, U616, University Paris 06, Hôpital Pitié Salpêtrière, Institut Féderatif Neurosciences, F-75013 Paris, France
| | | | | | | | | |
Collapse
|
112
|
Reidl J, Borowski P, Sensse A, Starke J, Zapotocky M, Eiswirth M. Model of calcium oscillations due to negative feedback in olfactory cilia. Biophys J 2006; 90:1147-55. [PMID: 16326896 PMCID: PMC1367266 DOI: 10.1529/biophysj.104.058545] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 10/06/2005] [Indexed: 11/18/2022] Open
Abstract
We present a mathematical model for calcium oscillations in the cilia of olfactory sensory neurons. The underlying mechanism is based on direct negative regulation of cyclic nucleotide-gated channels by calcium/calmodulin and does not require any autocatalysis such as calcium-induced calcium release. The model is in quantitative agreement with available experimental data, both with respect to oscillations and to fast adaptation. We give predictions for the ranges of parameters in which oscillations should be observable. Relevance of the model to calcium oscillations in other systems is discussed.
Collapse
Affiliation(s)
- J Reidl
- Institute of Applied Mathematics, University of Heidelberg, and WIN-Research Group of Olfactory Dynamics, Heidelberg Academy of Science and Humanities, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
113
|
Kumada T, Lakshmana MK, Komuro H. Reversal of neuronal migration in a mouse model of fetal alcohol syndrome by controlling second-messenger signalings. J Neurosci 2006; 26:742-56. [PMID: 16421294 PMCID: PMC6675380 DOI: 10.1523/jneurosci.4478-05.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The brains of fetal alcohol syndrome patients exhibit impaired neuronal migration, but little is known about the mechanisms underlying this abnormality. Here we show that Ca2+ signaling and cyclic nucleotide signaling are the central targets of alcohol action in neuronal cell migration. Acute administration of ethanol reduced the frequency of transient Ca2+ elevations in migrating neurons and cGMP levels and increased cAMP levels. Experimental manipulations of these second-messenger pathways, through stimulating Ca2+ and cGMP signaling or inhibiting cAMP signaling, completely reversed the action of ethanol on neuronal migration in vitro as well as in vivo. Each second messenger has multiple but distinct downstream targets, including Ca2+/calmodulin-dependent protein kinase II, calcineurin, protein phosphatase 1, Rho GTPase, mitogen-activated protein kinase, and phosphoinositide 3-kinase. These results demonstrate that the aberrant migration of immature neurons in the fetal brain caused by maternal alcohol consumption may be corrected by controlling the activity of these second-messenger pathways.
Collapse
Affiliation(s)
- Tatsuro Kumada
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
114
|
Willoughby D, Cooper DMF. Ca2+ stimulation of adenylyl cyclase generates dynamic oscillations in cyclic AMP. J Cell Sci 2006; 119:828-36. [PMID: 16478784 DOI: 10.1242/jcs.02812] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spatial and temporal complexity of Ca2+ signalling is central to the regulation of a diverse range of cellular processes. The decoding of dynamic Ca2+ signals is, in part, mediated by the ability of Ca2+ to regulate other second messengers, including cyclic AMP (cAMP). A number of kinetic models (including our own) predict that interdependent Ca2+ and cAMP oscillations can be generated. A previous study in Xenopus neurons illustrated prolonged, low-frequency cAMP oscillations during bursts of Ca2+ transients. However, the detection of more dynamic Ca2+ driven changes in cAMP has, until recently, been limited by the availability of suitable cAMP probes with high temporal resolution. We have used a newly developed FRET-based cAMP indicator comprised of the cAMP binding domain of Epac-1 to examine interplay between Ca2+ and cAMP dynamics. This probe was recently used in excitable cells to reveal an inverse relationship between cAMP and Ca2+ oscillations as a consequence of Ca2+-dependent activation of phosphodiesterase 1 (PDE1). Here, we have used human embryonic kidney (HEK293) cells expressing the type 8 adenylyl cyclase (AC8) to examine whether dynamic Ca2+ changes can mediate phasic cAMP oscillations as a consequence of Ca2+-stimulated AC activity. During artificial or agonist-induced Ca2+ oscillations we detected fast, periodic changes in cAMP that depended upon Ca2+ stimulation of AC8 with subsequent PKA-mediated phosphodiesterase 4 (PDE4) activity. Carbachol (10 microM) evoked cAMP transients with a peak frequency of approximately 3 minute(-1), demonstrating phasic oscillations in cAMP and Ca2+ in response to physiological stimuli. Furthermore, by imposing a range of Ca2+-oscillation frequencies, we demonstrate that AC8 acts as a low-pass filter for high-frequency Ca2+ events, enhancing the regulatory options available to this signalling pathway.
