101
|
Masson-Boivin C, Sachs JL. Symbiotic nitrogen fixation by rhizobia-the roots of a success story. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:7-15. [PMID: 29289792 DOI: 10.1016/j.pbi.2017.12.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 05/12/2023]
Abstract
By evolving the dual capacity of intracellular survival and symbiotic nitrogen fixation in legumes, rhizobia have achieved an ecological and evolutionary success that has reshaped our biosphere. Despite complex challenges, including a dual lifestyle of intracellular infection separated by a free-living phase in soil, rhizobial symbiosis has spread horizontally to hundreds of bacterial species and geographically throughout the globe. This symbiosis has also persisted and been reshaped through millions of years of history. Here, we summarize recent advances in our understanding of the molecular mechanisms, ecological settings, and evolutionary pathways that are collectively responsible for this symbiotic success story. We offer predictions of how this symbiosis can evolve under new influences and for the benefit of a burgeoning human population.
Collapse
Affiliation(s)
| | - Joel L Sachs
- Department of Evolution Ecology and Organismal Biology, University of California, Riverside, CA, USA
| |
Collapse
|
102
|
Pozzi AC, Bautista-Guerrero HH, Abby SS, Herrera-Belaroussi A, Abrouk D, Normand P, Menu F, Fernandez MP. Robust Frankia phylogeny, species delineation and intraspecies diversity based on Multi-Locus Sequence Analysis (MLSA) and Single-Locus Strain Typing (SLST) adapted to a large sample size. Syst Appl Microbiol 2018; 41:311-323. [DOI: 10.1016/j.syapm.2018.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022]
|
103
|
Magne K, George J, Berbel Tornero A, Broquet B, Madueño F, Andersen SU, Ratet P. Lotus japonicus NOOT-BOP-COCH-LIKE1 is essential for nodule, nectary, leaf and flower development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:880-894. [PMID: 29570881 DOI: 10.1111/tpj.13905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 05/26/2023]
Abstract
The NOOT-BOP-COCH-LIKE (NBCL) genes are orthologs of Arabidopsis thaliana BLADE-ON-PETIOLE1/2. The NBCLs are developmental regulators essential for plant shaping, mainly through the regulation of organ boundaries, the promotion of lateral organ differentiation and the acquisition of organ identity. In addition to their roles in leaf, stipule and flower development, NBCLs are required for maintaining the identity of indeterminate nitrogen-fixing nodules with persistent meristems in legumes. In legumes forming determinate nodules, without persistent meristem, the roles of NBCL genes are not known. We thus investigated the role of Lotus japonicus NOOT-BOP-COCH-LIKE1 (LjNBCL1) in determinate nodule identity and studied its functions in aerial organ development using LORE1 insertional mutants and RNA interference-mediated silencing approaches. In Lotus, LjNBCL1 is involved in leaf patterning and participates in the regulation of axillary outgrowth. Wild-type Lotus leaves are composed of five leaflets and possess a pair of nectaries at the leaf axil. Legumes such as pea and Medicago have a pair of stipules, rather than nectaries, at the base of their leaves. In Ljnbcl1, nectary development is abolished, demonstrating that nectaries and stipules share a common evolutionary origin. In addition, ectopic roots arising from nodule vascular meristems and reorganization of the nodule vascular bundle vessels were observed on Ljnbcl1 nodules. This demonstrates that NBCL functions are conserved in both indeterminate and determinate nodules through the maintenance of nodule vascular bundle identity. In contrast to its role in floral patterning described in other plants, LjNBCL1 appears essential for the development of both secondary inflorescence meristem and floral meristem.
Collapse
Affiliation(s)
- Kévin Magne
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Jeoffrey George
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Ana Berbel Tornero
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Universidad Politécnica de Valencia, CPI Edificio 8E, Avenida de los Naranjos s/n, Valencia, 46022, Spain
| | - Blandine Broquet
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Universidad Politécnica de Valencia, CPI Edificio 8E, Avenida de los Naranjos s/n, Valencia, 46022, Spain
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signaling, Aarhus University, Gustav Wieds Vej 10, Aarhus C, DK-8000, Denmark
| | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| |
Collapse
|
104
|
Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, Billault-Penneteau B, Lauressergues D, Keller J, Imanishi L, Roswanjaya YP, Kohlen W, Pujic P, Battenberg K, Alloisio N, Liang Y, Hilhorst H, Salgado MG, Hocher V, Gherbi H, Svistoonoff S, Doyle JJ, He S, Xu Y, Xu S, Qu J, Gao Q, Fang X, Fu Y, Normand P, Berry AM, Wall LG, Ané JM, Pawlowski K, Xu X, Yang H, Spannagl M, Mayer KFX, Wong GKS, Parniske M, Delaux PM, Cheng S. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 2018; 361:science.aat1743. [DOI: 10.1126/science.aat1743] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
|
105
|
van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A, Liu W, Santuari L, Cao Q, Sharma T, Shen D, Roswanjaya Y, Wardhani TAK, Kalhor MS, Jansen J, van den Hoogen J, Güngör B, Hartog M, Hontelez J, Verver J, Yang WC, Schijlen E, Repin R, Schilthuizen M, Schranz ME, Heidstra R, Miyata K, Fedorova E, Kohlen W, Bisseling T, Smit S, Geurts R. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proc Natl Acad Sci U S A 2018; 115:E4700-E4709. [PMID: 29717040 PMCID: PMC5960304 DOI: 10.1073/pnas.1721395115] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants.
Collapse
Affiliation(s)
- Robin van Velzen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Rens Holmer
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Fengjiao Bu
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Luuk Rutten
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Arjan van Zeijl
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Wei Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Luca Santuari
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Qingqin Cao
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
- College of Biological Science and Engineering & Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Trupti Sharma
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Defeng Shen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Yuda Roswanjaya
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Titis A K Wardhani
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Maryam Seifi Kalhor
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Joelle Jansen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Johan van den Hoogen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Berivan Güngör
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Marijke Hartog
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Jan Hontelez
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Jan Verver
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Wei-Cai Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Elio Schijlen
- Bioscience, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Rimi Repin
- Sabah Parks, 88806 Kota Kinabalu, Malaysia
| | - Menno Schilthuizen
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Malaysia
- Institute for Biology Leiden, Leiden University, 2333 BE, Leiden, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Kana Miyata
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Elena Fedorova
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Sandra Smit
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Rene Geurts
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands;
| |
Collapse
|
106
|
Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc Natl Acad Sci U S A 2018; 115:5229-5234. [PMID: 29712857 DOI: 10.1073/pnas.1721629115] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cooperative interactions among species, termed mutualisms, have played a crucial role in the evolution of life on Earth. However, despite key potential benefits to partners, there are many cases in which two species cease to cooperate and mutualisms break down. What factors drive the evolutionary breakdown of mutualism? We examined the pathways toward breakdowns of the mutualism between plants and arbuscular mycorrhizal fungi. By using a comparative approach, we identify ∼25 independent cases of complete mutualism breakdown across global seed plants. We found that breakdown of cooperation was only stable when host plants (i) partner with other root symbionts or (ii) evolve alternative resource acquisition strategies. Our results suggest that key mutualistic services are only permanently lost if hosts evolve alternative symbioses or adaptations.
