101
|
Wang Y, Tian J, Chen J, Ni S, Yao Y, Wang L, Wu X, Song R, Chen J. Nontargeted metabolomics integrated with 1 H NMR and LC-Q-TOF-MS/MS methods to depict a more comprehensive metabolic profile in response to chrysosplenetin and artemisinin co-treatment against artemisinin-sensitive and -resistant Plasmodium berghei K173. Biomed Chromatogr 2023; 37:e5561. [PMID: 36471489 DOI: 10.1002/bmc.5561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Our previous work revealed mutual and specific metabolites/pathways in artemisinin-sensitive and -resistant Plasmodium berghei K173-infected mice. In this study, we further investigated whether chrysosplenetin, a candidate chemical to prevent artemisinin resistance, can regulate these metabolites/pathways by integrating nontargeted metabolomics with 1 H NMR and LC-Q-TOF-MS/MS spectrum. The nuclear magnetic resonance method generated specifically altered metabolites in response to co-treatment with chrysosplenetin, including: the products of glycolysis such as glucose, pyruvate, lactate and alanine; taurine, closely associated with liver injury; arginine and proline as essential amino acids for parasites; TMAO, a biomarker for dysbacteriosis and renal function; and tyrosine, which is used to generate levodopa and dopamine and may improve the torpor state of mice. Importantly, we noticed that chrysosplenetin might depress the activated glycolysis induced by sensitive parasites, but oppositely promoted the inhibited glycolysis to generate more lactate, which suppresses the proliferation of resistant parasites. Moreover, chrysosplentin possibly disturbs the heme biosynthetic pathway in mitochondria. The MS method yielded changed coenzyme A, phosphatidylcholine and ceramides, closely related to mitochondria β-oxidation, cell proliferation, differentiation and apoptosis. These two means shared no overlapped metabolites and formed a more broader metabolic map to study the potential mechanisms of chrysosplenetin as a promising artemisinin resistance inhibitor.
Collapse
Affiliation(s)
- Yisen Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Jingxuan Tian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Jie Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shanhong Ni
- Department of Public Health and Preventive Medicine, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Ying Yao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Lirong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Xiuli Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.,School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
102
|
Bordean ME, Ungur RA, Toc DA, Borda IM, Marțiș GS, Pop CR, Filip M, Vlassa M, Nasui BA, Pop A, Cinteză D, Popa FL, Marian S, Szanto LG, Muste S. Antibacterial and Phytochemical Screening of Artemisia Species. Antioxidants (Basel) 2023; 12:antiox12030596. [PMID: 36978844 PMCID: PMC10045255 DOI: 10.3390/antiox12030596] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Taking into account the increasing number of antibiotic-resistant bacteria, actual research focused on plant extracts is vital. The aim of our study was to investigate leaf and stem ethanolic extracts of Artemisia absinthium L. and Artemisia annua L. in order to explore their antioxidant and antibacterial activities. Total phenolic content (TPC) was evaluated spectrophotometrically. Antioxidant activity was evaluated by DPPH and ABTS. The antibacterial activity of wormwood extracts was assessed by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Salmonella enteritidis cultures, and by zone of inhibition in Klebsiella carbapenem-resistant enterobacteriaceae (CRE) and Escherichia coli extended-spectrum β-lactamases cultures (ESBL). The Artemisia annua L. leaf extract (AnL) exhibited the highest TPC (518.09 mg/mL) and the highest expression of sinapic acid (285.69 ± 0.002 µg/mL). Nevertheless, the highest antioxidant capacity (1360.51 ± 0.04 µM Trolox/g DW by ABTS and 735.77 ± 0.02 µM Trolox/g DW by DPPH) was found in Artemisia absinthium L. leaf from the second year of vegetation (AbL2). AnL extract exhibited the lowest MIC and MBC for all tested bacteria and the maximal zone of inhibition for Klebsiella CRE and Escherichia coli ESBL. Our study revealed that AbL2 exhibited the best antioxidant potential, while AnL extract had the strongest antibacterial effect.
Collapse
Affiliation(s)
- Maria-Evelina Bordean
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Rodica Ana Ungur
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
| | - Dan Alexandru Toc
- Department of Microbiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ileana Monica Borda
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
- Correspondence: (I.M.B.); (G.S.M.)
| | - Georgiana Smaranda Marțiș
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
- Correspondence: (I.M.B.); (G.S.M.)
| | - Carmen Rodica Pop
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Miuța Filip
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Mihaela Vlassa
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Bogdana Adriana Nasui
- Department of Community Health, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Anamaria Pop
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Delia Cinteză
- 9th Department-Physical Medicine and Rehabilitation, Carol Davila Univerity of Medicine and Pharmacy, 050474 București, Romania
| | - Florina Ligia Popa
- Physical Medicine and Rehabilitation Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, Victoriei Blvd., 550024 Sibiu, Romania
- Academic Emergency Hospital of Sibiu, Coposu Blvd., 550245 Sibiu, Romania
| | - Sabina Marian
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Lidia Gizella Szanto
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Sevastița Muste
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| |
Collapse
|
103
|
Yu J, Sheng S, Zou X, Shen Z. Dihydroartemisinin-ursodeoxycholic acid conjugate is a potential treatment agent for inflammatory bowel disease. Int Immunopharmacol 2023; 117:109918. [PMID: 36842236 DOI: 10.1016/j.intimp.2023.109918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND A novel artemisinin derivative, dihydroartemisinin-ursodeoxycholic acid conjugate (4), was found to exhibit strong immunosuppressive activity. Various methods were used to evaluate the immunosuppressive activity and mechanism of action of the compound to explore its potential applications. METHODS T cell proliferation, mixed lymphocyte reaction (MLR), and Th1/Th17 differentiation assays were used to evaluate the immunosuppressive activity of the compound. Differentially expressed genes from RNA sequencing were analysed with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, while enriched signalling pathways were further validated by western blotting (WB). In vivo efficacy was validated with delayed-type hypersensitivity (DTH) mouse models and dextran sodium sulphate (DSS)-induced inflammatory bowel disease (IBD) mouse model. RESULTS Compound 4 inhibited concanavalin A -induced mouse splenic T cell proliferation (IC50 = 15 nM) and anti-CD3/CD28-induced human primary T cell proliferation (IC50 = 30 nM) while also reducing the secretion of hIFN-γ. Compound 4 exhibited similar inhibitory activity in MLR assay. Compound 4 dose-dependently inhibited human Th1/Th17 differentiation. The KEGG pathway enrichment analysis indicated that the genes related to T cell activation signalling pathways PI3K-AKT, MAPK, and NF-κB were significantly enriched. WB confirmed that compound 4 inhibited the AKT/MAPK and NF-κB signalling pathways. Compound 4 dose-dependently inhibited ear and foot pad swelling in DTH mouse models. In the DSS-induced IBD mouse model, compound 4 significantly decreased the disease activity index and colon density, and inhibited splenomegaly of the mice. CONCLUSION The in vitro and in vivo results indicated that compound 4 has the potential to be developed into an anti-IBD drug.
Collapse
Affiliation(s)
- Jingfeng Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Sihan Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiaosu Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhengwu Shen
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
104
|
Mohammed RA, Danda AK, Kotakadi SM, Nannepaga JS. Anti-obesity Effect of Bioengineered Silver Nanoparticles Synthesized from Persea americana on Obese Albino Rats. Pharm Nanotechnol 2023; 11:433-446. [PMID: 37106516 DOI: 10.2174/2211738511666230427145944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Obesity is an immoderate or abnormal accretion of fat or adipose tissue in the body that is prone to damage the health of mankind. Persea americana (Avocados) is a nutritious fruit known for its several health benefits. The current research was planned to evaluate the anti-obesity activity of bioengineered Silver Nanoparticles (AgNPs) against a high-fat diet (HFD) treated obese albino rats. METHODS AgNPs were synthesized and characterized for the Phytochemical constituents, UV-vis Spectroscopy, FTIR, SEM and XRD. Furthermore, the lipid profile in serum, biochemical parameters and histopathological changes in tissues of albino rats were determined. RESULTS The present study revealed the presence of tannins, flavonoids, steroids and saponins, carbohydrates, alkaloids, phenols and glycosides. The peak was disclosed at 402 nm in UV-vis spectroscopy, confirming the synthesis of AgNPs. FTIR analysis showed two peaks at 3332.25 cm-1 which correspond to the O-H stretch of the carboxylic acid band, and 1636.40 cm-1 represents the N-H stretch of the amide of proteins, respectively. This result confirms their contribution to the capping and stabilization of AgNPs. The XRD results confirm the crystalline nature of AgNPs, and SEM results indicated that the synthesized AgNPs were spherical. Further, the results of the current study showed the improved lipid profile and biochemical parameters in rats supplemented with methanolic pulp extract of Persea americana AgNPs when compared with other experimental groups. The histopathological findings displayed improved results with reduced hepatocyte degradation under the influence of AgNPs treatment. CONCLUSION All the experimental evidence indicated the possible anti-obesity effect of silver nanoparticles synthesized from the methanolic pulp extract of Persea americana.
Collapse
Affiliation(s)
- Reshma Anjum Mohammed
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, 517 502, Andhra, India
| | - Aruna Kumari Danda
- Department of Zoology, Government Degree College, Anantapur, 515001, Andhra Pradesh, India
| | - Sai Manogna Kotakadi
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, 517 502, Andhra, India
| | - John Sushma Nannepaga
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, 517 502, Andhra, India
| |
Collapse
|
105
|
The Trimeric Artesunate Analog TF27, a Broadly Acting Anti-Infective Model Drug, Exerts Pronounced Anti-SARS-CoV-2 Activity Spanning Variants and Host Cell Types. Pharmaceutics 2022; 15:pharmaceutics15010115. [PMID: 36678744 PMCID: PMC9866877 DOI: 10.3390/pharmaceutics15010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Starting in 2019, the spread of respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated pandemic of the corona virus disease (COVID-19) has led to enormous efforts in the development of medical countermeasures. Although innovative vaccines have scaled back the number of severe COVID cases, the emergence of the omicron variant (B.1.1.529) illustrates how vaccine development struggles to keep pace with viral evolution. On the other hand, while the recently approved antiviral drugs remdesivir, molnupiravir, and Paxlovid are considered as broadly acting anti-coronavirus therapeutics, only molnupiravir and Paxlovid are orally available and none of these drugs are recommended for prophylactic use. Thus, so far unexploited small molecules, targeting strategies, and antiviral mechanisms are urgently needed to address issues in the current pandemic and in putative future outbreaks of newly emerging variants of concern. Recently, we and others have described the anti-infective potential and particularly the pronounced antiviral activity of artesunate and related compounds of the trioxane/sesquiterpene class. In particular, the trimeric derivative TF27 demonstrated strong anti-cytomegalovirus activity at nanomolar concentrations in vitro as well as in vivo efficacy after oral administration in therapeutic and even prophylactic treatment settings. Here, we extended this analysis by evaluating TF27 for its anti-SARS-CoV-2 potential. Our main findings are as follows: (i) compound TF27 exerted strong anti-SARS-CoV-2 activity in vitro (EC50 = 0.46 ± 0.20 µM), (ii) antiviral activity was clearly distinct from the induction of cytotoxicity, (iii) pretreatment with TF27 prevented virus replication in cultured cells, (iv) antiviral activity has likewise been demonstrated in Calu-3 human lung and Caco-2 human colon cells infected with wild-type, delta, or omicron SARS-CoV-2, respectively, and (v) analysis of TF27 combination treatments has revealed synergistic interaction with GC376, but antagonistic interaction with EIDD-1931. Combined, the data demonstrated the pronounced anti-SARS-CoV-2 activity of TF27 and thus highlight the potential of trioxane compounds for further pharmacologic development towards improved options for COVID-specific medication.