Collapse
Affiliation(s)
- Debbie Willoughby
- Department of Pharmacology, Tennis Court Road, University of Cambridge, CB2 1PD, UK
| | | |
Collapse
|
115
|
Dyachok O, Isakov Y, Sågetorp J, Tengholm A. Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature 2006; 439:349-52. [PMID: 16421574 DOI: 10.1038/nature04410] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 11/08/2005] [Indexed: 01/22/2023]
Abstract
Cyclic AMP is a ubiquitous second messenger that transduces signals from a variety of cell surface receptors to regulate diverse cellular functions, including secretion, metabolism and gene transcription. In pancreatic beta-cells, cAMP potentiates Ca2+-dependent exocytosis and mediates the stimulation of insulin release exerted by the hormones glucagon and glucagon-like peptide-1 (GLP-1) (refs 4, 5-6). Whereas Ca2+ signals have been extensively characterized and shown to involve oscillations important for the temporal control of insulin secretion, the kinetics of receptor-triggered cAMP signals is unknown. Here we introduce a new ratiometric evanescent-wave-microscopy approach to measure cAMP concentration beneath the plasma membrane, and show that insulin-secreting beta-cells respond to glucagon and GLP-1 with marked cAMP oscillations. Simultaneous measurements of intracellular Ca2+ concentration revealed that the two messengers are interlinked and reinforce each other. Moreover, cAMP oscillations are capable of inducing rapid on-off Ca2+ responses, but only sustained elevation of cAMP concentration induces nuclear translocation of the catalytic subunit of the cAMP-dependent protein kinase. Our results establish a new signalling mode for cAMP and indicate that temporal encoding of cAMP signals might constitute a basis for differential regulation of downstream cellular targets.
Collapse
Affiliation(s)
- Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, BMC, Box 571, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
116
|
Campbell NR, Podugu SP, Ferrari MB. Spatiotemporal characterization of short versus long duration calcium transients in embryonic muscle and their role in myofibrillogenesis. Dev Biol 2006; 292:253-64. [PMID: 16460724 DOI: 10.1016/j.ydbio.2005.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 11/10/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Intracellular calcium (Ca(2+)) signals are essential for several aspects of muscle development, including myofibrillogenesis-the terminal differentiation of the sarcomeric lattice. Ryanodine receptor (RyR) Ca(2+) stores must be operative during this period and contribute to the production of spontaneous global Ca(2+) transients of long duration (LDTs; mean duration approximately 80 s). In this study, high-speed confocal imaging of intracellular Ca(2+) in embryonic myocytes reveals a novel class of spontaneous Ca(2+) transient. These short duration transients (SDTs; mean duration approximately 2 s) are blocked by ryanodine, independent of extracellular Ca(2+), insensitive to changes in membrane potential, and propagate in the subsarcolemmal space. SDTs arise from RyR stores localized to the subsarcolemmal space during myofibrillogenesis. While both LDTs and SDTs occur prior to myofibrillogenesis, LDT production ceases and only SDTs persist during a period of rapid sarcomere assembly. However, eliminating SDTs during this period results in only minor myofibril disruption. On the other hand, artificial extension of LDT production completely inhibits sarcomere assembly. In conjunction with earlier work, these results suggest that LDTs have at least two roles during myofibrillogenesis-activation of sarcoplasmic regulatory cascades and regulation of gene expression. The distinct spatiotemporal patterns of LDTs versus SDTs may be utilized for differential regulation of cytosolic cascades, control of nuclear gene expression, and localized activation of assembly events at the sarcolemma.
Collapse
Affiliation(s)
- Nolan R Campbell
- School of Biological Sciences, University of Missouri, 5100 Rockhill Road, Kansas City, MO 64110-2499, USA.
| | | | | |
Collapse
|
117
|
Gerbino A, Ruder WC, Curci S, Pozzan T, Zaccolo M, Hofer AM. Termination of cAMP signals by Ca2+ and G(alpha)i via extracellular Ca2+ sensors: a link to intracellular Ca2+ oscillations. ACTA ACUST UNITED AC 2006; 171:303-12. [PMID: 16247029 PMCID: PMC2171199 DOI: 10.1083/jcb.200507054] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Termination of cyclic adenosine monophosphate (cAMP) signaling via the extracellular Ca2+-sensing receptor (CaR) was visualized in single CaR-expressing human embryonic kidney (HEK) 293 cells using ratiometric fluorescence resonance energy transfer–dependent cAMP sensors based on protein kinase A and Epac. Stimulation of CaR rapidly reversed or prevented agonist-stimulated elevation of cAMP through a dual mechanism involving pertussis toxin–sensitive Gαi and the CaR-stimulated increase in intracellular [Ca2+]. In parallel measurements with fura-2, CaR activation elicited robust Ca2+ oscillations that increased in frequency in the presence of cAMP, eventually fusing into a sustained plateau. Considering the Ca2+ sensitivity of cAMP accumulation in these cells, lack of oscillations in [cAMP] during the initial phases of CaR stimulation was puzzling. Additional experiments showed that low-frequency, long-duration Ca2+ oscillations generated a dynamic staircase pattern in [cAMP], whereas higher frequency spiking had no effect. Our data suggest that the cAMP machinery in HEK cells acts as a low-pass filter disregarding the relatively rapid Ca2+ spiking stimulated by Ca2+-mobilizing agonists under physiological conditions.