Collapse
|
107
|
Nowack ECM, Weber APM. Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:51-84. [PMID: 29489396 DOI: 10.1146/annurev-arplant-042817-040209] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The conversion of free-living cyanobacteria to photosynthetic organelles of eukaryotic cells through endosymbiosis transformed the biosphere and eventually provided the basis for life on land. Despite the presumable advantage conferred by the acquisition of photoautotrophy through endosymbiosis, only two independent cases of primary endosymbiosis have been documented: one that gave rise to the Archaeplastida, and the other to photosynthetic species of the thecate, filose amoeba Paulinella. Here, we review recent genomics-informed insights into the primary endosymbiotic origins of cyanobacteria-derived organelles. Furthermore, we discuss the preconditions for the evolution of nitrogen-fixing organelles. Recent genomic data on previously undersampled cyanobacterial and protist taxa provide new clues to the origins of the host cell and endosymbiont, and proteomic approaches allow insights into the rearrangement of the endosymbiont proteome during organellogenesis. We conclude that in addition to endosymbiotic gene transfers, horizontal gene acquisitions from a broad variety of prokaryotic taxa were crucial to organelle evolution.
Collapse
Affiliation(s)
- Eva C M Nowack
- Microbial Symbiosis and Organelle Evolution Group, Biology Department, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany;
| |
Collapse
|
108
|
Taleski M, Imin N, Djordjevic MA. CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1829-1836. [PMID: 29579226 DOI: 10.1093/jxb/ery037] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Secreted peptide hormones play pivotal roles in plant growth and development. So far, CEPs (C-TERMINALLY ENCODED PEPTIDEs) have been shown to act through CEP receptors (CEPRs) to control nitrogen (N)-demand signalling, nodulation, and lateral root development. Secreted CEP peptides can enter the xylem stream to act as long-distance signals, but evidence also exists for CEPs acting in local circuits. Recently, CEP peptide species varying in sequence, length, and post-translational modifications have been identified. A more comprehensive understanding of CEP biology requires insight into the in planta function of CEP genes, CEP peptide biogenesis, the components of CEP signalling cascades and, finally, how CEP peptide length, amino-acid composition, and post-translational modifications affect biological activity. In this review, we highlight recent studies that have advanced our understanding in these key areas and discuss some future directions.
Collapse
Affiliation(s)
- Michael Taleski
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra ACT, Australia
| | - Nijat Imin
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra ACT, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra ACT, Australia
| |
Collapse
|
109
|
Lu-Irving P, Marx HE, Dlugosch KM. Leveraging contemporary species introductions to test phylogenetic hypotheses of trait evolution. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:95-102. [PMID: 29754025 DOI: 10.1016/j.pbi.2018.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
Plant trait evolution is a topic of interest across disciplines and scales. Phylogenetic studies are powerful for generating hypotheses about the mechanisms that have shaped plant traits and their evolution. Introduced plants are a rich source of data on contemporary trait evolution. Introductions could provide especially useful tests of a variety of evolutionary hypotheses because the environments selecting on evolving traits are still present. We review phylogenetic and contemporary studies of trait evolution and identify areas of overlap and areas for further integration. Emerging tools which can promote integration include broadly focused repositories of trait data, and comparative models of trait evolution that consider both intra and interspecific variation.
Collapse
Affiliation(s)
- Patricia Lu-Irving
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA.
| | - Hannah E Marx
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA
| |
Collapse
|
110
|
Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host. Front Microbiol 2018; 9:556. [PMID: 29636736 PMCID: PMC5881003 DOI: 10.3389/fmicb.2018.00556] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 01/05/2023] Open
Abstract
The insect’s microbiota is well acknowledged as a “hidden” player influencing essential insect traits. The gut microbiome of butterflies and moths (Lepidoptera) has been shown to be highly variable between and within species, resulting in a controversy on the functional relevance of gut microbes in this insect order. Here, we aim to (i) review current knowledge on the composition of gut microbial communities across Lepidoptera and (ii) elucidate the drivers of the variability in the lepidopteran gut microbiome and provide an overview on (iii) routes of transfer and (iv) the putative functions of microbes in Lepidoptera. To find out whether Lepidopterans possess a core gut microbiome, we compared studies of the microbiome from 30 lepidopteran species. Gut bacteria of the Enterobacteriaceae, Bacillaceae, and Pseudomonadaceae families were the most widespread across species, with Pseudomonas, Bacillus, Staphylococcus, Enterobacter, and Enterococcus being the most common genera. Several studies indicate that habitat, food plant, and age of the host insect can greatly impact the gut microbiome, which contributes to digestion, detoxification, or defense against natural enemies. We mainly focus on the gut microbiome, but we also include some examples of intracellular endosymbionts. These symbionts are present across a broad range of insect taxa and are known to exert different effects on their host, mostly including nutrition and reproductive manipulation. Only two intracellular bacteria genera (Wolbachia and Spiroplasma) have been reported to colonize reproductive tissues of Lepidoptera, affecting their host’s reproduction. We explore routes of transmission of both gut microbiota and intracellular symbionts and have found that these microbes may be horizontally transmitted through the host plant, but also vertically via the egg stage. More detailed knowledge about the functions and plasticity of the microbiome in Lepidoptera may provide novel leads for the control of lepidopteran pest species.
Collapse
Affiliation(s)
| | - Enric Frago
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, La Réunion
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
111
|
Paterno GB, Penone C, Werner GDA. sensiPhy
: An
r
‐package for sensitivity analysis in phylogenetic comparative methods. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.12990] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Gustavo B. Paterno
- Departamento de EcologiaUniversidade Federal do Rio Grande do Norte Natal Brazil
| | - Caterina Penone
- Institute of Plant SciencesUniversity of Bern Bern Switzerland
| | - Gijsbert D. A. Werner
- Department of ZoologyUniversity of Oxford Oxford UK
- Balliol CollegeUniversity of Oxford Oxford UK
| |
Collapse
|
112
|
Abstract
Microbiome science is revealing that the phenotype and health of animals, including humans, depend on the sustained function of their resident microorganisms. In this essay, I argue for thoughtful choice of model systems for human microbiome science. A greater variety of experimental systems, including wider use of invertebrate models, would benefit biomedical research, while systems ill-suited to experimental and genetic manipulation can be used to address very limited sets of scientific questions. Microbiome science benefits from the coordinated use of multiple systems, which is facilitated by networks of researchers with expertise in different experimental systems.
Collapse
Affiliation(s)
- Angela E. Douglas
- Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
113
|
Folk RA, Sun M, Soltis PS, Smith SA, Soltis DE, Guralnick RP. Challenges of comprehensive taxon sampling in comparative biology: Wrestling with rosids. AMERICAN JOURNAL OF BOTANY 2018; 105:433-445. [PMID: 29665035 DOI: 10.1002/ajb2.1059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/19/2017] [Indexed: 06/08/2023]
Abstract
Using phylogenetic approaches to test hypotheses on a large scale, in terms of both species sampling and associated species traits and occurrence data-and doing this with rigor despite all the attendant challenges-is critical for addressing many broad questions in evolution and ecology. However, application of such approaches to empirical systems is hampered by a lingering series of theoretical and practical bottlenecks. The community is still wrestling with the challenges of how to develop species-level, comprehensively sampled phylogenies and associated geographic and phenotypic resources that enable global-scale analyses. We illustrate difficulties and opportunities using the rosids as a case study, arguing that assembly of biodiversity data that is scale-appropriate-and therefore comprehensive and global in scope-is required to test global-scale hypotheses. Synthesizing comprehensive biodiversity data sets in clades such as the rosids will be key to understanding the origin and present-day evolutionary and ecological dynamics of the angiosperms.
