101
|
Kroh GE, Pilon M. Micronutrient homeostasis and chloroplast iron protein expression is largely maintained in a chloroplast copper transporter mutant. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:1041-1052. [PMID: 32571473 DOI: 10.1071/fp19374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
PAAI is a P-Type ATPase that functions to import copper (Cu) into the chloroplast. Arabidopsis thaliana (L.) Heynh. paa1 mutants have lowered plastocyanin levels, resulting in a decreased photosynthetic electron transport rate. In nature, iron (Fe) and Cu homeostasis are often linked and it can be envisioned that paa1 acclimates its photosynthetic machinery by adjusting expression of its chloroplast Fe-proteome, but outside of Cu homeostasis paa1 has not been studied. Here, we characterise paa1 ultrastructure and accumulation of electron transport chain proteins in a paa1 allelic series. Furthermore, using hydroponic growth conditions, we characterised metal homeostasis in paa1 with an emphasis on the effects of Fe deficiency. Surprisingly, the paa1 mutation does not affect chloroplast ultrastructure or the accumulation of other photosynthetic electron transport chain proteins, despite the strong decrease in electron transport rate. The regulation of Fe-related photosynthetic electron transport proteins in response to Fe status was maintained in paa1, suggesting that regulation of the chloroplast Fe proteins ignores operational signals from photosynthetic output. The characterisation of paa1 has revealed new insight into the regulation of expression of the photosynthetic electron transport chain proteins and chloroplast metal homeostasis and can help to develop new strategies for the detection of shoot Fe deficiency.
Collapse
Affiliation(s)
- Gretchen E Kroh
- Biology Department, Colorado State University, 251 W. Pitkin Street, Fort Collins, CO 80523-1878, USA; and Corresponding author.
| | - Marinus Pilon
- Biology Department, Colorado State University, 251 W. Pitkin Street, Fort Collins, CO 80523-1878, USA
| |
Collapse
|
102
|
Whitt L, Ricachenevsky FK, Ziegler GZ, Clemens S, Walker E, Maathuis FJM, Kear P, Baxter I. A curated list of genes that affect the plant ionome. PLANT DIRECT 2020; 4:e00272. [PMID: 33103043 PMCID: PMC7576880 DOI: 10.1002/pld3.272] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 05/07/2023]
Abstract
Understanding the mechanisms underlying plants' adaptation to their environment will require knowledge of the genes and alleles underlying elemental composition. Modern genetics is capable of quickly, and cheaply indicating which regions of DNA are associated with particular phenotypes in question, but most genes remain poorly annotated, hindering the identification of candidate genes. To help identify candidate genes underlying elemental accumulations, we have created the known ionome gene (KIG) list: a curated collection of genes experimentally shown to change uptake, accumulation, and distribution of elements. We have also created an automated computational pipeline to generate lists of KIG orthologs in other plant species using the PhytoMine database. The current version of KIG consists of 176 known genes covering 5 species, 23 elements, and their 1588 orthologs in 10 species. Analysis of the known genes demonstrated that most were identified in the model plant Arabidopsis thaliana, and that transporter coding genes and genes altering the accumulation of iron and zinc are overrepresented in the current list.
Collapse
Affiliation(s)
- Lauren Whitt
- Donald Danforth Plant Science CenterSaint LouisMOUSA
| | - Felipe Klein Ricachenevsky
- Departamento de Botânica Programa de Pós‐Graduação em Biologia Celular e MolecularUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | | | | | | | | | | | - Ivan Baxter
- Donald Danforth Plant Science CenterSaint LouisMOUSA
| |
Collapse
|
103
|
Yang A, Li Q, Chen L, Zhang WH. A rice small GTPase, Rab6a, is involved in the regulation of grain yield and iron nutrition in response to CO2 enrichment. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5680-5688. [PMID: 32525991 PMCID: PMC7501819 DOI: 10.1093/jxb/eraa279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/09/2020] [Indexed: 05/31/2023]
Abstract
Despite extensive studies on the effects of elevated atmospheric CO2 concentrations ([CO2]) on rice, the molecular mechanisms and signaling events underlying the adaptation of plants remain largely elusive. Here, we report that OsRab6a, which encodes a small GTPase, is involved in the regulation of rice growth, grain yield, and accumulation of iron (Fe) in response to elevated [CO2] (e[CO2]). We generated transgenic plants with OsRab6a-overexpression (-OE) together with OsRab6a-RNAi lines, and found no differences in growth and grain yield among them and wild-type (WT) plants under ambient [CO2] conditions. Under e[CO2] conditions, growth and grain yield of the WT and OsRab6a-OE plants were enhanced, with a greater effect being observed in the latter. In contrast, there were no effects of e[CO2] on growth and grain yield of the OsRab6a-RNAi plants. Photosynthetic rates in both the WT and OsRab6a-OE plants were stimulated by e[CO2], with the magnitude of the increase being higher in OsRab6a-OE plants. Fe concentrations in vegetative tissues and the grain of the WT and transgenic plants were reduced by e[CO2], and the magnitude of the decrease was lower in the OE plants than in the WT and RNAi plants. Genes associated with Fe acquisition in the OsRab6a-OE lines exhibited higher levels of expression than those in the WT and the RNAi lines under e[CO2]. Analysis of our data using Dunnett's multiple comparison test suggested that OsRab6a is an important molecular regulator that underlies the adaptation of rice to e[CO2] by controlling photosynthesis and Fe accumulation.
Collapse
Affiliation(s)
- An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
104
|
Aung MS, Masuda H. How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2020; 11:1102. [PMID: 32849682 PMCID: PMC7426474 DOI: 10.3389/fpls.2020.01102,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 05/29/2023]
Abstract
Iron (Fe) is an essential nutrient for all living organisms but can lead to cytotoxicity when present in excess. Fe toxicity often occurs in rice grown in submerged paddy fields with low pH, leading dramatical increases in ferrous ion concentration, disrupting cell homeostasis and impairing growth and yield. However, the underlying molecular mechanisms of Fe toxicity response and tolerance in plants are not well characterized yet. Microarray and genome-wide association analyses have shown that rice employs four defense systems to regulate Fe homeostasis under Fe excess. In defense 1, Fe excess tolerance is implemented by Fe exclusion as a result of suppression of genes involved in Fe uptake and translocation such as OsIRT1, OsYSL2, OsTOM1, OsYSL15, OsNRAMP1, OsNAS1, OsNAS2, OsNAAT1, OsDMAS1, and OsIRO2. The Fe-binding ubiquitin ligase, HRZ, is a key regulator that represses Fe uptake genes in response to Fe excess in rice. In defense 2, rice retains Fe in the root system rather than transporting it to shoots. In defense 3, rice compartmentalizes Fe in the shoot. In defense 2 and 3, the vacuolar Fe transporter OsVIT2, Fe storage protein ferritin, and the nicotinamine synthase OsNAS3 mediate the isolation or detoxification of excess Fe. In defense 4, rice detoxifies the ROS produced within the plant body in response to excess Fe. Some OsWRKY transcription factors, S-nitrosoglutathione-reductase variants, p450-family proteins, and OsNAC4, 5, and 6 are implicated in defense 4. These knowledge will facilitate the breeding of tolerant crops with increased productivity in low-pH, Fe-excess soils.
Collapse
|
105
|
Aung MS, Masuda H. How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2020; 11:1102. [PMID: 32849682 PMCID: PMC7426474 DOI: 10.3389/fpls.2020.01102] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 05/25/2023]
Abstract
Iron (Fe) is an essential nutrient for all living organisms but can lead to cytotoxicity when present in excess. Fe toxicity often occurs in rice grown in submerged paddy fields with low pH, leading dramatical increases in ferrous ion concentration, disrupting cell homeostasis and impairing growth and yield. However, the underlying molecular mechanisms of Fe toxicity response and tolerance in plants are not well characterized yet. Microarray and genome-wide association analyses have shown that rice employs four defense systems to regulate Fe homeostasis under Fe excess. In defense 1, Fe excess tolerance is implemented by Fe exclusion as a result of suppression of genes involved in Fe uptake and translocation such as OsIRT1, OsYSL2, OsTOM1, OsYSL15, OsNRAMP1, OsNAS1, OsNAS2, OsNAAT1, OsDMAS1, and OsIRO2. The Fe-binding ubiquitin ligase, HRZ, is a key regulator that represses Fe uptake genes in response to Fe excess in rice. In defense 2, rice retains Fe in the root system rather than transporting it to shoots. In defense 3, rice compartmentalizes Fe in the shoot. In defense 2 and 3, the vacuolar Fe transporter OsVIT2, Fe storage protein ferritin, and the nicotinamine synthase OsNAS3 mediate the isolation or detoxification of excess Fe. In defense 4, rice detoxifies the ROS produced within the plant body in response to excess Fe. Some OsWRKY transcription factors, S-nitrosoglutathione-reductase variants, p450-family proteins, and OsNAC4, 5, and 6 are implicated in defense 4. These knowledge will facilitate the breeding of tolerant crops with increased productivity in low-pH, Fe-excess soils.
Collapse
|
106
|
Herlihy JH, Long TA, McDowell JM. Iron homeostasis and plant immune responses: Recent insights and translational implications. J Biol Chem 2020; 295:13444-13457. [PMID: 32732287 DOI: 10.1074/jbc.rev120.010856] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Iron metabolism and the plant immune system are both critical for plant vigor in natural ecosystems and for reliable agricultural productivity. Mechanistic studies of plant iron home-ostasis and plant immunity have traditionally been carried out in isolation from each other; however, our growing understanding of both processes has uncovered significant connections. For example, iron plays a critical role in the generation of reactive oxygen intermediates during immunity and has been recently implicated as a critical factor for immune-initiated cell death via ferroptosis. Moreover, plant iron stress triggers immune activation, suggesting that sensing of iron depletion is a mechanism by which plants recognize a pathogen threat. The iron deficiency response engages hormone signaling sectors that are also utilized for plant immune signaling, providing a probable explanation for iron-immunity cross-talk. Finally, interference with iron acquisition by pathogens might be a critical component of the immune response. Efforts to address the global burden of iron deficiency-related anemia have focused on classical breeding and transgenic approaches to develop crops biofortified for iron content. However, our improved mechanistic understanding of plant iron metabolism suggests that such alterations could promote or impede plant immunity, depending on the nature of the alteration and the virulence strategy of the pathogen. Effects of iron biofortification on disease resistance should be evaluated while developing plants for iron biofortification.
Collapse
Affiliation(s)
- John H Herlihy
- School of Plant and Environmental Sciences, Virginia Tech, Latham Hall, Blacksburg, Virginia, USA
| | - Terri A Long
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA.
