101
|
Hobson CM, Kern M, O’Brien ET, Stephens AD, Falvo MR, Superfine R. Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics. Mol Biol Cell 2020; 31:1788-1801. [PMID: 32267206 PMCID: PMC7521857 DOI: 10.1091/mbc.e20-01-0073] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022] Open
Abstract
Nuclei are often under external stress, be it during migration through tight constrictions or compressive pressure by the actin cap, and the mechanical properties of nuclei govern their subsequent deformations. Both altered mechanical properties of nuclei and abnormal nuclear morphologies are hallmarks of a variety of disease states. Little work, however, has been done to link specific changes in nuclear shape to external forces. Here, we utilize a combined atomic force microscope and light sheet microscope to show SKOV3 nuclei exhibit a two-regime force response that correlates with changes in nuclear volume and surface area, allowing us to develop an empirical model of nuclear deformation. Our technique further decouples the roles of chromatin and lamin A/C in compression, showing they separately resist changes in nuclear volume and surface area, respectively; this insight was not previously accessible by Hertzian analysis. A two-material finite element model supports our conclusions. We also observed that chromatin decompaction leads to lower nuclear curvature under compression, which is important for maintaining nuclear compartmentalization and function. The demonstrated link between specific types of nuclear morphological change and applied force will allow researchers to better understand the stress on nuclei throughout various biological processes.
Collapse
Affiliation(s)
- Chad M. Hobson
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Megan Kern
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - E. Timothy O’Brien
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew D. Stephens
- Biology Department, The University of Massachusetts at Amherst, Amherst, MA 01003, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Michael R. Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Richard Superfine
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
102
|
Hobson CM, Stephens AD. Modeling of Cell Nuclear Mechanics: Classes, Components, and Applications. Cells 2020; 9:E1623. [PMID: 32640571 PMCID: PMC7408412 DOI: 10.3390/cells9071623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Cell nuclei are paramount for both cellular function and mechanical stability. These two roles of nuclei are intertwined as altered mechanical properties of nuclei are associated with altered cell behavior and disease. To further understand the mechanical properties of cell nuclei and guide future experiments, many investigators have turned to mechanical modeling. Here, we provide a comprehensive review of mechanical modeling of cell nuclei with an emphasis on the role of the nuclear lamina in hopes of spurring future growth of this field. The goal of this review is to provide an introduction to mechanical modeling techniques, highlight current applications to nuclear mechanics, and give insight into future directions of mechanical modeling. There are three main classes of mechanical models-schematic, continuum mechanics, and molecular dynamics-which provide unique advantages and limitations. Current experimental understanding of the roles of the cytoskeleton, the nuclear lamina, and the chromatin in nuclear mechanics provide the basis for how each component is subsequently treated in mechanical models. Modeling allows us to interpret assay-specific experimental results for key parameters and quantitatively predict emergent behaviors. This is specifically powerful when emergent phenomena, such as lamin-based strain stiffening, can be deduced from complimentary experimental techniques. Modeling differences in force application, geometry, or composition can additionally clarify seemingly conflicting experimental results. Using these approaches, mechanical models have informed our understanding of relevant biological processes such as migration, nuclear blebbing, nuclear rupture, and cell spreading and detachment. There remain many aspects of nuclear mechanics for which additional mechanical modeling could provide immediate insight. Although mechanical modeling of cell nuclei has been employed for over a decade, there are still relatively few models for any given biological phenomenon. This implies that an influx of research into this realm of the field has the potential to dramatically shape both future experiments and our current understanding of nuclear mechanics, function, and disease.
Collapse
Affiliation(s)
- Chad M. Hobson
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew D. Stephens
- Biology Department, The University of Massachusetts at Amherst, Amherst, MA 01003, USA
| |
Collapse
|
103
|
Tamashunas AC, Tocco VJ, Matthews J, Zhang Q, Atanasova KR, Paschall L, Pathak S, Ratnayake R, Stephens AD, Luesch H, Licht JD, Lele TP. High-throughput gene screen reveals modulators of nuclear shape. Mol Biol Cell 2020; 31:1392-1402. [PMID: 32320319 PMCID: PMC7353136 DOI: 10.1091/mbc.e19-09-0520] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Irregular nuclear shapes characterized by blebs, lobules, micronuclei, or invaginations are hallmarks of many cancers and human pathologies. Despite the correlation between abnormal nuclear shape and human pathologies, the mechanism by which the cancer nucleus becomes misshapen is not fully understood. Motivated by recent evidence that modifying chromatin condensation can change nuclear morphology, we conducted a high-throughput RNAi screen to identify epigenetic regulators that are required to maintain normal nuclear shape in human breast epithelial MCF-10A cells. We silenced 608 genes in parallel using an epigenetics siRNA library and used an unbiased Fourier analysis approach to quantify nuclear contour irregularity from fluorescent images captured on a high-content microscope. Using this quantitative approach, which we validated with confocal microscopy, we significantly expand the list of epigenetic regulators that impact nuclear morphology.
Collapse
Affiliation(s)
| | | | - James Matthews
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | | | - Kalina R. Atanasova
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | | | | | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610
| | - Jonathan D. Licht
- Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, FL 32610
| | | |
Collapse
|
104
|
Dreger M, Madrazo E, Hurlstone A, Redondo-Muñoz J. Novel contribution of epigenetic changes to nuclear dynamics. Nucleus 2020; 10:42-47. [PMID: 30784352 PMCID: PMC6527383 DOI: 10.1080/19491034.2019.1580100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Migrating cells have to cross many physical barriers and confined in 3D environments. The surrounding environment promotes mechano- and biological signals that orchestrate cellular changes, such as cytoskeletal and adhesion rearrangements and proteolytic digestion. Recent studies provide new insights into how the nucleus must alter its shape, localization and mechanical properties in order to promote nuclear deformability, chromatin compaction and gene reprogramming. It is known that the chromatin structure contributes directly to genomic and non-genomic functions, such as gene transcription and the physical properties of the nucleus. Here, we appraise paradigms and novel insights regarding the functional role of chromatin during nuclear deformation. In so doing, we review how constraint and mechanical conditions influence the structure, localization and chromatin decompaction. Finally, we highlight the emerging roles of mechanogenomics and the molecular basis of nucleoskeletal components, which open unexplored territory to understand how cells regulate their chromatin and modify the nucleus.
Collapse
Affiliation(s)
- Marcel Dreger
- a Faculty of Biology, Medicine and Health, Division of Cancer Studies , School of Medical Sciences, The University of Manchester , Manchester , UK
| | - Elena Madrazo
- b Department of Immunology Ophthalmology and ENT, Hospital 12 de Octubre Health Research Institute (imas12) , Complutense University, School of Medicine , Madrid , Spain
| | - Adam Hurlstone
- a Faculty of Biology, Medicine and Health, Division of Cancer Studies , School of Medical Sciences, The University of Manchester , Manchester , UK
| | - Javier Redondo-Muñoz
- b Department of Immunology Ophthalmology and ENT, Hospital 12 de Octubre Health Research Institute (imas12) , Complutense University, School of Medicine , Madrid , Spain.,c Lydia Becker Institute for Inflammation and Immunity , The University of Manchester , Manchester , UK
| |
Collapse
|
105
|
Stephens AD. Chromatin rigidity provides mechanical and genome protection. Mutat Res 2020; 821:111712. [PMID: 32590202 PMCID: PMC8186544 DOI: 10.1016/j.mrfmmm.2020.111712] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
The nucleus is the organelle in the cell that contains the genome and its associate proteins which is collectively called chromatin. New work has shown that chromatin and its compaction level, dictated largely through histone modification state, provides rigidity to protect and stabilize the nucleus. Alterations in chromatin, its mechanics, and downstream loss of nuclear shape and stability are hallmarks of human disease. Weakened nuclear mechanics and abnormal morphology have been shown to cause rupturing of the nucleus which results in nuclear dysfunction including DNA damage. Thus, the rigidity provided by chromatin to maintain nuclear mechanical stability also provides its own protection from DNA damage via compartmentalization maintenance.
Collapse
Affiliation(s)
- Andrew D Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, United States.
| |
Collapse
|
106
|
Multiple particle tracking analysis in isolated nuclei reveals the mechanical phenotype of leukemia cells. Sci Rep 2020; 10:6707. [PMID: 32317728 PMCID: PMC7174401 DOI: 10.1038/s41598-020-63682-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
The nucleus is fundamentally composed by lamina and nuclear membranes that enclose the chromatin, nucleoskeletal components and suspending nucleoplasm. The functional connections of this network integrate external stimuli into cell signals, including physical forces to mechanical responses of the nucleus. Canonically, the morphological characteristics of the nucleus, as shape and size, have served for pathologists to stratify and diagnose cancer patients; however, novel biophysical techniques must exploit physical parameters to improve cancer diagnosis. By using multiple particle tracking (MPT) technique on chromatin granules, we designed a SURF (Speeded Up Robust Features)-based algorithm to study the mechanical properties of isolated nuclei and in living cells. We have determined the apparent shear stiffness, viscosity and optical density of the nucleus, and how the chromatin structure influences on these biophysical values. Moreover, we used our MPT-SURF analysis to study the apparent mechanical properties of isolated nuclei from patients of acute lymphoblastic leukemia. We found that leukemia cells exhibited mechanical differences compared to normal lymphocytes. Interestingly, isolated nuclei from high-risk leukemia cells showed increased viscosity than their counterparts from normal lymphocytes, whilst nuclei from relapsed-patient's cells presented higher density than those from normal lymphocytes or standard- and high-risk leukemia cells. Taken together, here we presented how MPT-SURF analysis of nuclear chromatin granules defines nuclear mechanical phenotypic features, which might be clinically relevant.