Collapse
Affiliation(s)
- Ryan A Folk
- Florida Museum of Natural History, Gainesville, FL, 32611, USA
| | - Miao Sun
- Florida Museum of Natural History, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | | |
Collapse
|
114
|
Ossler JN, Heath KD. Shared Genes but Not Shared Genetic Variation: Legume Colonization by Two Belowground Symbionts. Am Nat 2018. [DOI: 10.1086/695829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
115
|
Liao W, Menge DNL, Lichstein JW, Ángeles-Pérez G. Global climate change will increase the abundance of symbiotic nitrogen-fixing trees in much of North America. GLOBAL CHANGE BIOLOGY 2017; 23:4777-4787. [PMID: 28386964 DOI: 10.1111/gcb.13716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/30/2017] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
Symbiotic nitrogen (N)-fixing trees can drive N and carbon cycling and thus are critical components of future climate projections. Despite detailed understanding of how climate influences N-fixation enzyme activity and physiology, comparatively little is known about how climate influences N-fixing tree abundance. Here, we used forest inventory data from the USA and Mexico (>125,000 plots) along with climate data to address two questions: (1) How does the abundance distribution of N-fixing trees (rhizobial, actinorhizal, and both types together) vary with mean annual temperature (MAT) and precipitation (MAP)? (2) How will changing climate shift the abundance distribution of N-fixing trees? We found that rhizobial N-fixing trees were nearly absent below 15°C MAT, but above 15°C MAT, they increased in abundance as temperature rose. We found no evidence for a hump-shaped response to temperature throughout the range of our data. Rhizobial trees were more abundant in dry than in wet ecosystems. By contrast, actinorhizal trees peaked in abundance at 5-10°C MAT and were least abundant in areas with intermediate precipitation. Next, we used a climate-envelope approach to project how N-fixing tree relative abundance might change in the future. The climate-envelope projection showed that rhizobial N-fixing trees will likely become more abundant in many areas by 2080, particularly in the southern USA and western Mexico, due primarily to rising temperatures. Projections for actinorhizal N-fixing trees were more nuanced due to their nonmonotonic dependence on temperature and precipitation. Overall, the dominant trend is that warming will increase N-fixing tree abundance in much of the USA and Mexico, with large increases up to 40° North latitude. The quantitative link we provide between climate and N-fixing tree abundance can help improve the representation of symbiotic N fixation in Earth System Models.
Collapse
Affiliation(s)
- Wenying Liao
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Duncan N L Menge
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
116
|
Daubech B, Remigi P, Doin de Moura G, Marchetti M, Pouzet C, Auriac MC, Gokhale CS, Masson-Boivin C, Capela D. Spatio-temporal control of mutualism in legumes helps spread symbiotic nitrogen fixation. eLife 2017; 6:e28683. [PMID: 29022875 PMCID: PMC5687860 DOI: 10.7554/elife.28683] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023] Open
Abstract
Mutualism is of fundamental importance in ecosystems. Which factors help to keep the relationship mutually beneficial and evolutionarily successful is a central question. We addressed this issue for one of the most significant mutualistic interactions on Earth, which associates plants of the leguminosae family and hundreds of nitrogen (N2)-fixing bacterial species. Here we analyze the spatio-temporal dynamics of fixers and non-fixers along the symbiotic process in the Cupriavidus taiwanensis-Mimosa pudica system. N2-fixing symbionts progressively outcompete isogenic non-fixers within root nodules, where N2-fixation occurs, even when they share the same nodule. Numerical simulations, supported by experimental validation, predict that rare fixers will invade a population dominated by non-fixing bacteria during serial nodulation cycles with a probability that is function of initial inoculum, plant population size and nodulation cycle length. Our findings provide insights into the selective forces and ecological factors that may have driven the spread of the N2-fixation mutualistic trait.
Collapse
Affiliation(s)
- Benoit Daubech
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| | - Philippe Remigi
- New Zealand Institute for Advanced StudyMassey UniversityAucklandNew Zealand
| | - Ginaini Doin de Moura
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| | - Marta Marchetti
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| | - Cécile Pouzet
- Fédération de Recherches Agrobiosciences, Interactions et Biodiversité, Plateforme d’Imagerie TRI, CNRS - UPSCastanet-TolosanFrance
| | - Marie-Christine Auriac
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
- Fédération de Recherches Agrobiosciences, Interactions et Biodiversité, Plateforme d’Imagerie TRI, CNRS - UPSCastanet-TolosanFrance
| | - Chaitanya S Gokhale
- Research Group for Theoretical Models of Eco-evolutionary Dynamics, Department of Evolutionary TheoryMax Planck Institute for Evolutionary BiologyPlönGermany
| | - Catherine Masson-Boivin
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| | - Delphine Capela
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| |
Collapse
|
117
|
Epihov DZ, Batterman SA, Hedin LO, Leake JR, Smith LM, Beerling DJ. N 2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic? Proc Biol Sci 2017; 284:20170370. [PMID: 28814651 PMCID: PMC5563791 DOI: 10.1098/rspb.2017.0370] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/12/2017] [Indexed: 11/30/2022] Open
Abstract
Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58-42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N2) and higher leaf N compared with non-legumes (35-65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO2). Here we hypothesize that the increasing abundance of N2-fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N2-fixation and nodule formation.
Collapse
Affiliation(s)
- Dimitar Z Epihov
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Sarah A Batterman
- School of Geography and Priestley International Centre for Climate, University of Leeds, Leeds LS2 9JT, UK
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
| | - Lars O Hedin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jonathan R Leake
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Lisa M Smith
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
118
|
Mutualisms Are Not on the Verge of Breakdown. Trends Ecol Evol 2017; 32:727-734. [PMID: 28739078 DOI: 10.1016/j.tree.2017.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 11/21/2022]
Abstract
Mutualisms teeter on a knife-edge between conflict and cooperation, or so the conventional wisdom goes. The costs and benefits of mutualism often depend on the abiotic or biotic context in which an interaction occurs, and experimental manipulations can induce shifts in interaction outcomes from mutualism all the way to parasitism. Yet, research suggests that mutualisms rarely turn parasitic in nature. Similarly, despite the potential for 'cheating' to undermine mutualism evolution, empirical evidence for fitness conflicts between partners and, thus, selection for cheating in mutualisms is scant. Furthermore, mutualism seldom leads to parasitism at macroevolutionary timescales. Thus, I argue here that mutualisms do not deserve their reputation for ecological and evolutionary instability, and are not on the verge of breakdown.
Collapse
|
119
|
Sprent JI, Ardley J, James EK. Biogeography of nodulated legumes and their nitrogen-fixing symbionts. THE NEW PHYTOLOGIST 2017; 215:40-56. [PMID: 28211601 DOI: 10.1111/nph.14474] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/22/2016] [Indexed: 05/21/2023]
Abstract
Contents 40 I. 40 II. 41 III. 44 IV. 48 V. 49 VI. 49 VII. 52 VIII. 53 53 References 53 SUMMARY: In the last decade, analyses of both molecular and morphological characters, including nodulation, have led to major changes in our understanding of legume taxonomy. In parallel there has been an explosion in the number of genera and species of rhizobia known to nodulate legumes. No attempt has been made to link these two sets of data or to consider them in a biogeographical context. This review aims to do this by relating the data to the evolution of the two partners: it highlights both longitudinal and latitudinal trends and considers these in relation to the location of major land masses over geological time. Australia is identified as being a special case and latitudes north of the equator as being pivotal in the evolution of highly specialized systems in which the differentiated rhizobia effectively become ammonia factories. However, there are still many gaps to be filled before legume nodulation is sufficiently understood to be managed for the benefit of a world in which climate change is rife.