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Latham Hall, Blacksburg, Virginia, USA.
| |
Collapse
|
107
|
Kroh GE, Pilon M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int J Mol Sci 2020; 21:E3395. [PMID: 32403383 PMCID: PMC7247011 DOI: 10.3390/ijms21093395] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.
Collapse
Affiliation(s)
| | - Marinus Pilon
- Department of Biology, Colorado State University Department of Biology, Fort Collins, CO 80523, USA;
| |
Collapse
|
108
|
Liang G, Zhang H, Li Y, Pu M, Yang Y, Li C, Lu C, Xu P, Yu D. Oryza sativa FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (OsFIT/OsbHLH156) interacts with OsIRO2 to regulate iron homeostasis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:668-689. [PMID: 32237201 DOI: 10.1111/jipb.12933] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 05/16/2023]
Abstract
Iron (Fe) is indispensable for the growth and development of plants. It is well known that FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) is a key regulator of Fe uptake in Arabidopsis. Here, we identify the Oryza sativa FIT (also known as OsbHLH156) as the interacting partner of IRON-RELATED BHLH TRANSCRIPTION FACTOR 2 (OsIRO2) that is critical for regulating Fe uptake. The OsIRO2 protein is localized in the cytoplasm and nucleus, but OsFIT facilitates the accumulation of OsIRO2 in the nucleus. Loss-of-function mutations of OsFIT result in decreased Fe accumulation, severe Fe-deficiency symptoms, and disrupted expression of Fe-uptake genes. In contrast, OsFIT overexpression promotes Fe accumulation and the expression of Fe-uptake genes. Genetic analyses indicate that OsFIT and OsIRO2 function in the same genetic node. Further analyses suggest that OsFIT and OsIRO2 form a functional transcription activation complex to initiate the expression of Fe-uptake genes. Our findings provide a mechanism understanding of how rice maintains Fe homeostasis.
Collapse
Affiliation(s)
- Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
| | - Huimin Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
| | - Mengna Pu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
| | - Yujie Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengkai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| |
Collapse
|
109
|
Kawakami Y, Bhullar NK. Potential Implications of Interactions between Fe and S on Cereal Fe Biofortification. Int J Mol Sci 2020; 21:E2827. [PMID: 32325653 PMCID: PMC7216021 DOI: 10.3390/ijms21082827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 01/17/2023] Open
Abstract
Iron (Fe) and sulfur (S) are two essential elements for plants, whose interrelation is indispensable for numerous physiological processes. In particular, Fe homeostasis in cereal species is profoundly connected to S nutrition because phytosiderophores, which are the metal chelators required for Fe uptake and translocation in cereals, are derived from a S-containing amino acid, methionine. To date, various biotechnological cereal Fe biofortification strategies involving modulation of genes underlying Fe homeostasis have been reported. Meanwhile, the resultant Fe-biofortified crops have been minimally characterized from the perspective of interaction between Fe and S, in spite of the significance of the crosstalk between the two elements in cereals. Here, we intend to highlight the relevance of Fe and S interrelation in cereal Fe homeostasis and illustrate the potential implications it has to offer for future cereal Fe biofortification studies.
Collapse
Affiliation(s)
| | - Navreet K. Bhullar
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland;
| |
Collapse
|
110
|
Wawrzyńska A, Sirko A. The Role of Selective Protein Degradation in the Regulation of Iron and Sulfur Homeostasis in Plants. Int J Mol Sci 2020; 21:E2771. [PMID: 32316330 PMCID: PMC7215296 DOI: 10.3390/ijms21082771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Plants are able to synthesize all essential metabolites from minerals, water, and light to complete their life cycle. This plasticity comes at a high energy cost, and therefore, plants need to tightly allocate resources in order to control their economy. Being sessile, plants can only adapt to fluctuating environmental conditions, relying on quality control mechanisms. The remodeling of cellular components plays a crucial role, not only in response to stress, but also in normal plant development. Dynamic protein turnover is ensured through regulated protein synthesis and degradation processes. To effectively target a wide range of proteins for degradation, plants utilize two mechanistically-distinct, but largely complementary systems: the 26S proteasome and the autophagy. As both proteasomal- and autophagy-mediated protein degradation use ubiquitin as an essential signal of substrate recognition, they share ubiquitin conjugation machinery and downstream ubiquitin recognition modules. Recent progress has been made in understanding the cellular homeostasis of iron and sulfur metabolisms individually, and growing evidence indicates that complex crosstalk exists between iron and sulfur networks. In this review, we highlight the latest publications elucidating the role of selective protein degradation in the control of iron and sulfur metabolism during plant development, as well as environmental stresses.
Collapse
Affiliation(s)
- Anna Wawrzyńska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | | |
Collapse
|
111
|
Schwarz B, Bauer P. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and -independent gene signatures. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1694-1705. [PMID: 31922570 PMCID: PMC7067300 DOI: 10.1093/jxb/eraa012] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/08/2020] [Indexed: 05/05/2023]
Abstract
Iron (Fe) is vital for plant growth. Plants balance the beneficial and toxic effects of this micronutrient, and tightly control Fe uptake and allocation. Here, we review the role of the basic helix-loop-helix (bHLH) transcription factor FIT (FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) in Fe acquisition. FIT is not only essential, it is also a central regulatory hub in root cells to steer and adjust the rate of Fe uptake by the root in a changing environment. FIT regulates a subset of root Fe deficiency (-Fe) response genes. Based on a combination of co-expression network and FIT-dependent transcriptome analyses, we defined a set of FIT-dependent and FIT-independent gene expression signatures and co-expression clusters that encode specific functions in Fe regulation and Fe homeostasis. These gene signatures serve as markers to integrate novel regulatory factors and signals into the -Fe response cascade. FIT forms a complex with bHLH subgroup Ib transcription factors. Furthermore, it interacts with key regulators from different signaling pathways that either activate or inhibit FIT function to adjust Fe acquisition to growth and environmental constraints. Co-expression clusters and FIT protein interactions suggest a connection of -Fe with ABA responses and root cell elongation processes that can be explored in future studies.
Collapse
Affiliation(s)
- Birte Schwarz
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
112
|
Wang S, Li L, Ying Y, Wang J, Shao JF, Yamaji N, Whelan J, Ma JF, Shou H. A transcription factor OsbHLH156 regulates Strategy II iron acquisition through localising IRO2 to the nucleus in rice. THE NEW PHYTOLOGIST 2020; 225:1247-1260. [PMID: 31574173 DOI: 10.1111/nph.16232] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/19/2019] [Indexed: 05/22/2023]
Abstract
Plants have evolved two strategies to acquire ferrous (Strategy I) or ferric (Strategy II) iron from soil. The iron-related bHLH transcription factor 2 (IRO2) has been identified as a key regulator of iron acquisition (Strategy II) in rice. However, its mode of action, subcellular localisation and binding partners are not clearly defined. Using RNA-seq analyses, we identified a novel bHLH-type transcription factor, OsbHLH156. The function of OsbHLH156 in Fe homeostasis was analysed by characterisation of the phenotypes, elemental content, transcriptome, interaction and subcellular localisation of OsbHLH156 and IRO2. OsbHLH156 is primarily expressed in the roots and transcript abundance is greatly increased by Fe deficiency. Loss of function of OsbHLH156 resulted in Fe-deficiency-induced chlorosis and reduced Fe concentration in the shoots under upland or Fe(III) supplied conditions. Transcriptome analyses revealed that the expression of most Fe-deficiency-responsive genes involved in Strategy II were not induced in the osbhlh156-1 mutant. Furthermore, OsbHLH156 was required for nuclear localisation of IRO2. We conclude that OsbHLH156 is required for a Strategy II uptake mechanism in rice, partnering with a previously identified 'master' regulator IRO2. Mechanistically it is required for the nuclear localisation of IRO2.
Collapse
Affiliation(s)
- Shoudong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lin Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ji Feng Shao
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
113
|
Handing off iron to the next generation: how does it get into seeds and what for? Biochem J 2020; 477:259-274. [DOI: 10.1042/bcj20190188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 01/24/2023]
Abstract
To ensure the success of the new generation in annual species, the mother plant transfers a large proportion of the nutrients it has accumulated during its vegetative life to the next generation through its seeds. Iron (Fe) is required in large amounts to provide the energy and redox power to sustain seedling growth. However, free Fe is highly toxic as it leads to the generation of reactive oxygen species. Fe must, therefore, be tightly bound to chelating molecules to allow seed survival for long periods of time without oxidative damage. Nevertheless, when conditions are favorable, the seed's Fe stores have to be readily remobilized to achieve the transition toward active photosynthesis before the seedling becomes able to take up Fe from the environment. This is likely critical for the vigor of the young plant. Seeds constitute an important dietary source of Fe, which is essential for human health. Understanding the mechanisms of Fe storage in seeds is a key to improve their Fe content and availability in order to fight Fe deficiency. Seed longevity, germination efficiency and seedling vigor are also important traits that may be affected by the chemical form under which Fe is stored. In this review, we summarize the current knowledge on seed Fe loading during development, long-term storage and remobilization upon germination. We highlight how this knowledge may help seed Fe biofortification and discuss how Fe storage may affect the seed quality and germination efficiency.