Collapse
|
107
|
Chromatin and Cytoskeletal Tethering Determine Nuclear Morphology in Progerin-Expressing Cells. Biophys J 2020; 118:2319-2332. [PMID: 32320674 DOI: 10.1016/j.bpj.2020.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear morphology of eukaryotic cells is determined by the interplay between the lamina forming the nuclear skeleton, the chromatin inside the nucleus, and the coupling with the cytoskeleton. Nuclear alterations are often associated with pathological conditions as in Hutchinson-Gilford progeria syndrome, in which a mutation in the lamin A gene yields an altered form of the protein, named progerin, and an aberrant nuclear shape. Here, we introduce an inducible cellular model of Hutchinson-Gilford progeria syndrome in HeLa cells in which increased progerin expression leads to alterations in the coupling of the lamin shell with cytoskeletal or chromatin tethers as well as with polycomb group proteins. Furthermore, our experiments show that progerin expression leads to enhanced nuclear shape fluctuations in response to cytoskeletal activity. To interpret the experimental results, we introduce a computational model of the cell nucleus that explicitly includes chromatin fibers, the nuclear shell, and coupling with the cytoskeleton. The model allows us to investigate how the geometrical organization of the chromatin-lamin tether affects nuclear morphology and shape fluctuations. In sum, our findings highlight the crucial role played by lamin-chromatin and lamin-cytoskeletal alterations in determining nuclear shape morphology and in affecting cellular functions and gene regulation.
Collapse
|
108
|
Wintner O, Hirsch‐Attas N, Schlossberg M, Brofman F, Friedman R, Kupervaser M, Kitsberg D, Buxboim A. A Unified Linear Viscoelastic Model of the Cell Nucleus Defines the Mechanical Contributions of Lamins and Chromatin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901222. [PMID: 32328409 PMCID: PMC7175345 DOI: 10.1002/advs.201901222] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/22/2020] [Indexed: 05/26/2023]
Abstract
The cell nucleus is constantly subjected to externally applied forces. During metazoan evolution, the nucleus has been optimized to allow physical deformability while protecting the genome under load. Aberrant nucleus mechanics can alter cell migration across narrow spaces in cancer metastasis and immune response and disrupt nucleus mechanosensitivity. Uncovering the mechanical roles of lamins and chromatin is imperative for understanding the implications of physiological forces on cells and nuclei. Lamin-knockout and -rescue fibroblasts and probed nucleus response to physiologically relevant stresses are generated. A minimal viscoelastic model is presented that captures dynamic resistance across different cell types, lamin composition, phosphorylation states, and chromatin condensation. The model is conserved at low and high loading and is validated by micropipette aspiration and nanoindentation rheology. A time scale emerges that separates between dominantly elastic and dominantly viscous regimes. While lamin-A and lamin-B1 contribute to nucleus stiffness, viscosity is specified mostly by lamin-A. Elastic and viscous association of lamin-B1 and lamin-A is supported by transcriptional and proteomic profiling analyses. Chromatin decondensation quantified by electron microscopy softens the nucleus unless lamin-A is expressed. A mechanical framework is provided for assessing nucleus response to applied forces in health and disease.
Collapse
Affiliation(s)
- Oren Wintner
- Department of Cell and Developmental BiologyThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
- Alexander Grass Center for BioengineeringThe Rachel and Selim Benin School of Computer Science and EngineeringJerusalem9190416Israel
| | - Nivi Hirsch‐Attas
- Department of Cell and Developmental BiologyThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
| | - Miriam Schlossberg
- Department of Cell and Developmental BiologyThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
| | - Fani Brofman
- Department of Cell and Developmental BiologyThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
| | - Roy Friedman
- Alexander Grass Center for BioengineeringThe Rachel and Selim Benin School of Computer Science and EngineeringJerusalem9190416Israel
| | - Meital Kupervaser
- The de Botton Institute for Protein ProfilingThe Nancy and Stephen Grand Israel National Center for Personalized MedicineWeizmann Institute of ScienceRehovot7610001Israel
| | - Danny Kitsberg
- Department of Cell and Developmental BiologyThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
| | - Amnon Buxboim
- Department of Cell and Developmental BiologyThe Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
- Alexander Grass Center for BioengineeringThe Rachel and Selim Benin School of Computer Science and EngineeringJerusalem9190416Israel
| |
Collapse
|
109
|
Job Opening for Nucleosome Mechanic: Flexibility Required. Cells 2020; 9:cells9030580. [PMID: 32121488 PMCID: PMC7140402 DOI: 10.3390/cells9030580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
The nucleus has been studied for well over 100 years, and chromatin has been the intense focus of experiments for decades. In this review, we focus on an understudied aspect of chromatin biology, namely the chromatin fiber polymer’s mechanical properties. In recent years, innovative work deploying interdisciplinary approaches including computational modeling, in vitro manipulations of purified and native chromatin have resulted in deep mechanistic insights into how the mechanics of chromatin might contribute to its function. The picture that emerges is one of a nucleus that is shaped as much by external forces pressing down upon it, as internal forces pushing outwards from the chromatin. These properties may have evolved to afford the cell a dynamic and reversible force-induced communication highway which allows rapid coordination between external cues and internal genomic function.
Collapse
|
110
|
Song Y, Soto J, Chen B, Yang L, Li S. Cell engineering: Biophysical regulation of the nucleus. Biomaterials 2020; 234:119743. [PMID: 31962231 DOI: 10.1016/j.biomaterials.2019.119743] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/02/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Cells live in a complex and dynamic microenvironment, and a variety of microenvironmental cues can regulate cell behavior. In addition to biochemical signals, biophysical cues can induce not only immediate intracellular responses, but also long-term effects on phenotypic changes such as stem cell differentiation, immune cell activation and somatic cell reprogramming. Cells respond to mechanical stimuli via an outside-in and inside-out feedback loop, and the cell nucleus plays an important role in this process. The mechanical properties of the nucleus can directly or indirectly modulate mechanotransduction, and the physical coupling of the cell nucleus with the cytoskeleton can affect chromatin structure and regulate the epigenetic state, gene expression and cell function. In this review, we will highlight the recent progress in nuclear biomechanics and mechanobiology in the context of cell engineering, tissue remodeling and disease development.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California, Los Angeles, CA, USA; School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Binru Chen
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Li Yang
- School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA; Department of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
111
|
Nuclear failure, DNA damage, and cell cycle disruption after migration through small pores: a brief review. Essays Biochem 2019; 63:569-577. [PMID: 31366473 DOI: 10.1042/ebc20190007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 01/14/2023]
Abstract
In many contexts of development, regeneration, or disease such as cancer, a cell squeezes through a dense tissue or a basement membrane, constricting its nucleus. Here, we describe how the severity of nuclear deformation depends on a nucleus' mechanical properties that are mostly determined by the density of chromatin and by the nuclear lamina. We explain how constriction-induced nuclear deformation affects nuclear contents by causing (i) local density changes in chromatin and (ii) rupture of the nuclear lamina and envelope. Both processes mislocalize diffusible nuclear factors including key DNA repair and regulatory proteins. Importantly, these effects of constricted migration are accompanied by excess DNA damage, marked by phosphorylated histone γH2AX in fixed cells. Rupture has a number of downstream consequences that include a delayed cell cycle-consistent with a damage checkpoint-and modulation of differentiation, both of which are expected to affect migration-dependent processes ranging from wound healing to tumorigenic invasion.
Collapse
|
112
|
Gallardo P, Barrales RR, Daga RR, Salas-Pino S. Nuclear Mechanics in the Fission Yeast. Cells 2019; 8:cells8101285. [PMID: 31635174 PMCID: PMC6829894 DOI: 10.3390/cells8101285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
In eukaryotic cells, the organization of the genome within the nucleus requires the nuclear envelope (NE) and its associated proteins. The nucleus is subjected to mechanical forces produced by the cytoskeleton. The physical properties of the NE and the linkage of chromatin in compacted conformation at sites of cytoskeleton contacts seem to be key for withstanding nuclear mechanical stress. Mechanical perturbations of the nucleus normally occur during nuclear positioning and migration. In addition, cell contraction or expansion occurring for instance during cell migration or upon changes in osmotic conditions also result innuclear mechanical stress. Recent studies in Schizosaccharomyces pombe (fission yeast) have revealed unexpected functions of cytoplasmic microtubules in nuclear architecture and chromosome behavior, and have pointed to NE-chromatin tethers as protective elements during nuclear mechanics. Here, we review and discuss how fission yeast cells can be used to understand principles underlying the dynamic interplay between genome organization and function and the effect of forces applied to the nucleus by the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Paola Gallardo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, 41010 Seville, Spain.