Collapse
|
106
|
Challis MP, Devine SM, Creek DJ. Current and emerging target identification methods for novel antimalarials. Int J Parasitol Drugs Drug Resist 2022; 20:135-144. [PMID: 36410177 PMCID: PMC9771836 DOI: 10.1016/j.ijpddr.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
New antimalarial compounds with novel mechanisms of action are urgently needed to combat the recent rise in antimalarial drug resistance. Phenotypic high-throughput screens have proven to be a successful method for identifying new compounds, however, do not provide mechanistic information about the molecular target(s) responsible for antimalarial action. Current and emerging target identification methods such as in vitro resistance generation, metabolomics screening, chemoproteomic approaches and biophysical assays measuring protein stability across the whole proteome have successfully identified novel drug targets. This review provides an overview of these techniques, comparing their strengths and weaknesses and how they can be utilised for antimalarial target identification.
Collapse
Affiliation(s)
- Matthew P. Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Shane M. Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia,Corresponding author. Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
107
|
Tali MBT, Dize D, Njonte Wouamba SC, Tsouh Fokou PV, Keumoe R, Ngansop CN, Nguembou Njionhou MS, Jiatsa Mbouna CD, Yamthe Tchokouaha LR, Maharaj V, Khorommbi NK, Naidoo-Maharaj D, Tchouankeu JC, Boyom FF. In vitro antiplasmodial activity-directed investigation and UPLC-MS fingerprint of promising extracts and fractions from Terminalia ivorensis A. Chev. and Terminalia brownii Fresen. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115512. [PMID: 35788037 DOI: 10.1016/j.jep.2022.115512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE Medicinal plants from the Terminalia genus are widely used as remedies against many infectious diseases, including malaria. As such, Terminalia ivorensis A. Chev. and Terminalia brownii Fresen. are famous due to their usefulness in traditional medicines to treat malaria and yellow fever. However, further information is needed on the extent of anti-Plasmodium potency of extracts and fractions from these plants and their phytochemical profile. AIM OF THE STUDY This study was designed to investigate the in vitro antiplasmodial activity and to determine the chemical profile of promising extracts and fractions from T. ivorensis and T. brownii stem bark. MATERIALS AND METHODS Crude aqueous, ethanolic, methanolic, hydroethanolic and ethyl acetate extracts were prepared by maceration from the stem barks of T. brownii and T. ivorensis. They were subsequently tested against chloroquine-sensitive (Pf3D7) and multidrug-resistant (PfDd2) strains of P. falciparum using the parasite lactate dehydrogenase (PfLDH) assay. Extracts showing very good activity on both plasmodial strains were further fractionated using column chromatography guided by evidence of antiplasmodial activity. All bioactive extracts and fractions were screened for their cytotoxicity on Vero and Raw cell lines using the resazurin-based assay and on erythrocytes using the hemolysis assay. The phytochemical profiles of selected potent extracts and fractions were determined by UPLC-QTOF-MS analysis. RESULTS Of the ten extracts obtained from both plant species, nine showed inhibitory activity against both P. falciparum strains (Pf3D7 and PfDd2), with median inhibitory concentration (IC50) values ranging from 0.13 μg/ml to 10.59 μg/ml. Interestingly, the aqueous extract of T. ivorensis (TiW) and methanolic extract of T. brownii (TbM) displayed higher antiplasmodial activities against both strains (IC50 0.13-1.43 μg/ml) and high selectivity indices (SI > 100). Their fractionation led to two fractions from T. ivorensis and two from T. brownii that showed very promising antiplasmodial activity (IC50 0.15-1.73 μg/mL) and SI greater than 100. The hemolytic assay confirmed the safety of crude extracts and fractions on erythrocytes. UPLC-MS-based phytochemical analysis of the crude aqueous extract of T. ivorensis showed the presence of ellagic acid (1) and leucodelphidin (2), while analysis of the crude methanol extract of T. brownii showed the presence of ellagic acid (1), leucodelphinidin (2), papyriogenin D (3), dihydroactinidiolide (4) and miltiodiol (5). CONCLUSIONS The extracts and fractions from T. ivorensis and T. brownii showed very good antiplasmodial activity, thus supporting the traditional use of the two plants in the treatment of malaria. Chemical profiling of the extracts and fractions led to the identification of chemical markers and the known antimalarial compound ellagic acid. Further isolation and testing of other pure compounds from the active fractions could lead to the identification of potent antiplasmodial compounds.
Collapse
Affiliation(s)
- Mariscal Brice Tchatat Tali
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Darline Dize
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Steven Collins Njonte Wouamba
- Laboratory of Natural Products and Organic Synthesis, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Department of Chemistry, Higher Teacher's Training College, University of Yaoundé I, P. O. Box 47, Yaoundé, Cameroon.
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Department of Biochemistry, Faculty of Science, University of Bamenda, PO Box 39, Bambili, Bamenda, Cameroon.
| | - Rodrigue Keumoe
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Cyrille Njanpa Ngansop
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Michelle Sidoine Nguembou Njionhou
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Cedric Derick Jiatsa Mbouna
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Lauve Rachel Yamthe Tchokouaha
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Institute for Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, P.O. Box 6163, Yaoundé, Cameroon.
| | - Vinesh Maharaj
- Department of Chemistry, University of Pretoria, Hatfield Campus, Hatfield, 0028, South Africa.
| | | | - Dashnie Naidoo-Maharaj
- Department of Chemistry, University of Pretoria, Hatfield Campus, Hatfield, 0028, South Africa; Agricultural Research Council-Vegetables, Industrial and Medicinal Plants, Private Bag X293, Pretoria, 0001, South Africa.
| | - Jean Claude Tchouankeu
- Laboratory of Natural Products and Organic Synthesis, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
108
|
Chen W, Ma Z, Yu L, Mao X, Ma N, Guo X, Yin X, Jiang F, Wang Q, Wang J, Fang M, Lin N, Zhang Y. Preclinical investigation of artesunate as a therapeutic agent for hepatocellular carcinoma via impairment of glucosylceramidase-mediated autophagic degradation. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1536-1548. [PMID: 36123535 PMCID: PMC9535011 DOI: 10.1038/s12276-022-00780-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 12/09/2022]
Abstract
Artesunate (ART) has been indicated as a candidate drug for hepatocellular carcinoma (HCC). Glucosylceramidase (GBA) is required for autophagic degradation. Whether ART regulates autophagic flux by targeting GBA in HCC remains to be defined. Herein, our data demonstrated that the dramatic overexpression of GBA was significantly associated with aggressive progression and short overall survival times in HCC. Subsequent experiments revealed an association between autophagic activity and GBA expression in clinical HCC samples, tumor tissues from a rat model of inflammation-induced HCC and an orthotopic mouse model, and human HCC cell lines. Interestingly, probe labeling identified GBA as an ART target, which was further verified by both a glutathione-S-transferase pulldown assay and surface plasmon resonance analysis. The elevated protein expression of LC3B, the increased numbers of GFP-LC3B puncta and double-membrane vacuoles, and the enhanced expression of SQSTM1/p62 indicated that the degradation of autophagosomes in HCC cells was inhibited by ART treatment. Both the in vitro and in vivo data revealed that autophagosome accumulation through targeting of GBA was responsible for the anti-HCC effects of ART. In summary, this preclinical study identified GBA as one of the direct targets of ART, which may have promising potential to inhibit lysosomal autophagy for HCC therapy. Confirmation that the malaria drug artesunate targets a key enzyme overexpressed in aggressive liver cancer suggests it may be a novel therapeutic option for the disease. High levels of an enzyme called glucosylceramidase (GBA) are associated with poor prognosis in liver cancer, according to research conducted by Yanqiong Zhang and Na Lin at the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, and co-workers. In experiments on rat and mouse models and human cell lines, the team demonstrated that high GBA levels over activated autophagic flux, accelerated the rate at which cellular material may be degraded and recycled in balanced, healthy cells. This disturbance enables liver cancer to progress. The researchers found that artesunate can suppress GBA expression levels and restore normal autophagic flux, boosting the drug’s anticancer activity.
Collapse
Affiliation(s)
- Wenjia Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhaochen Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lingxiang Yu
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Xia Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Nan Ma
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Xiaodong Guo
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaoli Yin
- College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Funeng Jiang
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, South China University of Technology, Guangzhou, 510631, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jigang Wang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Mingliang Fang
- Nanyang Technology University of Singapore, APT11-04, Singapore, Singapore
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
109
|
Wang F, Song J, Yan Y, Zhou Q, Li X, Wang P, Yang Z, Zhang Q, Zhang H. Integrated Network Pharmacology Analysis and Serum Metabolomics to Reveal the Anti-malaria Mechanism of Artesunate. ACS OMEGA 2022; 7:31482-31494. [PMID: 36092633 PMCID: PMC9453802 DOI: 10.1021/acsomega.2c04157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Artesunate is a widely used drug in clinical treatment of malaria. The aim of this study was to investigate the therapeutic mechanism of artesunate on malaria using an integrated strategy of network pharmacology and serum metabolomics. The mice models of malaria were established using 2 × 107 red blood cells infected with Plasmodium berghei ANKA injection. Giemsa and hematoxylin-eosin (HE) staining were used to evaluate the efficacy of artesunate on malaria. Next, network pharmacology analysis was applied to identify target genes. Then, a metabolomics strategy has been developed to find the possible significant serum metabolites and metabolic pathways induced by artesunate. Additionally, two parts of the results were integrated to confirm each other. Giemsa and HE staining results showed that artesunate significantly inhibited the proliferation of Plasmodium and reduced liver and spleen inflammation. Based on metabolomics, 18 differential endogenous metabolites were identified as potential biomarkers related to the artesunate for treating malaria. These metabolites were mainly involved in the relevant pathways of biosynthesis of unsaturated fatty acids; aminoacyl-tRNA biosynthesis; valine, leucine, and isoleucine biosynthesis; and phenylalanine, tyrosine, and tryptophan biosynthesis. The results of the network pharmacology analysis showed 125 potential target genes related to the treatment of malaria with artesunate. The functional enrichment was mainly associated with lipid and atherosclerosis; pathways of prostate cancer and proteoglycans in cancer; and PI3K-Akt, apoptosis, NF-κB, Th17 cell, and AGE-RAGE signaling pathways. These findings were partly consistent with the findings of the metabolism. Our results further suggested that artesunate could correct the inflammatory response caused by malaria through Th17 cell and NF-κB pathways. Meanwhile, our work revealed that cholesterol needed by Plasmodium berghei came directly from serum. Cholesterol and palmitic acid may be essential in the growth and reproduction of Plasmodium berghei. In summary, artesunate may have an effect on anti-malarial properties through multiple targets.