Collapse
|
114
|
Zhang Z, Fan Y, Xiong J, Guo X, Hu K, Wang Z, Gao J, Wen J, Yi B, Shen J, Ma C, Fu T, Xia S, Tu J. Two young genes reshape a novel interaction network in Brassica napus. THE NEW PHYTOLOGIST 2020; 225:530-545. [PMID: 31407340 DOI: 10.1111/nph.16113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
New genes often drive the evolution of gene interaction networks. In Brassica napus, the widely used genic male sterile breeding system 7365ABC is controlled by two young genes, Bnams4b and BnaMs3. However, the interaction mechanism of these two young genes remains unclear. Here, we confirmed that Bnams4b interacts with the nuclear localised E3 ligase BRUTUS (BTS). Ectopic expression of AtBRUTUS (AtBTS) and comparison between Bnams4b -transgenic Arabidopsis and bts mutants suggested that Bnams4b may drive translocation of BTS to cause various toxic defects. BnaMs3 gained an exclusive interaction with the plastid outer-membrane translocon Toc33 compared with Bnams3 and AtTic40, and specifically compensated for the toxic effects of Bnams4b . Heat shock treatment also rescued the sterile phenotype, and high temperature suppressed the interaction between Bnams4b and BTS in yeast. Furthermore, the ubiquitin system and TOC (translocon at the outer envelope membrane of chloroplasts) component accumulation were affected in Bnams4b -transgenic Arabidopsis plants. Taken together, these results indicate that new chimeric Bnams4b carries BTS from nucleus to chloroplast, which may disrupt the normal ubiquitin-proteasome system to cause toxic effects, and these defects can be compensated by BnaMs3-Toc33 interaction or environmental heat shock. It reveals a scenario in which two population-specific coevolved young genes reshape a novel interaction network in plants.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Fan
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Xiong
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Guo
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhixin Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
115
|
Zhang H, Li Y, Pu M, Xu P, Liang G, Yu D. Oryza sativa POSITIVE REGULATOR OF IRON DEFICIENCY RESPONSE 2 (OsPRI2) and OsPRI3 are involved in the maintenance of Fe homeostasis. PLANT, CELL & ENVIRONMENT 2020; 43:261-274. [PMID: 31674679 DOI: 10.1111/pce.13655] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 05/16/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth development and plays a key role in regulating numerous cellular processes. In rice, OsHRZ1, an Fe-binding ubiquitin ligase, is a putative sensor of Fe homeostasis that negatively regulates iron acquisition. Despite its apparent importance, only a single basic-Helix-Loop-Helix (bHLH) transcription factor, OsPRI1, has been identified as a direct target of OsHRZ1. In this study, we identified and functionally characterized OsPRI2 and OsPRI3, two paralogs of OsPRI1, observing that they directly interact with OsHRZ1. Additional analyses suggested that OsHRZ1 promotes the degradation of OsPRI2 and OsPRI3. The translocation of Fe from roots to shoots was impaired in plants with loss-of-function mutations in OsPRI2 or OsPRI3, causing the downregulation of Fe-deficiency-responsive genes. In contrast, overexpression of OsPRI2 and OsPRI3 promotes Fe accumulation and activates the expression of Fe-deficiency-responsive genes. We also provide evidence that OsPRI2 and OsPRI3 bind to the promoters of OsIRO2 and OsIRO3, two key regulators of Fe homeostasis. Moreover, OsPRI2 and OsPRI3 directly induce expression of the metal-nicotianamine transporter, OsYSL2, by associating with the promoter in response to Fe deficiency. Our results provide insights into the complex network regulating Fe homeostasis in rice.
Collapse
Affiliation(s)
- Huimin Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Mengna Pu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| |
Collapse
|
116
|
Perea-García A, Andrés-Bordería A, Vera-Sirera F, Pérez-Amador MA, Puig S, Peñarrubia L. Deregulated High Affinity Copper Transport Alters Iron Homeostasis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:1106. [PMID: 32793263 PMCID: PMC7390907 DOI: 10.3389/fpls.2020.01106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/06/2020] [Indexed: 05/08/2023]
Abstract
The present work describes the effects on iron homeostasis when copper transport was deregulated in Arabidopsis thaliana by overexpressing high affinity copper transporters COPT1 and COPT3 (COPTOE ). A genome-wide analysis conducted on COPT1OE plants, highlighted that iron homeostasis gene expression was affected under both copper deficiency and excess. Among the altered genes were those encoding the iron uptake machinery and their transcriptional regulators. Subsequently, COPTOE seedlings contained less iron and were more sensitive than controls to iron deficiency. The deregulation of copper (I) uptake hindered the transcriptional activation of the subgroup Ib of basic helix-loop-helix (bHLH-Ib) factors under copper deficiency. Oppositely, copper excess inhibited the expression of the master regulator FIT but activated bHLH-Ib expression in COPTOE plants, in both cases leading to the lack of an adequate iron uptake response. As copper increased in the media, iron (III) was accumulated in roots, and the ratio iron (III)/iron (II) was increased in COPTOE plants. Thus, iron (III) overloading in COPTOE roots inhibited local iron deficiency responses, aimed to metal uptake from soil, leading to a general lower iron content in the COPTOE seedlings. These results emphasized the importance of appropriate spatiotemporal copper uptake for iron homeostasis under non-optimal copper supply. The understanding of the role of copper uptake in iron metabolism could be applied for increasing crops resistance to iron deficiency.
Collapse
Affiliation(s)
- Ana Perea-García
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Amparo Andrés-Bordería
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Miguel Angel Pérez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
- *Correspondence: Lola Peñarrubia,
| |
Collapse
|
117
|
Li Q, Chen L, Yang A. The Molecular Mechanisms Underlying Iron Deficiency Responses in Rice. Int J Mol Sci 2019; 21:E43. [PMID: 31861687 PMCID: PMC6981701 DOI: 10.3390/ijms21010043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 01/27/2023] Open
Abstract
Iron (Fe) is an essential element required for plant growth and development. Under Fe-deficientconditions, plants have developed two distinct strategies (designated as strategy I and II) to acquire Fe from soil. As a graminaceous species, rice is not a typical strategy II plant, as it not only synthesizes DMA (2'-deoxymugineic acid) in roots to chelate Fe3+ but also acquires Fe2+ through transporters OsIRT1 and OsIRT2. During the synthesis of DMA in rice, there are three sequential enzymatic reactions catalyzed by enzymes NAS (nicotianamine synthase), NAAT (nicotianamine aminotransferase), and DMAS (deoxymugineic acid synthase). Many transporters required for Fe uptake from the rhizosphere and internal translocation have also been identified in rice. In addition, the signaling networks composed of various transcription factors (such as IDEF1, IDEF2, and members of the bHLH (basic helix-loop-helix) family), phytohormones, and signaling molecules are demonstrated to regulate Fe uptake and translocation. This knowledge greatly contributes to our understanding of the molecular mechanisms underlying iron deficiency responses in rice.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China;
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China;
| |
Collapse
|
118
|
Rice Biofortification: High Iron, Zinc, and Vitamin-A to Fight against “Hidden Hunger”. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120803] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
One out of three humans suffer from micronutrient deficiencies called “hidden hunger”. Underprivileged people, including preschool children and women, suffer most from deficiency diseases and other health-related issues. Rice (Oryza sativa), a staple food, is their source of nutrients, contributing up to 70% of daily calories for more than half of the world’s population. Solving “hidden hunger” through rice biofortification would be a sustainable approach for those people who mainly consume rice and have limited access to diversified food. White milled rice grains lose essential nutrients through polishing. Therefore, seed-specific higher accumulation of essential nutrients is a necessity. Through the method of biofortification (via genetic engineering/molecular breeding), significant increases in iron and zinc with other essential minerals and provitamin-A (β-carotene) was achieved in rice grain. Many indica and japonica rice cultivars have been biofortified worldwide, being popularly known as ‘high iron rice’, ‘low phytate rice’, ‘high zinc rice’, and ‘high carotenoid rice’ (golden rice) varieties. Market availability of such varieties could reduce “hidden hunger”, and a large population of the world could be cured from iron deficiency anemia (IDA), zinc deficiency, and vitamin-A deficiency (VAD). In this review, different approaches of rice biofortification with their outcomes have been elaborated and discussed. Future strategies of nutrition improvement using genome editing (CRISPR/Cas9) and the need of policy support have been highlighted.
Collapse
|
119
|
Wairich A, de Oliveira BHN, Arend EB, Duarte GL, Ponte LR, Sperotto RA, Ricachenevsky FK, Fett JP. The Combined Strategy for iron uptake is not exclusive to domesticated rice (Oryza sativa). Sci Rep 2019; 9:16144. [PMID: 31695138 PMCID: PMC6834603 DOI: 10.1038/s41598-019-52502-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/14/2019] [Indexed: 01/12/2023] Open
Abstract
Iron (Fe) is an essential micronutrient that is frequently inaccessible to plants. Rice (Oryza sativa L.) plants employ the Combined Strategy for Fe uptake, which is composed by all features of Strategy II, common to all Poaceae species, and some features of Strategy I, common to non-Poaceae species. To understand the evolution of Fe uptake mechanisms, we analyzed the root transcriptomic response to Fe deficiency in O. sativa and its wild progenitor O. rufipogon. We identified 622 and 2,017 differentially expressed genes in O. sativa and O. rufipogon, respectively. Among the genes up-regulated in both species, we found Fe transporters associated with Strategy I, such as IRT1, IRT2 and NRAMP1; and genes associated with Strategy II, such as YSL15 and IRO2. In order to evaluate the conservation of these Strategies among other Poaceae, we identified the orthologs of these genes in nine species from the Oryza genus, maize and sorghum, and evaluated their expression profile in response to low Fe condition. Our results indicate that the Combined Strategy is not specific to O. sativa as previously proposed, but also present in species of the Oryza genus closely related to domesticated rice, and originated around the same time the AA genome lineage within Oryza diversified. Therefore, adaptation to Fe2+ acquisition via IRT1 in flooded soils precedes O. sativa domestication.
Collapse
Affiliation(s)
- Andriele Wairich
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ben Hur Neves de Oliveira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ezequiel Barth Arend
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Leitão Duarte
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Roani Ponte
- Departamento de Biologia, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Raul Antonio Sperotto
- Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, Brazil
| | - Felipe Klein Ricachenevsky
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Departamento de Biologia, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Janette Palma Fett
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
120
|
Kobayashi T, Ozu A, Kobayashi S, An G, Jeon JS, Nishizawa NK. OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice. PLANT MOLECULAR BIOLOGY 2019; 101:471-486. [PMID: 31552586 PMCID: PMC6814640 DOI: 10.1007/s11103-019-00917-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/07/2019] [Indexed: 05/03/2023]
Abstract
Subgroup IVc basic helix-loop-helix transcription factors OsbHLH058 and OsbHLH059 positively regulate major iron deficiency responses in rice in a similar but distinct manner, putatively under partial control by OsHRZs. Under low iron availability, plants transcriptionally induce the expression of genes involved in iron uptake and translocation. OsHRZ1 and OsHRZ2 ubiquitin ligases negatively regulate this iron deficiency response in rice. The basic helix-loop-helix (bHLH) transcription factor OsbHLH060 interacts with OsHRZ1, and positively regulates iron deficiency-inducible genes. However, the functions of three other subgroup IVc bHLH transcription factors in rice, OsbHLH057, OsbHLH058, and OsbHLH059, have not yet been characterized. In the present study, we investigated the functions of OsbHLH058 and OsbHLH059 related to iron deficiency response. OsbHLH058 expression was repressed under iron deficiency, whereas the expression of OsbHLH057 and OsbHLH060 was moderately induced. Yeast two-hybrid analysis indicated that OsbHLH058 interacts with OsHRZ1 and OsHRZ2 more strongly than OsbHLH060, whereas OsbHLH059 showed no interaction. An in vitro ubiquitination assay detected no OsbHLH058 and OsbHLH060 ubiquitination by OsHRZ1 and OsHRZ2. Transgenic rice lines overexpressing OsbHLH058 showed tolerance for iron deficiency and higher iron concentration in seeds. These lines also showed enhanced expression of many iron deficiency-inducible genes involved in iron uptake and translocation under iron-sufficient conditions. Conversely, OsbHLH058 knockdown lines showed susceptibility to iron deficiency and reduced expression of many iron deficiency-inducible genes. OsbHLH059 knockdown lines were also susceptible to iron deficiency, and formed characteristic brownish regions in iron-deficient new leaves. OsbHLH059 knockdown lines also showed reduced expression of many iron deficiency-inducible genes. These results indicate that OsbHLH058 and OsbHLH059 positively regulate major iron deficiency responses in a similar but distinct manner, and that this function may be partially controlled by OsHRZs.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Asami Ozu
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Subaru Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jong-Seong Jeon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
121
|
Grillet L, Schmidt W. Iron acquisition strategies in land plants: not so different after all. THE NEW PHYTOLOGIST 2019; 224:11-18. [PMID: 31220347 DOI: 10.1111/nph.16005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/11/2019] [Indexed: 05/07/2023]
Abstract
Due to its ability to accept and donate electrons, iron (Fe) is an indispensable component of electron transport chains and a cofactor in many vital enzymes. Except for waterlogged conditions, under which the lack of oxygen prevents oxidation and precipitation of iron as Fe3+ hydroxides, the availability of iron in soils is generally far below the plant's demand for optimal growth. Plants have evolved two phylogenetically separated and elaborately regulated strategies to mobilize iron from the soil, featuring mechanisms which are thought to be mutually exclusive. However, recent studies uncovered several shared components of the two strategies, questioning the validity of the concept of mutual exclusivity. Here, we use publicly available data obtained from the model species rice (Oryza sativa) to unveil similarities and incongruities between co-expression networks derived from transcriptomic profiling of iron-deficient rice and Arabidopsis plants. This approach revealed striking similarities in the topographies of the resulting co-expression networks with relatively minor deviations in the molecular attributes of the comprised genes, which nonetheless lead to different physiological functions. The analysis also discovered several novel players that are possibly involved in the regulation plant adaptation to iron deficiency.