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, 41010 Seville, Spain.
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, 41010 Seville, Spain.
| | - Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, 41010 Seville, Spain.
| |
Collapse
|
113
|
Pfeifer CR, Irianto J, Discher DE. Nuclear Mechanics and Cancer Cell Migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1146:117-130. [PMID: 31612457 DOI: 10.1007/978-3-030-17593-1_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a cancer cell invades adjacent tissue, penetrates a basement membrane barrier, or squeezes into a blood capillary, its nucleus can be greatly constricted. Here, we examine: (1) the passive and active deformation of the nucleus during 3D migration; (2) the nuclear structures-namely, the lamina and chromatin-that govern nuclear deformability; (3) the effect of large nuclear deformation on DNA and nuclear factors; and (4) the downstream consequences of mechanically stressing the nucleus. We focus especially on recent studies showing that constricted migration causes nuclear envelope rupture and excess DNA damage, leading to cell cycle suppression, possibly cell death, and ultimately it seems to heritable genomic variation. We first review the latest understanding of nuclear dynamics during cell migration, and then explore the functional effects of nuclear deformation, especially in relation to genome integrity and potentially cancerous mutations.
Collapse
Affiliation(s)
- Charlotte R Pfeifer
- Biophysical Engineering Labs: Molecular & Cell Biophysics and NanoBio-Polymers, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerome Irianto
- Biophysical Engineering Labs: Molecular & Cell Biophysics and NanoBio-Polymers, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E Discher
- Biophysical Engineering Labs: Molecular & Cell Biophysics and NanoBio-Polymers, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
114
|
Hu Y, Bennett HW, Liu N, Moravec M, Williams JF, Azzalin CM, King MC. RNA-DNA Hybrids Support Recombination-Based Telomere Maintenance in Fission Yeast. Genetics 2019; 213:431-447. [PMID: 31405990 PMCID: PMC6781888 DOI: 10.1534/genetics.119.302606] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022] Open
Abstract
A subset of cancers rely on telomerase-independent mechanisms to maintain their chromosome ends. The predominant "alternative lengthening of telomeres" pathway appears dependent on homology-directed repair (HDR) to maintain telomeric DNA. However, the molecular changes needed for cells to productively engage in telomeric HDR are poorly understood. To gain new insights into this transition, we monitored the state of telomeres during serial culture of fission yeast (Schizosaccharomyces pombe) lacking the telomerase recruitment factor Ccq1. Rad52 is loaded onto critically short telomeres shortly after germination despite continued telomere erosion, suggesting that recruitment of recombination factors is not sufficient to maintain telomeres in the absence of telomerase function. Instead, survivor formation coincides with the derepression of telomeric repeat-containing RNA (TERRA). In this context, degradation of TERRA associated with the telomere in the form of R-loops drives a severe growth crisis, ultimately leading to a novel type of survivor with linear chromosomes and altered cytological telomere characteristics, including the loss of the shelterin component Rap1 (but not the TRF1/TRF2 ortholog, Taz1) from the telomere. We demonstrate that deletion of Rap1 is protective in this context, preventing the growth crisis that is otherwise triggered by degradation of telomeric R-loops in survivors with linear chromosomes. These findings suggest that upregulation of telomere-engaged TERRA, or altered recruitment of shelterin components, can support telomerase-independent telomere maintenance.
Collapse
Affiliation(s)
- Yan Hu
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Henrietta W Bennett
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Na Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Martin Moravec
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), 8093, Switzerland
| | - Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, 1649-028, Portugal
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| |
Collapse
|
115
|
Arbore C, Perego L, Sergides M, Capitanio M. Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction. Biophys Rev 2019; 11:765-782. [PMID: 31612379 PMCID: PMC6815294 DOI: 10.1007/s12551-019-00599-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023] Open
Abstract
The invention of optical tweezers more than three decades ago has opened new avenues in the study of the mechanical properties of biological molecules and cells. Quantitative force measurements still represent a challenging task in living cells due to the complexity of the cellular environment. Here, we review different methodologies to quantitatively measure the mechanical properties of living cells, the strength of adhesion/receptor bonds, and the active force produced during intracellular transport, cell adhesion, and migration. We discuss experimental strategies to attain proper calibration of optical tweezers and molecular resolution in living cells. Finally, we show recent studies on the transduction of mechanical stimuli into biomolecular and genetic signals that play a critical role in cell health and disease.
Collapse
Affiliation(s)
- Claudia Arbore
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Laura Perego
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Marios Sergides
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
116
|
Zhurinsky J, Salas-Pino S, Iglesias-Romero AB, Torres-Mendez A, Knapp B, Flor-Parra I, Wang J, Bao K, Jia S, Chang F, Daga RR. Effects of the microtubule nucleator Mto1 on chromosomal movement, DNA repair, and sister chromatid cohesion in fission yeast. Mol Biol Cell 2019; 30:2695-2708. [PMID: 31483748 PMCID: PMC6761766 DOI: 10.1091/mbc.e19-05-0301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 11/11/2022] Open
Abstract
Although the function of microtubules (MTs) in chromosomal segregation during mitosis is well characterized, much less is known about the role of MTs in chromosomal functions during interphase. In the fission yeast Schizosaccharomyces pombe, dynamic cytoplasmic MT bundles move chromosomes in an oscillatory manner during interphase via linkages through the nuclear envelope (NE) at the spindle pole body (SPB) and other sites. Mto1 is a cytoplasmic factor that mediates the nucleation and attachment of cytoplasmic MTs to the nucleus. Here, we test the function of these cytoplasmic MTs and Mto1 on DNA repair and recombination during interphase. We find that mto1Δ cells exhibit defects in DNA repair and homologous recombination (HR) and abnormal DNA repair factory dynamics. In these cells, sister chromatids are not properly paired, and binding of Rad21 cohesin subunit along chromosomal arms is reduced. Our findings suggest a model in which cytoplasmic MTs and Mto1 facilitate efficient DNA repair and HR by promoting dynamic chromosomal organization and cohesion in the nucleus.
Collapse
Affiliation(s)
- Jacob Zhurinsky
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Silvia Salas-Pino
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Ana B. Iglesias-Romero
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Antonio Torres-Mendez
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Benjamin Knapp
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Ignacio Flor-Parra
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Jiyong Wang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Kehan Bao
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Songtao Jia
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Fred Chang
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Rafael R. Daga
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| |
Collapse
|
117
|
Abstract
Supplemental Digital Content is available in the text. If unifying principles could be revealed for how the same genome encodes different eukaryotic cells and for how genetic variability and environmental input are integrated to impact cardiovascular health, grand challenges in basic cell biology and translational medicine may succumb to experimental dissection. A rich body of work in model systems has implicated chromatin-modifying enzymes, DNA methylation, noncoding RNAs, and other transcriptome-shaping factors in adult health and in the development, progression, and mitigation of cardiovascular disease. Meanwhile, deployment of epigenomic tools, powered by next-generation sequencing technologies in cardiovascular models and human populations, has enabled description of epigenomic landscapes underpinning cellular function in the cardiovascular system. This essay aims to unpack the conceptual framework in which epigenomes are studied and to stimulate discussion on how principles of chromatin function may inform investigations of cardiovascular disease and the development of new therapies.
Collapse
Affiliation(s)
- Manuel Rosa-Garrido
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Douglas J Chapski
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Thomas M Vondriska
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles.
| |
Collapse
|
118
|
Jang YH, Jin X, Shankar P, Lee JH, Jo K, Lim KI. Molecular-Level Interactions between Engineered Materials and Cells. Int J Mol Sci 2019; 20:E4142. [PMID: 31450647 PMCID: PMC6747072 DOI: 10.3390/ijms20174142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Various recent experimental observations indicate that growing cells on engineered materials can alter their physiology, function, and fate. This finding suggests that better molecular-level understanding of the interactions between cells and materials may guide the design and construction of sophisticated artificial substrates, potentially enabling control of cells for use in various biomedical applications. In this review, we introduce recent research results that shed light on molecular events and mechanisms involved in the interactions between cells and materials. We discuss the development of materials with distinct physical, chemical, and biological features, cellular sensing of the engineered materials, transfer of the sensing information to the cell nucleus, subsequent changes in physical and chemical states of genomic DNA, and finally the resulting cellular behavior changes. Ongoing efforts to advance materials engineering and the cell-material interface will eventually expand the cell-based applications in therapies and tissue regenerations.