Collapse
Affiliation(s)
- Feiran Wang
- Shandong
University of Traditional Chinese Medicine, Jinan 250355, P. R. China
- Shandong
Academy of Chinese Medicine, Jinan 250014, P. R. China
| | - Jian Song
- Shandong
University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Yingying Yan
- Shandong
University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Qian Zhou
- Shandong
Academy of Chinese Medicine, Jinan 250014, P. R. China
| | - Xiaojing Li
- Shandong
Academy of Chinese Medicine, Jinan 250014, P. R. China
| | - Ping Wang
- Shandong
Academy of Chinese Medicine, Jinan 250014, P. R. China
| | - Zongtong Yang
- Shandong
Academy of Chinese Medicine, Jinan 250014, P. R. China
| | - Qiuhong Zhang
- Jinan
Center for Food and Drug Control, Jinan 250102, P. R. China
| | - Huimin Zhang
- Shandong
Academy of Chinese Medicine, Jinan 250014, P. R. China
| |
Collapse
|
110
|
Żuberek E, Majak M, Lubczyński J, Debus J, Watanabe K, Taniguchi T, Ho CH, Bryja L, Jadczak J. Upconversion photoluminescence excitation reveals exciton-trion and exciton-biexciton coupling in hBN/WS[Formula: see text]/hBN van der Waals heterostructures. Sci Rep 2022; 12:13699. [PMID: 35953508 PMCID: PMC9372078 DOI: 10.1038/s41598-022-18104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Monolayers of transition-metal dichalcogenides with direct band gap located at the binary [Formula: see text] points of the Brillouin zone are promising materials for applications in opto- and spin-electronics due to strongly enhanced Coulomb interactions and specific spin-valley properties. They furthermore represent a unique platform to study electron-electron and electron-phonon interactions in diverse exciton complexes. Here, we demonstrate processes in which the neutral biexciton and two negative trions, namely the spin-triplet and spin-singlet trions, upconvert light into a bright intravalley exciton in an hBN-encapsulated WS[Formula: see text] monolayer. We propose that the energy gains required in the polarized upconversion photoluminescence originate from different interactions including resonant optical phonons, a cooling of resident electrons and a non-local and an anisotropic electron-hole exchange, respectively. The temperature dependence (7-120 K) of the excitonic upconversion intensity obtained at excitation energies corresponding to the biexciton and trions provides insight into an increasing phonon population as well as a thermally enhanced electron scattering. Our study sheds new light on the understanding of excitonic spin and valley properties of van der Waals heterostructures and improves the understanding of photonic upconversion mechanisms in two-dimensional quantum materials.
Collapse
Affiliation(s)
- Ewa Żuberek
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Martyna Majak
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jakub Lubczyński
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joerg Debus
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan
| | - Ching-Hwa Ho
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106 Taiwan
| | - Leszek Bryja
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joanna Jadczak
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
111
|
Identification of Potential Parkinson's Disease Drugs Based on Multi-Source Data Fusion and Convolutional Neural Network. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154780. [PMID: 35897954 PMCID: PMC9369596 DOI: 10.3390/molecules27154780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022]
Abstract
Parkinson’s disease (PD) is a serious neurodegenerative disease. Most of the current treatment can only alleviate symptoms, but not stop the progress of the disease. Therefore, it is crucial to find medicines to completely cure PD. Finding new indications of existing drugs through drug repositioning can not only reduce risk and cost, but also improve research and development efficiently. A drug repurposing method was proposed to identify potential Parkinson’s disease-related drugs based on multi-source data integration and convolutional neural network. Multi-source data were used to construct similarity networks, and topology information were utilized to characterize drugs and PD-associated proteins. Then, diffusion component analysis method was employed to reduce the feature dimension. Finally, a convolutional neural network model was constructed to identify potential associations between existing drugs and LProts (PD-associated proteins). Based on 10-fold cross-validation, the developed method achieved an accuracy of 91.57%, specificity of 87.24%, sensitivity of 95.27%, Matthews correlation coefficient of 0.8304, area under the receiver operating characteristic curve of 0.9731 and area under the precision–recall curve of 0.9727, respectively. Compared with the state-of-the-art approaches, the current method demonstrates superiority in some aspects, such as sensitivity, accuracy, robustness, etc. In addition, some of the predicted potential PD therapeutics through molecular docking further proved that they can exert their efficacy by acting on the known targets of PD, and may be potential PD therapeutic drugs for further experimental research. It is anticipated that the current method may be considered as a powerful tool for drug repurposing and pathological mechanism studies.
Collapse
|
112
|
Zhang X, Zhou J, Zhu Y, Wong YK, Liu D, Gao P, Lin Q, Zhang J, Chen X, Wang J. Quantitative chemical proteomics reveals anti-cancer targets of Celastrol in HCT116 human colon cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154096. [PMID: 35452923 DOI: 10.1016/j.phymed.2022.154096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Celastrol (Cel) is a naturally-derived compound with anti-cancer properties and exerts beneficial effects against various diseases. Although an extensive body of research already exists for Cel, the vast majority are inductive studies with limited validation of specific pathways and functions. The cellular targets that bind to Cel remain poorly characterized, which limits attempts to uncover its mechanism of action. PURPOSE The present study aims to comprehensively identify the protein targets of Cel in HCT116 cells in an unbiased manner, and elucidate the mechanism of the anti-cancer activity of Cel based on target information. METHODS A comprehensive analysis of protein targets that bind to Cel was performed in HCT116 colon cancer cells using a quantitative chemical biology method. A Cel probe (Cel-P) was synthesized to allow in situ monitoring of treatment in living HCT116 cells, and specific targets were identified with a quantitative chemical biology method (isobaric tags for relative and absolute quantitation) using mass spectrometry. RESULTS In total, 100 protein targets were identified as specific targets of Cel. Pathways associated with the targets were investigated. Multiple pathways were demonstrated to be potential effectors of Cel. These pathways included the suppression of protein synthesis, deregulation of cellular reactive oxygen species, and suppression of fatty acid metabolism, and they were validated with in vitro experiments. CONCLUSION The extensive information on the protein targets of Cel and their functions uncovered by this study will enhance the current understanding of the mechanism of action of Cel and serve as a valuable knowledge base for future studies.
Collapse
Affiliation(s)
- Xing Zhang
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Zhou
- Department of physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530022, China; Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning 530022, China
| | - Yongping Zhu
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yin Kwan Wong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Department of Urology, the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Dandan Liu
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Gao
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jianbin Zhang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China.
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Jigang Wang
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China; Department of physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530022, China; Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning 530022, China; Department of Urology, the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China; Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan 523125, China; Central People's Hospital of Zhanjiang, Zhanjiang 524037, China; Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
113
|
Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release. Sci Rep 2022; 12:11078. [PMID: 35773325 PMCID: PMC9245885 DOI: 10.1038/s41598-022-15214-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 12/26/2022] Open
Abstract
Immune cell chemotaxis to the sites of pathogen invasion is critical for fighting infection, but in life-threatening conditions such as sepsis and Covid-19, excess activation of the innate immune system is thought to cause a damaging invasion of immune cells into tissues and a consequent excessive release of cytokines, chemokines and neutrophil extracellular traps (NETs). In these circumstances, tempering excessive activation of the innate immune system may, paradoxically, promote recovery. Here we identify the antimalarial compound artemisinin as a potent and selective inhibitor of neutrophil and macrophage chemotaxis induced by a range of chemotactic agents. Artemisinin released calcium from intracellular stores in a similar way to thapsigargin, a known inhibitor of the Sarco/Endoplasmic Reticulum Calcium ATPase pump (SERCA), but unlike thapsigargin, artemisinin blocks only the SERCA3 isoform. Inhibition of SERCA3 by artemisinin was irreversible and was inhibited by iron chelation, suggesting iron-catalysed alkylation of a specific cysteine residue in SERCA3 as the mechanism by which artemisinin inhibits neutrophil motility. In murine infection models, artemisinin potently suppressed neutrophil invasion into both peritoneum and lung in vivo and inhibited the release of cytokines/chemokines and NETs. This work suggests that artemisinin may have value as a therapy in conditions such as sepsis and Covid-19 in which over-activation of the innate immune system causes tissue injury that can lead to death.
Collapse
|
114
|
Gao P, Liu YQ, Xiao W, Xia F, Chen JY, Gu LW, Yang F, Zheng LH, Zhang JZ, Zhang Q, Li ZJ, Meng YQ, Zhu YP, Tang H, Shi QL, Guo QY, Zhang Y, Xu CC, Dai LY, Wang JG. Identification of antimalarial targets of chloroquine by a combined deconvolution strategy of ABPP and MS-CETSA. Mil Med Res 2022; 9:30. [PMID: 35698214 PMCID: PMC9195458 DOI: 10.1186/s40779-022-00390-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a devastating infectious disease that disproportionally threatens hundreds of millions of people in developing countries. In the history of anti-malaria campaign, chloroquine (CQ) has played an indispensable role, however, its mechanism of action (MoA) is not fully understood. METHODS We used the principle of photo-affinity labeling and click chemistry-based functionalization in the design of a CQ probe and developed a combined deconvolution strategy of activity-based protein profiling (ABPP) and mass spectrometry-coupled cellular thermal shift assay (MS-CETSA) that identified the protein targets of CQ in an unbiased manner in this study. The interactions between CQ and these identified potential protein hits were confirmed by biophysical and enzymatic assays. RESULTS We developed a novel clickable, photo-affinity chloroquine analog probe (CQP) which retains the antimalarial activity in the nanomole range, and identified a total of 40 proteins that specifically interacted and photo-crosslinked with CQP which was inhibited in the presence of excess CQ. Using MS-CETSA, we identified 83 candidate interacting proteins out of a total of 3375 measured parasite proteins. At the same time, we identified 8 proteins as the most potential hits which were commonly identified by both methods. CONCLUSIONS We found that CQ could disrupt glycolysis and energy metabolism of malarial parasites through direct binding with some of the key enzymes, a new mechanism that is different from its well-known inhibitory effect of hemozoin formation. This is the first report of identifying CQ antimalarial targets by a parallel usage of labeled (ABPP) and label-free (MS-CETSA) methods.
Collapse
Affiliation(s)
- Peng Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan-Qing Liu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Xiao
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fei Xia
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jia-Yun Chen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li-Wei Gu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fan Yang
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Liu-Hai Zheng
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Jun-Zhe Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qian Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhi-Jie Li
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yu-Qing Meng
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yong-Ping Zhu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Tang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiao-Li Shi
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu-Yan Guo
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cheng-Chao Xu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ling-Yun Dai
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China. .,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| | - Ji-Gang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
115
|
Moss S, Mańko E, Krishna S, Campino S, Clark TG, Last A. How has mass drug administration with dihydroartemisinin-piperaquine impacted molecular markers of drug resistance? A systematic review. Malar J 2022; 21:186. [PMID: 35690758 PMCID: PMC9188255 DOI: 10.1186/s12936-022-04181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
The World Health Organization (WHO) recommends surveillance of molecular markers of resistance to anti-malarial drugs. This is particularly important in the case of mass drug administration (MDA), which is endorsed by the WHO in some settings to combat malaria. Dihydroartemisinin-piperaquine (DHA-PPQ) is an artemisinin-based combination therapy which has been used in MDA. This review analyses the impact of MDA with DHA-PPQ on the evolution of molecular markers of drug resistance. The review is split into two parts. Section I reviews the current evidence for different molecular markers of resistance to DHA-PPQ. This includes an overview of the prevalence of these molecular markers in Plasmodium falciparum Whole Genome Sequence data from the MalariaGEN Pf3k project. Section II is a systematic literature review of the impact that MDA with DHA-PPQ has had on the evolution of molecular markers of resistance. This systematic review followed PRISMA guidelines. This review found that despite being a recognised surveillance tool by the WHO, the surveillance of molecular markers of resistance following MDA with DHA-PPQ was not commonly performed. Of the total 96 papers screened for eligibility in this review, only 20 analysed molecular markers of drug resistance. The molecular markers published were also not standardized. Overall, this warrants greater reporting of molecular marker prevalence following MDA implementation. This should include putative pfcrt mutations which have been found to convey resistance to DHA-PPQ in vitro.