Collapse
Affiliation(s)
- Andrea Gerbino
- Veterans' Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| | | | | | | | | | | |
Collapse
|
118
|
Secondo A, Pannaccione A, Cataldi M, Sirabella R, Formisano L, Di Renzo G, Annunziato L. Nitric oxide induces [Ca2+]i oscillations in pituitary GH3 cells: involvement of IDR and ERG K+ currents. Am J Physiol Cell Physiol 2005; 290:C233-43. [PMID: 16207796 DOI: 10.1152/ajpcell.00231.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 microM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 microM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 microM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Dept. of Neuroscience, School of Medicine, Federico II Univ. of Naples, via Sergio Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
119
|
Payne SJ, Arrol HP, Hunt SV, Young SP. Automated classification and analysis of the calcium response of single T lymphocytes using a neural network approach. ACTA ACUST UNITED AC 2005; 16:949-58. [PMID: 16121735 DOI: 10.1109/tnn.2005.849820] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gene activities in T lymphocytes that regulate immune responses are influenced by Ca2+ ([Ca2+]i). The intracellular calcium signals are highly heterogeneous and vitally important in determining the immune outcome. The signals in individual cells can be measured using fluorescence microscopy but to group the cells into classes with similar signal kinetics is currently laborious. Here, we demonstrate a method for the automated classification of the responses into four categories formerly identified by an expert's inspection. This method comprises characterising the response by a second-order model, performing frequency analysis, and using derived features as inputs to two multilayer perceptron neural networks (NNs). We compare the algorithm's performance on an example data set against the human classification: it was found to classify identically more than 70% of the data, despite small sample sizes in two categories and significant overlap between the other two classes. The group characterized by an oscillating signal showed the presence of a number of frequencies, which may be important in determining gene activation. A classification threshold enables the automatic identification of patterns with a low-classification certainty. Future refinement of the algorithm may allow the identification of more classes, which may be important in different immune responses associated with disease.
Collapse
Affiliation(s)
- S J Payne
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK.
| | | | | | | |
Collapse
|
120
|
Abstract
Very little is known about cross-talk between cAMP and calcium signalling in filamentous fungi. The aim of this study was to analyse the influence of cAMP and protein kinase A (PKA)-dependent phosphorylation on calcium signalling in Aspergillus niger. For this purpose, cytosolic free calcium ([Ca2+]c) was measured in living hyphae expressing codon-optimized aequorin. The calcium signature following mechanical perturbation was analysed after applying dibutryl-cAMP or IBMX which increased intracellular cAMP, or H7 which inhibited phosphorylation by PKA. Calcium signatures were also measured in mutant strains in which phosphorylation by PKA was increased or lacking. The results indicated that calcium channels were activated by cAMP-mediated, PKA-dependent phosphorylation. Further evidence for cross-talk between cAMP and calcium signalling came from the analysis of a mutant in which the catalytic subunit of PKA was under the control of an inducible promoter. The consequence of PKA induction was a transient increase in [Ca2+]c which correlated with a polar-apolar transition in hyphal morphology. A transient increase in [Ca2+]c was not observed in this mutant when the morphological shift was in the opposite direction. The [Ca2+]c signatures in response to mechanical perturbation by polarized and unpolarized cells were markedly different indicating that these two cell types possessed different calcium signalling capabilities. These results were consistent with PKA-dependent phosphorylation increasing [Ca2+]c to induce a polar to apolar shift in hyphal morphology.
Collapse
Affiliation(s)
- Mojca Bencina
- Laboratory of Biotechnology and Industrial Mycology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
121
|
Pradhan A, Liu Y. A Multifunctional Domain of the Calcium-responsive Transactivator (CREST) That Inhibits Dendritic Growth in Cultured Neurons. J Biol Chem 2005; 280:24738-43. [PMID: 15866867 DOI: 10.1074/jbc.m504018200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcium-responsive transactivator (CREST) is targeted to nuclear bodies and is required for the normal development of neuronal dendritic trees. Here we report the identification of a multifunctional domain (MFD) of CREST that is involved in transcription transactivation, nuclear body targeting, and dimerization. MFD is located near the C terminus of CREST from amino acid 251 to 322 and is required and sufficient for CREST homodimerization. When fused with a GAL4 DNA-binding domain, MFD was effective in transcription transactivation of a luciferase reporter system. A C-terminal 339-401 amino acid sequence of CREST was shown to contain a nuclear localization signal (NLS), which was able to direct a yellow fluorescence protein (YFP) to nucleus. A CREST deletion mutant containing both the MFD and NLS, which spanned the C-terminal amino acid sequence 251-401, was able to target YFP to the nucleus and nuclear bodies. However, MFD alone failed to target YFP and was largely cytosolic. The addition of a SV40 NLS to MFD domain restored nuclear body targeting. When YFP-MFD was expressed in cultured rat embryonic cortical neurons, it was effective in inhibiting depolarization-induced dendritic growth, suggesting that CREST dimerization may be necessary for its function in neuronal dendritic development.
