101
|
Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W, Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res 2020; 39:126. [PMID: 32631382 PMCID: PMC7336654 DOI: 10.1186/s13046-020-01629-4] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Liver cancer has become the sixth most diagnosed cancer and the fourth leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is responsible for up to 75-85% of primary liver cancers, and sorafenib is the first targeted drug for advanced HCC treatment. However, sorafenib resistance is common because of the resultant enhancement of aerobic glycolysis and other molecular mechanisms. Aerobic glycolysis was firstly found in HCC, acts as a hallmark of liver cancer and is responsible for the regulation of proliferation, immune evasion, invasion, metastasis, angiogenesis, and drug resistance in HCC. The three rate-limiting enzymes in the glycolytic pathway, including hexokinase 2 (HK2), phosphofructokinase 1 (PFK1), and pyruvate kinases type M2 (PKM2) play an important role in the regulation of aerobic glycolysis in HCC and can be regulated by many mechanisms, such as the AMPK, PI3K/Akt pathway, HIF-1α, c-Myc and noncoding RNAs. Because of the importance of aerobic glycolysis in the progression of HCC, targeting key factors in its pathway such as the inhibition of HK2, PFK or PKM2, represent potential new therapeutic approaches for the treatment of HCC.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
| |
Collapse
|
102
|
Tang B, Zhang Y, Wang W, Qi G, Shimamoto F. PARP6 suppresses the proliferation and metastasis of hepatocellular carcinoma by degrading XRCC6 to regulate the Wnt/β-catenin pathway. Am J Cancer Res 2020; 10:2100-2113. [PMID: 32775003 PMCID: PMC7407359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/11/2020] [Indexed: 06/11/2023] Open
Abstract
PARP6 belongs to the mono-ADP-ribosyltransferase family and has been shown to be involved in the genesis and development of some tumours. However, the role of PARP6 in hepatocellular carcinoma (HCC) development remains to be fully elucidated. In the current study, we demonstrated that PARP6 was expressed at a low level in HCC cells and was negatively related to the degree of tumour differentiation. Additionally, silencing PARP6 led to an increase in the proliferation, invasion and migration ability of HCC cells in both in vitro and in vivo assays. Conversely, an elevation in the PARP6 expression level had the opposite effect. Through gene chip analysis combined with experimental verification, we confirmed that PARP6 can inhibit the expression of XRCC6 by inducing degradation and thus affect the Wnt/β-Catenin signalling pathway, which contributes to the suppression of HCC. Further mechanistic investigation demonstrated that the ubiquitin ligase HDM2 can interact with PARP6 and XRCC6, and mediated the regulatory effect of PARP6 on XRCC6 degradation. Taking together, PARP6 appears to inhibit HCC progression through the XRCC6/Wnt/β-catenin signal axis and could be used as a biomarker for the clinical monitoring of HCC development.
Collapse
Affiliation(s)
- Bo Tang
- Department of Health Sciences, Hiroshima Shudo University Hiroshima 731-3195, Japan
| | - Yi Zhang
- Department of Health Sciences, Hiroshima Shudo University Hiroshima 731-3195, Japan
| | - Wei Wang
- Department of Health Sciences, Hiroshima Shudo University Hiroshima 731-3195, Japan
| | - Guangying Qi
- Department of Health Sciences, Hiroshima Shudo University Hiroshima 731-3195, Japan
| | - Fumio Shimamoto
- Department of Health Sciences, Hiroshima Shudo University Hiroshima 731-3195, Japan
| |
Collapse
|
103
|
Integrated analysis reveals critical glycolytic regulators in hepatocellular carcinoma. Cell Commun Signal 2020; 18:97. [PMID: 32576292 PMCID: PMC7310503 DOI: 10.1186/s12964-020-00539-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cancer cells primarily utilize aerobic glycolysis for energy production, a phenomenon known as the Warburg effect. Increased aerobic glycolysis supports cancer cell survival and rapid proliferation and predicts a poor prognosis in cancer patients. Methods Molecular profiles from The Cancer Genome Atlas (TCGA) cohort were used to analyze the prognostic value of glycolysis gene signature in human cancers. Gain- and loss-of-function studies were performed to key drivers implicated in hepatocellular carcinoma (HCC) glycolysis. The molecular mechanisms underlying Osteopontin (OPN)-mediated glycolysis were investigated by real-time qPCR, western blotting, immunohistochemistry, luciferase reporter assay, and xenograft and diethyl-nitrosamine (DEN)-induced HCC mouse models. Results Increased glycolysis predicts adverse clinical outcome in many types of human cancers, especially HCC. Then, we identified a handful of differentially expressed genes related to HCC