Collapse
Affiliation(s)
- Sophie Moss
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Emilia Mańko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Sanjeev Krishna
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Anna Last
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
116
|
Statsyuk AV. Inhibiting protein synthesis to treat malaria. Science 2022; 376:1049-1050. [PMID: 35653471 DOI: 10.1126/science.abq4457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Covalent prodrugs inhibit protein synthesis targets killing parasites but not human cells.
Collapse
Affiliation(s)
- Alexander V Statsyuk
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| |
Collapse
|
117
|
Zhang Q, Luo P, Zheng L, Chen J, Zhang J, Tang H, Liu D, He X, Shi Q, Gu L, Li J, Guo Q, Yang C, Wong YK, Xia F, Wang J. 18beta-Glycyrrhetinic acid induces ROS-mediated apoptosis to ameliorate hepatic fibrosis by targeting PRDX1/2 in activated HSCs. J Pharm Anal 2022; 12:570-582. [PMID: 36105163 PMCID: PMC9463498 DOI: 10.1016/j.jpha.2022.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 10/26/2022] Open
|
118
|
Kumar S, Li X, McDew-White M, Reyes A, Delgado E, Sayeed A, Haile MT, Abatiyow BA, Kennedy SY, Camargo N, Checkley LA, Brenneman KV, Button-Simons KA, Duraisingh MT, Cheeseman IH, Kappe SHI, Nosten F, Ferdig MT, Vaughan AM, Anderson TJC. A Malaria Parasite Cross Reveals Genetic Determinants of Plasmodium falciparum Growth in Different Culture Media. Front Cell Infect Microbiol 2022; 12:878496. [PMID: 35711667 PMCID: PMC9197316 DOI: 10.3389/fcimb.2022.878496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022] Open
Abstract
What genes determine in vitro growth and nutrient utilization in asexual blood-stage malaria parasites? Competition experiments between NF54, clone 3D7, a lab-adapted African parasite, and a recently isolated Asian parasite (NHP4026) reveal contrasting outcomes in different media: 3D7 outcompetes NHP4026 in media containing human serum, while NHP4026 outcompetes 3D7 in media containing AlbuMAX, a commercial lipid-rich bovine serum formulation. To determine the basis for this polymorphism, we conducted parasite genetic crosses using humanized mice and compared genome-wide allele frequency changes in three independent progeny populations cultured in media containing human serum or AlbuMAX. This bulk segregant analysis detected three quantitative trait loci (QTL) regions [on chromosome (chr) 2 containing aspartate transaminase AST; chr 13 containing EBA-140; and chr 14 containing cysteine protease ATG4] linked with differential growth in serum or AlbuMAX in each of the three independent progeny pools. Selection driving differential growth was strong (s = 0.10 – 0.23 per 48-hour lifecycle). We conducted validation experiments for the strongest QTL on chr 13: competition experiments between ΔEBA-140 and 3D7 wildtype parasites showed fitness reversals in the two medium types as seen in the parental parasites, validating this locus as the causative gene. These results (i) demonstrate the effectiveness of bulk segregant analysis for dissecting fitness traits in P. falciparum genetic crosses, and (ii) reveal intimate links between red blood cell invasion and nutrient composition of growth media. Use of parasite crosses combined with bulk segregant analysis will allow systematic dissection of key nutrient acquisition/metabolism and red blood cell invasion pathways in P. falciparum.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Xue Li
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Marina McDew-White
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ann Reyes
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Elizabeth Delgado
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Abeer Sayeed
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Spencer Y. Kennedy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Lisa A. Checkley
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Katelyn V. Brenneman
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Katrina A. Button-Simons
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Manoj T. Duraisingh
- Immunology and Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Ian H. Cheeseman
- Program in Host Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Oxford, United Kingdom
| | - Michael T. Ferdig
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- *Correspondence: Ashley M. Vaughan, ; Tim J. C. Anderson,
| | - Tim J. C. Anderson
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Ashley M. Vaughan, ; Tim J. C. Anderson,
| |
Collapse
|
119
|
Gomes ARQ, Cunha N, Varela ELP, Brígido HPC, Vale VV, Dolabela MF, de Carvalho EP, Percário S. Oxidative Stress in Malaria: Potential Benefits of Antioxidant Therapy. Int J Mol Sci 2022; 23:ijms23115949. [PMID: 35682626 PMCID: PMC9180384 DOI: 10.3390/ijms23115949] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023] Open
Abstract
Malaria is an infectious disease and a serious public health problem in the world, with 3.3 billion people in endemic areas in 100 countries and about 200 million new cases each year, resulting in almost 1 million deaths in 2018. Although studies look for strategies to eradicate malaria, it is necessary to know more about its pathophysiology to understand the underlying mechanisms involved, particularly the redox balance, to guarantee success in combating this disease. In this review, we addressed the involvement of oxidative stress in malaria and the potential benefits of antioxidant supplementation as an adjuvant antimalarial therapy.
Collapse
Affiliation(s)
- Antonio Rafael Quadros Gomes
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
| | - Natasha Cunha
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
| | - Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Heliton Patrick Cordovil Brígido
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
| | - Maria Fâni Dolabela
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Correspondence:
| |
Collapse
|
120
|
Luo P, Zhang Q, Zhong TY, Chen JY, Zhang JZ, Tian Y, Zheng LH, Yang F, Dai LY, Zou C, Li ZJ, Liu JH, Wang JG. Celastrol mitigates inflammation in sepsis by inhibiting the PKM2-dependent Warburg effect. Mil Med Res 2022; 9:22. [PMID: 35596191 PMCID: PMC9121578 DOI: 10.1186/s40779-022-00381-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Sepsis involves life-threatening organ dysfunction and is caused by a dysregulated host response to infection. No specific therapies against sepsis have been reported. Celastrol (Cel) is a natural anti-inflammatory compound that shows potential against systemic inflammatory diseases. This study aimed to investigate the pharmacological activity and molecular mechanism of Cel in models of endotoxemia and sepsis. METHODS We evaluated the anti-inflammatory efficacy of Cel against endotoxemia and sepsis in mice and macrophage cultures treated with lipopolysaccharide (LPS). We screened for potential protein targets of Cel using activity-based protein profiling (ABPP). Potential targets were validated using biophysical methods such as cellular thermal shift assays (CETSA) and surface plasmon resonance (SPR). Residues involved in Cel binding to target proteins were identified through point mutagenesis, and the functional effects of such binding were explored through gene knockdown. RESULTS Cel protected mice from lethal endotoxemia and improved their survival with sepsis, and it significantly decreased the levels of pro-inflammatory cytokines in mice and macrophages treated with LPS (P < 0.05). Cel bound to Cys424 of pyruvate kinase M2 (PKM2), inhibiting the enzyme and thereby suppressing aerobic glycolysis (Warburg effect). Cel also bound to Cys106 in high mobility group box 1 (HMGB1) protein, reducing the secretion of inflammatory cytokine interleukin (IL)-1β. Cel bound to the Cys residues in lactate dehydrogenase A (LDHA). CONCLUSION Cel inhibits inflammation and the Warburg effect in sepsis via targeting PKM2 and HMGB1 protein.
Collapse
Affiliation(s)
- Piao Luo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qian Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tian-Yu Zhong
- Laboratory Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Jia-Yun Chen
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun-Zhe Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ya Tian
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liu-Hai Zheng
- Department of Geriatric Medicine, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University and the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Fan Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University and the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Ling-Yun Dai
- Department of Geriatric Medicine, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University and the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Chang Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-Jie Li
- Department of Geriatric Medicine, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University and the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Jing-Hua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Ji-Gang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China. .,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Laboratory Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China. .,Department of Geriatric Medicine, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University and the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China. .,Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan, 523125, Guangdong, China. .,Central People's Hospital of Zhanjiang, Zhanjiang, 524037, Guangdong, China.
| |
Collapse
|
121
|
Carvalho L, Bernardes GJL. The Impact of Activity-based Protein Profiling in Malaria Drug Discovery. ChemMedChem 2022; 17:e202200174. [PMID: 35506504 PMCID: PMC9401580 DOI: 10.1002/cmdc.202200174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Indexed: 11/09/2022]
Abstract
Activity-based protein profiling (ABPP) is an approach used at the interface of chemical biology and proteomics that uses small molecular probes to provide dynamic fingerprints of enzymatic activity in complex proteomes. Malaria is a disease caused by Plasmodium parasites with a significant death burden and for which new therapies are actively being sought. Here, we compile the main achievements from ABPP studies in malaria and highlight the probes used and the different downstream platforms for data analysis. ABPP has excelled at studying Plasmodium cysteine proteases and serine hydrolase families, the targeting of the proteasome and metabolic pathways, and in the deconvolution of targets and mechanisms of known antimalarials. Despite the major impact in the field, many antimalarials and enzymatic families in Plasmodium remain to be studied, which suggests ABPP will be an evergreen technique in the field.
Collapse
Affiliation(s)
- Luis Carvalho
- University of Cambridge, Yusuf Hamied Department of Chemistry, Lensfield Rd, Yusuf Hamied Department of Chemistry, CB2 1EW, Cambridge, UNITED KINGDOM
| | - Gonçalo J L Bernardes
- University of Cambridge Department of Chemistry, Yusuf Hamied Department of Chemistry, Lensfield Rd, Yusuf Hamied Department of Chemistry, CB2 1EW, Cambridge, UNITED KINGDOM
| |
Collapse
|
122
|
Prava J, Pan A. In silico analysis of Leishmania proteomes and protein-protein interaction network: Prioritizing therapeutic targets and drugs for repurposing to treat leishmaniasis. Acta Trop 2022; 229:106337. [PMID: 35134348 DOI: 10.1016/j.actatropica.2022.106337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 01/31/2023]
Abstract
Leishmaniasis is a serious world health problem and its current therapies have several limitations demanding to develop novel therapeutics for this disease. The present study aims to prioritize novel broad-spectrum targets using proteomics and protein-protein interaction network (PPIN) data for 11 Leishmania species. Proteome comparison and host non-homology analysis resulted in 3605 pathogen-specific conserved core proteins. Gene ontology analysis indicated their involvement in major molecular functions like DNA binding, transportation, dioxygenase, and catalytic activity. PPIN analysis of these core proteins identified eight hub proteins (viz., vesicle-trafficking protein (LBRM2903_190011800), ribosomal proteins S17 (LBRM2903_34004790) and L2 (LBRM2903_080008100), eukaryotic translation initiation factor 3 (LBRM2903_350086700), replication factor A (LBRM2903_150008000), U3 small nucleolar RNA-associated protein (LBRM2903_340025600), exonuclease (LBRM2903_200021800), and mitochondrial RNA ligase (LBRM2903_200074100)). Among the hub proteins, six were classified as drug targets and two as vaccine candidates. Further, druggability analysis indicated three hub proteins, namely eukaryotic translation initiation factor 3, ribosomal proteins S17 and L2 as druggable. Their three-dimensional structures were modelled and docked with the identified ligands (2-methylthio-N6-isopentenyl-adenosine-5'-monophosphate, artenimol and omacetaxine mepesuccinate). These ligands could be experimentally validated (in vitro and in vivo) and repurposed for the development of novel antileishmanial agents.