Collapse
Affiliation(s)
- Louis Grillet
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
122
|
Xie X, Hu W, Fan X, Chen H, Tang M. Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1172. [PMID: 31616454 PMCID: PMC6775243 DOI: 10.3389/fpls.2019.01172] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/27/2019] [Indexed: 05/16/2023]
Abstract
Phosphorus (P), zinc (Zn), and iron (Fe) are three essential elements for plant survival, and severe deficiencies in these nutrients lead to growth retardation and crop yield reduction. This review synthesizes recent progress on how plants coordinate the acquisition and signaling of Pi, Zn, and Fe from surrounding environments and which genes are involved in these Pi-Zn-Fe interactions with the aim of better understanding of the cross-talk between these macronutrient and micronutrient homeostasis in plants. In addition, identification of genes important for interactions between Pi, Zn, and/or Fe transport and signaling is a useful target for breeders for improvement in plant nutrient acquisition. Furthermore, to understand these processes in arbuscular mycorrhizal plants, the preliminary examination of interactions between Pi, Zn, and Fe homeostasis in some relevant crop species has been performed at the physiological level and is summarized in this article. In conclusion, the development of integrative study of cross-talks between Pi, Zn, and Fe signaling pathway in mycorrhizal plants will be essential for sustainable agriculture all around the world.
Collapse
Affiliation(s)
- Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoning Fan
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
123
|
Wu Z, Wang M, Yang S, Chen S, Chen X, Liu C, Wang S, Wang H, Zhang B, Liu H, Qin R, Wang X. A global coexpression network of soybean genes gives insights into the evolution of nodulation in nonlegumes and legumes. THE NEW PHYTOLOGIST 2019; 223:2104-2119. [PMID: 30977533 DOI: 10.1111/nph.15845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
A coexpression network is a powerful tool for revealing genes' relationship with many biological processes. Mass transcriptomic and genomic data from different plant species provide the foundation for understanding the evolution of nodulation across the Viridiplantae at a systematic level. We used weighted coexpression network analysis (WGCNA) to mine a nodule-related module (NRM) in Glycine max. Comparative genomic analysis of 78 green plant species revealed that NRM genes are recruited from different evolutionary nodes along with gene duplication events. A set of core coexpressed genes within legumes may play vital roles in regulating nodule environments essential for nitrogen fixation, including oxygen concentrations, sulfur transport, and iron homeostasis (such as GmCHY). The regulation of these genes occurred mainly at the transcription level, although some of them, such as sulfate transporters, may also undergo positive selection at protein level. We revealed that ancient orthologs and duplication events before the origin of legumes were preadapted for symbiosis. Conserved coregulated genes found within legumes paved the way for nodule formation and nitrogen fixation. These findings provide significant insights into the evolution of nodulation and indicate promising candidates for identifying other key components of legume nodulation and nitrogen fixation.
Collapse
Affiliation(s)
- Zhihua Wu
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, South-Central University for Nationalities, Wuhan, Hubei Province, 430074, China
| | - Meirong Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Siyu Yang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Shengcai Chen
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Xu Chen
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Chang Liu
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Shixiang Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Haijiao Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Bao Zhang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, South-Central University for Nationalities, Wuhan, Hubei Province, 430074, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, South-Central University for Nationalities, Wuhan, Hubei Province, 430074, China
| | - Xuelu Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
124
|
Godon C, Mercier C, Wang X, David P, Richaud P, Nussaume L, Liu D, Desnos T. Under phosphate starvation conditions, Fe and Al trigger accumulation of the transcription factor STOP1 in the nucleus of Arabidopsis root cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:937-949. [PMID: 31034704 PMCID: PMC6852189 DOI: 10.1111/tpj.14374] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/07/2019] [Accepted: 04/24/2019] [Indexed: 05/20/2023]
Abstract
Low-phosphate (Pi) conditions are known to repress primary root growth of Arabidopsis at low pH and in an Fe-dependent manner. This growth arrest requires accumulation of the transcription factor STOP1 in the nucleus, where it activates the transcription of the malate transporter gene ALMT1; exuded malate is suspected to interact with extracellular Fe to inhibit root growth. In addition, ALS3 - an ABC-like transporter identified for its role in tolerance to toxic Al - represses nuclear accumulation of STOP1 and the expression of ALMT1. Until now it was unclear whether Pi deficiency itself or Fe activates the accumulation of STOP1 in the nucleus. Here, by using different growth media to dissociate the effects of Fe from Pi deficiency itself, we demonstrate that Fe is sufficient to trigger the accumulation of STOP1 in the nucleus, which, in turn, activates the expression of ALMT1. We also show that a low pH is necessary to stimulate the Fe-dependent accumulation of nuclear STOP1. Furthermore, pharmacological experiments indicate that Fe inhibits proteasomal degradation of STOP1. We also show that Al acts like Fe for nuclear accumulation of STOP1 and ALMT1 expression, and that the overaccumulation of STOP1 in the nucleus of the als3 mutant grown in low-Pi conditions could be abolished by Fe deficiency. Altogether, our results indicate that, under low-Pi conditions, Fe2/3+ and Al3+ act similarly to increase the stability of STOP1 and its accumulation in the nucleus where it activates the expression of ALMT1.
Collapse
Affiliation(s)
- Christian Godon
- Laboratoire de Biologie du Développement des Plantes, Commissariat à l'Énergie Atomique et aux Énergies AlternativesUMR7265 (CEA, Aix‐Marseille Université, CNRS)Saint Paul‐Lez‐DuranceF‐13108France
| | - Caroline Mercier
- Laboratoire de Biologie du Développement des Plantes, Commissariat à l'Énergie Atomique et aux Énergies AlternativesUMR7265 (CEA, Aix‐Marseille Université, CNRS)Saint Paul‐Lez‐DuranceF‐13108France
| | - Xiaoyue Wang
- Ministry of Education Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Pascale David
- Laboratoire de Biologie du Développement des Plantes, Commissariat à l'Énergie Atomique et aux Énergies AlternativesUMR7265 (CEA, Aix‐Marseille Université, CNRS)Saint Paul‐Lez‐DuranceF‐13108France
| | - Pierre Richaud
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et MicroalguesCommissariat à l'Énergie Atomique et aux Énergies AlternativesUMR7265 (CEA, Aix‐Marseille Université, CNRS)Saint Paul‐Lez‐DuranceF‐13108France
| | - Laurent Nussaume
- Laboratoire de Biologie du Développement des Plantes, Commissariat à l'Énergie Atomique et aux Énergies AlternativesUMR7265 (CEA, Aix‐Marseille Université, CNRS)Saint Paul‐Lez‐DuranceF‐13108France
| | - Dong Liu
- Ministry of Education Key Laboratory of BioinformaticsCenter for Plant BiologySchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Thierry Desnos
- Laboratoire de Biologie du Développement des Plantes, Commissariat à l'Énergie Atomique et aux Énergies AlternativesUMR7265 (CEA, Aix‐Marseille Université, CNRS)Saint Paul‐Lez‐DuranceF‐13108France
| |
Collapse
|
125
|
Che J, Yokosho K, Yamaji N, Ma JF. A Vacuolar Phytosiderophore Transporter Alters Iron and Zinc Accumulation in Polished Rice Grains. PLANT PHYSIOLOGY 2019; 181:276-288. [PMID: 31331995 PMCID: PMC6716231 DOI: 10.1104/pp.19.00598] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/03/2019] [Indexed: 05/04/2023]
Abstract
Essential metals, such as iron (Fe) and zinc (Zn), in grains are important sources for seed germination and nutritional requirements, but the molecular mechanisms underlying their loading into grains are poorly understood. Recently, nodes in rice (Oryza sativa) were reported to play an important role in the preferential distribution of mineral elements to the grains. In this study, we functionally characterized a rice gene highly expressed in nodes, OsVMT (VACUOLAR MUGINEIC ACID TRANSPORTER), belonging to a major facilitator superfamily. OsVMT is highly expressed in the parenchyma cell bridges of node I, where Fe and Zn are highly deposited. The expression of OsVMT was induced by Fe deficiency in the roots but not in the shoot basal region and uppermost node. OsVMT localized to the tonoplast and showed efflux transport activity for 2'-deoxymugineic acid (DMA). At the vegetative stage, knockout of OsVMT resulted in decreased DMA but increased ferric Fe in the root cell sap. As a result, the concentration of DMA in the xylem sap increased but that of ferric Fe decreased in the xylem sap in the mutants. In the polished rice grain, the mutants accumulated 1.8- to 2.1-fold, 1.5- to 1.6-fold, and 1.4- to 1.5-fold higher Fe, Zn, and DMA, respectively, than the wild type. Taken together, our results indicate that OsVMT is involved in sequestering DMA into the vacuoles and that knockout of this gene enhances the accumulation of Fe and Zn in polished rice grains through DMA-increased solubilization of Fe and Zn deposited in the node.