Collapse
Affiliation(s)
- Yoon-Ha Jang
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Korea
| | - Xuelin Jin
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Prabakaran Shankar
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Kyubong Jo
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| | - Kwang-Il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Korea.
| |
Collapse
|
119
|
Abstract
Cellular nuclei are bound by two uniformly separated lipid membranes that are fused with each other at numerous donut-shaped pores. These membranes are structurally supported by an array of distinct proteins with distinct mechanical functions. As a result, the nuclear envelope possesses unique mechanical properties, which enables it to resist cytoskeletal forces. Here, we review studies that are beginning to provide quantitative insights into nuclear membrane mechanics. We discuss how the mechanical properties of the fused nuclear membranes mediate their response to mechanical forces exerted on the nucleus and how structural reinforcement by different nuclear proteins protects the nuclear membranes against rupture. We also highlight some open questions in nuclear envelope mechanics, and discuss their relevance in the context of health and disease.
Collapse
Affiliation(s)
- Ashutosh Agrawal
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
120
|
Gill NK, Ly C, Kim PH, Saunders CA, Fong LG, Young SG, Luxton GWG, Rowat AC. DYT1 Dystonia Patient-Derived Fibroblasts Have Increased Deformability and Susceptibility to Damage by Mechanical Forces. Front Cell Dev Biol 2019; 7:103. [PMID: 31294022 PMCID: PMC6606767 DOI: 10.3389/fcell.2019.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
DYT1 dystonia is a neurological movement disorder that is caused by a loss-of-function mutation in the DYT1/TOR1A gene, which encodes torsinA, a conserved luminal ATPases-associated with various cellular activities (AAA+) protein. TorsinA is required for the assembly of functional linker of nucleoskeleton and cytoskeleton (LINC) complexes, and consequently the mechanical integration of the nucleus and the cytoskeleton. Despite the potential implications of altered mechanobiology in dystonia pathogenesis, the role of torsinA in regulating cellular mechanical phenotype, or mechanotype, in DYT1 dystonia remains unknown. Here, we define the deformability of mouse fibroblasts lacking functional torsinA as well as human fibroblasts isolated from DYT1 dystonia patients. We find that the deletion of torsinA or the expression of torsinA containing the DYT1 dystonia-causing ΔE302/303 (ΔE) mutation results in more deformable cells. We observe a similar increased deformability of mouse fibroblasts that lack lamina-associated polypeptide 1 (LAP1), which interacts with and stimulates the ATPase activity of torsinA in vitro, as well as with the absence of the LINC complex proteins, Sad1/UNC-84 1 (SUN1) and SUN2, lamin A/C, or lamin B1. Consistent with these findings, we also determine that DYT1 dystonia patient-derived fibroblasts are more compliant than fibroblasts isolated from unafflicted individuals. DYT1 dystonia patient-derived fibroblasts also exhibit increased nuclear strain and decreased viability following mechanical stretch. Taken together, our results establish the foundation for future mechanistic studies of the role of cellular mechanotype and LINC-dependent nuclear-cytoskeletal coupling in regulating cell survival following exposure to mechanical stresses.
Collapse
Affiliation(s)
- Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chau Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul H Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
121
|
Abstract
Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, reacting to cytoskeletal forces and mediating downstream biochemical responses. The nucleus responds through a host of mechanisms, including partial unfolding, conformational changes, and phosphorylation of nuclear envelope proteins; modulation of nuclear import/export; and altered chromatin organization, resulting in transcriptional changes. It is unclear which of these events present direct mechanotransduction processes and which are downstream of other mechanotransduction pathways. We critically review and discuss the current evidence for nuclear mechanotransduction, particularly in the context of stem cell fate, a largely unexplored topic, and in disease, where an improved understanding of nuclear mechanotransduction is beginning to open new treatment avenues. Finally, we discuss innovative technological developments that will allow outstanding questions in the rapidly growing field of nuclear mechanotransduction to be answered.
Collapse
Affiliation(s)
- Melanie Maurer
- Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA; ,
| | - Jan Lammerding
- Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA; ,
| |
Collapse
|
122
|
Stephens AD, Banigan EJ, Marko JF. Chromatin's physical properties shape the nucleus and its functions. Curr Opin Cell Biol 2019; 58:76-84. [PMID: 30889417 PMCID: PMC6692209 DOI: 10.1016/j.ceb.2019.02.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
The cell nucleus encloses, organizes, and protects the genome. Chromatin maintains nuclear mechanical stability and shape in coordination with lamins and the cytoskeleton. Abnormal nuclear shape is a diagnostic marker for human diseases, and it can cause nuclear dysfunction. Chromatin mechanics underlies this link, as alterations to chromatin and its physical properties can disrupt or rescue nuclear shape. The cell can regulate nuclear shape through mechanotransduction pathways that sense and respond to extracellular cues, thus modulating chromatin compaction and rigidity. These findings reveal how chromatin's physical properties can regulate cellular function and drive abnormal nuclear morphology and dysfunction in disease.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.
| | - Edward J Banigan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States; Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
123
|
Thaller DJ, Allegretti M, Borah S, Ronchi P, Beck M, Lusk CP. An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. eLife 2019; 8:e45284. [PMID: 30942170 PMCID: PMC6461442 DOI: 10.7554/elife.45284] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
The integrity of the nuclear membranes coupled to the selective barrier of nuclear pore complexes (NPCs) are essential for the segregation of nucleoplasm and cytoplasm. Mechanical membrane disruption or perturbation to NPC assembly triggers an ESCRT-dependent surveillance system that seals nuclear pores: how these pores are sensed and sealed is ill defined. Using a budding yeast model, we show that the ESCRT Chm7 and the integral inner nuclear membrane (INM) protein Heh1 are spatially segregated by nuclear transport, with Chm7 being actively exported by Xpo1/Crm1. Thus, the exposure of the INM triggers surveillance with Heh1 locally activating Chm7. Sites of Chm7 hyperactivation show fenestrated sheets at the INM and potential membrane delivery at sites of nuclear envelope herniation. Our data suggest that perturbation to the nuclear envelope barrier would lead to local nuclear membrane remodeling to promote membrane sealing. Our findings have implications for disease mechanisms linked to NPC assembly and nuclear envelope integrity.
Collapse
Affiliation(s)
- David J Thaller
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| | - Matteo Allegretti
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - Sapan Borah
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| | - Paolo Ronchi
- Electron Microscopy Core FacilityEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - Martin Beck
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - C Patrick Lusk
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| |
Collapse
|
124
|
Wang X, Ho C, Tsatskis Y, Law J, Zhang Z, Zhu M, Dai C, Wang F, Tan M, Hopyan S, McNeill H, Sun Y. Intracellular manipulation and measurement with multipole magnetic tweezers. Sci Robot 2019; 4:4/28/eaav6180. [DOI: 10.1126/scirobotics.aav6180] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
The capability to directly interrogate intracellular structures inside a single cell for measurement and manipulation is important for understanding subcellular and suborganelle activities, diagnosing diseases, and developing new therapeutic approaches. Compared with measurements of single cells, physical measurement and manipulation of subcellular structures and organelles remain underexplored. To improve intracellular physical measurement and manipulation, we have developed a multipole magnetic tweezers system for micromanipulation involving submicrometer position control and piconewton force control of a submicrometer magnetic bead inside a single cell for measurement in different locations (spatial) and different time points (temporal). The bead was three-dimensionally positioned in the cell using a generalized predictive controller that addresses the control challenge caused by the low bandwidth of visual feedback from high-resolution confocal imaging. The average positioning error was quantified to be 0.4 μm, slightly larger than the Brownian motion–imposed constraint (0.31 μm). The system is also capable of applying a force up to 60 pN with a resolution of 4 pN for a period of time longer than 30 min. The measurement results revealed that significantly higher stiffness exists in the nucleus’ major axis than in the minor axis. This stiffness polarity is likely attributed to the aligned actin filament. We also showed that the nucleus stiffens upon the application of an intracellularly applied force, which can be attributed to the response of structural protein lamin A/C and the intracellular stress fiber actin filaments.
Collapse
|
125
|
Hah J, Kim DH. Deciphering Nuclear Mechanobiology in Laminopathy. Cells 2019; 8:E231. [PMID: 30862117 PMCID: PMC6468464 DOI: 10.3390/cells8030231] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Extracellular mechanical stimuli are translated into biochemical signals inside the cell via mechanotransduction. The nucleus plays a critical role in mechanoregulation, which encompasses mechanosensing and mechanotransduction. The nuclear lamina underlying the inner nuclear membrane not only maintains the structural integrity, but also connects the cytoskeleton to the nuclear envelope. Lamin mutations, therefore, dysregulate the nuclear response, resulting in abnormal mechanoregulations, and ultimately, disease progression. Impaired mechanoregulations even induce malfunction in nuclear positioning, cell migration, mechanosensation, as well as differentiation. To know how to overcome laminopathies, we need to understand the mechanisms of laminopathies in a mechanobiological way. Recently, emerging studies have demonstrated the varying defects from lamin mutation in cellular homeostasis within mechanical surroundings. Therefore, this review summarizes recent findings highlighting the role of lamins, the architecture of nuclear lamina, and their disease relevance in the context of nuclear mechanobiology. We will also provide an overview of the differentiation of cellular mechanics in laminopathy.