Collapse
Affiliation(s)
- Janet I Sprent
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA, UK
| | - Julie Ardley
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
120
|
Martin FM, Uroz S, Barker DG. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science 2017; 356:356/6340/eaad4501. [DOI: 10.1126/science.aad4501] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
121
|
Menge DNL, Batterman SA, Liao W, Taylor BN, Lichstein JW, Ángeles‐Pérez G. Nitrogen‐fixing tree abundance in higher‐latitude North America is not constrained by diversity. Ecol Lett 2017; 20:842-851. [DOI: 10.1111/ele.12778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/20/2017] [Accepted: 04/07/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Duncan N. L. Menge
- Department of Ecology, Evolution, and Environmental Biology Columbia University New York NY 10027 USA
| | - Sarah A. Batterman
- Department of Ecology and Evolutionary Biology Princeton University Princeton NJ 08544 USA
- School of Geography and Priestley International Centre for Climate Leeds University Leeds LS2 9JT UK
| | - Wenying Liao
- Department of Ecology, Evolution, and Environmental Biology Columbia University New York NY 10027 USA
- Department of Ecology and Evolutionary Biology Princeton University Princeton NJ 08544 USA
| | - Benton N. Taylor
- Department of Ecology, Evolution, and Environmental Biology Columbia University New York NY 10027 USA
| | | | | |
Collapse
|
122
|
Dunning LT, Lundgren MR, Moreno-Villena JJ, Namaganda M, Edwards EJ, Nosil P, Osborne CP, Christin PA. Introgression and repeated co-option facilitated the recurrent emergence of C 4 photosynthesis among close relatives. Evolution 2017; 71:1541-1555. [PMID: 28395112 PMCID: PMC5488178 DOI: 10.1111/evo.13250] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/04/2017] [Indexed: 01/16/2023]
Abstract
The origins of novel traits are often studied using species trees and modeling phenotypes as different states of the same character, an approach that cannot always distinguish multiple origins from fewer origins followed by reversals. We address this issue by studying the origins of C4 photosynthesis, an adaptation to warm and dry conditions, in the grass Alloteropsis. We dissect the C4 trait into its components, and show two independent origins of the C4 phenotype via different anatomical modifications, and the use of distinct sets of genes. Further, inference of enzyme adaptation suggests that one of the two groups encompasses two transitions to a full C4 state from a common ancestor with an intermediate phenotype that had some C4 anatomical and biochemical components. Molecular dating of C4 genes confirms the introgression of two key C4 components between species, while the inheritance of all others matches the species tree. The number of origins consequently varies among C4 components, a scenario that could not have been inferred from analyses of the species tree alone. Our results highlight the power of studying individual components of complex traits to reconstruct trajectories toward novel adaptations.
Collapse
Affiliation(s)
- Luke T Dunning
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Marjorie R Lundgren
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Jose J Moreno-Villena
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | | | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, 02912
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
123
|
Montesinos-Navarro A, Verdú M, Querejeta JI, Valiente-Banuet A. Nurse plants transfer more nitrogen to distantly related species. Ecology 2017; 98:1300-1310. [DOI: 10.1002/ecy.1771] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Alicia Montesinos-Navarro
- Departamento de Ecología de la Biodiversidad; Instituto de Ecología; Universidad Nacional Autónoma de México; A.P. 70-275 C.P. 04510 México D.F México
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV); Carretera de Moncada-Náquera Km 4.5 46113 Moncada Valencia Spain
| | - Miguel Verdú
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV); Carretera de Moncada-Náquera Km 4.5 46113 Moncada Valencia Spain
| | - José Ignacio Querejeta
- Departamento de Conservación de Suelos y Aguas; Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC); Campus de Espinardo, PO Box 4195 E-30100 Murcia Spain
| | - Alfonso Valiente-Banuet
- Departamento de Ecología de la Biodiversidad; Instituto de Ecología; Universidad Nacional Autónoma de México; A.P. 70-275 C.P. 04510 México D.F México
- Centro de Ciencias de la Complejidad; Universidad Nacional Autónoma de México; Ciudad Universitaria 04510 México D.F México
| |
Collapse
|
124
|
Simonsen AK, Dinnage R, Barrett LG, Prober SM, Thrall PH. Symbiosis limits establishment of legumes outside their native range at a global scale. Nat Commun 2017; 8:14790. [PMID: 28387250 PMCID: PMC5385628 DOI: 10.1038/ncomms14790] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Microbial symbiosis is integral to plant growth and reproduction, but its contribution to global patterns of plant distribution is unknown. Legumes (Fabaceae) are a diverse and widely distributed plant family largely dependent on symbiosis with nitrogen-fixing rhizobia, which are acquired from soil after germination. This dependency is predicted to limit establishment in new geographic areas, owing to a disruption of compatible host-symbiont associations. Here we compare non-native establishment patterns of symbiotic and non-symbiotic legumes across over 3,500 species, covering multiple independent gains and losses of rhizobial symbiosis. We find that symbiotic legume species have spread to fewer non-native regions compared to non-symbiotic legumes, providing strong support for the hypothesis that lack of suitable symbionts or environmental conditions required for effective nitrogen-fixation are driving these global introduction patterns. These results highlight the importance of mutualisms in predicting non-native species establishment and the potential impacts of microbial biogeography on global plant distributions.
Collapse
Affiliation(s)
- Anna K Simonsen
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Land &Water, Clunies Ross Street, Acton, Australian Capital Territory 2601, Australia
| | - Russell Dinnage
- Research School of Biology, The Australian National University, 116 Daley Road, Acton, Australian Capital Territory 2601, Australia
| | - Luke G Barrett
- CSIRO Agriculture and Food, Canberra, Clunies Ross Street, Acton, Australian Capital Territory 2601, Australia
| | | | - Peter H Thrall
- CSIRO Agriculture and Food, Canberra, Clunies Ross Street, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
125
|
Ibáñez F, Wall L, Fabra A. Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1905-1918. [PMID: 27756807 DOI: 10.1093/jxb/erw387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Agricultural practices contribute to climate change by releasing greenhouse gases such as nitrous oxide that are mainly derived from nitrogen fertilizers. Therefore, understanding biological nitrogen fixation in farming systems is beneficial to agriculture and environmental preservation. In this context, a better grasp of nitrogen-fixing systems and nitrogen-fixing bacteria-plant associations will contribute to the optimization of these biological processes. Legumes and actinorhizal plants can engage in a symbiotic interaction with nitrogen-fixing rhizobia or actinomycetes, resulting in the formation of specialized root nodules. The legume-rhizobia interaction is mediated by a complex molecular signal exchange, where recognition of different bacterial determinants activates the nodulation program in the plant. To invade plants roots, bacteria follow different routes, which are determined by the host plant. Entrance via root hairs is probably the best understood. Alternatively, entry via intercellular invasion has been observed in many legumes. Although there are common features shared by intercellular infection mechanisms, differences are observed in the site of root invasion and bacterial spread on the cortex reaching and infecting a susceptible cell to form a nodule. This review focuses on intercellular bacterial invasion of roots observed in the Fabaceae and considers, within an evolutionary context, the different variants, distribution and molecular determinants involved. Intercellular invasion of actinorhizal plants and Parasponia is also discussed.