glycolysis. Gain- and loss-of-function studies showed that OPN promotes, while SPP2, LECT2, SLC10A1, CYP3A4, HSD17B13, and IYD inhibit HCC cell glycolysis as revealed by glucose utilization, lactate production, and extracellular acidification ratio. These glycolysis-related genes exhibited significant tumor-promoting or tumor suppressive effect on HCC cells and these effects were glycolysis-dependent. Mechanistically, OPN enhanced HCC glycolysis by activating the αvβ3-NF-κB signaling. Genetic or pharmacological blockade of OPN-αvβ3 axis suppressed HCC glycolysis in xenograft tumor model and hepatocarcinogenesis induced by DEN. Conclusions Our findings reveal crucial determinants for controlling the Warburg metabolism in HCC cells and provide a new insight into the oncogenic roles of OPN in HCC. Video Abstract
Collapse
|
104
|
Nguyen TN, Nguyen HQ, Le DH. Unveiling prognostics biomarkers of tyrosine metabolism reprogramming in liver cancer by cross-platform gene expression analyses. PLoS One 2020; 15:e0229276. [PMID: 32542016 PMCID: PMC7295234 DOI: 10.1371/journal.pone.0229276] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Tyrosine is mainly degraded in the liver by a series of enzymatic reactions. Abnormal expression of the tyrosine catabolic enzyme tyrosine aminotransferase (TAT) has been reported in patients with hepatocellular carcinoma (HCC). Despite this, aberration in tyrosine metabolism has not been investigated in cancer development. In this work, we conduct comprehensive cross-platform study to obtain foundation for discoveries of potential therapeutics and preventative biomarkers of HCC. We explore data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine and Kaplan Meier plotter (KM plotter) and performed integrated analyses to evaluate the clinical significance and prognostic values of the tyrosine catabolic genes in HCC. We find that five tyrosine catabolic enzymes are downregulated in HCC compared to normal liver at mRNA and protein level. Moreover, low expression of these enzymes correlates with poorer survival in patients with HCC. Notably, we identify pathways and upstream regulators that might involve in tyrosine catabolic reprogramming and further drive HCC development. In total, our results underscore tyrosine metabolism alteration in HCC and lay foundation for incorporating these pathway components in therapeutics and preventative strategies.
Collapse
Affiliation(s)
- Tran N. Nguyen
- Department of Computational Biomedicine, Vingroup Big Data Institute, Hanoi, Vietnam
- * E-mail:
| | - Ha Q. Nguyen
- Department of Computer Vision, Vingroup Big Data Institute, Hanoi, Vietnam
| | - Duc-Hau Le
- Department of Computational Biomedicine, Vingroup Big Data Institute, Hanoi, Vietnam
| |
Collapse
|
105
|
Wong TL, Ng KY, Tan KV, Chan LH, Zhou L, Che N, Hoo RLC, Lee TK, Richard S, Lo CM, Man K, Khong PL, Ma S. CRAF Methylation by PRMT6 Regulates Aerobic Glycolysis-Driven Hepatocarcinogenesis via ERK-Dependent PKM2 Nuclear Relocalization and Activation. Hepatology 2020; 71:1279-1296. [PMID: 31469916 DOI: 10.1002/hep.30923] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Most tumor cells use aerobic glycolysis (the Warburg effect) to support anabolic growth and promote tumorigenicity and drug resistance. Intriguingly, the molecular mechanisms underlying this phenomenon are not well understood. In this work, using gain-of-function and loss-of-function in vitro studies in patient-derived organoid and cell cultures as well as in vivo positron emission tomography-magnetic resonance imaging animal models, we showed that protein arginine N-methyltransferase 6 (PRMT6) regulates aerobic glycolysis in human hepatocellular carcinoma (HCC) through nuclear relocalization of pyruvate kinase M2 isoform (PKM2), a key regulator of the Warburg effect. APPROACH AND RESULTS We found PRMT6 to methylate CRAF at arginine 100, interfering with its RAS/RAF binding potential, and therefore altering extracellular signal-regulated kinase (ERK)-mediated PKM2 translocation into the nucleus. This altered PRMT6-ERK-PKM2 signaling axis was further confirmed in both a HCC mouse model with endogenous knockout of PRMT6 as well as in HCC clinical samples. We also identified PRMT6 as a target of hypoxia through the transcriptional repressor element 1-silencing transcription factor, linking PRMT6 with hypoxia in driving glycolytic events. Finally, we showed as a proof of concept the therapeutic potential of using 2-deoxyglucose, a glycolysis inhibitor, to reverse tumorigenicity and sorafenib resistance mediated by PRMT6 deficiency in HCC. CONCLUSIONS Our findings indicate that the PRMT6-ERK-PKM2 regulatory axis is an important determinant of the Warburg effect in tumor cells, and provide a mechanistic link among tumorigenicity, sorafenib resistance, and glucose metabolism.