Collapse
Affiliation(s)
- Anuradha Pradhan
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | |
Collapse
|
122
|
Landa LR, Harbeck M, Kaihara K, Chepurny O, Kitiphongspattana K, Graf O, Nikolaev VO, Lohse MJ, Holz GG, Roe MW. Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta-cell line. J Biol Chem 2005; 280:31294-302. [PMID: 15987680 PMCID: PMC3508785 DOI: 10.1074/jbc.m505657200] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca2+ and cAMP are important second messengers that regulate multiple cellular processes. Although previous studies have suggested direct interactions between Ca2+ and cAMP signaling pathways, the underlying mechanisms remain unresolved. In particular, direct evidence for Ca2+-regulated cAMP production in living cells is incomplete. Genetically encoded fluorescence resonance energy transfer-based biosensors have made possible real-time imaging of spatial and temporal gradients of intracellular cAMP concentration in single living cells. Here, we used confocal microscopy, fluorescence resonance energy transfer, and insulin-secreting MIN6 cells expressing Epac1-camps, a biosynthetic unimolecular cAMP indicator, to better understand the role of intracellular Ca2+ in cAMP production. We report that depolarization with high external K+, tolbutamide, or glucose caused a rapid increase in cAMP that was dependent on extracellular Ca2+ and inhibited by nitrendipine, a Ca2+ channel blocker, or 2',5'-dideoxyadenosine, a P-site antagonist of transmembrane adenylate cyclases. Stimulation of MIN6 cells with glucose in the presence of tetraethylammonium chloride generated concomitant Ca2+ and cAMP oscillations that were abolished in the absence of extracellular Ca2+ and blocked by 2',5'-dideoxyadenosine or 3-isobutyl-1-methylxanthine, an inhibitor of phosphodiesterase. Simultaneous measurements of Ca2+ and cAMP concentrations with Fura-2 and Epac1-camps, respectively, revealed a close temporal and causal interrelationship between the increases in cytoplasmic Ca2+ and cAMP levels following membrane depolarization. These findings indicate highly coordinated interplay between Ca2+ and cAMP signaling in electrically excitable endocrine cells and suggest that Ca2+-dependent cAMP oscillations are derived from an increase in adenylate cyclase activity and periodic activation and inactivation of cAMP-hydrolyzing phosphodiesterase.
Collapse
Affiliation(s)
- Luis R. Landa
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Mark Harbeck
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Kelly Kaihara
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Oleg Chepurny
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016
| | | | - Oliver Graf
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Viacheslav O. Nikolaev
- Institute of Pharmacology and Toxicology, University of Würzburg, D-97078 Würzburg, Germany
| | - Martin J. Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, D-97078 Würzburg, Germany
| | - George G. Holz
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016
| | - Michael W. Roe
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
- To whom correspondence should be addressed: Dept. of Medicine MC-1027, The University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637. Tel.: 773-702-4965; Fax: 773-834-0486;
| |
Collapse
|
123
|
Lusche DF, Bezares-Roder K, Happle K, Schlatterer C. cAMP controls cytosolic Ca2+ levels in Dictyostelium discoideum. BMC Cell Biol 2005; 6:12. [PMID: 15752425 PMCID: PMC555953 DOI: 10.1186/1471-2121-6-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 03/07/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differentiating Dictyostelium discoideum amoebae respond upon cAMP-stimulation with an increase in the cytosolic free Ca2+ concentration ([Ca2+]i) that is composed of liberation of stored Ca2+ and extracellular Ca2+-influx. In this study we investigated whether intracellular cAMP is involved in the control of [Ca2+]i. RESULTS We analyzed Ca2+-fluxes in a mutant that is devoid of the main cAMP-phosphodiesterase (PDE) RegA and displays an altered cAMP metabolism. In suspensions of developing cells cAMP-activated influx of extracellular Ca2+ was reduced as compared to wild type. Yet, single cell [Ca2+]i-imaging of regA- amoebae revealed a cAMP-induced [Ca2+]i increase even in the absence of extracellular Ca2+. The cytosolic presence of the cAMP PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX) induced elevated basal [Ca2+]i in both, mutant and wild type cells. Under this condition wild type cells displayed cAMP-activated [Ca2+]i-transients also in nominally Ca2+-free medium. In the mutant strain the amplitude of light scattering oscillations and of accompanying cAMP oscillations were strongly reduced to almost basal levels. In addition, chemotactic performance during challenge with a cAMP-filled glass capillary was altered by EGTA-incubation. Cells were more sensitive to EGTA treatment than wild type: already at 2 mM EGTA only small pseudopods were extended and chemotactic speed was reduced. CONCLUSION We conclude that there is a link between the second messengers cAMP and Ca2+. cAMP-dependent protein kinase (PKA) could provide for this link as a membrane-permeable PKA-activator also increased basal [Ca2+]i of regA- cells. Intracellular cAMP levels control [Ca2+]i by regulating Ca2+-fluxes of stores which in turn affect Ca2+-influx, light scattering oscillations and chemotactic performance.