Collapse
Affiliation(s)
- Fernando Ibáñez
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Luis Wall
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Adriana Fabra
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
126
|
Dent D, Cocking E. Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: The Greener Nitrogen Revolution. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s40066-016-0084-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
127
|
|
128
|
Tedersoo L. Global Biogeography and Invasions of Ectomycorrhizal Plants: Past, Present and Future. BIOGEOGRAPHY OF MYCORRHIZAL SYMBIOSIS 2017. [DOI: 10.1007/978-3-319-56363-3_20] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
129
|
The Influence of the Host Plant Is the Major Ecological Determinant of the Presence of Nitrogen-Fixing Root Nodule Symbiont Cluster II Frankia Species in Soil. Appl Environ Microbiol 2016; 83:AEM.02661-16. [PMID: 27795313 DOI: 10.1128/aem.02661-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022] Open
Abstract
The actinobacterial genus Frankia establishes nitrogen-fixing root nodule symbioses with specific hosts within the nitrogen-fixing plant clade. Of four genetically distinct subgroups of Frankia, cluster I, II, and III strains are capable of forming effective nitrogen-fixing symbiotic associations, while cluster IV strains generally do not. Cluster II Frankia strains have rarely been detected in soil devoid of host plants, unlike cluster I or III strains, suggesting a stronger association with their host. To investigate the degree of host influence, we characterized the cluster II Frankia strain distribution in rhizosphere soil in three locations in northern California. The presence/absence of cluster II Frankia strains at a given site correlated significantly with the presence/absence of host plants on the site, as determined by glutamine synthetase (glnA) gene sequence analysis, and by microbiome analysis (16S rRNA gene) of a subset of host/nonhost rhizosphere soils. However, the distribution of cluster II Frankia strains was not significantly affected by other potential determinants such as host-plant species, geographical location, climate, soil pH, or soil type. Rhizosphere soil microbiome analysis showed that cluster II Frankia strains occupied only a minute fraction of the microbiome even in the host-plant-present site and further revealed no statistically significant difference in the α-diversity or in the microbiome composition between the host-plant-present or -absent sites. Taken together, these data suggest that host plants provide a factor that is specific for cluster II Frankia strains, not a general growth-promoting factor. Further, the factor accumulates or is transported at the site level, i.e., beyond the host rhizosphere. IMPORTANCE Biological nitrogen fixation is a bacterial process that accounts for a major fraction of net new nitrogen input in terrestrial ecosystems. Transfer of fixed nitrogen to plant biomass is especially efficient via root nodule symbioses, which represent evolutionarily and ecologically specialized mutualistic associations. Frankia spp. (Actinobacteria), especially cluster II Frankia spp., have an extremely broad host range, yet comparatively little is known about the soil ecology of these organisms in relation to the host plants and their rhizosphere microbiomes. This study reveals a strong influence of the host plant on soil distribution of cluster II Frankia spp.
Collapse
|
130
|
Zamani M, diCenzo GC, Milunovic B, Finan TM. A putative 3-hydroxyisobutyryl-CoA hydrolase is required for efficient symbiotic nitrogen fixation in Sinorhizobium meliloti and Sinorhizobium fredii NGR234. Environ Microbiol 2016; 19:218-236. [PMID: 27727485 DOI: 10.1111/1462-2920.13570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022]
Abstract
We report that the smb20752 gene of the alfalfa symbiont Sinorhizobium meliloti is a novel symbiotic gene required for full N2 -fixation. Deletion of smb20752 resulted in lower nitrogenase activity and smaller nodules without impacting overall nodule morphology. Orthologs of smb20752 were present in all alpha and beta rhizobia, including the ngr_b20860 gene of Sinorhizobium fredii NGR234. A ngr_b20860 mutant formed Fix- determinate nodules that developed normally to a late stage of the symbiosis on the host plants Macroptilium atropurpureum and Vigna unguiculata. However an early symbiotic defect was evident during symbiosis with Leucaena leucocephala, producing Fix- indeterminate nodules. The smb20752 and ngr_b20860 genes encode putative 3-hydroxyisobutyryl-CoA (HIB-CoA) hydrolases. HIB-CoA hydrolases are required for l-valine catabolism and appear to prevent the accumulation of toxic metabolic intermediates, particularly methacrylyl-CoA. Evidence presented here and elsewhere (Curson et al., , PLoS ONE 9:e97660) demonstrated that Smb20752 and NGR_b20860 can also prevent metabolic toxicity, are required for l-valine metabolism, and play an undefined role in 3-hydroxybutyrate catabolism. We present evidence that the symbiotic defect of the HIB-CoA hydrolase mutants is independent of the inability to catabolize l-valine and suggest it relates to the toxicity resulting from metabolism of other compounds possibly related to 3-hydroxybutyric acid.
Collapse
Affiliation(s)
- Maryam Zamani
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - George C diCenzo
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Branislava Milunovic
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
131
|
Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci U S A 2016; 113:E7996-E8005. [PMID: 27864511 DOI: 10.1073/pnas.1616564113] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lotus japonicus has been used for decades as a model legume to study the establishment of binary symbiotic relationships with nitrogen-fixing rhizobia that trigger root nodule organogenesis for bacterial accommodation. Using community profiling of 16S rRNA gene amplicons, we reveal that in Lotus, distinctive nodule- and root-inhabiting communities are established by parallel, rather than consecutive, selection of bacteria from the rhizosphere and root compartments. Comparative analyses of wild-type (WT) and symbiotic mutants in Nod factor receptor5 (nfr5), Nodule inception (nin) and Lotus histidine kinase1 (lhk1) genes identified a previously unsuspected role of the nodulation pathway in the establishment of different bacterial assemblages in the root and rhizosphere. We found that the loss of nitrogen-fixing symbiosis dramatically alters community structure in the latter two compartments, affecting at least 14 bacterial orders. The differential plant growth phenotypes seen between WT and the symbiotic mutants in nonsupplemented soil were retained under nitrogen-supplemented conditions that blocked the formation of functional nodules in WT, whereas the symbiosis-impaired mutants maintain an altered community structure in the nitrogen-supplemented soil. This finding provides strong evidence that the root-associated community shift in the symbiotic mutants is a direct consequence of the disabled symbiosis pathway rather than an indirect effect resulting from abolished symbiotic nitrogen fixation. Our findings imply a role of the legume host in selecting a broad taxonomic range of root-associated bacteria that, in addition to rhizobia, likely contribute to plant growth and ecological performance.
Collapse
|
132
|
Guillotin B, Couzigou JM, Combier JP. NIN Is Involved in the Regulation of Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2016; 7:1704. [PMID: 27899928 PMCID: PMC5110543 DOI: 10.3389/fpls.2016.01704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/31/2016] [Indexed: 05/27/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is an intimate and ancient symbiosis found between most of terrestrial plants and fungi from the Glomeromycota family. Later during evolution, the establishment of the nodulation between legume plants and soil bacteria known as rhizobia, involved several genes of the signaling pathway previously implicated for AM symbiosis. For the past years, the identification of the genes belonging to this Common Symbiotic Signaling Pathway have been mostly done on nodulation. Among the different genes already well identified as required for nodulation, we focused our attention on the involvement of Nodule Inception (NIN) in AM symbiosis. We show here that NIN expression is induced during AM symbiosis, and that the Medicago truncatula nin mutant is less colonized than the wild-type M. truncatula strain. Moreover, nin mutant displays a defect in the ability to be infected by the fungus Rhizophagus irregularis. This work brings a new evidence of the common genes involved in overlapping signaling pathways of both nodulation and in AM symbiosis.
Collapse
|
133
|
Grillo MA, De Mita S, Burke PV, Solórzano-Lowell KLS, Heath KD. Intrapopulation genomics in a model mutualist: Population structure and candidate symbiosis genes under selection in Medicago truncatula. Evolution 2016; 70:2704-2717. [PMID: 27757965 DOI: 10.1111/evo.13095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 01/15/2023]
Abstract
Bottom-up evolutionary approaches, including geographically explicit population genomic analyses, have the power to reveal the mechanistic basis of adaptation. Here, we conduct a population genomic analysis in the model legume, Medicago truncatula, to characterize population genetic structure and identify symbiosis-related genes showing evidence of spatially variable selection. Using RAD-seq, we generated over 26,000 SNPs from 191 accessions from within three regions of the native range in Europe. Results from STRUCTURE analysis identify five distinct genetic clusters with divisions that separate east and west regions in the Mediterranean basin. Much of the genetic variation is maintained within sampling sites, and there is evidence for isolation by distance. Extensive linkage disequilibrium was identified, particularly within populations. We conducted genetic outlier analysis with FST -based genome scans and a Bayesian modeling approach (PCAdapt). There were 70 core outlier loci shared between these distinct methods with one clear candidate symbiosis related gene, DMI1. This work sets that stage for functional experiments to determine the important phenotypes that selection has acted upon and complementary efforts in rhizobium populations.