Collapse
Affiliation(s)
- Jing Che
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Kengo Yokosho
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
126
|
Mendoza-Cózatl DG, Gokul A, Carelse MF, Jobe TO, Long TA, Keyster M. Keep talking: crosstalk between iron and sulfur networks fine-tunes growth and development to promote survival under iron limitation. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4197-4210. [PMID: 31231775 DOI: 10.1093/jxb/erz290] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/08/2019] [Indexed: 05/21/2023]
Abstract
Plants are capable of synthesizing all the molecules necessary to complete their life cycle from minerals, water, and light. This plasticity, however, comes at a high energetic cost and therefore plants need to regulate their economy and allocate resources accordingly. Iron-sulfur (Fe-S) clusters are at the center of photosynthesis, respiration, amino acid, and DNA metabolism. Fe-S clusters are extraordinary catalysts, but their main components (Fe2+ and S2-) are highly reactive and potentially toxic. To prevent toxicity, plants have evolved mechanisms to regulate the uptake, storage, and assimilation of Fe and S. Recent advances have been made in understanding the cellular economy of Fe and S metabolism individually, and growing evidence suggests that there is dynamic crosstalk between Fe and S networks. In this review, we summarize and discuss recent literature on Fe sensing, allocation, use efficiency, and, when pertinent, its relationship to S metabolism. Our future perspectives include a discussion about the open questions and challenges ahead and how the plant nutrition field can come together to approach these questions in a cohesive and more efficient way.
Collapse
Affiliation(s)
- David G Mendoza-Cózatl
- Division of Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Arun Gokul
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Mogamat F Carelse
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Timothy O Jobe
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Terri A Long
- Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
- DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
127
|
Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling. Proc Natl Acad Sci U S A 2019; 116:17584-17591. [PMID: 31413196 PMCID: PMC6717287 DOI: 10.1073/pnas.1907971116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mechanisms to balance the acquisition of sufficient Fe while preventing a toxic overload differ in bacteria, fungi, animals, and plants. Identification of specific E3 ligases acting directly on a key transcription factor for Fe uptake in Arabidopsis indicates how this balance is regulated in dicotyledonous plants. The domain structure and function of the E3 ligases show interesting parallels to a distantly related protein regulating Fe homeostasis in mammals. Moreover, the accumulation of Fe in weaker mutant alleles of the E3 ligases could be exploited for biofortification of crops. Organisms need to balance sufficient uptake of iron (Fe) with possible toxicity. In plant roots, a regulon of uptake genes is transcriptionally activated under Fe deficiency, but it is unknown how this response is inactivated when Fe becomes available. Here we describe the function of 2 partially redundant E3 ubiquitin ligases, BRUTUS-LIKE1 (BTSL1) and BTSL2, in Arabidopsis thaliana and provide evidence that they target the transcription factor FIT, a key regulator of Fe uptake, for degradation. The btsl double mutant failed to effectively down-regulate the transcription of genes controlled by FIT, and accumulated toxic levels of Fe in roots and leaves. The C-terminal domains of BTSL1 and BTSL2 exhibited E3 ligase activity, and interacted with FIT but not its dimeric partner bHLH39. The BTSL proteins were able to poly-ubiquitinate FIT in vitro and promote FIT degradation in vivo. Thus, posttranslational control of FIT is critical to prevent excess Fe uptake.
Collapse
|
128
|
Schmidt W. The Yin and Yang of Iron in Plants and Beyond: 19th International Symposium on Iron Nutrition and Interactions in Plants (ISINIP) in Taiwan. PLANT & CELL PHYSIOLOGY 2019; 60:1401-1404. [PMID: 31076754 DOI: 10.1093/pcp/pcz066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
The19th edition of the International Symposium on Iron Nutrition and Interactions in Plants, a biannual meeting initiated in 1981, took place in Taiwan for the first time. The five-day event was held at the Academia Sinica campus in the Southeast of Taiwan's capital city Taipei, and hosted around 200 scientists from around the world. The meeting covered a diverse array of topics centered around iron nutrition, including but not limited to soil processes, biofortification, transport, signaling and molecular processes regulating the cellular homeostasis of iron. Here, I review the research foci highlighted during the meeting by oral and poster presentations.
Collapse
Affiliation(s)
- Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
129
|
Kobayashi T. Understanding the Complexity of Iron Sensing and Signaling Cascades in Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1440-1446. [PMID: 30796837 DOI: 10.1093/pcp/pcz038] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/12/2019] [Indexed: 05/06/2023]
Abstract
Under iron-deficient conditions, plants induce the expression of a set of genes involved in iron uptake and translocation. This response to iron deficiency is regulated by transcriptional networks mediated by transcription factors (TFs) and protein-level modification of key factors by ubiquitin ligases. Several of the basic helix-loop-helix TFs and the HRZ/BTS ubiquitin ligases are conserved across graminaceous and non-graminaceous plants. Other regulators are specific, such as IDEF1 and IDEF2 in graminaceous plants and FIT/FER and MYB10/72 in non-graminaceous plants. IMA/FEP peptides positively regulate the iron-deficiency responses in a wide range of plants by unknown mechanisms. Direct binding of iron or other metals to some key regulators, including HRZ/BTS and IDEF1, may be responsible for intracellular iron-sensing and -signaling events. In addition, key TFs such as FIT and IDEF1 interact with various proteins involved in signaling pathways of plant hormones, oxidative stress and metal abundance. Thus, FIT and IDEF1 might function as hubs for the integration of environmental signals to modulate the responses to iron deficiency. In addition to local iron signaling, root iron responses are modulated by shoot-derived long-distance signaling potentially mediated by phloem-mobile substances such as iron, iron chelates and IMA/FEP peptides.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, Japan
| |
Collapse
|
130
|
Connorton JM, Balk J. Iron Biofortification of Staple Crops: Lessons and Challenges in Plant Genetics. PLANT & CELL PHYSIOLOGY 2019; 60:1447-1456. [PMID: 31058958 PMCID: PMC6619672 DOI: 10.1093/pcp/pcz079] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/23/2019] [Indexed: 05/19/2023]
Abstract
Plants are the ultimate source of iron in our diet, either directly as staple crops and vegetables or indirectly via animal fodder. Increasing the iron concentration of edible parts of plants, known as biofortification, is seen as a sustainable approach to alleviate iron deficiency which is a major global health issue. Advances in sequencing and gene technology are accelerating both forward and reverse genetic approaches. In this review, we summarize recent progress in iron biofortification using conventional plant breeding or transgenics. Interestingly, some of the gene targets already used for transgenic approaches are also identified as genetic factors for high iron in genome-wide association studies. Several quantitative trait loci and transgenes increase both iron and zinc, due to overlap in transporters and chelators for these two mineral micronutrients. Research efforts are predominantly aimed at increasing the total concentration of iron but enhancing its bioavailability is also addressed. In particular, increased biosynthesis of the metal chelator nicotianamine increases iron and zinc levels and improves bioavailability. The achievements to date are very promising in being able to provide sufficient iron in diets with less reliance on meat to feed a growing world population.
Collapse
Affiliation(s)
- James M Connorton
- Department of Biological Chemistry, John Innes Centre, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
131
|
Wen D, Sun S, Yang W, Zhang L, Liu S, Gong B, Shi Q. Overexpression of S-nitrosoglutathione reductase alleviated iron-deficiency stress by regulating iron distribution and redox homeostasis. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:1-11. [PMID: 30999072 DOI: 10.1016/j.jplph.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 05/22/2023]
Abstract
Iron (Fe) is an essential micronutrient element for plant growth. The S-nitrosoglutathione reductase (GSNOR) gene's functions under Fe-deficiency conditions are not well understood. Here, GSNOR expression was induced by Fe deficiency in tomato (Solanum lycopersicum L.) leaves and roots, while its overexpression alleviated chlorosis under Fe-deficiency conditions. GSNOR overexpression positively regulated the Fe distribution from root to shoot, which might result from the transcriptional regulation of genes involved in Fe metabolism. Additionally, the overexpression of GSNOR maintained redox homeostasis and protected chloroplasts from Fe-deficiency-related damage, resulting in a greater photosynthetic capacity. As a nitric oxide regulator, GSNOR's overexpression decreased the excessive accumulation of nitric oxide and S-nitrosothiols during the Fe deficiency, and maintained the homeostases of reactive oxygen species and reactive nitrogen species. Moreover, GSNOR overexpression, probably at the level of genes and proteins, along with protein S-nitrosylation, promoted Fe uptake and regulated the shoot/root Fe ratio under Fe-deficiency conditions.
Collapse
Affiliation(s)
- Dan Wen
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China; Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Shasha Sun
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Wanying Yang
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Lili Zhang
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Shiqi Liu
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Biao Gong
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China.
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
132
|
Copper transporter COPT5 participates in the crosstalk between vacuolar copper and iron pools mobilisation. Sci Rep 2019; 9:4648. [PMID: 30874615 PMCID: PMC6420658 DOI: 10.1038/s41598-018-38005-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/17/2018] [Indexed: 11/12/2022] Open
Abstract
Copper (Cu) deficiency affects iron (Fe) homeostasis in several plant processes, including the increased Fe requirements due to cuproprotein substitutions for the corresponding Fe counterpart. Loss-of-function mutants from Arabidopsis thaliana high affinity copper transporter COPT5 and Fe transporters NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 3/4 (NRAMP3 and NRAMP4) were used to study the interaction between metals internal pools. A physiological characterisation showed that the copt5 mutant is sensitive to Fe deficiency, and that nramp3nramp4 mutant growth was severely affected under limiting Cu. By a transcriptomic analysis, we observed that NRAMP4 expression was highly induced in the copt5 mutant under Cu deficiency, while COPT5 was overexpressed in the nramp3nramp4 mutant. As a result, an enhanced mobilisation of the vacuolar Cu or Fe pools, when the other metal export through the tonoplast is impaired in the mutants, has been postulated. However, metals coming from internal pools are not used to accomplish the increased requirements that derive from metalloprotein substitution under metal deficiencies. Instead, the metal concentrations present in aerial parts of the copt5 and nramp3nramp4 mutants conversely show compensated levels of these two metals. Together, our data uncover an interconnection between Cu and Fe vacuolar pools, whose aim is to fulfil interorgan metal translocation.