Collapse
Affiliation(s)
- Jungwon Hah
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
126
|
Balakrishnan S, Mathad SS, Sharma G, Raju SR, Reddy UB, Das S, Ananthasuresh GK. A Nondimensional Model Reveals Alterations in Nuclear Mechanics upon Hepatitis C Virus Replication. Biophys J 2019; 116:1328-1339. [PMID: 30879645 DOI: 10.1016/j.bpj.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 02/05/2023] Open
Abstract
Morphology of the nucleus is an important regulator of gene expression. Nuclear morphology is in turn a function of the forces acting on it and the mechanical properties of the nuclear envelope. Here, we present a two-parameter, nondimensional mechanical model of the nucleus that reveals a relationship among nuclear shape parameters, such as projected area, surface area, and volume. Our model fits the morphology of individual nuclei and predicts the ratio between forces and modulus in each nucleus. We analyzed the changes in nuclear morphology of liver cells due to hepatitis C virus (HCV) infection using this model. The model predicted a decrease in the elastic modulus of the nuclear envelope and an increase in the pre-tension in cortical actin as the causes for the change in nuclear morphology. These predictions were validated biomechanically by showing that liver cells expressing HCV proteins possessed enhanced cellular stiffness and reduced nuclear stiffness. Concomitantly, cells expressing HCV proteins showed downregulation of lamin-A,C and upregulation of β-actin, corroborating the predictions of the model. Our modeling assumptions are broadly applicable to adherent, monolayer cell cultures, making the model amenable to investigate changes in nuclear mechanics due to other stimuli by merely measuring nuclear morphology. Toward this, we present two techniques, graphical and numerical, to use our model for predicting physical changes in the nucleus.
Collapse
Affiliation(s)
- Sreenath Balakrishnan
- BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Suma S Mathad
- Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Geetika Sharma
- Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Shilpa R Raju
- Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Uma B Reddy
- Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Saumitra Das
- BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India; Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India.
| | - G K Ananthasuresh
- BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India; Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
127
|
Manley HR, Keightley MC, Lieschke GJ. The Neutrophil Nucleus: An Important Influence on Neutrophil Migration and Function. Front Immunol 2018; 9:2867. [PMID: 30564248 PMCID: PMC6288403 DOI: 10.3389/fimmu.2018.02867] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/21/2018] [Indexed: 11/13/2022] Open
Abstract
Neutrophil nuclear morphology has historically been used in haematology for neutrophil identification and characterisation, but its exact role in neutrophil function has remained enigmatic. During maturation, segmentation of the neutrophil nucleus into its mature, multi-lobulated shape is accompanied by distinct changes in nuclear envelope composition, resulting in a unique nucleus that is believed to be imbued with extraordinary nuclear flexibility. As a rate-limiting factor for cell migration, nuclear morphology and biomechanics are particularly important in the context of neutrophil migration during immune responses. Being an extremely plastic and fast migrating cell type, it is to be expected that neutrophils have an especially deformable nucleus. However, many questions still surround the dynamic capacities of the neutrophil nucleus, and which nuclear and cytoskeletal elements determine these dynamics. The biomechanics of the neutrophil nucleus should also be considered for their influences on the production of neutrophil extracellular traps (NETs), given this process sees the release of chromatin "nets" from nucleoplasm to extracellular space. Although past studies have investigated neutrophil nuclear composition and shape, in a new era of more sophisticated biomechanical and genetic techniques, 3D migration studies, and higher resolution microscopy we now have the ability to further investigate and understand neutrophil nuclear plasticity at an unprecedented level. This review addresses what is currently understood about neutrophil nuclear structure and its role in migration and the release of NETs, whilst highlighting open questions surrounding neutrophil nuclear dynamics.
Collapse
Affiliation(s)
- Harriet R Manley
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
128
|
Jacobson EC, Perry JK, Long DS, Olins AL, Olins DE, Wright BE, Vickers MH, O’Sullivan JM. Migration through a small pore disrupts inactive chromatin organization in neutrophil-like cells. BMC Biol 2018; 16:142. [PMID: 30477489 PMCID: PMC6257957 DOI: 10.1186/s12915-018-0608-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/02/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mammalian cells are flexible and can rapidly change shape when they contract, adhere, or migrate. The nucleus must be stiff enough to withstand cytoskeletal forces, but flexible enough to remodel as the cell changes shape. This is particularly important for cells migrating through confined spaces, where the nuclear shape must change in order to fit through a constriction. This occurs many times in the life cycle of a neutrophil, which must protect its chromatin from damage and disruption associated with migration. Here we characterized the effects of constricted migration in neutrophil-like cells. RESULTS Total RNA sequencing identified that migration of neutrophil-like cells through 5- or 14-μm pores was associated with changes in the transcript levels of inflammation and chemotaxis-related genes when compared to unmigrated cells. Differentially expressed transcripts specific to migration with constriction were enriched for groups of genes associated with cytoskeletal remodeling. Hi-C was used to capture the genome organization in control and migrated cells. Limited switching was observed between the active (A) and inactive (B) compartments after migration. However, global depletion of short-range contacts was observed following migration with constriction compared to migration without constriction. Regions with disrupted contacts, TADs, and compartments were enriched for inactive chromatin. CONCLUSION Short-range genome organization is preferentially altered in inactive chromatin, possibly protecting transcriptionally active contacts from the disruptive effects of migration with constriction. This is consistent with current hypotheses implicating heterochromatin as the mechanoresponsive form of chromatin. Further investigation concerning the contribution of heterochromatin to stiffness, flexibility, and protection of nuclear function will be important for understanding cell migration in relation to human health and disease.
Collapse
Affiliation(s)
| | - Jo K. Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - David S. Long
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Biomedical Engineering, Wichita State University, Wichita, USA
| | - Ada L. Olins
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New England, Portland, ME USA
| | - Donald E. Olins
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New England, Portland, ME USA
| | - Bryon E. Wright
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
129
|
Garapati HS, Mishra K. Comparative genomics of nuclear envelope proteins. BMC Genomics 2018; 19:823. [PMID: 30445911 PMCID: PMC6240307 DOI: 10.1186/s12864-018-5218-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear envelope (NE) that encapsulates the nuclear genome is a double lipid bilayer with several integral and peripherally associated proteins. It is a characteristic feature of the eukaryotes and acts as a hub for a number of important nuclear events including transcription, repair, and regulated gene expression. The proteins associated with the nuclear envelope mediate the NE functions and maintain its structural integrity, which is crucial for survival. In spite of the importance of this structure, knowledge of the protein composition of the nuclear envelope and their function, are limited to very few organisms belonging to Opisthokonta and Archaeplastida supergroups. The NE composition is largely unknown in organisms outside these two supergroups. RESULTS In this study, we have taken a comparative sequence analysis approach to identify the NE proteome that is present across all five eukaryotic supergroups. We identified 22 proteins involved in various nuclear functions to be part of the core NE proteome. The presence of these proteins across eukaryotes, suggests that they are traceable to the Last Eukaryotic Common Ancestor (LECA). Additionally, we also identified the NE proteins that have evolved in a lineage specific manner and those that have been preserved only in a subset of organisms. CONCLUSIONS Our study identifies the conserved features of the nuclear envelope across eukaryotes and provides insights into the potential composition and the functionalities that were constituents of the LECA NE.
Collapse
Affiliation(s)
- Hita Sony Garapati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
130
|
Grigoryan A, Guidi N, Senger K, Liehr T, Soller K, Marka G, Vollmer A, Markaki Y, Leonhardt H, Buske C, Lipka DB, Plass C, Zheng Y, Mulaw MA, Geiger H, Florian MC. LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biol 2018; 19:189. [PMID: 30404662 PMCID: PMC6223039 DOI: 10.1186/s13059-018-1557-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/04/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The decline of hematopoietic stem cell (HSC) function upon aging contributes to aging-associated immune remodeling and leukemia pathogenesis. Aged HSCs show changes to their epigenome, such as alterations in DNA methylation and histone methylation and acetylation landscapes. We previously showed a correlation between high Cdc42 activity in aged HSCs and the loss of intranuclear epigenetic polarity, or epipolarity, as indicated by the specific distribution of H4K16ac. RESULTS Here, we show that not all histone modifications display a polar localization and that a reduction in H4K16ac amount and loss of epipolarity are specific to aged HSCs. Increasing the levels of H4K16ac is not sufficient to restore polarity in aged HSCs and the restoration of HSC function. The changes in H4K16ac upon aging and rejuvenation of HSCs are correlated with a change in chromosome 11 architecture and alterations in nuclear volume and shape. Surprisingly, by taking advantage of knockout mouse models, we demonstrate that increased Cdc42 activity levels correlate with the repression of the nuclear envelope protein LaminA/C, which controls chromosome 11 distribution, H4K16ac polarity, and nuclear volume and shape in aged HSCs. CONCLUSIONS Collectively, our data show that chromatin architecture changes in aged stem cells are reversible by decreasing the levels of Cdc42 activity, revealing an unanticipated way to pharmacologically target LaminA/C expression and revert alterations of the epigenetic architecture in aged HSCs.