Collapse
Affiliation(s)
- Michael A Grillo
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Stephane De Mita
- INRA Nancy-Lorraine, UMR 1136 Interactions Arbres Microorganismes, Route d'Amance, 54280, Champenoux, France
| | - Patricia V Burke
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | | | - Katy D Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
134
|
Stroud JT, Losos JB. Ecological Opportunity and Adaptive Radiation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032254] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James T. Stroud
- Department of Biological Sciences, Florida International University, Miami, Florida 33199
- Fairchild Tropical Botanic Garden, Coral Gables, Florida 33156;
| | - Jonathan B. Losos
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 01238;
| |
Collapse
|
135
|
Cavender-Bares J, Ackerly DD, Hobbie SE, Townsend PA. Evolutionary Legacy Effects on Ecosystems: Biogeographic Origins, Plant Traits, and Implications for Management in the Era of Global Change. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032229] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeannine Cavender-Bares
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota 55108; ,
| | - David D. Ackerly
- Department of Integrative Biology and Jepson Herbarium, University of California, Berkeley, California 94720;
| | - Sarah E. Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota 55108; ,
| | - Philip A. Townsend
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin 53706;
| |
Collapse
|
136
|
Doyle JJ. Chasing unicorns: Nodulation origins and the paradox of novelty. AMERICAN JOURNAL OF BOTANY 2016; 103:1865-1868. [PMID: 27756731 DOI: 10.3732/ajb.1600260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/31/2016] [Indexed: 05/25/2023]
Affiliation(s)
- Jeff J Doyle
- School of Integrative Plant Science, Section of Plant Breeding & Genetics and Section of Plant Biology, 240 Emerson Hall, Cornell University, Ithaca, New York 14853 USA
| |
Collapse
|
137
|
Maherali H, Oberle B, Stevens PF, Cornwell WK, McGlinn DJ. Mutualism Persistence and Abandonment during the Evolution of the Mycorrhizal Symbiosis. Am Nat 2016; 188:E113-E125. [DOI: 10.1086/688675] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
138
|
Nguyen TV, Wibberg D, Battenberg K, Blom J, Vanden Heuvel B, Berry AM, Kalinowski J, Pawlowski K. An assemblage of Frankia Cluster II strains from California contains the canonical nod genes and also the sulfotransferase gene nodH. BMC Genomics 2016; 17:796. [PMID: 27729005 PMCID: PMC5059922 DOI: 10.1186/s12864-016-3140-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The ability to establish root nodule symbioses is restricted to four different plant orders. Soil actinobacteria of the genus Frankia can establish a symbiotic relationship with a diverse group of plants within eight different families from three different orders, the Cucurbitales, Fagales and Rosales. Phylogenetically, Frankia strains can be divided into four clusters, three of which (I, II, III) contain symbiotic strains. Members of Cluster II nodulate the broadest range of host plants with species from four families from two different orders, growing on six continents. Two Cluster II genomes were sequenced thus far, both from Asia. RESULTS In this paper we present the first Frankia cluster II genome from North America (California), Dg2, which represents a metagenome of two major and one minor strains. A phylogenetic analysis of the core genomes of 16 Frankia strains shows that Cluster II the ancestral group in the genus, also ancestral to the non-symbiotic Cluster IV. Dg2 contains the canonical nod genes nodABC for the production of lipochitooligosaccharide Nod factors, but also two copies of the sulfotransferase gene nodH. In rhizobial systems, sulfation of Nod factors affects their host specificity and their stability. CONCLUSIONS A comparison with the nod gene region of the previously sequenced Dg1 genome from a Cluster II strain from Pakistan shows that the common ancestor of both strains should have contained nodABC and nodH. Phylogenetically, Dg2 NodH proteins are sister to rhizobial NodH proteins. A glnA-based phylogenetic analysis of all Cluster II strains sampled thus far supports the hypothesis that Cluster II Frankia strains came to North America with Datisca glomerata following the Madrean-Tethyan pattern.
Collapse
Affiliation(s)
- Thanh Van Nguyen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Daniel Wibberg
- Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
| | - Kai Battenberg
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University, 35392, Giessen, Germany
| | | | - Alison M Berry
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
139
|
Lallemand F, Gaudeul M, Lambourdière J, Matsuda Y, Hashimoto Y, Selosse MA. The elusive predisposition to mycoheterotrophy in Ericaceae. THE NEW PHYTOLOGIST 2016; 212:314-319. [PMID: 27400967 DOI: 10.1111/nph.14092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Félix Lallemand
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205 CNRS MNHN UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39, Paris, F-75005, France
- Master BioSciences, Département de Biologie, École Normale Supérieure de Lyon, Université de Lyon, UCB Lyon1, 46 Allée d'Italie, Lyon, France
| | - Myriam Gaudeul
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205 CNRS MNHN UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39, Paris, F-75005, France
| | - Josie Lambourdière
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205 CNRS MNHN UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39, Paris, F-75005, France
| | - Yosuke Matsuda
- Laboratory of Forest Mycology, Graduate School of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie, 514-8507, Japan
| | - Yasushi Hashimoto
- Department of Life Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205 CNRS MNHN UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39, Paris, F-75005, France.
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland.
| |
Collapse
|
140
|
André T, Salzman S, Wendt T, Specht CD. Speciation dynamics and biogeography of Neotropical spiral gingers (Costaceae). Mol Phylogenet Evol 2016; 103:55-63. [PMID: 27400627 DOI: 10.1016/j.ympev.2016.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
Species can arise via the divisive effects of allopatry as well as due to ecological and/or reproductive character displacement within sympatric populations. Two separate lineages of Costaceae are native to the Neotropics; an early-diverging clade endemic to South America (consisting of ca. 16 species in the genera Monocostus, Dimerocostus and Chamaecostus); and the Neotropical Costus clade (ca. 50 species), a diverse assemblage of understory herbs comprising nearly half of total familial species richness. We use a robust dated molecular phylogeny containing most of currently known species to inform macroevolutionary reconstructions, enabling us to examine the context of speciation in Neotropical lineages. Analyses of speciation rate revealed a significant variation among clades, with a rate shift at the most recent common ancestor of the Neotropical Costus clade. There is an overall predominance of allopatric speciation in the South American clade, as most species display little range overlap. In contrast, sympatry is much higher within the Neotropical Costus clade, independent of node age. Our results show that speciation dynamics during the history of Costaceae is strongly heterogeneous, and we suggest that the Costus radiation in the Neotropics arose at varied geographic contexts.
Collapse
Affiliation(s)
- Thiago André
- Departments of Plant and Microbial Biology and Integrative Biology, University of California at Berkeley, 431 Koshland Hall, Berkeley, CA 94720-3102, USA.
| | - Shayla Salzman
- Departments of Plant and Microbial Biology and Integrative Biology, University of California at Berkeley, 431 Koshland Hall, Berkeley, CA 94720-3102, USA.
| | - Tânia Wendt
- Departamento de Botânica, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Sala A1-050, Bloco A, CCS, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Chelsea D Specht
- Departments of Plant and Microbial Biology and Integrative Biology, University of California at Berkeley, 431 Koshland Hall, Berkeley, CA 94720-3102, USA.