Collapse
Affiliation(s)
- Tin-Lok Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kai-Yu Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kel Vin Tan
- Department of Diagnostic Radiology, Queen Mary Hospital, the University of Hong Kong, Hong Kong
| | - Lok-Hei Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Noélia Che
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Ruby L C Hoo
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hong Kong.,State Key Laboratory of Chemical Biology and Drug Discovery, the Hong Kong Polytechnic University, Hong Kong
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute, Jewish General Hospital, and Departments of Oncology and Medicine, McGill University, Montréal, Canada
| | - Chung-Mau Lo
- Department of Surgery, Queen Mary Hospital, the University of Hong Kong, Hong Kong
| | - Kwan Man
- Department of Surgery, Queen Mary Hospital, the University of Hong Kong, Hong Kong
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, Queen Mary Hospital, the University of Hong Kong, Hong Kong
| | - Stephanie Ma
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| |
Collapse
|
106
|
Zahra K, Dey T, Ashish, Mishra SP, Pandey U. Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis. Front Oncol 2020; 10:159. [PMID: 32195169 PMCID: PMC7061896 DOI: 10.3389/fonc.2020.00159] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Pyruvate kinase plays a pivotal role in regulating cell metabolism. The final and rate-limiting step of glycolysis is the conversion of Phosphoenolpyruvate (PEP) to Pyruvate, which is catalyzed by Pyruvate Kinase. There are four isomeric, tissue-specific forms of Pyruvate Kinase found in mammals: PKL, PKR, PKM1, and PKM2. PKM1 and PKM2 are formed bya single mRNA transcript of the PKM gene by alternative splicing. The oligomers of PKM2 exist in high activity tetramer and low activity dimer forms. The dimer PKM2 regulates the rate-limiting step of glycolysis that shifts the glucose metabolism from the normal respiratory chain to lactate production in tumor cells. Besides its role as a metabolic regulator, it also acts as protein kinase, which contributes to tumorigenesis. This review is focused on the metabolic role of pyruvate kinase M2 in normal cells vs. cancerous cells and its regulation at the transcriptional level. The review also highlights the role of PKM2 as a potential diagnostic marker and as a therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Kulsoom Zahra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Tulika Dey
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Surendra Pratap Mishra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Uma Pandey
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
107
|
Liu QP, Luo Q, Deng B, Ju Y, Song GB. Stiffer Matrix Accelerates Migration of Hepatocellular Carcinoma Cells through Enhanced Aerobic Glycolysis Via the MAPK-YAP Signaling. Cancers (Basel) 2020; 12:E490. [PMID: 32093118 PMCID: PMC7072284 DOI: 10.3390/cancers12020490] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Increased extracellular matrix (ECM) stiffness and metabolic reprogramming of cancer cells are two fundamental mediators of tumor progression, including hepatocellular carcinoma (HCC). Yet, the correlation between ECM stiffness and excessive aerobic glycolysis in promoting the development of HCC remains unknown. Here, we demonstrated that stiffer ECM promotes HCC cell migration depending on their accelerated aerobic glycolysis. Our results also indicated that stiffer ECM-induced YAP activation plays a major role in promoting aerobic glycolysis of HCC cells. Moreover, we showed that JNK and p38 MAPK signaling are critical for mediating YAP activation in HCC cells. Together, our findings established that the MAPK-YAP signaling cascade that act as a mechanotransduction pathway is essential for promoting HCC cell aerobic glycolysis and migration in response to ECM stiffness.
Collapse
Affiliation(s)
- Qiu-Ping Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (Q.-P.L.); (Q.L.); (B.D.)
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (Q.-P.L.); (Q.L.); (B.D.)
| | - Bin Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (Q.-P.L.); (Q.L.); (B.D.)
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan;
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (Q.-P.L.); (Q.L.); (B.D.)
| |
Collapse
|
108
|
Tang L, Chen R, Xu X. Synthetic lethality: A promising therapeutic strategy for hepatocellular carcinoma. Cancer Lett 2020; 476:120-128. [PMID: 32070778 DOI: 10.1016/j.canlet.2020.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC), the main cause of liver cancer-related death, is one of the main cancers in terms of incidence and mortality. However, HCC is difficult to target and develops strong drug resistance. Therefore, a new treatment strategy is urgently needed. The clinical application of the concept of synthetic lethality in recent years provides a new therapeutic direction for the accurate treatment of HCC. Here, we introduce the concept of synthetic lethality, the screening used to study synthetic lethality, and the identified and potential genetic interactions that induce synthetic lethality in HCC. In addition, we propose opportunities and challenges for translating synthetic lethal interactions to the clinical treatment of HCC.