Collapse
Affiliation(s)
- Daniel F Lusche
- Faculty for Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | - Kathrin Happle
- Faculty for Biology, University of Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
124
|
Prank K, Waring M, Ahlvers U, Bader A, Penner E, Möller M, Brabant G, Schöfl C. Precision of intracellular calcium spike timing in primary rat hepatocytes. ACTA ACUST UNITED AC 2005; 2:31-4. [PMID: 17091580 DOI: 10.1049/sb:20050002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Extracellular stimuli are often encoded in the frequency, amplitude and duration of spikes in the intracellular concentration of calcium ([Ca2+]i). However, the timing of individual [Ca2+]i-spikes in relation to the dynamics of an extracellular stimulus is still an open question. To address this question, we use a systems biology approach combining experimental and theoretical methods. Using computer simulations, we predict that more naturalistic pulsed stimuli generate precisely-timed [Ca2+]i-spikes in contrast to the application of constant stimuli of the same dose. These computational results are confirmed experimentally in single primary rat hepatocytes upon alpha1-adrenergic stimulation. Hormonal signalling in analogy to neuronal signalling thus has the potential to make use of temporal coding on the level of single cells. The [Ca2+]i-signalling cascade provides a first example for increasing the information capacity of an intracellular regulatory signal beyond the known coding mechanisms of amplitude (AM) and frequency modulation (FM).
Collapse
Affiliation(s)
- K Prank
- NRW Graduate School in Bioinformatics and Genome Research, Centre of Biotechnology, Bielefeld University, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Henley JR, Huang KH, Wang D, Poo MM. Calcium mediates bidirectional growth cone turning induced by myelin-associated glycoprotein. Neuron 2005; 44:909-16. [PMID: 15603734 PMCID: PMC3121244 DOI: 10.1016/j.neuron.2004.11.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 08/30/2004] [Accepted: 11/22/2004] [Indexed: 01/26/2023]
Abstract
Cytoplasmic second messengers, Ca2+ and cAMP, regulate nerve growth cone turning responses induced by many guidance cues, but the causal relationship between these signaling pathways has been unclear. We here report that, for growth cone turning induced by a gradient of myelin-associated glycoprotein (MAG), cAMP acts by modulating MAG-induced Ca2+ signaling. Growth cone repulsion induced by MAG was accompanied by localized Ca2+ signals on the side of the growth cone facing the MAG source, due to Ca2+ release from intracellular stores. Elevating cAMP signaling activity or membrane depolarization enhanced MAG-induced Ca2+ signals and converted growth cone repulsion to attraction. Directly imposing high- or low-amplitude Ca2+ signals with an extracellular gradient of Ca2+ ionophore was sufficient to trigger either attractive or repulsive turning, respectively. Thus, distinct Ca2+ signaling, which can be modulated by cAMP, mediates the bidirectional turning responses induced by MAG.
Collapse
Affiliation(s)
| | | | | | - Mu-ming Poo
- To whom correspondence should be addressed Phone: (510) 642-2514; Fax: (510) 642-2544;
| |
Collapse
|
126
|
Chapter 5 Adenylyl cyclase and CAMP regulation of the endothelial barrier. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1569-2558(05)35005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
127
|
Enomoto N, Takei Y, Hirose M, Yamashina S, Ikejima K, Kitamura T, Sato N. The Phosphodiesterase III Inhibitor Olprinone Decreases Sensitivity of Rat Kupffer Cells to Endotoxin. Alcohol Clin Exp Res 2004. [DOI: 10.1111/j.1530-0277.2004.tb03233.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
128
|
Pierre SC, Häusler J, Birod K, Geisslinger G, Scholich K. PAM mediates sustained inhibition of cAMP signaling by sphingosine-1-phosphate. EMBO J 2004; 23:3031-40. [PMID: 15257286 PMCID: PMC514936 DOI: 10.1038/sj.emboj.7600321] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 06/21/2004] [Indexed: 01/24/2023] Open
Abstract
PAM (Protein Associated with Myc) is an almost ubiquitously expressed protein that is one of the most potent inhibitors of adenylyl cyclase activity known so far. Here we show that PAM is localized at the endoplasmic reticulum in HeLa cells and that upon serum treatment PAM is recruited to the plasma membrane, causing an inhibition of adenylyl cyclase activity. We purified the serum factor that induced PAM translocation and identified it as sphingosine-1-phosphate (S1P). Within 15 min after incubation with S1P, PAM appeared at the plasma membrane and was detectable for up to 120 min. Sphingosine-1-phosphate induced adenylyl cyclase inhibition in two phases: an initial (1-10 min) and a late (20-240 min) phase. The initial adenylyl cyclase inhibition was Gi-mediated and PAM independent. In the late phase, adenylyl cyclase inhibition was PAM dependent and attenuated cyclic AMP (cAMP) signaling by various cAMP-elevating signals. This makes PAM the longest lasting nontranscriptional regulator of adenylyl cyclase activity known to date and presents a novel mechanism for the temporal regulation of cAMP signaling.