Collapse
Affiliation(s)
- Ani Grigoryan
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Novella Guidi
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Katharina Senger
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Kollegiengasse 10, 07743, Jena, Germany
| | - Karin Soller
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Gina Marka
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Angelika Vollmer
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Yolanda Markaki
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Großhaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Großhaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Center Ulm, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Daniel B Lipka
- Regulation of Cellular Differentiation Group, INF280, 69120, Heidelberg, Germany
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF280, 69120, Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF280, 69120, Heidelberg, Germany
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Medhanie A Mulaw
- Institute of Experimental Cancer Research, Comprehensive Cancer Center Ulm, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Maria Carolina Florian
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany.
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
| |
Collapse
|
131
|
Suresh S, Markossian S, Osmani AH, Osmani SA. Nup2 performs diverse interphase functions in Aspergillus nidulans. Mol Biol Cell 2018; 29:3144-3154. [PMID: 30355026 PMCID: PMC6340215 DOI: 10.1091/mbc.e18-04-0223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The nuclear pore complex (NPC) protein Nup2 plays interphase nuclear transport roles and in Aspergillus nidulans also functions to bridge NPCs at mitotic chromatin for their faithful coinheritance to daughter G1 nuclei. In this study, we further investigate the interphase functions of Nup2 in A. nidulans. Although Nup2 is not required for nuclear import of all nuclear proteins after mitosis, it is required for normal G1 nuclear accumulation of the NPC nuclear basket–associated components Mad2 and Mlp1 as well as the THO complex protein Tho2. Targeting of Mlp1 to nuclei partially rescues the interphase delay seen in nup2 mutants indicating that some of the interphase defects in Nup2-deleted cells are due to Mlp1 mislocalization. Among the inner nuclear membrane proteins, Nup2 affects the localization of Ima1, orthologues of which are involved in nuclear movement. Interestingly, nup2 mutant G1 nuclei also exhibit an abnormally long period of extensive to-and-fro movement immediately after mitosis in a manner dependent on the microtubule cytoskeleton. This indicates that Nup2 is required to limit the transient postmitotic nuclear migration typical of many filamentous fungi. The findings reveal that Nup2 is a multifunctional protein that performs diverse functions during both interphase and mitosis in A. nidulans.
Collapse
Affiliation(s)
- Subbulakshmi Suresh
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Sarine Markossian
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
132
|
Williams JF, Mochrie SGJ, King MC. A versatile image analysis platform for three-dimensional nuclear reconstruction. Methods 2018; 157:15-27. [PMID: 30359725 DOI: 10.1016/j.ymeth.2018.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
Nuclear morphology is indicative of cellular health in many contexts. In order to robustly and quantitatively measure nuclear size and shape, numerous experimental methods leveraging fluorescence microscopy have been developed. While these methods are useful for quantifying two-dimensional morphology, they often fail to accurately represent the three-dimensional structure of the nucleus, thus omitting important spatial and volumetric information. To address the need for a more accurate image analysis modality, we have developed a software platform that faithfully reconstructs membrane surfaces in three dimensions with sub-pixel resolution. Here, we showcase its broad applicability across species and nuclear scale, as well as provide information on how to employ this platform for diverse experimental systems.
Collapse
Affiliation(s)
- Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Simon G J Mochrie
- Department of Physics, Department of Applied Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
133
|
Maeshima K, Tamura S, Shimamoto Y. Chromatin as a nuclear spring. Biophys Physicobiol 2018; 15:189-195. [PMID: 30349803 PMCID: PMC6194950 DOI: 10.2142/biophysico.15.0_189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
The nucleus in eukaryotic cells is the site for genomic functions such as RNA transcription, DNA replication, and DNA repair/recombination. However, the nucleus is subjected to various mechanical forces associated with diverse cellular activities, including contraction, migration, and adhesion. Although it has long been assumed that the lamina structure, underlying filamentous mesh-work of the nuclear envelope, plays an important role in resisting mechanical forces, the involvement of compact chromatin in mechanical resistance has also recently been suggested. However, it is still unclear how chromatin functions to cope with the stresses. To address this issue, we studied the mechanical responses of human cell nuclei by combining a force measurement microscopy setup with controlled biochemical manipulation of chromatin. We found that nuclei with condensed chromatin possess significant elastic rigidity, whereas the nuclei with a decondensed chromatin are considerably soft. Further analyses revealed that the linker DNA and nucleosome-nucleosome interactions via histone tails in the chromatin act together to generate a spring-like restoring force that resists nuclear deformation. The elastic restoring force is likely to be generated by condensed chromatin domains, consisting of interdigitated or "melted" 10-nm nucleosome fibers. Together with other recent studies, it is suggested that chromatin functions not only as a "memory device" to store, replicate, and express the genetic information for various cellular functions but also as a "nuclear spring" to resist and respond to mechanical forces.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Sachiko Tamura
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yuta Shimamoto
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan.,Quantitative Mechanobiology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
134
|
Wang X, Liu H, Zhu M, Cao C, Xu Z, Tsatskis Y, Lau K, Kuok C, Filleter T, McNeill H, Simmons CA, Hopyan S, Sun Y. Mechanical stability of the cell nucleus - roles played by the cytoskeleton in nuclear deformation and strain recovery. J Cell Sci 2018; 131:jcs.209627. [PMID: 29777038 DOI: 10.1242/jcs.209627] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 05/14/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformations increase the risk of disrupting the integrity of the nuclear envelope and causing DNA damage. The mechanical stability of the nucleus defines its capability to maintain nuclear shape by minimizing nuclear deformation and allowing strain to be minimized when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin.
Collapse
Affiliation(s)
- Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Haijiao Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Min Zhu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8.,Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Changhong Cao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Zhensong Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Yonit Tsatskis
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Kimberly Lau
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Chikin Kuok
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Tobin Filleter
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8 .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8 .,Division of Orthopaedic Surgery, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8 .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| |
Collapse
|
135
|
Fernandes V, Teles K, Ribeiro C, Treptow W, Santos G. Fat nucleosome: Role of lipids on chromatin. Prog Lipid Res 2018; 70:29-34. [PMID: 29678609 DOI: 10.1016/j.plipres.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/18/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023]
Abstract
Structural changes in chromatin regulate gene expression and define phenotypic outcomes. Molecules that bind to the nucleosome, the complex of DNA and histone proteins, are key modulators of chromatin structure. Most recently, the formation of condensed chromatin regions based on phase-separation in the cell, a basic physical mechanism, was proposed. Increased understanding of the mechanisms of interaction between chromatin and lipids suggest that small lipid molecules, such as cholesterol and short-chain fatty acids, can regulate important nuclear functions. New biophysical data has suggested that cholesterol interacts with nucleosome through multiple binding sites and affects chromatin structure in vitro. Regardless of the mechanism of how lipids bind to chromatin, there is currently little awareness that lipids may be stored in chromatin and influence its state. Focusing on lipids that bind to nuclear receptors, clinically relevant transcription factors, we discuss the potential interactions of the nucleosome with steroid hormones, bile acids and fatty acids, which suggest that other lipid chemotypes may also impact chromatin structure through binding to common sites on the nucleosome. Herein, we review the main impacts of lipids on the nuclear environment, emphasizing its role on chromatin architecture. We postulate that lipids that bind to nucleosomes and affect chromatin states are likely to be worth investigating as tools to modify disease phenotypes at a molecular level.
Collapse
Affiliation(s)
- Vinicius Fernandes
- Laboratório de Farmacologia Molecular, Departamento de Farmácia, Universidade de Brasília, Brasília 70919-970, Brazil; Laboratório de Biologia Teórica e Computacional, Departamento de Biologia Celular, Universidade de Brasília, DF 70910-900, Brasília, Brazil
| | - Kaian Teles
- Laboratório de Farmacologia Molecular, Departamento de Farmácia, Universidade de Brasília, Brasília 70919-970, Brazil
| | - Camyla Ribeiro
- Laboratório de Farmacologia Molecular, Departamento de Farmácia, Universidade de Brasília, Brasília 70919-970, Brazil
| | - Werner Treptow
- Laboratório de Biologia Teórica e Computacional, Departamento de Biologia Celular, Universidade de Brasília, DF 70910-900, Brasília, Brazil
| | - Guilherme Santos
- Laboratório de Farmacologia Molecular, Departamento de Farmácia, Universidade de Brasília, Brasília 70919-970, Brazil.
| |
Collapse
|
136
|
Anselme K, Wakhloo NT, Rougerie P, Pieuchot L. Role of the Nucleus as a Sensor of Cell Environment Topography. Adv Healthc Mater 2018; 7:e1701154. [PMID: 29283219 DOI: 10.1002/adhm.201701154] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Indexed: 12/25/2022]
Abstract
The proper integration of biophysical cues from the cell vicinity is crucial for cells to maintain homeostasis, cooperate with other cells within the tissues, and properly fulfill their biological function. It is therefore crucial to fully understand how cells integrate these extracellular signals for tissue engineering and regenerative medicine. Topography has emerged as a prominent component of the cellular microenvironment that has pleiotropic effects on cell behavior. This progress report focuses on the recent advances in the understanding of the topography sensing mechanism with a special emphasis on the role of the nucleus. Here, recent techniques developed for monitoring the nuclear mechanics are reviewed and the impact of various topographies and their consequences on nuclear organization, gene regulation, and stem cell fate is summarized. The role of the cell nucleus as a sensor of cell-scale topography is further discussed.