Collapse
|
123
|
Wong KH, Yang D, Chen S, He C, Chen M. Development of Nanoscale Drug Delivery Systems of Dihydroartemisinin for Cancer Therapy: A Review. Asian J Pharm Sci 2022; 17:475-490. [PMID: 36105316 PMCID: PMC9459003 DOI: 10.1016/j.ajps.2022.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/20/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
|
124
|
Luo P, Liu D, Zhang Q, Yang F, Wong YK, Xia F, Zhang J, Chen J, Tian Y, Yang C, Dai L, Shen HM, Wang J. Celastrol induces ferroptosis in activated HSCs to ameliorate hepatic fibrosis via targeting peroxiredoxins and HO-1. Acta Pharm Sin B 2022; 12:2300-2314. [PMID: 35646542 PMCID: PMC9136576 DOI: 10.1016/j.apsb.2021.12.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis is a form of regulated cell death, characterized by excessive membrane lipid peroxidation in an iron- and ROS-dependent manner. Celastrol, a natural bioactive triterpenoid extracted from Tripterygium wilfordii, shows effective anti-fibrotic and anti-inflammatory activities in multiple hepatic diseases. However, the exact molecular mechanisms of action and the direct protein targets of celastrol in the treatment of liver fibrosis remain largely elusive. Here, we discover that celastrol exerts anti-fibrotic effects via promoting the production of reactive oxygen species (ROS) and inducing ferroptosis in activated hepatic stellate cells (HSCs). By using activity-based protein profiling (ABPP) in combination with bio-orthogonal click chemistry reaction and cellular thermal shift assay (CETSA), we show that celastrol directly binds to peroxiredoxins (PRDXs), including PRDX1, PRDX2, PRDX4 and PRDX6, through the active cysteine sites, and inhibits their anti-oxidant activities. Celastrol also targets to heme oxygenase 1 (HO-1) and upregulates its expression in activated-HSCs. Knockdown of PRDX1, PRDX2, PRDX4, PRDX6 or HO-1 in HSCs, to varying extent, elevated cellular ROS levels and induced ferroptosis. Taken together, our findings reveal the direct protein targets and molecular mechanisms via which celastrol ameliorates hepatic fibrosis, thus supporting the further development of celastrol as a promising therapeutic agent for liver fibrosis.
Collapse
Key Words
- ABPP
- ABPP, activity-based protein profiling
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Anti-oxidant
- CCl4, carbon tetrachloride
- CETSA, cellular thermal shift assay
- COL1A1, collagen type I alpha-1
- COX-2, cyclooxygenase 2
- Cel-P, celastrol-probe
- Celastrol
- ECM, extracellular matrix
- Ferroptosis
- GPX4, glutathione peroxidase 4
- HCC, hepatocellular carcinoma
- HMGB1, high mobility group protein B1
- HO-1
- HO-1, heme oxygenase 1
- HSCs, hepatic stellate cells
- Hepatic fibrosis
- LPO, lipid peroxidation
- PPARγ, peroxisome proliferators-activated receptor γ
- PRDXs, peroxiredoxins
- Peroxiredoxin
- ROS, reactive oxygen species
- Reactive oxygen species
- VDACs, voltage-dependent anion channels
- VIM, vimentin
- α-SMA, alpha smooth muscle actin
Collapse
Affiliation(s)
- Piao Luo
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Central People's Hospital of Zhanjiang, Zhanjiang 524037, China
| | - Dandan Liu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qian Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fan Yang
- Department of Urology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Yin-Kwan Wong
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiayun Chen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ya Tian
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chuanbin Yang
- Department of Urology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Lingyun Dai
- Department of Urology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Central People's Hospital of Zhanjiang, Zhanjiang 524037, China
- Department of Urology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
125
|
Selective Inhibition of Plasmodium falciparum ATPase 6 by Artemisinins and Identification of New Classes of Inhibitors after Expression in Yeast. Antimicrob Agents Chemother 2022; 66:e0207921. [PMID: 35465707 PMCID: PMC9112895 DOI: 10.1128/aac.02079-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Treatment failures with artemisinin combination therapies (ACTs) threaten global efforts to eradicate malaria. They highlight the importance of identifying drug targets and new inhibitors and of studying how existing antimalarial classes work. Here, we report the successful development of a heterologous expression-based compound-screening tool. The validated drug target Plasmodium falciparum ATPase 6 (PfATP6) and a mammalian orthologue (sarco/endoplasmic reticulum calcium ATPase 1a [SERCA1a]) were functionally expressed in Saccharomyces cerevisiae, providing a robust, sensitive, and specific screening tool. Whole-cell and in vitro assays consistently demonstrated inhibition and labeling of PfATP6 by artemisinins. Mutations in PfATP6 resulted in fitness costs that were ameliorated in the presence of artemisinin derivatives when studied in the yeast model. As previously hypothesized, PfATP6 is a target of artemisinins. Mammalian SERCA1a can be mutated to become more susceptible to artemisinins. The inexpensive, low-technology yeast screening platform has identified unrelated classes of druggable PfATP6 inhibitors. Resistance to artemisinins may depend on mechanisms that can concomitantly address multitargeting by artemisinins and fitness costs of mutations that reduce artemisinin susceptibility.
Collapse
|
126
|
Abstract
Emerging resistance to artemisinin (ART) has become a challenge for reducing worldwide malaria mortality and morbidity. The C580Y mutation in Plasmodium falciparum Kelch13 has been identified as the major determinant for ART resistance in the background of other mutations, which include the T38I mutation in autophagy-related protein PfATG18. Increased endoplasmic reticulum phosphatidylinositol-3-phosphate (ER-PI3P) vesiculation, unfolded protein response (UPR), and oxidative stress are the proteostasis mechanisms proposed to cause ART resistance. While UPR and PI3P are known to stimulate autophagy in higher organisms to clear misfolded proteins, participation of the parasite autophagy machinery in these mechanisms of ART resistance has not yet been experimentally demonstrated. Our study establishes that ART-induced ER stress leads to increased expression of P. falciparum autophagy proteins through induction of the UPR. Furthermore, the ART-resistant K13C580Y isolate shows higher basal expression levels of autophagy proteins than those of its isogenic counterpart, and this magnifies under starvation conditions. The copresence of PfK13 with PfATG18 and PI3P on parasite hemoglobin-trafficking vesicles demonstrate interactions between the autophagy and hemoglobin endocytosis pathways proposed to be involved in ART resistance. Analysis of PfK13 mutations in 2,517 field isolates, revealing an impressive >85% coassociation between PfK13 C580Y and PfATG18 T38I, together with our experimental studies with an ART-resistant P. falciparum strain establishes that parasite autophagy underpins various mechanisms of ART resistance and is a starting point to further explore this pathway for developing antimalarials.
Collapse
|
127
|
Duke SO, Dayan FE. The search for new herbicide mechanisms of action: Is there a 'holy grail'? PEST MANAGEMENT SCIENCE 2022; 78:1303-1313. [PMID: 34796620 DOI: 10.1002/ps.6726] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 05/26/2023]
Abstract
New herbicide modes of action (MOAs) are in great demand because of the burgeoning evolution of resistance of weeds to existing commercial herbicides. This need has been exacerbated by the almost complete lack of introduction of herbicides with new MOAs for almost 40 years. There are many highly phytotoxic compounds with MOAs not represented by commercial herbicides, but neither these compounds nor structural analogues have been developed as herbicides for a variety of reasons. Natural products provide knowledge of many MOAs that are not being utilized by commercial herbicides. Other means of identifying new herbicide targets are discussed, including pharmaceutical target sites and metabolomic and proteomic information, as well as the use of artificial intelligence and machine learning to predict herbicidal compounds with new MOAs. Information about several newly discovered herbicidal compounds with new MOAs is summarized. The currently increased efforts of both established companies and start-up companies are likely to result in herbicides with new MOAs that can be used in herbicide resistance management within the next decade. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Oxford, MS, USA
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
128
|
Zhu P, Zhou B. The Antagonizing Role of Heme in the Antimalarial Function of Artemisinin: Elevating Intracellular Free Heme Negatively Impacts Artemisinin Activity in Plasmodium falciparum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061755. [PMID: 35335120 PMCID: PMC8949904 DOI: 10.3390/molecules27061755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
The rich source of heme within malarial parasites has been considered to underly the action specificity of artemisinin. We reasoned that increasing intraparasitic free heme levels might further sensitize the parasites to artemisinin. Various means, such as modulating heme synthesis, degradation, polymerization, or hemoglobin digestion, were tried to boost intracellular heme levels, and under several scenarios, free heme levels were significantly augmented. Interestingly, all results arrived at the same conclusion, i.e., elevating heme acted in a strongly negative way, impacting the antimalarial action of artemisinin, but exerted no effect on several other antimalarial drugs. Suppression of the elevated free heme level by introducing heme oxygenase expression effectively restored artemisinin potency. Consistently, zinc protoporphyrin IX/zinc mesoporphyrin, as analogues of heme, drastically increased free heme levels and, concomitantly, the EC50 values of artemisinin. We were unable to effectively mitigate free heme levels, possibly due to an unknown compensating heme uptake pathway, as evidenced by our observation of efficient uptake of a fluorescent heme homologue by the parasite. Our results thus indicate the existence of an effective and mutually compensating heme homeostasis network in the parasites, including an uncharacterized heme uptake pathway, to maintain a certain level of free heme and that augmentation of the free heme level negatively impacts the antimalarial action of artemisinin. Importance: It is commonly believed that heme is critical in activating the antimalarial action of artemisinins. In this work, we show that elevating free heme levels in the malarial parasites surprisingly negatively impacts the action of artemisinin. We tried to boost free heme levels with various means, such as by modulating heme synthesis, heme polymerization, hemoglobin degradation and using heme analogues. Whenever we saw elevation of free heme levels, reduction in artemisinin potency was also observed. The homeostasis of heme appears to be complex, as there exists an unidentified heme uptake pathway in the parasites, nullifying our attempts to effectively reduce intraparasitic free heme levels. Our results thus indicate that too much heme is not good for the antimalarial action of artemisinins. This research can help us better understand the biological properties of this mysterious drug.
Collapse
Affiliation(s)
- Pan Zhu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
129
|
Foster GJ, Sievert MAC, Button-Simons K, Vendrely KM, Romero-Severson J, Ferdig MT. Cyclical regression covariates remove the major confounding effect of cyclical developmental gene expression with strain-specific drug response in the malaria parasite Plasmodium falciparum. BMC Genomics 2022; 23:180. [PMID: 35247977 PMCID: PMC8897900 DOI: 10.1186/s12864-021-08281-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
Background The cyclical nature of gene expression in the intraerythrocytic development cycle (IDC) of the malaria parasite, Plasmodium falciparum, confounds the accurate detection of specific transcriptional differences, e.g. as provoked by the development of drug resistance. In lab-based studies, P. falciparum cultures are synchronized to remove this confounding factor, but the rapid detection of emerging resistance to artemisinin therapies requires rapid analysis of transcriptomes extracted directly from clinical samples. Here we propose the use of cyclical regression covariates (CRC) to eliminate the major confounding effect of developmentally driven transcriptional changes in clinical samples. We show that elimination of this confounding factor reduces both Type I and Type II errors and demonstrate the effectiveness of this approach using a published dataset of 1043 transcriptomes extracted directly from patient blood samples with different patient clearance times after treatment with artemisinin. Results We apply this method to two publicly available datasets and demonstrate its ability to reduce the confounding of differences in transcript levels due to misaligned intraerythrocytic development time. Adjusting the clinical 1043 transcriptomes dataset with CRC results in detection of fewer functional categories than previously reported from the same data set adjusted using other methods. We also detect mostly the same functional categories, but observe fewer genes within these categories. Finally, the CRC method identifies genes in a functional category that was absent from the results when the dataset was adjusted using other methods. Analysis of differential gene expression in the clinical data samples that vary broadly for developmental stage resulted in the detection of far fewer transcripts in fewer functional categories while, at the same time, identifying genes in two functional categories not present in the unadjusted data analysis. These differences are consistent with the expectation that CRC reduces both false positives and false negatives with the largest effect on datasets from samples with greater variance in developmental stage. Conclusions Cyclical regression covariates have immediate application to parasite transcriptome sequencing directly from clinical blood samples and to cost-constrained in vitro experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08281-y.