Collapse
Affiliation(s)
- Sandra C Pierre
- Pharmazentrum frankfurt, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Julia Häusler
- Pharmazentrum frankfurt, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Kerstin Birod
- Pharmazentrum frankfurt, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Pharmazentrum frankfurt, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Klaus Scholich
- Pharmazentrum frankfurt, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- Pharmazentrum frankfurt, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany. Tel.: +49 69 6301 83103; Fax: +49 69 6301 83378; E-mail:
| |
Collapse
|
129
|
Borodinsky LN, Root CM, Cronin JA, Sann SB, Gu X, Spitzer NC. Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 2004; 429:523-30. [PMID: 15175743 DOI: 10.1038/nature02518] [Citation(s) in RCA: 302] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 03/29/2004] [Indexed: 11/08/2022]
Abstract
Neurotransmitters are essential for interneuronal signalling, and the specification of appropriate transmitters in differentiating neurons has been related to intrinsic neuronal identity and to extrinsic signalling proteins. Here we show that altering the distinct patterns of Ca2+ spike activity spontaneously generated by different classes of embryonic spinal neurons in vivo changes the transmitter that neurons express without affecting the expression of markers of cell identity. Regulation seems to be homeostatic: suppression of activity leads to an increased number of neurons expressing excitatory transmitters and a decreased number of neurons expressing inhibitory transmitters; the reverse occurs when activity is enhanced. The imposition of specific spike frequencies in vitro does not affect labels of cell identity but again specifies the expression of transmitters that are inappropriate for the markers they express, during an early critical period. The results identify a new role of patterned activity in development of the central nervous system.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Neurobiology Section, Division of Biological Sciences and Center for Molecular Genetics, UCSD, La Jolla, California 92093-0357, USA.
| | | | | | | | | | | |
Collapse
|
130
|
Kumada T, Komuro H. Completion of neuronal migration regulated by loss of Ca(2+) transients. Proc Natl Acad Sci U S A 2004; 101:8479-84. [PMID: 15150416 PMCID: PMC420419 DOI: 10.1073/pnas.0401000101] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 04/19/2004] [Indexed: 01/08/2023] Open
Abstract
The migration of immature neurons constitutes one of the major processes by which the central nervous system takes shape. Completing the migration at the final destination requires the loss of cell body motility, but little is known about the signaling mechanisms underlying this process. Here, we show that a loss of transient Ca(2+) elevations triggers the completion of cerebellar granule cell migration. Simultaneous observation of the intracellular Ca(2+) levels and cell movement in cerebellar slices of the early postnatal mice revealed that granule cells exhibit distinct frequencies of the transient Ca(2+) elevations as they migrate in different cortical layers, and complete the migration only after the loss of Ca(2+) elevations. The reduction of the Ca(2+) elevation frequency by decreasing Ca(2+) influx, or by inhibiting the activity of phospholipase C, PKC, or Ca(2+)/calmodulin, halted the granule cell movement prematurely. In contrast, increasing the Ca(2+) elevation frequency by increasing Ca(2+) release from internal stores, or by elevating intracellular cAMP levels, significantly delayed the completion of granule cell migration. The timing of the loss of Ca(2+) elevations was intrinsically set in the granule cells and influenced by external cues. These results suggest that Ca(2+) signaling, dictated by multiple signaling systems, functions as a mediator for completing the migration of immature neurons.
Collapse
Affiliation(s)
- Tatsuro Kumada
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
131
|
Munck S, Bedner P, Bottaro T, Harz H. Spatiotemporal properties of cytoplasmic cyclic AMP gradients can alter the turning behaviour of neuronal growth cones. Eur J Neurosci 2004; 19:791-7. [PMID: 15009126 DOI: 10.1111/j.0953-816x.2004.03118.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Growth cones, the terminal structures of elongating neurites, use extracellular guidance information in order to navigate to appropriate target cells. The directional information of guidance cues is transduced to a cytoplasmic gradient of messenger molecules across the growth cone leading to rearrangements of the cytoskeleton. One messenger molecule regulating growth cone turning is cAMP, which is also known to be sufficient to direct growth cone attraction. Cytoplasmic cAMP gradients have been generated in the present study by photolysing caged cAMP with UV light focused on one side of growth cones of chick sensory neurons. Using this method we show that only specific time patterns of pulsed cAMP release are capable of inducing growth cone turning whereas others, which release the same amount of cAMP, are ineffective. Theoretical calculations show that diverse time patterns produce different intracellular gradients, which were visualized directly in HeLa cells expressing cAMP-sensitive ion channels as a reporter system. Together these data indicate that the spatiotemporal properties of the intracellular gradient are crucial for growth cone turning.