| |
Collapse
|
141
|
Boivin S, Kazmierczak T, Brault M, Wen J, Gamas P, Mysore KS, Frugier F. Different cytokinin histidine kinase receptors regulate nodule initiation as well as later nodule developmental stages in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2016; 39:2198-209. [PMID: 27341695 DOI: 10.1111/pce.12779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 06/11/2016] [Indexed: 05/08/2023]
Abstract
Legume plants adapt to low nitrogen by developing an endosymbiosis with nitrogen-fixing soil bacteria to form a new specific organ: the nitrogen-fixing nodule. In the Medicago truncatula model legume, the MtCRE1 cytokinin receptor is essential for this symbiotic interaction. As three other putative CHASE-domain containing histidine kinase (CHK) cytokinin receptors exist in M. truncatula, we determined their potential contribution to this symbiotic interaction. The four CHKs have extensive redundant expression patterns at early nodulation stages but diverge in differentiated nodules, even though MtCHK1/MtCRE1 has the strongest expression at all stages. Mutant and knock-down analyses revealed that other CHKs than MtCHK1/CRE1 are positively involved in nodule initiation, which explains the delayed nodulation phenotype of the chk1/cre1 mutant. In addition, cre1 nodules exhibit an increased growth, whereas other chk mutants have no detectable phenotype, and the maintained nitrogen fixation capacity in cre1 requires other CHK genes. Interestingly, an AHK4/CRE1 genomic locus from the aposymbiotic Arabidopsis plant rescues nodule initiation but not the nitrogen fixation capacity. This indicates that different CHK cytokinin signalling pathways regulate not only nodule initiation but also later developmental stages, and that legume-specific determinants encoded by the MtCRE1 gene are required for later nodulation stages than initiation.
Collapse
Affiliation(s)
- Stéphane Boivin
- Institute of Plant Sciences-Paris Saclay (IPS2), CNRS, INRA, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Université Paris-Saclay, Bâtiment 630, 91190, Gif-sur-Yvette, France
| | - Théophile Kazmierczak
- Institute of Plant Sciences-Paris Saclay (IPS2), CNRS, INRA, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Université Paris-Saclay, Bâtiment 630, 91190, Gif-sur-Yvette, France
| | - Mathias Brault
- Institute of Plant Sciences-Paris Saclay (IPS2), CNRS, INRA, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Université Paris-Saclay, Bâtiment 630, 91190, Gif-sur-Yvette, France
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, USA
| | - Pascal Gamas
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, USA
| | - Florian Frugier
- Institute of Plant Sciences-Paris Saclay (IPS2), CNRS, INRA, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Université Paris-Saclay, Bâtiment 630, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
142
|
Grillo MA, Stinchcombe JR, Heath KD. Nitrogen addition does not influence pre-infection partner choice in the legume-rhizobium symbiosis. AMERICAN JOURNAL OF BOTANY 2016; 103:1763-1770. [PMID: 27671532 DOI: 10.3732/ajb.1600090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/09/2016] [Indexed: 05/26/2023]
Abstract
PREMISE OF THE STUDY Resource mutualisms such as the symbiosis between legumes and nitrogen-fixing rhizobia are context dependent and are sensitive to various aspects of the environment, including nitrogen (N) addition. Mutualist hosts such as legumes are also thought to use mechanisms such as partner choice to discriminate among potential symbionts that vary in partner quality (fitness benefits conferred to hosts) and thus impose selection on rhizobium populations. Together, context dependency and partner choice might help explain why the legume-rhizobium mutualism responds evolutionarily to N addition, since plant-mediated selection that shifts in response to N might be expected to favor different rhizobium strains in different N environments. METHODS We test for the influence of context dependency on partner choice in the model legume, Medicago truncatula, using a factorial experiments with three plant families across three N levels with a mixed inoculation of three rhizobia strains. KEY RESULTS Neither the relative frequencies of rhizobium strains occupying host nodules, nor the size of those nodules, differed in response to N level. CONCLUSIONS Despite the lack of context dependence, plant genotypes respond very differently to mixed populations of rhizobia, suggesting that these traits are genetically variable and thus could evolve in response to longer-term increases in N.
Collapse
Affiliation(s)
- Michael A Grillo
- University of Illinois, Department of Plant Biology, Urbana, Illinois 61801, USA
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Katy D Heath
- University of Illinois, Department of Plant Biology, Urbana, Illinois 61801, USA
| |
Collapse
|
143
|
Menge DNL, Crews TE. Can evolutionary constraints explain the rarity of nitrogen-fixing trees in high-latitude forests? THE NEW PHYTOLOGIST 2016; 211:1195-1201. [PMID: 27411210 DOI: 10.1111/nph.14080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/13/2016] [Indexed: 06/06/2023]
Abstract
Contents 1195 I. 1195 II. 1196 III. 1196 IV. 1200 1200 References 1200 SUMMARY: The rarity of symbiotic nitrogen (N)-fixing trees in temperate and boreal ('high-latitude') forests is curious. One explanation - the evolutionary constraints hypothesis - posits that high-latitude N-fixing trees are rare because few have evolved. Here, we consider traits necessary for high-latitude N-fixing trees. We then use recent developments in trait evolution to estimate that > 2000 and > 500 species could have evolved from low-latitude N-fixing trees and high-latitude N-fixing herbs, respectively. Evolution of N-fixing from nonfixing trees is an unlikely source of diversity. Dispersal limitation seems unlikely to limit high-latitude N-fixer diversity. The greater number of N-fixing species predicted to evolve than currently inhabit high-latitude forests suggests a greater role for ecological than evolutionary constraints.
Collapse
Affiliation(s)
- Duncan N L Menge
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Timothy E Crews
- The Land Institute, 2440 E. Water Well Road, Salina, KS, 67401, USA
| |
Collapse
|
144
|
Adams MA, Turnbull TL, Sprent JI, Buchmann N. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency. Proc Natl Acad Sci U S A 2016; 113:4098-103. [PMID: 27035971 PMCID: PMC4839396 DOI: 10.1073/pnas.1523936113] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43-100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea-in distinct challenge to current theories that place the leaf nitrogen-Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea-gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen-in a variety of forms-enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates.
Collapse
Affiliation(s)
- Mark Andrew Adams
- Centre for Carbon Water and Food, Faculty of Agriculture and Environment, University of Sydney, Brownlow Hill, 2570 NSW, Australia;
| | - Tarryn L Turnbull
- Centre for Carbon Water and Food, Faculty of Agriculture and Environment, University of Sydney, Brownlow Hill, 2570 NSW, Australia
| | - Janet I Sprent
- Plant Sciences, University of Dundee at James Hutton Institute, Dundee DD2 5DA, Scotland
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zürich, 8092 Zurich, Switzerland
| |
Collapse
|
145
|
Froussart E, Bonneau J, Franche C, Bogusz D. Recent advances in actinorhizal symbiosis signaling. PLANT MOLECULAR BIOLOGY 2016; 90:613-622. [PMID: 26873697 DOI: 10.1007/s11103-016-0450-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Nitrogen and phosphorus availability are frequent limiting factors in plant growth and development. Certain bacteria and fungi form root endosymbiotic relationships with plants enabling them to exploit atmospheric nitrogen and soil phosphorus. The relationships between bacteria and plants include nitrogen-fixing Gram-negative proteobacteria called rhizobia that are able to interact with most leguminous plants (Fabaceae) but also with the non-legume Parasponia (Cannabaceae), and actinobacteria Frankia, which are able to interact with about 260 species collectively called actinorhizal plants. Fungi involved in the relationship with plants include Glomeromycota that form an arbuscular mycorrhizal (AM) association intracellularly within the roots of more than 80% of land plants. Increasing numbers of reports suggest that the rhizobial association with legumes has recycled part of the ancestral program used by most plants to interact with AM fungi. This review focuses on the most recent progress made in plant genetic control of root nodulation that occurs in non-legume actinorhizal plant species.