Collapse
|
130
|
Zhu C, Zhu Y, Zhang G, Wu H, Shi Y, Li J, Yang J, Mao Z, Xu Q, Yao X, Zhu X, Wang J, Liu X, Lin N. The analgesic and antidepressant properties of dihydroartemisinine in the neuropathic pain mice: By the downregulation of HnRNPA1 in the spinal cord and hippocampus. Clin Transl Med 2022; 12:e751. [PMID: 35220669 PMCID: PMC8882243 DOI: 10.1002/ctm2.751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Chunyan Zhu
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Yongping Zhu
- Artemisinin Research Center and Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Guoxin Zhang
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Hongyan Wu
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Yuqi Shi
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Jiahao Li
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Jun Yang
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Zhiyun Mao
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Qionghong Xu
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Xuemin Yao
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Jigang Wang
- Artemisinin Research Center and Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Xianguo Liu
- Department of Physiology and Pain Research Center Zhongshan School of Medicine Sun Yat‐sen University Guangzhou 510080 China
| | - Na Lin
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| |
Collapse
|
131
|
Hou Y, Liang Z, Qi L, Tang C, Liu X, Tang J, Zhao Y, Zhang Y, Fang T, Luo Q, Wang S, Wang F. Baicalin Targets HSP70/90 to Regulate PKR/PI3K/AKT/eNOS Signaling Pathways. Molecules 2022; 27:1432. [PMID: 35209223 PMCID: PMC8874410 DOI: 10.3390/molecules27041432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Baicalin is a major active ingredient of traditional Chinese medicine Scutellaria baicalensis, and has been shown to have antiviral, anti-inflammatory, and antitumor activities. However, the protein targets of baicalin have remained unclear. Herein, a chemical proteomics strategy was developed by combining baicalin-functionalized magnetic nanoparticles (BCL-N3@MNPs) and quantitative mass spectrometry to identify the target proteins of baicalin. Bioinformatics analysis with the use of Gene Ontology, STRING and Ingenuity Pathway Analysis, was performed to annotate the biological functions and the associated signaling pathways of the baicalin targeting proteins. Fourteen proteins in human embryonic kidney cells were identified to interact with baicalin with various binding affinities. Bioinformatics analysis revealed these proteins are mainly ATP-binding and/or ATPase activity proteins, such as CKB, HSP86, HSP70-1, HSP90, ATPSF1β and ACTG1, and highly associated with the regulation of the role of PKR in interferon induction and the antiviral response signaling pathway (P = 10-6), PI3K/AKT signaling pathway (P = 10-5) and eNOS signaling pathway (P = 10-4). The results show that baicalin exerts multiply pharmacological functions, such as antiviral, anti-inflammatory, antitumor, and antioxidant functions, through regulating the PKR and PI3K/AKT/eNOS signaling pathways by targeting ATP-binding and ATPase activity proteins. These findings provide a fundamental insight into further studies on the mechanism of action of baicalin.
Collapse
Affiliation(s)
- Yinzhu Hou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuqing Liang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyu Qi
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Tang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
| | - Xingkai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jilin Tang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
| | - Tiantian Fang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
132
|
Effect of Artemisinin on the Redox System of NADPH/FNR/Ferredoxin from Malaria Parasites. Antioxidants (Basel) 2022; 11:antiox11020273. [PMID: 35204156 PMCID: PMC8868210 DOI: 10.3390/antiox11020273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
FNR and ferredoxin constitute a redox cascade, which provides reducing power in the plastid of malaria parasites. Recently, mutation of ferredoxin (D97Y) was reported to be strongly related to the parasite’s resistance to the front-line antimalarial drug artemisinin. In order to gain insight into the mechanism for the resistance, we studied the effect of dihydroartemisinin (DHA), the active compound of artemisinin, on the redox cascade of NADPH/FNR/ferredoxin in in vitro reconstituted systems. DHA partially inhibited the diaphorase activity of FNR by decreasing the affinity of FNR for NADPH. The activity of the electron transfer from FNR to wild-type or D97Y mutant ferredoxin was not significantly affected by DHA. An in silico docking analysis indicated possible binding of DHA molecule in the binding cavity of 2′5′ADP, a competitive inhibitor for NADPH, on FNR. We previously showed that the D97Y mutant of ferredoxin binds to FNR more strongly than wild-type ferredoxin, and ferredoxin and FNR are generally known to be involved in the oxidative stress response. Thus, these results suggest that ferredoxin is not a direct target of artemisinin, but its mutation may be involved in the protective response against the oxidative stress caused by artemisinin.
Collapse
|
133
|
Wainwright CL, Teixeira MM, Adelson DL, Buenz EJ, David B, Glaser KB, Harata-Lee Y, Howes MJR, Izzo AA, Maffia P, Mayer AM, Mazars C, Newman DJ, Nic Lughadha E, Pimenta AM, Parra JA, Qu Z, Shen H, Spedding M, Wolfender JL. Future Directions for the Discovery of Natural Product-Derived Immunomodulating Drugs. Pharmacol Res 2022; 177:106076. [PMID: 35074524 DOI: 10.1016/j.phrs.2022.106076] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology, with contributions from a Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation number of world-leading researchers in the field of natural product drug discovery, to provide a "position statement" on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Natural Products in Health, Robert Gordon University, Aberdeen, UK.
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil.
| | - David L Adelson
- Molecular & Biomedical Science, University of Adelaide, Australia.
| | - Eric J Buenz
- Nelson Marlborough Institute of Technology, New Zealand.
| | - Bruno David
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | - Keith B Glaser
- AbbVie Inc., Integrated Discovery Operations, North Chicago, USA.
| | - Yuka Harata-Lee
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Melanie-Jayne R Howes
- Royal Botanic Gardens Kew, Richmond, Surrey, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, UK.
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy.
| | - Pasquale Maffia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Alejandro Ms Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, IL, USA.
| | - Claire Mazars
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | | | | | - Adriano Mc Pimenta
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - John Aa Parra
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zhipeng Qu
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Hanyuan Shen
- Molecular & Biomedical Science, University of Adelaide, Australia
| | | | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland.
| |
Collapse
|
134
|
Siddiqui G, Giannangelo C, De Paoli A, Schuh AK, Heimsch KC, Anderson D, Brown TG, MacRaild CA, Wu J, Wang X, Dong Y, Vennerstrom JL, Becker K, Creek DJ. Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells. ACS Infect Dis 2022; 8:210-226. [PMID: 34985858 PMCID: PMC8762662 DOI: 10.1021/acsinfecdis.1c00550] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Plasmodium
falciparum causes the
most lethal form of malaria. Peroxide antimalarials based on artemisinin
underpin the frontline treatments for malaria, but artemisinin resistance
is rapidly spreading. Synthetic peroxide antimalarials, known as ozonides,
are in clinical development and offer a potential alternative. Here,
we used chemoproteomics to investigate the protein alkylation targets
of artemisinin and ozonide probes, including an analogue of the ozonide
clinical candidate, artefenomel. We greatly expanded the list of proteins
alkylated by peroxide antimalarials and identified significant enrichment
of redox-related proteins for both artemisinins and ozonides. Disrupted
redox homeostasis was confirmed by dynamic live imaging of the glutathione
redox potential using a genetically encoded redox-sensitive fluorescence-based
biosensor. Targeted liquid chromatography-mass spectrometry (LC-MS)-based
thiol metabolomics also confirmed changes in cellular thiol levels.
This work shows that peroxide antimalarials disproportionately alkylate
proteins involved in redox homeostasis and that disrupted redox processes
are involved in the mechanism of action of these important antimalarials.
Collapse
Affiliation(s)
- Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Amanda De Paoli
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Anna Katharina Schuh
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Kim C. Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Timothy G. Brown
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Christopher A. MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jianbo Wu
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
135
|
Edgar RCS, Counihan NA, McGowan S, de Koning-Ward TF. Methods Used to Investigate the Plasmodium falciparum Digestive Vacuole. Front Cell Infect Microbiol 2022; 11:829823. [PMID: 35096663 PMCID: PMC8794586 DOI: 10.3389/fcimb.2021.829823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum malaria remains a global health problem as parasites continue to develop resistance to all antimalarials in use. Infection causes clinical symptoms during the intra-erythrocytic stage of the lifecycle where the parasite infects and replicates within red blood cells (RBC). During this stage, P. falciparum digests the main constituent of the RBC, hemoglobin, in a specialized acidic compartment termed the digestive vacuole (DV), a process essential for survival. Many therapeutics in use target one or multiple aspects of the DV, with chloroquine and its derivatives, as well as artemisinin, having mechanisms of action within this organelle. In order to better understand how current therapeutics and those under development target DV processes, techniques used to investigate the DV are paramount. This review outlines the involvement of the DV in therapeutics currently in use and focuses on the range of techniques that are currently utilized to study this organelle including microscopy, biochemical analysis, genetic approaches and metabolomic studies. Importantly, continued development and application of these techniques will aid in our understanding of the DV and in the development of new therapeutics or therapeutic partners for the future.