Collapse
Affiliation(s)
- Sebastian Munck
- BioImaging Zentrum der Ludwig-Maximilians-Universität München, Am Klopferspitz 19, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
132
|
Yu X, Byrne JH, Baxter DA. Modeling interactions between electrical activity and second-messenger cascades in Aplysia neuron R15. J Neurophysiol 2003; 91:2297-311. [PMID: 14702331 DOI: 10.1152/jn.00787.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biophysical properties of neuron R15 in Aplysia endow it with the ability to express multiple modes of oscillatory electrical activity, such as beating and bursting. Previous modeling studies examined the ways in which membrane conductances contribute to the electrical activity of R15 and the ways in which extrinsic modulatory inputs alter the membrane conductances by biochemical cascades and influence the electrical activity. The goals of the present study were to examine the ways in which electrical activity influences the biochemical cascades and what dynamical properties emerge from the ongoing interactions between electrical activity and these cascades. The model proposed by Butera et al. in 1995 was extended to include equations for the binding of Ca(2+) to calmodulin (CaM) and the actions of Ca(2+)/CaM on both adenylyl cyclase and phosphodiesterase. Simulations indicated that levels of cAMP oscillated during bursting and that these oscillations were approximately antiphasic to the oscillations of Ca(2+). In the presence of cAMP oscillations, brief perturbations could switch the electrical activity between bursting and beating (bistability). Compared with a constant-cAMP model, oscillations of cAMP substantially expanded the range of bistability. Moreover, the integrated electrical/biochemical model simulated some early experimental results such as activity-dependent inactivation of the anomalous rectifier. The results of the present study suggest that the endogenous activity of R15 depends, in part, on interactions between electrical activity and biochemical cascades.
Collapse
Affiliation(s)
- Xintian Yu
- Center for Computational Biomedicine, Department of Neurobiology and Anatomy, The University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
133
|
Abstract
An impressive array of cytosolic calcium ([Ca2+](i)) signals exert control over a broad range of physiological processes. The specificity and fidelity of these [Ca2+](i) signals is encoded by the frequency, amplitude, and sub-cellular localization of the response. It is believed that the distinct characteristics of [Ca2+](i) signals underlies the differential activation of effectors and ultimately cellular events. This "shaping" of [Ca2+](i) signals can be achieved by the influence of additional signaling pathways modulating the molecular machinery responsible for generating [Ca2+](i) signals. There is a particularly rich source of potential sites of crosstalk between the cAMP and the [Ca2+](i) signaling pathways. This review will focus on the predominant molecular loci at which these classical signaling systems interact to impact the spatio-temporal pattern of [Ca2+](i) signaling in non-excitable cells.
Collapse
Affiliation(s)
- Jason I E Bruce
- Department of Pharmacology & Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
134
|
Cooper DMF. Regulation and organization of adenylyl cyclases and cAMP. Biochem J 2003; 375:517-29. [PMID: 12940771 PMCID: PMC1223734 DOI: 10.1042/bj20031061] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 08/07/2003] [Accepted: 08/26/2003] [Indexed: 11/17/2022]
Abstract
Adenylyl cyclases are a critically important family of multiply regulated signalling molecules. Their susceptibility to many modes of regulation allows them to integrate the activities of a variety of signalling pathways. However, this property brings with it the problem of imparting specificity and discrimination. Recent studies are revealing the range of strategies utilized by the cyclases to solve this problem. Microdomains are a consequence of these solutions, in which cAMP dynamics may differ from the broad cytosol. Currently evolving methodologies are beginning to reveal cAMP fluctuations in these various compartments.
Collapse
Affiliation(s)
- Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
135
|
Nishiyama M, Hoshino A, Tsai L, Henley JR, Goshima Y, Tessier-Lavigne M, Poo MM, Hong K. Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature 2003; 423:990-5. [PMID: 12827203 DOI: 10.1038/nature01751] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Accepted: 05/19/2003] [Indexed: 11/09/2022]
Abstract
Signalling by intracellular second messengers such as cyclic nucleotides and Ca2+ is known to regulate attractive and repulsive guidance of axons by extracellular factors. However, the mechanism of interaction among these second messengers in determining the polarity of the guidance response is largely unknown. Here, we report that the ratio of cyclic AMP to cyclic GMP activities sets the polarity of netrin-1-induced axon guidance: high ratios favour attraction, whereas low ratios favour repulsion. Whole-cell recordings of Ca2+ currents at Xenopus spinal neuron growth cones indicate that cyclic nucleotide signalling directly modulates the activity of L-type Ca2+ channels (LCCs) in axonal growth cones. Furthermore, cGMP signalling activated by an arachidonate 12-lipoxygenase metabolite suppresses LCC activity triggered by netrin-1, and is required for growth-cone repulsion mediated by the DCC-UNC5 receptor complex. By linking cAMP and cGMP signalling and modulation of Ca2+ channel activity in growth cones, these findings delineate an early membrane-associated event responsible for signal transduction during bi-directional axon guidance.
Collapse
Affiliation(s)
- Makoto Nishiyama
- Department of Biochemistry, New York University School of Medicine, New York, New York 10016-6402, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Jenks BG, Roubos EW, Scheenen WJJM. Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function. Gen Comp Endocrinol 2003; 131:209-19. [PMID: 12714002 DOI: 10.1016/s0016-6480(03)00120-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The melanotrope cell of the amphibian Xenopus laevis is a neuroendocrine transducer that converts neuronal input concerning the color of background into an endocrine output, the release of alpha-melanophore-stimulating hormone (alpha-MSH). The cell displays intracellular Ca(2+) oscillations that are thought to be the driving force for secretion as well as for the expression of genes important to the process of background adaptation. Here we review the functioning of the Xenopus melanotrope cell, with emphasis on the role of Ca(2+) oscillations in signal transduction in this cell. We start by giving a general overview of the evolution of Ca(2+) as an intracellular messenger molecule. This is followed by an examination of the melanotrope as a neuroendocrine integrator cell. Then, the evidence that Ca(2+) oscillations drive the secretion of alpha-MSH is reviewed, followed by a similar analysis of the evidence that the same oscillations regulate the expression of proopiomelanocortin (POMC), the precursor protein for alpha-MSH. Finally, the possible importance of the pattern of Ca(2+) signaling to melanotrope cell function is considered.