Collapse
Affiliation(s)
- Karine Anselme
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| | - Nayana Tusamda Wakhloo
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| | - Pablo Rougerie
- Institute of Biomedical SciencesFederal University of Rio de Janeiro Rio de Janeiro RJ 21941‐902 Brazil
| | - Laurent Pieuchot
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| |
Collapse
|
137
|
Uhler C, Shivashankar GV. Nuclear Mechanopathology and Cancer Diagnosis. Trends Cancer 2018; 4:320-331. [PMID: 29606315 DOI: 10.1016/j.trecan.2018.02.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 11/29/2022]
Abstract
Abnormalities in nuclear and chromatin organization are hallmarks of many diseases including cancer. In this review, we highlight our understanding of how the cellular microenvironment regulates nuclear morphology and, with it, the spatial organization of chromosomes and genes, resulting in cell type-specific genomic programs. We also discuss the molecular basis for maintaining nuclear and genomic integrity and how alterations in nuclear mechanotransduction pathways result in various diseases. Finally, we highlight the importance of digital pathology based on nuclear morphometric features combined with single-cell genomics for early cancer diagnostics.
Collapse
Affiliation(s)
- Caroline Uhler
- Department of Electrical Engineering & Computer Science, Institute for Data, Systems & Society, MIT, Cambridge, MA, USA
| | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, Singapore; FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.
| |
Collapse
|
138
|
Stephens AD, Liu PZ, Banigan EJ, Almassalha LM, Backman V, Adam SA, Goldman RD, Marko JF. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol Biol Cell 2018; 29:220-233. [PMID: 29142071 PMCID: PMC5909933 DOI: 10.1091/mbc.e17-06-0410] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 01/29/2023] Open
Abstract
Nuclear shape and architecture influence gene localization, mechanotransduction, transcription, and cell function. Abnormal nuclear morphology and protrusions termed "blebs" are diagnostic markers for many human afflictions including heart disease, aging, progeria, and cancer. Nuclear blebs are associated with both lamin and chromatin alterations. A number of prior studies suggest that lamins dictate nuclear morphology, but the contributions of altered chromatin compaction remain unclear. We show that chromatin histone modification state dictates nuclear rigidity, and modulating it is sufficient to both induce and suppress nuclear blebs. Treatment of mammalian cells with histone deacetylase inhibitors to increase euchromatin or histone methyltransferase inhibitors to decrease heterochromatin results in a softer nucleus and nuclear blebbing, without perturbing lamins. Conversely, treatment with histone demethylase inhibitors increases heterochromatin and chromatin nuclear rigidity, which results in reduced nuclear blebbing in lamin B1 null nuclei. Notably, increased heterochromatin also rescues nuclear morphology in a model cell line for the accelerated aging disease Hutchinson-Gilford progeria syndrome caused by mutant lamin A, as well as cells from patients with the disease. Thus, chromatin histone modification state is a major determinant of nuclear blebbing and morphology via its contribution to nuclear rigidity.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Patrick Z Liu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Edward J Banigan
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208.,Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
139
|
Khan ZS, Santos JM, Hussain F. Aggressive prostate cancer cell nuclei have reduced stiffness. BIOMICROFLUIDICS 2018; 12:014102. [PMID: 29333204 PMCID: PMC5750055 DOI: 10.1063/1.5019728] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/15/2017] [Indexed: 05/25/2023]
Abstract
It has been hypothesized that highly metastatic cancer cells have softer nuclei and hence would travel faster through confining environments. Our goal was to prove this untested hypothesis for prostate cells. Our nuclear creep experiments using a microfluidic channel with a narrow constriction show that stiffness of aggressive immortalized prostate cancer nuclei is significantly lower than that of immortalized normal cell nuclei and hence can be a convenient malignancy marker. Nuclear stiffness is found to be the highest for cells expressing high levels of lamin A/C but lowest for cells expressing low lamin A/C levels. Decreased chromatin condensation found in softer nuclei suggests that the former can also be a marker for aggressive cancers.
Collapse
Affiliation(s)
- Zeina S Khan
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Julianna M Santos
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Fazle Hussain
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
140
|
Kim DH, Hah J, Wirtz D. Mechanics of the Cell Nucleus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:41-55. [DOI: 10.1007/978-3-319-95294-9_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
141
|
Abstract
The cell nucleus houses, protects, and arranges the genome within the cell. Therefore, nuclear mechanics and morphology are important for dictating gene regulation, and these properties are perturbed in many human diseases, such as cancers and progerias. The field of nuclear mechanics has long been dominated by studies of the nuclear lamina, the intermediate filament shell residing just beneath the nuclear membrane. However, a growing body of work shows that chromatin and chromatin-related factors within the nucleus are an essential part of the mechanical response of the cell nucleus to forces. Recently, our group demonstrated that chromatin and the lamina provide distinct mechanical contributions to nuclear mechanical response. The lamina is indeed important for robust response to large, whole-nucleus stresses, but chromatin dominates the short-extension response. These findings offer a clarifying perspective on varied nuclear mechanics measurements and observations, and they suggest several new exciting possibilities for understanding nuclear morphology, organization, and mechanics.
Collapse
Affiliation(s)
- Andrew D Stephens
- a Department of Molecular Biosciences , Northwestern University , Evanston , Illinois , USA
| | - Edward J Banigan
- b Department of Physics and Astronomy , Northwestern University , Evanston , Illinois , USA.,c Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge , Massachusetts
| | - John F Marko
- a Department of Molecular Biosciences , Northwestern University , Evanston , Illinois , USA.,b Department of Physics and Astronomy , Northwestern University , Evanston , Illinois , USA
| |
Collapse
|
142
|
Banigan EJ, Stephens AD, Marko JF. Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei. Biophys J 2017; 113:1654-1663. [PMID: 29045860 DOI: 10.1016/j.bpj.2017.08.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/08/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022] Open
Abstract
We study a Brownian dynamics simulation model of a biopolymeric shell deformed by axial forces exerted at opposing poles. The model exhibits two distinct, linear force-extension regimes, with the response to small tensions governed by linear elasticity and the response to large tensions governed by an effective spring constant that scales with radius as R-0.25. When extended beyond the initial linear elastic regime, the shell undergoes a hysteretic, temperature-dependent buckling transition. We experimentally observe this buckling transition by stretching and imaging the lamina of isolated cell nuclei. Furthermore, the interior contents of the shell can alter mechanical response and buckling, which we show by simulating a model for the nucleus that quantitatively agrees with our micromanipulation experiments stretching individual nuclei.
Collapse
Affiliation(s)
- Edward J Banigan
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois.
| | - Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
| | - John F Marko
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois; Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
| |
Collapse
|
143
|
Abstract
Exogenous mechanical forces are transmitted through the cell and to the nucleus, initiating mechanotransductive signaling cascades with profound effects on cellular function and stem cell fate. A growing body of evidence has shown that the force sensing and force-responsive elements of the nucleus adapt to these mechanotransductive events, tuning their response to future mechanical input. The mechanisms underlying this “mechano-adaptation” are only just beginning to be elucidated, and it remains poorly understood how these components act and adapt in tandem to drive stem cell differentiation. Here, we review the evidence on how the stem cell nucleus responds and adapts to physical forces, and provide a perspective on how this mechano-adaptation may function to drive and enforce stem cell differentiation.
Collapse
Affiliation(s)
- Su-Jin Heo
- a McKay Orthopaedic Research Laboratory , Department of Orthopaedic Surgery , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA.,b Department of Bioengineering , School of Engineering and Applied Science, University of Pennsylvania , Philadelphia , PA , USA
| | - Brian D Cosgrove
- a McKay Orthopaedic Research Laboratory , Department of Orthopaedic Surgery , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA.,b Department of Bioengineering , School of Engineering and Applied Science, University of Pennsylvania , Philadelphia , PA , USA
| | - Eric N Dai
- a McKay Orthopaedic Research Laboratory , Department of Orthopaedic Surgery , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA.,b Department of Bioengineering , School of Engineering and Applied Science, University of Pennsylvania , Philadelphia , PA , USA
| | - Robert L Mauck
- a McKay Orthopaedic Research Laboratory , Department of Orthopaedic Surgery , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA.,b Department of Bioengineering , School of Engineering and Applied Science, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
144
|
Yan H, Johnston JF, Cahn SB, King MC, Mochrie SGJ. Multiplexed fluctuation-dissipation-theorem calibration of optical tweezers inside living cells. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:113112. [PMID: 29195389 PMCID: PMC6910605 DOI: 10.1063/1.5012782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
In order to apply optical tweezers-based force measurements within an uncharacterized viscoelastic medium such as the cytoplasm of a living cell, a quantitative calibration method that may be applied in this complex environment is needed. We describe an improved version of the fluctuation-dissipation-theorem calibration method, which has been developed to perform in situ calibration in viscoelastic media without prior knowledge of the trapped object. Using this calibration procedure, it is possible to extract values of the medium's viscoelastic moduli as well as the force constant describing the optical trap. To demonstrate our method, we calibrate an optical trap in water, in polyethylene oxide solutions of different concentrations, and inside living fission yeast (S. pombe).