Collapse
Affiliation(s)
- Linsong Tang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| |
Collapse
|
109
|
Al-Abdallah A, Jahanbani I, Mehdawi H, Ali RH, Al-Brahim N, Mojiminiyi O. The stress-activated protein kinase pathway and the expression of stanniocalcin-1 are regulated by miR-146b-5p in papillary thyroid carcinogenesis. Cancer Biol Ther 2020; 21:412-423. [PMID: 32037949 PMCID: PMC7515490 DOI: 10.1080/15384047.2020.1721250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of thyroid cancer. Deciphering the pathophysiological mechanisms that contribute to PTC development is essential to the discovery of optimal diagnostic and therapeutic approaches. MiR-146b-5p has been identified as a cancer-associated microRNA highly up-regulated in PTC. This study explores the hypothesis that miR-146b-5p contributes to papillary thyroid carcinogenesis through regulation of cell signaling pathways in a manner that overcomes the cellular growth suppressive events and provides survival advantage. The effect of miR-146b-5p inhibition on major cancer related signaling pathways and expression of Stanniocalcin-1 (STC1), an emerging molecule associated with stress response and carcinogenesis, was tested in cultured primary thyroid cells using luciferase reporter assays, quantitative real-time PCR, immunofluorescence staining, and flow cytometry. Our results demonstrated that miR-146b-5p inhibits the JNK/AP1 pathway activity and down-regulates the expression of STC-1 in thyroid-cultured cells and in thyroid tissue samples. In the presence of miR-146b-5p, PTC cells were resistant to cell death in response to oxidative stress. This is a novel report that miR-146b-5p directly targets STC1 and regulates the activity of JNK/AP1 pathway. Considering the importance of the JNK/AP1 pathway and STC1 in mediating many physiological and pathological processes like apoptosis, stress response and cellular metabolism, a biological regulator of these pathways would have a great scientific and clinical significance.
Collapse
Affiliation(s)
| | - Iman Jahanbani
- Pathology Department, Kuwait University, Kuwait City, Kuwait
| | - Heba Mehdawi
- Pathology Department, Kuwait University, Kuwait City, Kuwait
| | - Rola H Ali
- Pathology Department, Kuwait University, Kuwait City, Kuwait
| | | | | |
Collapse
|
110
|
Zhu WW, Lu M, Wang XY, Zhou X, Gao C, Qin LX. The fuel and engine: The roles of reprogrammed metabolism in metastasis of primary liver cancer. Genes Dis 2020; 7:299-307. [PMID: 32884984 PMCID: PMC7452537 DOI: 10.1016/j.gendis.2020.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis and metabolism reprogramming are two major hallmarks of cancer. In the initiation and progression of cancer, tumor cells are known to undergo fundamental metabolic changes to sustain their development and progression. In recent years, much more attentions have been drawn to their important roles in facilitating cancer metastasis through regulating the biological properties. In this review, we summarized the recent progresses in the studies of metabolism reprogramming of cancer metastasis, particularly of primary liver cancer, and highlight their potential applications.
Collapse
Affiliation(s)
- Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Xiang-Yu Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Xu Zhou
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao Gao
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| |
Collapse
|
111
|
Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, Aikawa M. The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes Dev 2020; 34:341-359. [PMID: 32029454 PMCID: PMC7050484 DOI: 10.1101/gad.334425.119] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Poly-adenosine diphosphate-ribose polymerases (PARPs) promote ADP-ribosylation, a highly conserved, fundamental posttranslational modification (PTM). PARP catalytic domains transfer the ADP-ribose moiety from NAD+ to amino acid residues of target proteins, leading to mono- or poly-ADP-ribosylation (MARylation or PARylation). This PTM regulates various key biological and pathological processes. In this review, we focus on the roles of the PARP family members in inflammation and host-pathogen interactions. Here we give an overview the current understanding of the mechanisms by which PARPs promote or suppress proinflammatory activation of macrophages, and various roles PARPs play in virus infections. We also demonstrate how innovative technologies, such as proteomics and systems biology, help to advance this research field and describe unanswered questions.
Collapse
Affiliation(s)
- Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Catherine M Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Shin Mukai
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Human Pathology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health, Moscow 119146, Russian Federation
| |
Collapse
|
112
|
Kaissis GA, Lohöfer FK, Hörl M, Heid I, Steiger K, Munoz-Alvarez KA, Schwaiger M, Rummeny EJ, Weichert W, Paprottka P, Braren R. Combined DCE-MRI- and FDG-PET enable histopathological grading prediction in a rat model of hepatocellular carcinoma. Eur J Radiol 2020; 124:108848. [PMID: 32006931 DOI: 10.1016/j.ejrad.2020.108848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/10/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To test combined dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and 18F-FDG positron emission tomography (FDG-PET)-derived parameters for prediction of histopathological grading in a rat Diethyl Nitrosamine (DEN)-induced hepatocellular carcinoma (HCC) model. METHODS 15 male Wistar rats, aged 10 weeks were treated with oral DEN 0.01 % in drinking water and monitored until HCCs were detectable. DCE-MRI and PET were performed consecutively on small animal scanners. 38 tumors were identified and manually segmented based on HCC-specific contrast enhancement patterns. Grading (G2/3: 24 tumors, G1:14 tumors) alongside other histopathological parameters, tumor volume, contrast agent and 18F-FDG uptake metrics were noted. Class imbalance was addressed using SMOTE and collinearity was removed using hierarchical clustering and principal component analysis. A logistic regression model was fit separately to the individual parameter groups (DCE-MRI-derived, PET-derived, tumor volume) and the combined parameters. RESULTS The combined model using all imaging-derived parameters achieved a mean ± STD sensitivity of 0.88 ± 0.16, specificity of 0.70 ± 0.20 and AUC of 0.90 ± 0.03. No correlation was found between tumor grading and tumor volume, morphology, necrosis, extracellular matrix, immune cell infiltration or underlying liver fibrosis. CONCLUSION A combination of DCE-MRI- and 18F-FDG-PET-derived parameters provides high accuracy for histopathological grading of hepatocellular carcinoma in a relevant translational model system.