Collapse
Affiliation(s)
- Bruce G Jenks
- Department of Cellular Animal Physiology, Nijmegen Institute for Neurosciences and Institute of Cellular Signaling, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| | | | | |
Collapse
|
137
|
Direct cAMP signaling through G-protein-coupled receptors mediates growth cone attraction induced by pituitary adenylate cyclase-activating polypeptide. J Neurosci 2003. [PMID: 12657686 DOI: 10.1523/jneurosci.23-06-02274.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Developing axons are guided to their appropriate targets by environmental cues through the activation of specific receptors and intracellular signaling pathways. Here we report that gradients of pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide widely expressed in the developing nervous system, induce marked attraction of Xenopus growth cones in vitro. PACAP exerted its chemoattractive effects through PAC1, a PACAP-selective G-protein-coupled receptor (GPRC) expressed at the growth cone. Furthermore, the attraction depended on localized cAMP signaling because it was completely blocked either by global elevation of intracellular cAMP levels using forskolin or by inhibition of protein kinase A using specific inhibitors. Moreover, local direct elevation of intracellular cAMP by focal photolysis of caged cAMP compounds was sufficient to induce growth cone attraction. On the other hand, blockade of Ca2+, phospholipase C, or phosphatidyl inositol-3 kinase signaling pathways did not affect PACAP-induced growth cone attraction. Finally, PACAP-induced attraction also involved the Rho family of small GTPases and required local protein synthesis. Taken together, our results establish cAMP signaling as an independent pathway capable of mediating growth cone attraction induced by a physiologically relevant peptide acting through GPCRs. Such a direct cAMP pathway could potentially operate in other guidance systems for the accurate wiring of the nervous system.
Collapse
|
138
|
Abstract
Ca(2+) and cAMP signalling pathways are tightly interconnected and the cellular effects mediated by the two second messengers depend strictly on reciprocal modulation. The signalling network that derives from such interplay holds the potential for expanding the information content of the signal enormously and, thus, can contribute substantially to the specificity and diversity of the response. Recent work points to interdependent Ca(2+) and cAMP oscillation patterns as a new paradigm for signal transduction.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, Padua, Italy.
| | | |
Collapse
|
139
|
Abstract
The effect of carvedilol on intracellular free Ca(2+) levels ([Ca(2+)](i)) has not been explored previously. This study was aimed to examine the effect of carvedilol on Ca(2+) handling in renal tubular cells. Madin-Darby canine kidney cells were used as a model for renal tubular cells and fura-2 was used as a fluorescent Ca(2+) probe. Carvedilol increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 5 microM. Extracellular Ca(2+) removal partly inhibited the [Ca(2+)](i) signals. Carvedilol-induced Ca(2+) influx was verified by measuring Mn(2+)-induced quench of fura-2 fluorescence. Carvedilol-induced store Ca(2+) release was reduced by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) but not with 5 microM ryanodine or 2 microM carbonylcyanide m-chlorophenylhydrazone (a mitochondrial uncoupler). Carvedilol (30 microM)-induced Ca(2+) release was not affected by inhibiting phospholipase C with 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-l)amino)hexyl)-1H-pyrrole-2,5-dione (U73122; 2 microM), but was potentiated by increasing cAMP levels or inhibiting protein kinase C. The carvedilol-induced Ca(2+) mobilization was not significantly sequestered by the endoplasmic reticulum or mitochondria. This study shows that carvedilol increased [Ca(2+)](i) in renal tubular cells by causing Ca(2+) release from the endoplasmic reticulum and other unknown stores in an inositol-1,4,5-trisphosphate-independent manner, and by inducing Ca(2+) influx. The Ca(2+) release was modulated by cAMP and protein kinase C.
Collapse
Affiliation(s)
- Chun-Peng Liu
- Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | | | | |
Collapse
|
140
|
Abstract
Oscillations arise in genetic and metabolic networks as a result of various modes of cellular regulation. In view of the large number of variables involved and of the complexity of feedback processes that generate oscillations, mathematical models and numerical simulations are needed to fully grasp the molecular mechanisms and functions of biological rhythms. Models are also necessary to comprehend the transition from simple to complex oscillatory behaviour and to delineate the conditions under which they arise. Examples ranging from calcium oscillations to pulsatile intercellular communication and circadian rhythms illustrate how computational biology contributes to clarify the molecular and dynamical bases of cellular rhythms.
Collapse
Affiliation(s)
- Albert Goldbeter
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine, CP 231, B-1050 Brussels, Belgium
| |
Collapse
|
141
|
LeBrasseur N. Decoding Ca2+ signals through cAMP. J Biophys Biochem Cytol 2002. [PMCID: PMC2244945 DOI: 10.1083/jcb1583rr4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|