Collapse
Affiliation(s)
- Emilie Froussart
- Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Jocelyne Bonneau
- Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Claudine Franche
- Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Didier Bogusz
- Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| |
Collapse
|
146
|
Ramos G, de Lima HC, Prenner G, de Queiroz LP, Zartman CE, Cardoso D. Molecular systematics of the Amazonian genus Aldina, a phylogenetically enigmatic ectomycorrhizal lineage of papilionoid legumes. Mol Phylogenet Evol 2016; 97:11-18. [DOI: 10.1016/j.ympev.2015.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
|
147
|
Goh CH, Nicotra AB, Mathesius U. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation. PLANT, CELL & ENVIRONMENT 2016; 39:883-96. [PMID: 26523414 DOI: 10.1111/pce.12672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 05/11/2023]
Abstract
All higher plants show developmental plasticity in response to the availability of nitrogen (N) in the soil. In legumes, N starvation causes the formation of root nodules, where symbiotic rhizobacteria fix atmospheric N2 for the host in exchange for fixed carbon (C) from the shoot. Here, we tested whether plastic responses to internal [N] of legumes are altered by their symbionts. Glasshouse experiments compared root phenotypes of three legumes, Medicago truncatula, Medicago sativa and Trifolium subterraneum, inoculated with their compatible symbiont partners and grown under four nitrate levels. In addition, six strains of rhizobia, differing in their ability to fix N2 in M. truncatula, were compared to test if plastic responses to internal [N] were dependent on the rhizobia or N2 -fixing capability of the nodules. We found that the presence of rhizobia affected phenotypic plasticity of the legumes to internal [N], particularly in root length and root mass ratio (RMR), in a plant species-dependent way. While root length responses of M. truncatula to internal [N] were dependent on the ability of rhizobial symbionts to fix N2 , RMR response to internal [N] was dependent only on initiation of nodules, irrespective of N2 -fixing ability of the rhizobia strains.
Collapse
Affiliation(s)
- Chooi-Hua Goh
- Division of Plant Science, Australian National University, Canberra, ACT, 0200, Australia
| | - Adrienne B Nicotra
- Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Ulrike Mathesius
- Division of Plant Science, Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
148
|
Baral B, Teixeira da Silva JA, Izaguirre-Mayoral ML. Early signaling, synthesis, transport and metabolism of ureides. JOURNAL OF PLANT PHYSIOLOGY 2016; 193:97-109. [PMID: 26967003 DOI: 10.1016/j.jplph.2016.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/04/2015] [Accepted: 01/11/2016] [Indexed: 05/26/2023]
Abstract
The symbiosis between α nitrogen (N2)-fixing Proteobacteria (family Rhizobiaceae) and legumes belonging to the Fabaceae (a single phylogenetic group comprising three subfamilies: Caesalpinioideae, Mimosoideae and Papilionoideae) results in the formation of a novel root structure called a nodule, where atmospheric N2 is fixed into NH3(+). In the determinate type of nodules harbored by Rhizobium-nodulated Fabaceae species, newly synthesized NH3(+) is finally converted into allantoin (C4H6N4O3) and allantoic acid (C4H8N4O4) (ureides) through complex pathways involving at least 20 different enzymes that act synchronously in two types of nodule cells with contrasting ultrastructure, including the tree nodule cell organelles. Newly synthesized ureides are loaded into the network of nodule-root xylem vessels and transported to aerial organs by the transpirational water current. Once inside the leaves, ureides undergo an enzymatically driven reverse process to yield NH4(+) that is used for growth. This supports the role of ureides as key nitrogen (N)-compounds for the growth and yield of legumes nodulated by Rhizobium that grow in soils with a low N content. Thus, a concrete understanding of the mechanisms underlying ureide biogenesis and catabolism in legumes may help agrobiologists to achieve greater agricultural discoveries. In this review we focus on the transmembranal and transorganellar symplastic and apoplastic movement of N-precursors within the nodules, as well as on the occurrence, localization and properties of enzymes and genes involved in the biogenesis and catabolism of ureides. The synthesis and transport of ureides are not unique events in Rhizobium-nodulated N2-fixing legumes. Thus, a brief description of the synthesis and catabolism of ureides in non-legumes was included for comparison. The establishment of the symbiosis, nodule organogenesis and the plant's control of nodule number, synthesis and translocation of ureides via feed-back inhibition mechanisms are also reviewed.
Collapse
Affiliation(s)
- Bikash Baral
- Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, Latokartanonkaari 7, FIN-00014 Helsinki, Finland.
| | | | - Maria Luisa Izaguirre-Mayoral
- Biological Nitrogen Fixation Laboratory, Chemistry Department, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
149
|
Villalobos S, Vamosi JC. Increasing land use drives changes in plant phylogenetic diversity and prevalence of specialists. PeerJ 2016; 4:e1740. [PMID: 26966669 PMCID: PMC4782714 DOI: 10.7717/peerj.1740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/05/2016] [Indexed: 11/20/2022] Open
Abstract
Increased human land use has resulted in the increased homogenization of biodiversity between sites, yet we lack sufficient indicators to predict which species decline and the consequence of their potential loss on ecosystem services. We used comparative phylogenetic analysis to (1) characterize how increasing conversion of forest and grasslands to grazing pasturelands changes plant diversity and composition; (2) examine how changes in land use relate to declines in functional trait diversity; and (3) specifically investigate how these changes in plant composition affect the prevalence of zygomorphy and the possible consequences that these changes may have on pollinator functional groups. As predicted, we found that the conversion to grazing pasturelands negatively impacted species richness and phylogenetic composition. Clades with significantly more represented taxa in grasslands (GL) were genera with a high representation of agricultural weeds, while the composition was biased towards clades of subalpine herbaceous wildflowers in Mixed Forest (MF). Changes in community composition and structure had strong effects on the prevalence of zygomorphic species likely driven by nitrogen-fixing abilities of certain clades with zygomorphic flowers (e.g., Fabaceae). Land conversion can thus have unexpected impacts on trait distributions relevant for the functioning of the community in other capacities (e.g., cascading effects to other trophic levels (i.e., pollinators). Finally, the combination of traits represented by the current composition of species in GL and MF might enhance the diagnostic value of productivity and ecosystem processes in the most eroded ecosystems.
Collapse
Affiliation(s)
- Soraya Villalobos
- Department of Biological Sciences, University of Calgary , Calgary, Alberta , Canada
| | - Jana C Vamosi
- Department of Biological Sciences, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
150
|
Geurts R, Xiao TT, Reinhold-Hurek B. What Does It Take to Evolve A Nitrogen-Fixing Endosymbiosis? TRENDS IN PLANT SCIENCE 2016; 21:199-208. [PMID: 26850795 DOI: 10.1016/j.tplants.2016.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 05/08/2023]
Abstract
Plant rhizo- and phyllospheres are exposed to a plethora of nitrogen-fixing bacteria, providing opportunities for the establishment of symbiotic associations. Nitrogen-fixing endosymbioses are most profitable and have evolved more than ten times in the angiosperms. This suggests that the evolutionary trajectory towards endosymbiosis is not complex. Here, we argue that microbe-induced cell divisions are a prerequisite for the entrance of diazotrophic prokaryotes into living plant cells. For rhizobia and Frankia bacteria, this is achieved by adapting the readout of the common symbiosis signalling pathway, such that cell divisions are induced. The common symbiosis signalling pathway is conserved in the plant kingdom and is required to establish an endosymbiosis with mycorrhizal fungi. We also discuss the adaptations that may have occurred that allowed nitrogen-fixing root nodule endosymbiosis.
Collapse
Affiliation(s)
- Rene Geurts
- Wageningen University, Department of Plant Science, Laboratory of Molecular Biology, Droevendaalsesteeg 1, 6708PB, The Netherlands.
| | - Ting Ting Xiao
- Wageningen University, Department of Plant Science, Laboratory of Molecular Biology, Droevendaalsesteeg 1, 6708PB, The Netherlands
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interaction, Faculty 2, University of Bremen, PO Box 33 04 40, 28334 Bremen, Germany.
| |
Collapse
|