Collapse
Affiliation(s)
- Rebecca C. S. Edgar
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Natalie A. Counihan
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Monash University, Clayton, VIC, Australia
| | - Tania F. de Koning-Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
136
|
Chung IY, Jang HJ, Yoo YJ, Hur J, Oh HY, Kim SH, Cho YH. Artemisinin displays bactericidal activity via copper-mediated DNA damage. Virulence 2022; 13:149-159. [PMID: 34983312 PMCID: PMC8741286 DOI: 10.1080/21505594.2021.2021643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Artemisinin (ARS) and its semi-synthetic derivatives are effective drugs to treat malaria and possess multiple therapeutic activities based on their endoperoxide bridge. Here, we showed that ARS displayed antibacterial efficacy in Drosophila systemic infections caused by bacterial pathogens but killed only Vibrio cholerae (VC) in vitro, involving reactive oxygen species (ROS) generation and/or DNA damage. This selective antibacterial activity of ARS was attributed to the higher intracellular copper levels in VC, in that the antibacterial activity was observed in vitro upon addition of cuprous ions even against other bacteria and was compromised by the copper-specific chelators neocuproine (NC) and triethylenetetramine (TETA) in vitro and in vivo. We suggest that copper can enhance or reinforce the therapeutic activities of ARS to be repurposed as an antibacterial drug for the treatment of bacterial infections.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, Cha University, Gyeonggi-do, Korea
| | - Hye-Jeong Jang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, Cha University, Gyeonggi-do, Korea
| | - Yeon-Ji Yoo
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, Cha University, Gyeonggi-do, Korea
| | - Joonseong Hur
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, Cha University, Gyeonggi-do, Korea
| | - Hyo-Young Oh
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, Cha University, Gyeonggi-do, Korea
| | - Seok-Ho Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, Cha University, Gyeonggi-do, Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, Cha University, Gyeonggi-do, Korea
| |
Collapse
|
137
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
138
|
The Role of the Iron Protoporphyrins Heme and Hematin in the Antimalarial Activity of Endoperoxide Drugs. Pharmaceuticals (Basel) 2022; 15:ph15010060. [PMID: 35056117 PMCID: PMC8779033 DOI: 10.3390/ph15010060] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Plasmodium has evolved to regulate the levels and oxidative states of iron protoporphyrin IX (Fe-PPIX). Antimalarial endoperoxides such as 1,2,4-trioxane artemisinin and 1,2,4-trioxolane arterolane undergo a bioreductive activation step mediated by heme (FeII-PPIX) but not by hematin (FeIII-PPIX), leading to the generation of a radical species. This can alkylate proteins vital for parasite survival and alkylate heme into hematin–drug adducts. Heme alkylation is abundant and accompanied by interconversion from the ferrous to the ferric state, which may induce an imbalance in the iron redox homeostasis. In addition to this, hematin–artemisinin adducts antagonize the spontaneous biomineralization of hematin into hemozoin crystals, differing strikingly from artemisinins, which do not directly suppress hematin biomineralization. These hematin–drug adducts, despite being devoid of the peroxide bond required for radical-induced alkylation, are powerful antiplasmodial agents. This review addresses our current understanding of Fe-PPIX as a bioreductive activator and molecular target. A compelling pharmacological model is that by alkylating heme, endoperoxide drugs can cause an imbalance in the iron homeostasis and that the hematin–drug adducts formed have strong cytocidal effects by possibly reproducing some of the toxifying effects of free Fe-PPIX. The antiplasmodial phenotype and the mode of action of hematin–drug adducts open new possibilities for reconciliating the mechanism of endoperoxide drugs and for malaria intervention.
Collapse
|
139
|
Hai Y, Cai ZM, Li PJ, Wei MY, Wang CY, Gu YC, Shao CL. Trends of antimalarial marine natural products: progresses, challenges and opportunities. Nat Prod Rep 2022; 39:969-990. [DOI: 10.1039/d1np00075f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides an overview of the antimalarial marine natural products, focusing on their chemistry, malaria-related targets and mechanisms, and highlighting their potential for drug development.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zi-Mu Cai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Peng-Jie Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| |
Collapse
|
140
|
Farmanpour-Kalalagh K, Beyraghdar Kashkooli A, Babaei A, Rezaei A, van der Krol AR. Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand. FRONTIERS IN PLANT SCIENCE 2022; 13:780257. [PMID: 35197994 PMCID: PMC8859114 DOI: 10.3389/fpls.2022.780257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 05/05/2023]
Abstract
Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production.
Collapse
Affiliation(s)
- Karim Farmanpour-Kalalagh
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Arman Beyraghdar Kashkooli
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Arman Beyraghdar Kashkooli,
| | - Alireza Babaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Rezaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
141
|
Li G, Lou M, Qi X. A brief overview of classical natural product drug synthesis and bioactivity. Org Chem Front 2022. [DOI: 10.1039/d1qo01341f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This manuscript briefly overviewed the total synthesis and structure–activity relationship studies of eight classical natural products, which emphasizes the important role of total synthesis in natural product-based drug development.
Collapse
Affiliation(s)
- Gen Li
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Mingliang Lou
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Xiangbing Qi
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
142
|
Combined Transcriptome and Proteome Profiling for Role of pfEMP1 in Antimalarial Mechanism of Action of Dihydroartemisinin. Microbiol Spectr 2021; 9:e0127821. [PMID: 34908430 PMCID: PMC8672878 DOI: 10.1128/spectrum.01278-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites induce morphological and biochemical changes in the membranes of parasite-infected red blood cells (iRBCs) for propagation. Artemisinin combination therapies are the first-line antiplasmodials in countries of endemicity. However, the mechanism of action of artemisinin is unclear, and drug resistance decreases long-term efficacy. To understand whether artemisinin targets or interacts with iRBC membrane proteins, this study investigated the molecular changes caused by dihydroartemisinin (DHA), an artemisinin derivative, in Plasmodium falciparum 3D7 using a combined transcriptomic and membrane proteomic profiling approach. Optical microscopy and scanning electron microscopy showed that DHA can cause morphological variation in the iRBC membrane. We identified 125 differentially expressed membrane proteins, and functional analysis indicated structural molecule activity and protein export as key biological functions of the two omics studies. DHA treatment decreased the expression of var gene variants PF3D7_0415700 and PF3D7_0900100 dose-dependently. Western blotting and immunofluorescence analysis showed that DHA treatment downregulates the var gene encoding P. falciparum erythrocyte membrane protein-1 (pfEMP1). pfEMP1 knockout significantly increased artemisinin sensitivity. Results showed that pfEMP1 might be involved in the antimalarial mechanism of action of DHA and pfEMP1 or its regulated factors may be further exploited in antiparasitic drug design. The findings are beneficial for elucidating the potential effects of DHA on iRBC membrane proteins and developing new drugs targeting iRBC membrane. IMPORTANCE Malaria parasites induce morphological and biochemical changes in the membranes of parasite-infected red blood cells (iRBCs) for propagation, with artemisinin combination therapies as the first-line treatments. To understand whether artemisinin targets or interacts with iRBC membrane proteins, this study investigated the molecular changes caused by dihydroartemisinin (DHA), an artemisinin derivative, in Plasmodium falciparum 3D7 using a combined transcriptomic and membrane proteomic profiling approach. We found that DHA can cause morphological changes of iRBC membrane. Structural molecule activity and protein export are considered to be the key biological functions based on the two omics studies. pfEMP1 might be involved in the DHA mechanism of action. pfEMP1 or its regulated factors may be further exploited in antiparasitic drug design. The findings are beneficial for elucidating the potential effects of DHA on iRBC membrane proteins and developing new antimalarial drugs targeting iRBC membrane.
Collapse
|
143
|
McKenna SM, Fay EM, McGouran JF. Flipping the Switch: Innovations in Inducible Probes for Protein Profiling. ACS Chem Biol 2021; 16:2719-2730. [PMID: 34779621 PMCID: PMC8689647 DOI: 10.1021/acschembio.1c00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Over the past two
decades, activity-based probes have enabled a
range of discoveries, including the characterization of new enzymes
and drug targets. However, their suitability in some labeling experiments
can be limited by nonspecific reactivity, poor membrane permeability,
or high toxicity. One method for overcoming these issues is through
the development of “inducible” activity-based probes.
These probes are added to samples in an unreactive state and require in situ transformation to their active form before labeling
can occur. In this Review, we discuss a variety of approaches to inducible
activity-based probe design, different means of probe activation,
and the advancements that have resulted from these applications. Additionally,
we highlight recent developments which may provide opportunities for
future inducible activity-based probe innovations.
Collapse
Affiliation(s)
- Sean M. McKenna
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| | - Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| |
Collapse
|
144
|
Jiang J, Liu Y, Yang S, Peng H, Liu J, Cheng YX, Li N. Photoaffinity-Based Chemical Proteomics Reveals 7-Oxocallitrisic Acid Targets CPT1A to Trigger Lipogenesis Inhibition. ACS Med Chem Lett 2021; 12:1905-1911. [PMID: 34917253 DOI: 10.1021/acsmedchemlett.1c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022] Open
Abstract
One of the natural terpenoids isolated from Resina Commiphora, 7-oxocallitrisic acid (7-OCA), has lipid metabolism regulatory activity. To uncover its lipogenesis inhibition mechanism, we developed a photoaffinity and clickable probe based on the 7-OCA scaffold and performed chemical proteomics to profile its potential cellular targets. It was found that 7-OCA could directly interact with carnitine palmitoyl transferase 1A (CPT1A) to promote its activity to reduce lipid accumulation. The present work reveals our understanding of the mode of lipid mebabolism regulation by abietic acids and provides new clues for antiobesity drug development with CPT1A as a main target.
Collapse
Affiliation(s)
- Jianbing Jiang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Ying Liu
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Shuxin Yang
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huipai Peng
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiawang Liu
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Nan Li
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
145
|
Chiang YH, Lin YC, Wang SY, Lee YP, Chen CF. Effects of Artemisia annua on experimentally induced leucocytozoonosis in chickens. Poult Sci 2021; 101:101690. [PMID: 35149282 PMCID: PMC8842078 DOI: 10.1016/j.psj.2021.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022] Open
Abstract
The biting midge Culicoides arakawae is the vector for the parasite Leucocytozoon caulleryi. Birds infected with L. caulleryi develop leucocytozoonosis. Given the food safety concern regarding drug residue in eggs, discovering a natural alternative to antibiotics is a worthy of exploration. Thus, we investigated the effects of the antimalarial herb Artemisia annua on experimentally induced leucocytozoonosis in chickens. We reared C. arakawae in the laboratory. Eggs were cultured, developing into larvae, pupae, and imagoes. Female midges sucked the blood of sick chickens and then were ground into a solution injected into healthy chickens. The control group was given empty capsules daily, whereas the 2 experimental groups were given 40 mg/kg sulfadimethoxine or 0.5 g of A. annua powder. Leucocytozoon gametocytes were detected in chicken blood through Giemsa staining. PCR detected the cytochrome b gene of L. caulleryi in the infected chickens. No significant among-group differences in body weight gain were observed before d 14 postinoculation (P > 0.05). Body weight gain in the control group was significantly lower from day 14 to 28 postinoculation (P < 0.05). After day 14, rectal temperature in the experimental groups decreased significantly compared with that in the control group. Lower rates of pale comb and green feces were observed in the animals receiving treatment from day 0. The experimental groups had a higher recovery rate and recovered earlier than did the control group. By day 31, all the animals had recovered. PCR detected L. caulleryi in the infected chickens with high sensitivity and accuracy. The animals receiving A. annua exhibited increased weight gain and reduced parasite concentrations in the blood. This in turn reduced mortality and the occurrence of pale comb and green feces. The findings are informative for research on leucocytozoonosis.