Collapse
|
133
|
Kobayashi T, Nozoye T, Nishizawa NK. Iron transport and its regulation in plants. Free Radic Biol Med 2019; 133:11-20. [PMID: 30385345 DOI: 10.1016/j.freeradbiomed.2018.10.439] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022]
Abstract
Iron is an essential element for plants as well as other organisms, functioning in various cellular processes, including respiration, chlorophyll biosynthesis, and photosynthesis. Plants take up iron from soil in which iron solubility is extremely low especially under aerobic conditions at high-pH range. Therefore, plants have evolved efficient iron-uptake mechanisms. Because iron is prone to being precipitated and excess ionic iron is cytotoxic, plants also have sophisticated internal iron-transport mechanisms. These transport mechanisms comprise iron chelators including nicotianamine, mugineic acid family phytosiderophores and citrate, and various types of transporters of these chelators, iron-chelate complexes, or free iron ions. To maintain iron homeostasis, plants have developed mechanisms for regulating gene expression in response to iron availability. Expression of various genes involved in iron uptake and translocation is induced under iron deficiency by transcription factor networks and is negatively regulated by the ubiquitin ligase HRZ/BTS. This response is deduced to be mediated by cellular iron sensing as well as long-distance iron signaling. The ubiquitin ligase HRZ/BTS is a candidate intracellular iron sensor because it binds to iron and zinc, and its activity is affected by iron availability. The iron-excess response of plants is thought to be partially independent of the iron-deficiency response. In this review, we summarize and discuss extant knowledge of plant iron transport and its regulation.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Tomoko Nozoye
- Center for Liberal Arts, Meiji Gakuin University, 1518 Kamikurata-cho, Totsuka-ku, Yokohama, Kanagawa 244-8539, Japan; Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan; Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
134
|
Wu LB, Holtkamp F, Wairich A, Frei M. Potassium Ion Channel Gene OsAKT1 Affects Iron Translocation in Rice Plants Exposed to Iron Toxicity. FRONTIERS IN PLANT SCIENCE 2019; 10:579. [PMID: 31134118 PMCID: PMC6517512 DOI: 10.3389/fpls.2019.00579] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/18/2019] [Indexed: 05/17/2023]
Abstract
Iron toxicity is one of the most widely spread mineral disorders in anaerobic soils, but the tolerance mechanisms in plants are poorly understood. Here we characterize the involvement of a rice potassium ion channel gene, OsAKT1, in Fe toxic conditions. Two knock-down lines of OsAKT1 together with azygos lines were investigated. Mutant lines did not differ from azygos lines regarding plant growth, gas exchange rate or chlorophyll fluorescence in control conditions. However, loss-of-function of OsAKT1 increased the sensitivity to excess Fe regarding leaf bronzing symptoms, reactive oxygen species generation, leaf spectral reflectance indices, and chlorophyll fluorescence. Fe toxicity leads to largely reduced uptake of other nutrients into shoots, which illustrates the complexity of Fe stress related to multiple mineral disorders. Less potassium uptake in the mutants compared to azygos lines co-occurred with higher amounts of Fe accumulated in the shoot tissues but not in the roots. These results were consistent with a higher level of Fe loaded into the xylem sap of mutants compared to azygos lines in the early phase of Fe toxicity. In conclusion, OsAKT1 is crucial for the tolerance of rice against Fe toxicity as K homeostasis affects Fe translocation from root to shoot.
Collapse
Affiliation(s)
- Lin-Bo Wu
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Felix Holtkamp
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Andriele Wairich
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Michael Frei
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- *Correspondence: Michael Frei,
| |
Collapse
|
135
|
Jain A, Dashner ZS, Connolly EL. Mitochondrial Iron Transporters (MIT1 and MIT2) Are Essential for Iron Homeostasis and Embryogenesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:1449. [PMID: 31850005 PMCID: PMC6889801 DOI: 10.3389/fpls.2019.01449] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/17/2019] [Indexed: 05/08/2023]
Abstract
Iron (Fe) is an essential nutrient for virtually all organisms, where it functions in critical electron transfer processes, like those involved in respiration. Photosynthetic organisms have special requirements for Fe due to its importance in photosynthesis. While the importance of Fe for mitochondria- and chloroplast-localized processes is clear, our understanding of the molecular mechanisms that underlie the trafficking of Fe to these compartments is not complete. Here, we describe the Arabidopsis mitochondrial iron transporters, MIT1 and MIT2, that belong to the mitochondrial carrier family (MCF) of transport proteins. MIT1 and MIT2 display considerable homology with known mitochondrial Fe transporters of other organisms. Expression of MIT1 or MIT2 rescues the phenotype of the yeast mrs3mrs4 mutant, which is defective in mitochondrial iron transport. Although the Arabidopsis mit1 and mit2 single mutants do not show any significant visible phenotypes, the double mutant mit1mit2 displays embryo lethality. Analysis of a mit1 -- /mit2 + - line revealed that MIT1 and MIT2 are essential for iron acquisition by mitochondria and proper mitochondrial function. In addition, loss of MIT function results in mislocalization of Fe, which in turn causes upregulation of the root high affinity Fe uptake pathway. Thus, MIT1 and MIT2 are required for the maintenance of both mitochondrial and whole plant Fe homeostasis, which, in turn, is important for the proper growth and development of the plant.
Collapse
Affiliation(s)
- Anshika Jain
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Zachary S. Dashner
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Erin L. Connolly
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Erin L. Connolly,
| |
Collapse
|
136
|
Zhou LJ, Zhang CL, Zhang RF, Wang GL, Li YY, Hao YJ. The SUMO E3 Ligase MdSIZ1 Targets MdbHLH104 to Regulate Plasma Membrane H +-ATPase Activity and Iron Homeostasis. PLANT PHYSIOLOGY 2019; 40:2068-2080. [PMID: 30333149 DOI: 10.1111/pce.12978] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/04/2017] [Accepted: 04/08/2017] [Indexed: 05/20/2023]
Abstract
SIZ1 (a SIZ/PIAS-type SUMO E3 ligase)-mediated small ubiquitin-like modifier (SUMO) modification of target proteins is important for various biological processes related to abiotic stress resistance in plants; however, little is known about its role in resistance toward iron (Fe) deficiency. Here, the SUMO E3 ligase MdSIZ1 was shown to be involved in the plasma membrane (PM) H+-ATPase-mediated response to Fe deficiency. Subsequently, a basic helix-loop-helix transcription factor, MdbHLH104 (a homolog of Arabidopsis bHLH104 in apple), which acts as a key component in regulating PM H+-ATPase-mediated rhizosphere acidification and Fe uptake in apples (Malus domestica), was identified as a direct target of MdSIZ1. MdSIZ1 directly sumoylated MdbHLH104 both in vitro and in vivo, especially under conditions of Fe deficiency, and this sumoylation was required for MdbHLH104 protein stability. Double substitution of K139R and K153R in MdbHLH104 blocked MdSIZ1-mediated sumoylation in vitro and in vivo, indicating that the K139 and K153 residues were the principal sites of SUMO conjugation. Moreover, the transcript level of the MdSIZ1 gene was substantially induced following Fe deficiency. MdSIZ1 overexpression exerted a positive influence on PM H+-ATPase-mediated rhizosphere acidification and Fe uptake. Our findings reveal an important role for sumoylation in the regulation of PM H+-ATPase-mediated rhizosphere acidification and Fe uptake during Fe deficiency in plants.
Collapse
Affiliation(s)
- Li-Jie Zhou
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Ling Zhang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Rui-Fen Zhang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
- Qingdao Academy of Agricultural Science, Qing-Dao, Shandong 266100, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
137
|
Gao F, Robe K, Gaymard F, Izquierdo E, Dubos C. The Transcriptional Control of Iron Homeostasis in Plants: A Tale of bHLH Transcription Factors? FRONTIERS IN PLANT SCIENCE 2019; 10:6. [PMID: 30713541 PMCID: PMC6345679 DOI: 10.3389/fpls.2019.00006] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/07/2019] [Indexed: 05/19/2023]
Abstract
Iron is one of the most important micronutrients in plants as it is involved in many cellular functions (e.g., photosynthesis and respiration). Any defect in iron availability will affect plant growth and development as well as crop yield and plant product quality. Thus, iron homeostasis must be tightly controlled in order to ensure optimal absorption of this mineral element. Understanding mechanisms governing iron homeostasis in plants has been the focus of several studies during the past 10 years. These studies have greatly improved our understanding of the mechanisms involved, revealing a sophisticated iron-dependent transcriptional regulatory network. Strikingly, these studies have also highlighted that this regulatory web relies on the activity of numerous transcriptional regulators that belong to the same group of transcription factors (TF), the bHLH (basic helix-loop-helix) family. This is best exemplified in Arabidopsis where, to date, 16 bHLH TF have been characterized as involved in this process and acting in a complex regulatory cascade. Interestingly, among these bHLH TF some form specific clades, indicating that peculiar function dedicated to the maintenance of iron homeostasis, have emerged during the course of the evolution of the green lineage. Within this mini review, we present new insights on the control of iron homeostasis and the involvement of bHLH TF in this metabolic process.
Collapse
|
138
|
Rodríguez-Celma J, Chou H, Kobayashi T, Long TA, Balk J. Hemerythrin E3 Ubiquitin Ligases as Negative Regulators of Iron Homeostasis in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:98. [PMID: 30815004 PMCID: PMC6381054 DOI: 10.3389/fpls.2019.00098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/22/2019] [Indexed: 05/19/2023]
Abstract
Iron (Fe) is an essential nutrient for plants, but at the same time its redox properties can make it a dangerous toxin inside living cells. Homeostasis between uptake, use and storage of Fe must be maintained at all times. A small family of unique hemerythrin E3 ubiquitin ligases found in green algae and plants play an important role in avoiding toxic Fe overload, acting as negative regulators of Fe homeostasis. Protein interaction data showed that they target specific transcription factors for degradation by the 26S proteasome. It is thought that the activity of the E3 ubiquitin ligases is controlled by Fe binding to the N-terminal hemerythrin motifs. Here, we discuss what we have learned so far from studies on the HRZ (Hemerythrin RING Zinc finger) proteins in rice, the homologous BTS (BRUTUS) and root-specific BTSL (BRUTUS-LIKE) in Arabidopsis. A mechanistic model is proposed to help focus future research questions towards a full understanding of the regulatory role of these proteins in Fe homeostasis in plants.
Collapse
Affiliation(s)
- Jorge Rodríguez-Celma
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Hsuan Chou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Japan
| | - Terri A. Long
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- *Correspondence: Janneke Balk,
| |
Collapse
|
139
|
Chutia R, Abel S, Ziegler J. Iron and Phosphate Deficiency Regulators Concertedly Control Coumarin Profiles in Arabidopsis thaliana Roots During Iron, Phosphate, and Combined Deficiencies. FRONTIERS IN PLANT SCIENCE 2019; 10:113. [PMID: 30804973 PMCID: PMC6378295 DOI: 10.3389/fpls.2019.00113] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/23/2019] [Indexed: 05/10/2023]
Abstract
Plants face varying nutrient conditions, to which they have to adapt to. Adaptive responses are nutrient-specific and strategies to ensure supply and homeostasis for one nutrient might be opposite to another one, as shown for phosphate (Pi) and iron (Fe) deficiency responses, where many genes are regulated in an opposing manner. This was also observed on the metabolite levels. Whereas root and exudate levels of catechol-type coumarins, phenylpropanoid-derived 2-benzopyranones, which facilitate Fe acquisition, are elevated after Fe deficiency, they are decreased after Pi deficiency. Exposing plants to combined Pi and Fe deficiency showed that the generation of coumarin profiles in Arabidopsis thaliana roots by Pi deficiency considerably depends on the availability of Fe. Similarly, the effect of Fe deficiency on coumarin profiles is different at low compared to high Pi availability. These findings suggest a fine-tuning of coumarin profiles, which depends on Fe and Pi availability. T-DNA insertion lines exhibiting aberrant expression of genes involved in the regulation of Pi starvation responses (PHO1, PHR1, bHLH32, PHL1, SPX1) and Fe starvation responses (BRUTUS, PYE, bHLH104, FIT) were used to analyze the regulation of the generation of coumarin profiles in Arabidopsis thaliana roots by Pi, Fe, and combined Pi and Fe deficiency. The analysis revealed a role of several Fe-deficiency response regulators in the regulation of Fe and of Pi deficiency-induced coumarin profiles as well as for Pi deficiency response regulators in the regulation of Pi and of Fe deficiency-induced coumarin profiles. Additionally, the regulation of Fe deficiency-induced coumarin profiles by Fe deficiency response regulators is influenced by Pi availability. Conversely, regulation of Pi deficiency-induced coumarin profiles by Pi deficiency response regulators is modified by Fe availability.