Collapse
Affiliation(s)
- Georgios A Kaissis
- Institute for Diagnostic and Interventional Radiology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Straße 22, D-81675 München, Germany
| | - Fabian K Lohöfer
- Institute for Diagnostic and Interventional Radiology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Straße 22, D-81675 München, Germany
| | - Marie Hörl
- Institute for Diagnostic and Interventional Radiology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Straße 22, D-81675 München, Germany
| | - Irina Heid
- Institute for Diagnostic and Interventional Radiology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Straße 22, D-81675 München, Germany
| | - Katja Steiger
- Institute of Pathology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Straße 22, D-81675 München, Germany
| | - Kim Agnes Munoz-Alvarez
- Clinic and Policlinic for Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Straße 22, D-81675 München, Germany
| | - Markus Schwaiger
- Clinic and Policlinic for Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Straße 22, D-81675 München, Germany
| | - Ernst J Rummeny
- Institute for Diagnostic and Interventional Radiology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Straße 22, D-81675 München, Germany
| | - Wilko Weichert
- Institute of Pathology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Straße 22, D-81675 München, Germany
| | - Philipp Paprottka
- Institute for Diagnostic and Interventional Radiology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Straße 22, D-81675 München, Germany
| | - Rickmer Braren
- Institute for Diagnostic and Interventional Radiology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Straße 22, D-81675 München, Germany.
| |
Collapse
|
113
|
James AD, Richardson DA, Oh IW, Sritangos P, Attard T, Barrett L, Bruce JIE. Cutting off the fuel supply to calcium pumps in pancreatic cancer cells: role of pyruvate kinase-M2 (PKM2). Br J Cancer 2020; 122:266-278. [PMID: 31819190 PMCID: PMC7052184 DOI: 10.1038/s41416-019-0675-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has poor survival and treatment options. PDAC cells shift their metabolism towards glycolysis, which fuels the plasma membrane calcium pump (PMCA), thereby preventing Ca2+-dependent cell death. The ATP-generating pyruvate kinase-M2 (PKM2) is oncogenic and overexpressed in PDAC. This study investigated the PKM2-derived ATP supply to the PMCA as a potential therapeutic locus. METHODS PDAC cell growth, migration and death were assessed by using sulforhodamine-B/tetrazolium-based assays, gap closure assay and poly-ADP ribose polymerase (PARP1) cleavage, respectively. Cellular ATP and metabolism were assessed using luciferase/fluorescent-based assays and the Seahorse XFe96 analyzer, respectively. Cell surface biotinylation identified membrane-associated proteins. Fura-2 imaging was used to assess cytosolic Ca2+ overload and in situ Ca2+ clearance. PKM2 knockdown was achieved using siRNA. RESULTS The PKM2 inhibitor (shikonin) reduced PDAC cell proliferation, cell migration and induced cell death. This was due to inhibition of glycolysis, ATP depletion, inhibition of PMCA and cytotoxic Ca2+ overload. PKM2 associates with plasma membrane proteins providing a privileged ATP supply to the PMCA. PKM2 knockdown reduced PMCA activity and reduced the sensitivity of shikonin-induced cell death. CONCLUSIONS Cutting off the PKM2-derived ATP supply to the PMCA represents a novel therapeutic strategy for the treatment of PDAC.
Collapse
Affiliation(s)
- Andrew D James
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
- Division of Cancer Sciences, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Daniel A Richardson
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - In-Whan Oh
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - Pishyaporn Sritangos
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - Thomas Attard
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - Lisa Barrett
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - Jason I E Bruce
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health Sciences, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK.
| |
Collapse
|
114
|
From tea to treatment; epigallocatechin gallate and its potential involvement in minimizing the metabolic changes in cancer. Nutr Res 2019; 74:23-36. [PMID: 31918176 DOI: 10.1016/j.nutres.2019.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 01/09/2023]
Abstract
As the most abundant bioactive polyphenol in green tea, epigallocatechin gallate (EGCG) is a promising natural product that should be used in the discovery and development of potential drug leads. Due to its association with chemoprevention, EGCG may find a role in the development of therapeutics for prostate cancer. Natural products have long been used as a scaffold for drug design, as their already noted bioactivity can help accelerate the development of novel treatments. Green tea and the EGCG contained within have become associated with chemoprevention, and both in vitro and in vivo studies have correlated EGCG to inhibiting cell growth and increasing the metabolic stress of cancer cells, possibly giving merit to its long utilized therapeutic use in traditional therapies. There is accumulating evidence to suggest EGCG's role as an inhibitor of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling cascade, acting upon major axis points within cancer survival pathways. The purpose of this review is to examine the research conducted on tea along with EGCG in the areas of the treatment of and/or prevention of cancer. This review discusses Camellia sinensis as well as the bioactive phytochemical compounds contained within. Clinical uses of tea are explored, and possible pathways for activity are discussed before examining the evidence for EGCG's potential for acting on these processes. EGCG is identified as being a possible lead phytochemical for future drug design investigations.