Collapse
Affiliation(s)
- Yu-Huan Chiang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Yen-Cheng Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yen-Pai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
146
|
Chia W, Gomez-Lorenzo MG, Castellote I, Tong JX, Chandramohanadas R, Thu Chu TT, Shen W, Go ML, de Cozar C, Crespo B, Almela MJ, Neria-Serrano F, Franco V, Gamo FJ, Tan KSW. High-Content Phenotypic Screen of a Focused TCAMS Drug Library Identifies Novel Disruptors of the Malaria Parasite Calcium Dynamics. ACS Chem Biol 2021; 16:2348-2372. [PMID: 34609851 DOI: 10.1021/acschembio.1c00512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The search for new antimalarial drugs with unexplored mechanisms of action is currently one of the main objectives to combat the resistance already in the clinic. New drugs should target specific mechanisms that once initiated lead inevitably to the parasite's death and clearance and cause minimal toxicity to the host. One such new mode of action recently characterized is to target the parasite's calcium dynamics. Disruption of the calcium homeostasis is associated with compromised digestive vacuole membrane integrity and release of its contents, leading to programmed cell death-like features characterized by loss of mitochondrial membrane potential and DNA degradation. Intriguingly, chloroquine (CQ)-treated parasites were previously reported to exhibit such cellular features. Using a high-throughput phenotypic screen, we identified 158 physiological disruptors (hits) of parasite calcium distribution from a small subset of approximately 3000 compounds selected from the GSK TCAMS (Tres Cantos Anti-Malarial Set) compound library. These compounds were then extensively profiled for biological activity against various CQ- and artemisinin-resistant Plasmodium falciparum strains and stages. The hits were also examined for cytotoxicity, speed of antimalarial activity, and their possible inhibitory effects on heme crystallization. Overall, we identified three compounds, TCMDC-136230, -125431, and -125457, which were potent in inducing calcium redistribution but minimally inhibited heme crystallization. Molecular superimposition of the molecules by computational methods identified a common pharmacophore, with the best fit assigned to TCMDC-125457. There were low cytotoxicity or CQ cross-resistance issues for these three compounds. IC50 values of these three compounds were in the low micromolar range. In addition, TCMDC-125457 demonstrated high efficacy when pulsed in a single-dose combination with artesunate against tightly synchronized artemisinin-resistant ring-stage parasites. These results should add new drug options to the current armament of antimalarial drugs as well as provide promising starting points for development of drugs with non-classical modes of action.
Collapse
Affiliation(s)
- Wanni Chia
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, and Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, S117545, Singapore
| | - Maria G. Gomez-Lorenzo
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Isabel Castellote
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Jie Xin Tong
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, and Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, S117545, Singapore
| | - Rajesh Chandramohanadas
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, and Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, S117545, Singapore
| | - Trang Thi Thu Chu
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, and Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, S117545, Singapore
| | - Wanxiang Shen
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, S117543, Singapore
| | - Mei Lin Go
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, S117543, Singapore
| | - Cristina de Cozar
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Benigno Crespo
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Maria J. Almela
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Fernando Neria-Serrano
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Virginia Franco
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Francisco-Javier Gamo
- Global Health Discovery Incubator Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Kevin S. W. Tan
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, and Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, S117545, Singapore
| |
Collapse
|
147
|
Onchieku NM, Kumari S, Pandey R, Sharma V, Kumar M, Deshmukh A, Kaur I, Mohmmed A, Gupta D, Kiboi D, Gaur N, Malhotra P. Artemisinin Binds and Inhibits the Activity of Plasmodium falciparum Ddi1, a Retroviral Aspartyl Protease. Pathogens 2021; 10:pathogens10111465. [PMID: 34832620 PMCID: PMC8621276 DOI: 10.3390/pathogens10111465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Reduced sensitivity of the human malaria parasite, Plasmodium falciparum, to Artemisinin and its derivatives (ARTs) threatens the global efforts towards eliminating malaria. ARTs have been shown to cause ubiquitous cellular and genetic insults, which results in the activation of the unfolded protein response (UPR) pathways. The UPR restores protein homeostasis, which otherwise would be toxic to cellular survival. Here, we interrogated the role of DNA-damage inducible protein 1 (PfDdi1), a unique proteasome-interacting retropepsin in mediating the actions of the ARTs. We demonstrate that PfDdi1 is an active A2 family protease that hydrolyzes ubiquitinated proteasome substrates. Treatment of P. falciparum parasites with ARTs leads to the accumulation of ubiquitinated proteins in the parasites and blocks the destruction of ubiquitinated proteins by inhibiting the PfDdi1 protease activity. Besides, whereas the PfDdi1 is predominantly localized in the cytoplasm, exposure of the parasites to ARTs leads to DNA fragmentation and increased recruitment of the PfDdi1 into the nucleus. Furthermore, we show that Ddi1 knock-out Saccharomycescerevisiae cells are more susceptible to ARTs and the PfDdI1 protein robustly restores the corresponding functions in the knock-out cells. Together, these results show that ARTs act in multiple ways; by inducing DNA and protein damage and might be impairing the damage recovery by inhibiting the activity of PfDdi1, an essential ubiquitin-proteasome retropepsin.
Collapse
Affiliation(s)
- Noah Machuki Onchieku
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
| | - Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (M.K.); (N.G.)
| | - Rajan Pandey
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (R.P.); (D.G.)
| | - Vaibhav Sharma
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (M.K.); (N.G.)
| | - Arunaditya Deshmukh
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
| | - Inderjeet Kaur
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
| | - Asif Mohmmed
- Parasite Cell Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (R.P.); (D.G.)
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
| | - Naseem Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (M.K.); (N.G.)
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
- Correspondence: or
| |
Collapse
|
148
|
Studies of Potency and Efficacy of an Optimized Artemisinin-Quinoline Hybrid against Multiple Stages of the Plasmodium Life Cycle. Pharmaceuticals (Basel) 2021; 14:ph14111129. [PMID: 34832911 PMCID: PMC8620906 DOI: 10.3390/ph14111129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
A recently developed artemisinin-quinoline hybrid, named 163A, has been shown to display potent activity against the asexual blood stage of Plasmodium, the malaria parasite. In this study, we determined its in vitro cytotoxicity to mammalian cells, its potency to suppress P. berghei hepatic infection and to decrease the viability of P. falciparum gametocytes, in addition to determining whether the drug exhibits efficacy of a P. berghei infection in mice. This hybrid compound has a low level of cytotoxicity to mammalian cells and, conversely, a high level of selectivity. It is potent in the prevention of hepatic stage development as well as in killing gametocytes, denoting a potential blockage of malaria transmission. The hybrid presents a potent inhibitory activity for beta-hematin crystal formation, in which subsequent assays revealed that its endoperoxide component undergoes bioactivation by reductive reaction with ferrous heme towards the formation of heme-drug adducts; in parallel, the 7-chloroquinoline component has binding affinity for ferric hemin. Both structural components of the hybrid co-operate to enhance the inhibition of beta-hematin, and this bitopic ligand property is essential for arresting the growth of asexual blood parasites. We demonstrated the in vivo efficacy of the hybrid as an erythrocytic schizonticide agent in comparison to a chloroquine/artemisinin combination therapy. Collectively, the findings suggest that the bitopic property of the hybrid is highly operative on heme detoxification suppression, and this provides compelling evidence for explaining the action of the hybrid on the asexual blood stage. For sporozoite and gametocyte stages, the hybrid conserves the potency typically observed for endoperoxide drugs, and this is possibly achieved due to the redox chemistry of endoperoxide components with ferrous heme.
Collapse
|
149
|
Lee WC, Russell B, Lee B, Chu CS, Phyo AP, Sriprawat K, Lau YL, Nosten F, Rénia L. Plasmodium falciparum rosetting protects schizonts against artemisinin. EBioMedicine 2021; 73:103680. [PMID: 34749300 PMCID: PMC8586750 DOI: 10.1016/j.ebiom.2021.103680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Background Artemisinin (ART) resistance in Plasmodium falciparum is thought to occur during the early stage of the parasite's erythrocytic cycle. Here, we identify a novel factor associated with the late stage parasite development that contributes to ART resistance. Methods Rosetting rates of clinical isolates pre- and post- brief (one hour) exposure to artesunate (AS, an ART derivative) were evaluated. The effects of AS-mediated rosetting on the post-AS-exposed parasite's replication and survival, as well as the extent of protection by AS-mediated rosetting on different parasite stages were investigated. The rosetting ligands, mechanisms, and gene mutations involved were studied. Findings Brief AS exposure stimulated rosetting, with AS-resistant isolates forming more rosettes in a more rapid manner. AS-mediated rosetting enabled infected erythrocytes (IRBC) to withstand AS exposure for several hours and protected the IRBC from phagocytosis. When their rosetting ability was blocked experimentally, the post-AS exposure survival advantage by the AS-resistant parasites was abrogated. Deletions in two genes coding for PfEMP1 exon 2 (PF3D7_0200300 and PF3D7_0223300) were found to be associated with AS-mediated rosetting, and these mutations were significantly selected through time in the parasite population under study, along with the K13 mutations, a molecular marker of ART-resistance. Interpretation Rapid ART parasite clearance is driven by the direct oxidative damages on IRBC by ART and the phagocytic destruction of the damaged IRBC. Rosetting serves as a rapid ‘buying time’ strategy that allows more parasites to complete schizont maturation, reinvasion and subsequent development into the intrinsically less ART-susceptible ring stage. Funding A*STAR, NMRC-OF-YIRG, HRC e-ASIA, Wellcome.
Collapse
Affiliation(s)
- Wenn-Chyau Lee
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore; Singapore Immunology Network (SIgN), A*STAR, Singapore.
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - Bernett Lee
- Singapore Immunology Network (SIgN), A*STAR, Singapore
| | - Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand; Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand; Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand; Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore; Singapore Immunology Network (SIgN), A*STAR, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
150
|
Schumann R, Bischoff E, Klaus S, Möhring S, Flock J, Keller S, Remans K, Ganter M, Deponte M. Protein abundance and folding rather than the redox state of Kelch13 determine the artemisinin susceptibility of Plasmodium falciparum. Redox Biol 2021; 48:102177. [PMID: 34773836 PMCID: PMC8600086 DOI: 10.1016/j.redox.2021.102177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 12/30/2022] Open
Abstract
Decreased susceptibilities of the human malaria parasite Plasmodium falciparum towards the endoperoxide antimalarial artemisinin are linked to mutations of residue C580 of PfKelch13, a homologue of the redox sensor Keap1 and other vertebrate BTB-Kelch proteins. Here, we addressed whether mutations alter the artemisinin susceptibility by modifying the redox properties of PfKelch13 or by compromising its native fold or abundance. Using selection-linked integration and the glmS ribozyme, efficient down-regulation of PfKelch13 resulted in ring-stage survival rates around 40%. While the loss of the thiol group of C469 or of the potential disulfide bond between residues C580 and C532 had no effect on the artemisinin susceptibility, the thiol group of C473 could not be replaced. Furthermore, we detected two different forms of PfKelch13 with distinct electrophoretic mobilities around 85 and 95 kDa, suggesting an unidentified post-translational modification. We also established a protocol for the production of recombinant PfKelch13 and produced an antibody against the protein. Recombinant PfKelch13 adopted alternative oligomeric states and only two of its seven cysteine residues, C469 and C473, reacted with Ellman's reagent. While common field mutations resulted in misfolded and completely insoluble recombinant PfKelch13, cysteine-to-serine replacements had no effect on the solubility except for residue C473. In summary, in contrast to residues C469, C532, and C580, the surface-exposed thiol group of residue C473 appears to be essential. However, not the redox properties but impaired folding of PfKelch13, resulting in a decreased PfKelch13 abundance, alters the artemisinin susceptibility and is the central parameter for mutant selection.
Collapse
Affiliation(s)
- Robin Schumann
- Faculty of Chemistry, Comparative Biochemistry, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Eileen Bischoff
- Faculty of Chemistry, Comparative Biochemistry, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Severina Klaus
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, D-69120, Heidelberg, Germany
| | - Sophie Möhring
- Faculty of Chemistry, Comparative Biochemistry, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Julia Flock
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), D-69117, Heidelberg, Germany
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern, D-67663, Kaiserslautern, Germany; Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Kim Remans
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), D-69117, Heidelberg, Germany
| | - Markus Ganter
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, D-69120, Heidelberg, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany.
| |
Collapse
|