Collapse
|
140
|
Zhou LJ, Zhang CL, Zhang RF, Wang GL, Li YY, Hao YJ. The SUMO E3 Ligase MdSIZ1 Targets MdbHLH104 to Regulate Plasma Membrane H +-ATPase Activity and Iron Homeostasis. PLANT PHYSIOLOGY 2019; 179:88-106. [PMID: 30333149 PMCID: PMC6324222 DOI: 10.1104/pp.18.00289] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/09/2018] [Indexed: 05/20/2023]
Abstract
SIZ1 (a SIZ/PIAS-type SUMO E3 ligase)-mediated small ubiquitin-like modifier (SUMO) modification of target proteins is important for various biological processes related to abiotic stress resistance in plants; however, little is known about its role in resistance toward iron (Fe) deficiency. Here, the SUMO E3 ligase MdSIZ1 was shown to be involved in the plasma membrane (PM) H+-ATPase-mediated response to Fe deficiency. Subsequently, a basic helix-loop-helix transcription factor, MdbHLH104 (a homolog of Arabidopsis bHLH104 in apple), which acts as a key component in regulating PM H+-ATPase-mediated rhizosphere acidification and Fe uptake in apples (Malus domestica), was identified as a direct target of MdSIZ1. MdSIZ1 directly sumoylated MdbHLH104 both in vitro and in vivo, especially under conditions of Fe deficiency, and this sumoylation was required for MdbHLH104 protein stability. Double substitution of K139R and K153R in MdbHLH104 blocked MdSIZ1-mediated sumoylation in vitro and in vivo, indicating that the K139 and K153 residues were the principal sites of SUMO conjugation. Moreover, the transcript level of the MdSIZ1 gene was substantially induced following Fe deficiency. MdSIZ1 overexpression exerted a positive influence on PM H+-ATPase-mediated rhizosphere acidification and Fe uptake. Our findings reveal an important role for sumoylation in the regulation of PM H+-ATPase-mediated rhizosphere acidification and Fe uptake during Fe deficiency in plants.
Collapse
Affiliation(s)
- Li-Jie Zhou
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Ling Zhang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Rui-Fen Zhang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
- Qingdao Academy of Agricultural Science, Qing-Dao, Shandong 266100, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
141
|
Grillet L, Lan P, Li W, Mokkapati G, Schmidt W. IRON MAN is a ubiquitous family of peptides that control iron transport in plants. NATURE PLANTS 2018; 4:953-963. [PMID: 30323182 DOI: 10.1038/s41477-018-0266-y] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/28/2018] [Indexed: 05/09/2023]
Abstract
Iron (Fe) is an essential mineral nutrient that severely affects the growth, yield and nutritional quality of plants if not supplied in sufficient quantities. Here, we report that a short C-terminal amino-acid sequence consensus motif (IRON MAN; IMA) conserved across numerous, highly diverse peptides in angiosperms is essential for Fe uptake in plants. Overexpression of the IMA sequence in Arabidopsis induced Fe uptake genes in roots, causing accumulation of Fe and manganese in all plant parts including seeds. Silencing of all eight IMA genes harboured in the Arabidopsis genome abolished Fe uptake and caused severe chlorosis; increasing the Fe supply or expressing IMA1 restored the wild-type phenotype. IMA1 is predominantly expressed in the phloem, preferentially in leaves, and reciprocal grafting showed that IMA1 peptides in shoots positively regulate Fe uptake in roots. IMA homologues are highly responsive to the Fe status and functional when heterologously expressed across species. IMA constitutes a novel family of peptides that are critical for the acquisition and cellular homeostasis of Fe across land plants.
Collapse
Affiliation(s)
- Louis Grillet
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ping Lan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wenfeng Li
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Girish Mokkapati
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Molecular Biology and Agricultural Sciences Program, Taiwan International Graduate program, Academia Sinica and National ChungHsing University, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
142
|
Kappara S, Neelamraju S, Ramanan R. Down regulation of a heavy metal transporter gene influences several domestication traits and grain Fe-Zn content in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:208-219. [PMID: 30348320 DOI: 10.1016/j.plantsci.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 05/07/2023]
Abstract
Biofortification of rice (Oryza sativa L.) would alleviate iron and zinc deficiencies in the target populations. We identified two alleles 261 and 284 of a Gramineae-specific heavy metal transporter gene OsHMA7 by analyzing expression patterns and sequences of genes within QTLs for high Fe & Zn, in Madhukar x Swarna recombinant inbred lines (RILs) with high (HL) or low (LL) grain Fe & Zn. Overexpression of 261 allele increased grain Fe and Zn but most of the transgenic plants either did not survive or did not yield enough seeds and could not be further characterized. Knocking down expression of OsHMA7 by RNAi silencing of endogenous gene resulted in plants with altered domestication traits such as plant height, tiller number, panicle size and architecture, grain color, shape, size, grain shattering, heading date and increased sensitivity to Fe and Zn deficiency. However, overexpression of 284 allele resulted in transgenic lines with either high grain Fe & Zn content (HL-ox) and tolerance to Fe and Zn deficiency or low grain Fe & Zn content (LL-ox) and phenotype similar to RNAi-lines. OsHMA7 transcript levels were five-fold higher in the HL-ox plants whereas LL-ox and RNAi plants showed 2-3 fold reduced levels compared to Kitaake control. Spraying LL-ox and RNAi lines with Fe & Zn at grain filling stage resulted in increased grain yield, significant increase in Fe & Zn content and brown pericarp. Altered expression of OsHMA7 influenced transcript levels of iron-responsive genes indicating cellular Fe-Zn homeostasis and also several domestication-related genes in rice. Our study shows that a novel heavy metal transporter gene influences yield and grain Fe & Zn content and has potential to improve rice production and biofortification.
Collapse
Affiliation(s)
| | - Sarla Neelamraju
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India.
| | | |
Collapse
|
143
|
Phosphorylation and Proteasome Recognition of the mRNA-Binding Protein Cth2 Facilitates Yeast Adaptation to Iron Deficiency. mBio 2018; 9:mBio.01694-18. [PMID: 30228242 PMCID: PMC6143738 DOI: 10.1128/mbio.01694-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Iron is a vital element for many metabolic pathways, including the synthesis of DNA and proteins, and the generation of energy via oxidative phosphorylation. Therefore, living organisms have developed tightly controlled mechanisms to properly distribute iron, since imbalances lead to nutritional deficiencies, multiple diseases, and vulnerability against pathogens. Saccharomyces cerevisiae Cth2 is a conserved mRNA-binding protein that coordinates a global reprogramming of iron metabolism in response to iron deficiency in order to optimize its utilization. Here we report that the phosphorylation of Cth2 at specific serine residues is essential to regulate the stability of the protein and adaptation to iron depletion. We identify the kinase and ubiquitination machinery implicated in this process to establish a posttranscriptional regulatory model. These results and recent findings for both mammals and plants reinforce the privileged position of E3 ubiquitin ligases and phosphorylation events in the regulation of eukaryotic iron homeostasis. Iron is an indispensable micronutrient for all eukaryotic organisms due to its participation as a redox cofactor in many metabolic pathways. Iron imbalance leads to the most frequent human nutritional deficiency in the world. Adaptation to iron limitation requires a global reorganization of the cellular metabolism directed to prioritize iron utilization for essential processes. In response to iron scarcity, the conserved Saccharomyces cerevisiae mRNA-binding protein Cth2, which belongs to the tristetraprolin family of tandem zinc finger proteins, coordinates a global remodeling of the cellular metabolism by promoting the degradation of multiple mRNAs encoding highly iron-consuming proteins. In this work, we identify a critical mechanism for the degradation of Cth2 protein during the adaptation to iron deficiency. Phosphorylation of a patch of Cth2 serine residues within its amino-terminal region facilitates recognition by the SCFGrr1 ubiquitin ligase complex, accelerating Cth2 turnover by the proteasome. When Cth2 degradation is impaired by either mutagenesis of the Cth2 serine residues or deletion of GRR1, the levels of Cth2 rise and abrogate growth in iron-depleted conditions. Finally, we uncover that the casein kinase Hrr25 phosphorylates and promotes Cth2 destabilization. These results reveal a sophisticated posttranslational regulatory pathway necessary for the adaptation to iron depletion.
Collapse
|
144
|
Bastow EL, Garcia de la Torre VS, Maclean AE, Green RT, Merlot S, Thomine S, Balk J. Vacuolar Iron Stores Gated by NRAMP3 and NRAMP4 Are the Primary Source of Iron in Germinating Seeds. PLANT PHYSIOLOGY 2018; 177:1267-1276. [PMID: 29784767 PMCID: PMC6052989 DOI: 10.1104/pp.18.00478] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/10/2018] [Indexed: 05/22/2023]
Abstract
During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nramp4 and wild type during germination and early seedling development. Even though sufficient Fe was supplied, the Fe-responsive transcription factors bHLH38, 39, 100, and 101 and their downstream targets FRO2 and IRT1 mediating Fe uptake were strongly upregulated in the nramp3 nramp4 mutant. Activation of the Fe deficiency response was confirmed by increased ferric chelate reductase activity in the mutant. At early stages, genes important for chloroplast redox control (FSD1 and SAPX), Fe homeostasis (FER1 and SUFB), and chlorophyll metabolism (HEMA1 and NYC1) were downregulated, indicating limited Fe availability in plastids. In contrast, expression of FRO3, encoding a ferric reductase involved in Fe import into the mitochondria, was maintained, and Fe-dependent enzymes in the mitochondria were unaffected in nramp3 nramp4 Together, these data show that a failure to mobilize Fe stores during germination triggered Fe deficiency responses and strongly affected plastids, but not mitochondria.