Collapse
|
115
|
Lee MH, DeBerardinis RJ, Wen X, Corbin IR, Sherry AD, Malloy CR, Jin ES. Active pyruvate dehydrogenase and impaired gluconeogenesis in orthotopic hepatomas of rats. Metabolism 2019; 101:153993. [PMID: 31672442 PMCID: PMC6892165 DOI: 10.1016/j.metabol.2019.153993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Therapies targeting altered activity of pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC) have been proposed for hepatomas. However, the activities of these pathways in hepatomas in vivo have not been distinguished. Here we examined pyruvate entry into the tricarboxylic acid (TCA) cycle through PDH versus PC in vivo using hepatoma-bearing rats. METHODS Hepatoma-bearing rats were generated by intrahepatic injection of H4IIE cells. Metabolism of 13C-labeled glycerol, a physiological substrate for both gluconeogenesis and energy production, was measured with 13C NMR analysis. The concentration of key metabolites and the expression of relevant enzymes were measured in hepatoma, surrounding liver, and normal liver. RESULTS In orthotopic hepatomas, pyruvate entry into the TCA cycle occurred exclusively through PDH and the excess PDH activity compared to normal liver was attributed to downregulated pyruvate dehydrogenase kinase (PDK) 2/4. However, pyruvate carboxylation via PC and gluconeogenesis were minimal, which was linked to downregulated forkhead box O1 (FoxO1) by Akt activity. In contrast to many studies of cancer metabolism, lactate production in hepatomas was not increased which corresponded to reduced expression of lactate dehydrogenase. The production of serine and glycine in hepatomas was enhanced, but glycine decarboxylase was downregulated. CONCLUSIONS The combination of [U-13C3]glycerol and NMR analysis enabled investigation of multiple biochemical processes in hepatomas and surrounding liver. We demonstrated active PDH and other related metabolic alterations in orthotopic hepatomas that differed substantially not only from the host organ but also from many earlier studies with cancer cells.
Collapse
Affiliation(s)
- Min Hee Lee
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, USA
| | - Xiaodong Wen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ian R Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiology, University of Texas Southwestern Medical Center, USA; Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiology, University of Texas Southwestern Medical Center, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, USA; VA North Texas Health Care System, Dallas, TX 75216, USA
| | - Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, USA.
| |
Collapse
|
116
|
Dey P, Son JY, Kundu A, Kim KS, Lee Y, Yoon K, Yoon S, Lee BM, Nam KT, Kim HS. Knockdown of Pyruvate Kinase M2 Inhibits Cell Proliferation, Metabolism, and Migration in Renal Cell Carcinoma. Int J Mol Sci 2019; 20:5622. [PMID: 31717694 PMCID: PMC6887957 DOI: 10.3390/ijms20225622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence indicates that the activity of pyruvate kinase M2 (PKM2) isoform is crucial for the survival of tumor cells. However, the molecular mechanism underlying the function of PKM2 in renal cancer is undetermined. Here, we reveal the overexpression of PKM2 in the proximal tubule of renal tumor tissues from 70 cases of patients with renal carcinoma. The functional role of PKM2 in human renal cancer cells following small-interfering RNA-mediated PKM2 knockdown, which retarded 786-O cell growth was examined. Targeting PKM2 affected the protein kinase B (AKT)/mechanistic target of the rapamycin 1 (mTOR) pathway, and downregulated the expression of glycolytic enzymes, including lactate dehydrogenase A and glucose transporter-1, and other downstream signaling key proteins. PKM2 knockdown changed glycolytic metabolism, mitochondrial function, adenosine triphosphate (ATP) level, and intracellular metabolite formation and significantly reduced 786-O cell migration and invasion. Acridine orange and monodansylcadaverine staining, immunocytochemistry, and immunoblotting analyses revealed the induction of autophagy in renal cancer cells following PKM2 knockdown. This is the first study to indicate PKM2/AKT/mTOR as an important regulatory axis mediating the changes in the metabolism of renal cancer cells.
Collapse
Affiliation(s)
- Prasanta Dey
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Yura Lee
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; (Y.L.); (K.T.N.)
| | - Kyungsil Yoon
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, 323 Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea;
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| | - Ki Taek Nam
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; (Y.L.); (K.T.N.)