Collapse
Affiliation(s)
- Hao Yan
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Jessica F Johnston
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Sidney B Cahn
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Simon G J Mochrie
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
145
|
Uhler C, Shivashankar GV. Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat Rev Mol Cell Biol 2017; 18:717-727. [PMID: 29044247 DOI: 10.1038/nrm.2017.101] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well established that cells sense chemical signals from their local microenvironment and transduce them to the nucleus to regulate gene expression programmes. Although a number of experiments have shown that mechanical cues can also modulate gene expression, the underlying mechanisms are far from clear. Nevertheless, we are now beginning to understand how mechanical cues are transduced to the nucleus and how they influence nuclear mechanics, genome organization and transcription. In particular, recent progress in super-resolution imaging, in genome-wide application of RNA sequencing, chromatin immunoprecipitation and chromosome conformation capture and in theoretical modelling of 3D genome organization enables the exploration of the relationship between cell mechanics, 3D chromatin configurations and transcription, thereby shedding new light on how mechanical forces regulate gene expression.
Collapse
Affiliation(s)
- Caroline Uhler
- Department of Electrical Engineering and Computer Science, Laboratory of Information and Decision Systems, Institute for Data, Systems and Society, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, 119077 Singapore.,Italian Foundation for Cancer Research (FIRC) Institute of Molecular Oncology (IFOM), Milan 20139, Italy
| |
Collapse
|
146
|
Abstract
The nuclear envelope (NE) presents a physical boundary between the cytoplasm and the nucleoplasm, sandwiched in between two highly active systems inside the cell: cytoskeleton and chromatin. NE defines the shape and size of the cell nucleus, which increases during the cell cycle, accommodating for chromosome decondensation followed by genome duplication. In this work, we study nuclear shape fluctuations at short time scales of seconds in human cells. Using spinning disk confocal microscopy, we observe fast fluctuations of the NE, visualized by fluorescently labeled lamin A, and of the chromatin globule surface (CGS) underneath the NE, visualized by fluorescently labeled histone H2B. Our findings reveal that fluctuation amplitudes of both CGS and NE monotonously decrease during the cell cycle, serving as a reliable cell cycle stage indicator. Remarkably, we find that, while CGS and NE typically fluctuate in phase, they do exhibit localized regions of out-of-phase motion, which lead to separation of NE and CGS. To explore the mechanism behind these shape fluctuations, we use biochemical perturbations. We find the shape fluctuations of CGS and NE to be both thermally and actively driven, the latter caused by forces from chromatin and cytoskeleton. Such undulations might affect gene regulation as well as contribute to the anomalously high rates of nuclear transport by, e.g., stirring of molecules next to NE, or increasing flux of molecules through the nuclear pores.
Collapse
|
147
|
Lherbette M, Dos Santos Á, Hari-Gupta Y, Fili N, Toseland CP, Schaap IAT. Atomic Force Microscopy micro-rheology reveals large structural inhomogeneities in single cell-nuclei. Sci Rep 2017; 7:8116. [PMID: 28808261 PMCID: PMC5556037 DOI: 10.1038/s41598-017-08517-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022] Open
Abstract
During growth, differentiation and migration of cells, the nucleus changes size and shape, while encountering forces generated by the cell itself and its environment. Although there is increasing evidence that such mechanical signals are employed to control gene expression, it remains unclear how mechanical forces are transduced through the nucleus. To this end, we have measured the compliance of nuclei by applying oscillatory strains between 1 and 700 Hz to individual nuclei of multiple mammalian cell-lines that were compressed between two plates. The quantitative response varied with more than one order of magnitude and scaled with the size of the nucleus. Surprisingly, the qualitative behaviour was conserved among different cell-lines: all nuclei showed a softer and more viscous response towards the periphery, suggesting a reduced degree of crosslinking of the chromatin. This may be an important feature to regulate transcription via mechano-transduction in this most active and dynamic region of the nucleus.
Collapse
Affiliation(s)
- Michael Lherbette
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Ália Dos Santos
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Natalia Fili
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | | | - Iwan A T Schaap
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK. .,SmarAct GmbH, D26135, Oldenburg, Germany.
| |
Collapse
|
148
|
Fal K, Asnacios A, Chabouté ME, Hamant O. Nuclear envelope: a new frontier in plant mechanosensing? Biophys Rev 2017; 9:389-403. [PMID: 28801801 PMCID: PMC5578935 DOI: 10.1007/s12551-017-0302-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
In animals, it is now well established that forces applied at the cell surface are propagated through the cytoskeleton to the nucleus, leading to deformations of the nuclear structure and, potentially, to modification of gene expression. Consistently, altered nuclear mechanics has been related to many genetic disorders, such as muscular dystrophy, cardiomyopathy and progeria. In plants, the integration of mechanical signals in cell and developmental biology has also made great progress. Yet, while the link between cell wall stresses and cytoskeleton is consolidated, such cortical mechanical cues have not been integrated with the nucleoskeleton. Here, we propose to take inspiration from studies on animal nuclei to identify relevant methods amenable to probing nucleus mechanics and deformation in plant cells, with a focus on microrheology. To identify potential molecular targets, we also compare the players at the nuclear envelope, namely lamina and LINC complex, in both plant and animal nuclei. Understanding how mechanical signals are transduced to the nucleus across kingdoms will likely have essential implications in development (e.g. how mechanical cues add robustness to gene expression patterns), in the nucleoskeleton-cytoskeleton nexus (e.g. how stress is propagated in turgid/walled cells), as well as in transcriptional control, chromatin biology and epigenetics.
Collapse
Affiliation(s)
- Kateryna Fal
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Atef Asnacios
- Laboratoire Matières et Systèmes Complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342, Lyon, France.
| |
Collapse
|
149
|
Athirasala A, Hirsch N, Buxboim A. Nuclear mechanotransduction: sensing the force from within. Curr Opin Cell Biol 2017. [PMID: 28641092 DOI: 10.1016/j.ceb.2017.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cell nucleus is a hallmark of eukaryotic evolution, where gene expression is regulated and the genome is replicated and repaired. Yet, in addition to complex molecular processes, the nucleus has also evolved to serve physical tasks that utilize its optical and mechanical properties. Nuclear mechanotransduction of externally applied forces and extracellular stiffness is facilitated by the physical connectivity of the extracellular environment, the cytoskeleton and the nucleoskeletal matrix of lamins and chromatin. Nuclear mechanosensor elements convert applied tension into biochemical cues that activate downstream signal transduction pathways. Mechanoregulatory networks stabilize a contractile cell state with feedback to matrix, cell adhesions and cytoskeletal elements. Recent advances have thus provided mechanistic insights into how forces are sensed from within, that is, in the nucleus where cell-fate decision-making is performed.
Collapse
Affiliation(s)
- Avathamsa Athirasala
- Alexander Grass Center for Bioengineering, School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nivi Hirsch
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Amnon Buxboim
- Alexander Grass Center for Bioengineering, School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
150
|
Zhao Y, Schreiner SM, Koo PK, Colombi P, King MC, Mochrie SGJ. Improved Determination of Subnuclear Position Enabled by Three-Dimensional Membrane Reconstruction. Biophys J 2017; 111:19-24. [PMID: 27410730 DOI: 10.1016/j.bpj.2016.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 04/14/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022] Open
Abstract
Many aspects of chromatin biology are influenced by the nuclear compartment in which a locus resides, from transcriptional regulation to DNA repair. Further, the dynamic and variable localization of a particular locus across cell populations and over time makes analysis of a large number of cells critical. As a consequence, robust and automatable methods to measure the position of individual loci within the nuclear volume in populations of cells are necessary to support quantitative analysis of nuclear position. Here, we describe a three-dimensional membrane reconstruction approach that uses fluorescently tagged nuclear envelope or endoplasmic reticulum membrane marker proteins to precisely map the nuclear volume. This approach is robust to a variety of nuclear shapes, providing greater biological accuracy than alternative methods that enforce nuclear circularity, while also describing nuclear position in all three dimensions. By combining this method with established approaches to reconstruct the position of diffraction-limited chromatin markers-in this case, lac Operator arrays bound by lacI-GFP-the distribution of loci positions within the nuclear volume with respect to the nuclear periphery can be quantitatively obtained. This stand-alone image analysis pipeline should be of broad practical utility for individuals interested in various aspects of chromatin biology, while also providing, to our knowledge, a new conceptual framework for investigators who study organelle shape.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Applied Physics, Yale University, New Haven, Connecticut
| | - Sarah M Schreiner
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Peter K Koo
- Department of Physics, Yale University, New Haven, Connecticut
| | - Paolo Colombi
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, Connecticut.
| | - Simon G J Mochrie
- Department of Applied Physics, Yale University, New Haven, Connecticut; Department of Physics, Yale University, New Haven, Connecticut.
| |
Collapse
|