Collapse
Affiliation(s)
- Emma L Bastow
- John Innes Centre, Norwich NR4 7UH, United Kingdom
- University of East Anglia, Norwich NR4 7TJ, United Kingdom
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Vanesa S Garcia de la Torre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | | | | | - Sylvain Merlot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Sebastien Thomine
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Janneke Balk
- John Innes Centre, Norwich NR4 7UH, United Kingdom
- University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
145
|
Aung MS, Kobayashi T, Masuda H, Nishizawa NK. Rice HRZ ubiquitin ligases are crucial for response to excess iron. PHYSIOLOGIA PLANTARUM 2018; 163:282-296. [PMID: 29655221 DOI: 10.1111/ppl.12698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/22/2018] [Accepted: 02/01/2018] [Indexed: 05/06/2023]
Abstract
Iron is essential for virtually all organisms but is toxic when present in excess. To acquire the proper amount of iron, plants induce expression of various genes involved in iron uptake and translocation in response to low iron availability. Two iron-binding ubiquitin ligases, OsHRZ1 and OsHRZ2, negatively regulate such iron deficiency responses in rice (Oryza sativa). Transgenic rice plants with repressed expression of OsHRZ1 and OsHRZ2 (HRZ knockdown lines) are tolerant to low iron availability and accumulate iron in shoots and seeds under both iron-sufficient and -deficient conditions without a growth penalty. Although the expression of OsHRZ1 and OsHRZ2 is transcriptionally upregulated under iron-deficient conditions, the physiological relevance of this induction is not known. In the present study, we analyzed the response of HRZ knockdown lines to excess iron. In the presence of severe excess iron, the HRZ knockdown lines grew worse than non-transformants. The HRZ knockdown lines showed stunted shoot and root growth and more severe leaf bronzing compared to non-transformants. Moreover, these lines accumulated more iron in shoots and exhibited severely elevated expression of various genes involved in iron uptake and translocation as well as jasmonate signaling compared to non-transformants. These results indicate that HRZ ubiquitin ligases are crucial for repressing iron deficiency responses and protecting cells from iron toxicity in the presence of excess iron. These results support the possibility that HRZs are intracellular Fe sensors and provide clues for developing plants tolerant of either iron deficiency or excess with higher iron contents in edible parts.
Collapse
Affiliation(s)
- May Sann Aung
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Hiroshi Masuda
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| |
Collapse
|
146
|
Jeong J, Merkovich A, Clyne M, Connolly EL. Directing iron transport in dicots: regulation of iron acquisition and translocation. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:106-113. [PMID: 28689052 DOI: 10.1016/j.pbi.2017.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 05/03/2023]
Abstract
Iron is essential for plant growth and development, but excess iron is cytotoxic. While iron is abundant in soil, it is often a limiting nutrient for plant growth. Consequentially, plants have evolved mechanisms to tightly regulate iron uptake, trafficking and storage. Recent work has contributed to a more comprehensive picture of iron uptake, further elucidating molecular and physiological processes that aid in solubilization of iron and modulation of the root system architecture in response to iron availability. Recent progress in understanding the regulators of the iron deficiency response and iron translocation from root to shoots, and especially to seeds are noteworthy. The molecular bases of iron sensing and signaling are gradually emerging, as well.
Collapse
Affiliation(s)
- Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, MA 01002, United States
| | - Aleks Merkovich
- Department of Biology, Amherst College, Amherst, MA 01002, United States
| | - Madeline Clyne
- Department of Biology, Amherst College, Amherst, MA 01002, United States
| | - Erin L Connolly
- Department of Plant Science, Penn State University, University Park, PA 16802, United States.
| |
Collapse
|
147
|
Naranjo-Arcos MA, Maurer F, Meiser J, Pateyron S, Fink-Straube C, Bauer P. Dissection of iron signaling and iron accumulation by overexpression of subgroup Ib bHLH039 protein. Sci Rep 2017; 7:10911. [PMID: 28883478 PMCID: PMC5589837 DOI: 10.1038/s41598-017-11171-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
Iron is an essential growth determinant for plants, and plants acquire this micronutrient in amounts they need in their environment. Plants can increase iron uptake in response to a regulatory transcription factor cascade. Arabidopsis thaliana serves as model plant to identify and characterize iron regulation genes. Here, we show that overexpression of subgroup Ib bHLH transcription factor bHLH039 (39Ox) caused constitutive iron acquisition responses, which resulted in enhanced iron contents in leaves and seeds. Transcriptome analysis demonstrated that 39Ox plants displayed simultaneously gene expression patterns characteristic of iron deficiency and iron stress signaling. Thereby, we could dissect iron deficiency response regulation. The transcription factor FIT, which is required to regulate iron uptake, was essential for the 39Ox phenotype. We provide evidence that subgroup Ib transcription factors are involved in FIT transcriptional regulation. Our findings pose interesting questions to the feedback control of iron homeostasis.
Collapse
Affiliation(s)
- Maria Augusta Naranjo-Arcos
- Institute of Botany, Heinrich-Heine University, D-40225, Düsseldorf, Germany.,Department of Biosciences-Plant Biology, Saarland University, D-66123, Saarbrücken, Germany
| | - Felix Maurer
- Department of Biosciences-Plant Biology, Saarland University, D-66123, Saarbrücken, Germany
| | - Johannes Meiser
- Department of Biosciences-Plant Biology, Saarland University, D-66123, Saarbrücken, Germany
| | - Stephanie Pateyron
- Transcriptomic Platform, Institute of Plant Sciences - Paris-Saclay, Plateau du Moulon, 91190, Gif-sur-Yvette, France
| | - Claudia Fink-Straube
- Leibniz Institute for New Materials gGmbH, Campus D2.2, 66123, Saarbrücken, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich-Heine University, D-40225, Düsseldorf, Germany. .,Department of Biosciences-Plant Biology, Saarland University, D-66123, Saarbrücken, Germany. .,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, D-40225, Düsseldorf, Germany.
| |
Collapse
|
148
|
Andrés-Bordería A, Andrés F, Garcia-Molina A, Perea-García A, Domingo C, Puig S, Peñarrubia L. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2017; 95:17-32. [PMID: 28631167 DOI: 10.1007/s11103-017-0622-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/08/2017] [Indexed: 05/23/2023]
Abstract
Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.
Collapse
Affiliation(s)
- Amparo Andrés-Bordería
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Dr Moliner 50, Burjassot, 46100, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Fernando Andrés
- Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada - Náquera Km 4.5 Moncada, 46113, Valencia, Spain
- INRA, UMR AGAP, Equipe Architecture et Fonctionnement des Espèces Fruitières, Avenue d'Agropolis - TA-A-108/03, Cedex 5, 34398, Montpellier, France
| | - Antoni Garcia-Molina
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Dr Moliner 50, Burjassot, 46100, Valencia, Spain
- Department of Biology I. Plant Molecular Biology (Botany), Ludwig Maximilian University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Munich, Germany
| | - Ana Perea-García
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Dr Moliner 50, Burjassot, 46100, Valencia, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Calle Catedrático Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Concha Domingo
- Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada - Náquera Km 4.5 Moncada, 46113, Valencia, Spain
| | - Sergi Puig
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Dr Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Lola Peñarrubia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Dr Moliner 50, Burjassot, 46100, Valencia, Spain.
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, Burjassot, 46100, Valencia, Spain.
| |
Collapse
|
149
|
Zhang H, Li Y, Yao X, Liang G, Yu D. POSITIVE REGULATOR OF IRON HOMEOSTASIS1, OsPRI1, Facilitates Iron Homeostasis. PLANT PHYSIOLOGY 2017; 175:543-554. [PMID: 28751317 PMCID: PMC5580773 DOI: 10.1104/pp.17.00794] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/25/2017] [Indexed: 05/19/2023]
Abstract
Oryza sativa HEMERYTHRIN MOTIF-CONTAINING REALLY INTERESTING NEW GENE AND ZINC-FINGER PROTEIN1 (OsHRZ1) is a putative iron-binding sensor. However, it is unclear how OsHRZ1 transmits signals. In this study, we reveal that POSITIVE REGULATOR OF IRON HOMEOSTASIS1 (OsPRI1) interacts with OsHRZ1. A loss-of-function mutation to OsPRI1 increased the sensitivity of plants to Fe-deficient conditions and down-regulated the expression of Fe-deficiency-responsive genes. Yeast one-hybrid and electrophoretic mobility shift assay results suggested that OsPRI1 binds to the OsIRO2 and OsIRO3 promoters. In vitro ubiquitination experiments indicated that OsPRI1 is ubiquitinated by OsHRZ1. Cell-free degradation assays revealed that the stability of OsPRI1 decreased in wild-type roots but increased in the hrz1-2 mutant, suggesting OsHRZ1 is responsible for the instability of OsPRI1. The hrz1-2 seedlings were insensitive to Fe-deficient conditions. When the pri1-1 mutation was introduced into hrz1-2 mutants, the pri1hrz1 double mutant was more sensitive to Fe deficiency than the hrz1-2 mutant. Additionally, the expression levels of Fe-deficiency-responsive genes were lower in the hrz1pri1 double mutant than in the hrz1-2 mutant. Collectively, these results imply that OsPRI1, which is ubiquitinated by OsHRZ1, mediates rice responses to Fe deficiency by positively regulating OsIRO2 and OsIRO3 expression as part of the OsHRZ1-OsPRI1-OsIRO2/3 signal transduction cascade.
Collapse
Affiliation(s)
- Huimin Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiani Yao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Liang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
150
|
Connorton JM, Balk J, Rodríguez-Celma J. Iron homeostasis in plants - a brief overview. Metallomics 2017; 9:813-823. [PMID: 28686269 PMCID: PMC5708359 DOI: 10.1039/c7mt00136c] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/28/2017] [Indexed: 01/04/2023]
Abstract
Iron plays a crucial role in biochemistry and is an essential micronutrient for plants and humans alike. Although plentiful in the Earth's crust it is not usually found in a form readily accessible for plants to use. They must therefore sense and interact with their environment, and have evolved two different molecular strategies to take up iron in the root. Once inside, iron is complexed with chelators and distributed to sink tissues where it is used predominantly in the production of enzyme cofactors or components of electron transport chains. The processes of iron uptake, distribution and metabolism are overseen by tight regulatory mechanisms, at the transcriptional and post-transcriptional level, to avoid iron concentrations building to toxic excess. Iron is also loaded into seeds, where it is stored in vacuoles or in ferritin. This is important for human nutrition as seeds form the edible parts of many crop species. As such, increasing iron in seeds and other tissues is a major goal for biofortification efforts by both traditional breeding and biotechnological approaches.
Collapse
Affiliation(s)
- James M Connorton
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Janneke Balk
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Jorge Rodríguez-Celma
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|