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (J.Y.S.); (A.K.); (K.S.K.); (S.Y.); (B.M.L.)
| |
Collapse
|
117
|
Rodríguez-Enríquez S, Marín-Hernández Á, Gallardo-Pérez JC, Pacheco-Velázquez SC, Belmont-Díaz JA, Robledo-Cadena DX, Vargas-Navarro JL, Corona de la Peña NA, Saavedra E, Moreno-Sánchez R. Transcriptional Regulation of Energy Metabolism in Cancer Cells. Cells 2019; 8:cells8101225. [PMID: 31600993 PMCID: PMC6830338 DOI: 10.3390/cells8101225] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 01/17/2023] Open
Abstract
Cancer development, growth, and metastasis are highly regulated by several transcription regulators (TRs), namely transcription factors, oncogenes, tumor-suppressor genes, and protein kinases. Although TR roles in these events have been well characterized, their functions in regulating other important cancer cell processes, such as metabolism, have not been systematically examined. In this review, we describe, analyze, and strive to reconstruct the regulatory networks of several TRs acting in the energy metabolism pathways, glycolysis (and its main branching reactions), and oxidative phosphorylation of nonmetastatic and metastatic cancer cells. Moreover, we propose which possible gene targets might allow these TRs to facilitate the modulation of each energy metabolism pathway, depending on the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Norma Angélica Corona de la Peña
- Unidad de Investigación Médica en Trombosis, Hemostasia y Aterogénesis, Hospital General Regional Carlos McGregor-Sánchez, México CP 03100, Mexico.
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México 14080, Mexico.
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México 14080, Mexico.
| |
Collapse
|
118
|
Ke Y, Zhang J, Lv X, Zeng X, Ba X. Novel insights into PARPs in gene expression: regulation of RNA metabolism. Cell Mol Life Sci 2019; 76:3283-3299. [PMID: 31055645 PMCID: PMC6697709 DOI: 10.1007/s00018-019-03120-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is an important post-translational modification in which an ADP-ribose group is transferred to the target protein by poly(ADP-riboses) polymerases (PARPs). Since the discovery of poly-ADP-ribose (PAR) 50 years ago, its roles in cellular processes have been extensively explored. Although research initially focused on the functions of PAR and PARPs in DNA damage detection and repair, our understanding of the roles of PARPs in various nuclear and cytoplasmic processes, particularly in gene expression, has increased significantly. In this review, we discuss the current advances in understanding the roles of PARylation with a particular emphasis in gene expression through RNA biogenesis and processing. In addition to updating PARP's significance in transcriptional regulation, we specifically focus on how PARPs and PARylation affect gene expression, especially inflammation-related genes, at the post-transcriptional levels by modulating RNA processing and degrading. Increasing evidence suggests that PARP inhibition is a promising treatment for inflammation-related diseases besides conventional chemotherapy for cancer.
Collapse
Affiliation(s)
- Yueshuang Ke
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Jing Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xueping Lv
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China.
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
119
|
Lanata CM, Paranjpe I, Nititham J, Taylor KE, Gianfrancesco M, Paranjpe M, Andrews S, Chung SA, Rhead B, Barcellos LF, Trupin L, Katz P, Dall'Era M, Yazdany J, Sirota M, Criswell LA. A phenotypic and genomics approach in a multi-ethnic cohort to subtype systemic lupus erythematosus. Nat Commun 2019; 10:3902. [PMID: 31467281 PMCID: PMC6715644 DOI: 10.1038/s41467-019-11845-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/13/2019] [Indexed: 01/05/2023] Open
Abstract
Systemic lupus erythematous (SLE) is a heterogeneous autoimmune disease in which outcomes vary among different racial groups. Here, we aim to identify SLE subgroups within a multiethnic cohort using an unsupervised clustering approach based on the American College of Rheumatology (ACR) classification criteria. We identify three patient clusters that vary according to disease severity. Methylation association analysis identifies a set of 256 differentially methylated CpGs across clusters, including 101 CpGs in genes in the Type I Interferon pathway, and we validate these associations in an external cohort. A cis-methylation quantitative trait loci analysis identifies 744 significant CpG-SNP pairs. The methylation signature is enriched for ethnic-associated CpGs suggesting that genetic and non-genetic factors may drive outcomes and ethnic-associated methylation differences. Our computational approach highlights molecular differences associated with clusters rather than single outcome measures. This work demonstrates the utility of applying integrative methods to address clinical heterogeneity in multifactorial multi-ethnic disease settings.
Collapse
Affiliation(s)
- Cristina M Lanata
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ishan Paranjpe
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joanne Nititham
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kimberly E Taylor
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Milena Gianfrancesco
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Manish Paranjpe
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Shan Andrews
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Sharon A Chung
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Laura Trupin
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Patricia Katz
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Maria Dall'Era
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jinoos Yazdany
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
120
|
Kirby IT, Cohen MS. Small-Molecule Inhibitors of PARPs: From Tools for Investigating ADP-Ribosylation to Therapeutics. Curr Top Microbiol Immunol 2019; 420:211-231. [PMID: 30242511 PMCID: PMC11793873 DOI: 10.1007/82_2018_137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the last 60 years, poly-ADP-ribose polymerases (PARPs, 17 family members in humans) have emerged as important regulators of physiology and disease. Small-molecule inhibitors have been essential tools for unraveling PARP function, and recently the first PARP inhibitors have been approved for the treatment of various human cancers. However, inhibitors have only been developed for a few PARPs and in vitro profiling has revealed that many of these exhibit polypharmacology across the PARP family. In this review, we discuss the history, development, and current state of the field, highlighting the limitations and opportunities for PARP inhibitor development.
Collapse
Affiliation(s)
- Ilsa T Kirby
- Program in Chemical Biology, Oregon Health & Science University, Portland, OR, 97210, USA
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97210, USA
| | - Michael S Cohen
- Program in Chemical Biology, Oregon Health & Science University, Portland, OR, 97210, USA.
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97210, USA.
| |
Collapse
|
121
|
Zheng H, Yang Y, Hong YG, Wang MC, Yuan SX, Wang ZG, Bi FR, Hao LQ, Yan HL, Zhou WP. Tropomodulin 3 modulates EGFR-PI3K-AKT signaling to drive hepatocellular carcinoma metastasis. Mol Carcinog 2019; 58:1897-1907. [PMID: 31313392 DOI: 10.1002/mc.23083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Abstract
The mechanism of hepatocellular carcinoma (HCC) metastasis remains poorly understood. Tropomodulin 3 (TMOD3) is a member of the pointed end capping protein family that contributes to invasion and metastasis in several types of malignancies. It has been found to be crucial for the membranous skeleton and embryonic development, although, its role in HCC progression remains largely unclear. We observed increased levels of Tmod3 in HCCs, especially in extrahepatic metastasis. High Tmod3 expression correlated with aggressive carcinoma and poor patient with HCC survival. Loss-of-function studies conducted by us determined Tmod3 as an oncogene that promoted HCC growth and metastasis. Mechanistically, Tmod3 increases transcription of matrix metalloproteinase-2, -7, and -9 which required PI3K-AKT. Interaction between Tmod3 and epidermal growth factor receptor (EGFR) that supports the activation of EGFR phosphorylation, is essential for signaling activation of PI3K-AKT viral oncogene homolog. These findings reveal that Tmod3 enhances aggressive behavior of HCC both in vitro and in vivo by interacting with EFGR and by activating the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Hao Zheng
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, P.R. China
- Deprtment of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, P.R. China
| | - Yuan Yang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, P.R. China
- Deprtment of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, P.R. China
| | - Yong-Gang Hong
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Meng-Chao Wang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, P.R. China
- Deprtment of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, P.R. China
| | - Sheng-Xian Yuan
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, P.R. China
- Deprtment of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, P.R. China
| | - Zhen-Guang Wang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, P.R. China
- Deprtment of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, P.R. China
| | - Feng-Rui Bi
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Li-Qiang Hao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Hong-Li Yan
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Wei-Ping Zhou
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, P.R. China
- Deprtment of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, P.R. China
| |
Collapse
|
122
|
Zhang Z, Deng X, Liu Y, Liu Y, Sun L, Chen F. PKM2, function and expression and regulation. Cell Biosci 2019; 9:52. [PMID: 31391918 PMCID: PMC6595688 DOI: 10.1186/s13578-019-0317-8] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Pyruvate kinase (PK), as one of the key enzymes for glycolysis, can encode four different subtypes from two groups of genes, although the M2 subtype PKM2 is expressed mainly during embryonic development in normal humans, and is closely related to tissue repair and regeneration, with the deepening of research, the role of PKM2 in tumor tissue has received increasing attention. PKM2 can be aggregated into tetrameric and dimeric forms, PKM2 in the dimer state can enter the nuclear to regulate gene expression, the transformation between them can play an important role in tumor cell energy supply, epithelial-mesenchymal transition (EMT), invasion and metastasis and cell proliferation. We will use the switching effect of PKM2 in glucose metabolism as the entry point to expand and enrich the Warburg effect. In addition, PKM2 can also regulate each other with various proteins by phosphorylation, acetylation and other modifications, mediate the different intracellular localization of PKM2 and then exert specific biological functions. In this paper, we will illustrate each of these points.
Collapse
Affiliation(s)
- Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xinyue Deng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130041 China
| | - Yahui Liu
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Fangfang Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
123
|
Bubici C, Papa S. Editorial: The Warburg Effect Regulation Under Siege: the Intertwined Pathways in Health and Disease. Front Cell Dev Biol 2019; 7:80. [PMID: 31157222 PMCID: PMC6530249 DOI: 10.3389/fcell.2019.00080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 01/23/2023] Open
Affiliation(s)
- Concetta Bubici
- Division of Biosciences Institute of Environment, Health and Societies, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Salvatore Papa
- Cell Signaling and Cancer Laboratory, Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
| |
Collapse
|
124
|
Peng W, Huang W, Ge X, Xue L, Zhao W, Xue J. Type Iγ phosphatidylinositol phosphate kinase promotes tumor growth by facilitating Warburg effect in colorectal cancer. EBioMedicine 2019; 44:375-386. [PMID: 31105034 PMCID: PMC6604371 DOI: 10.1016/j.ebiom.2019.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Emerging evidence suggests that metabolic alterations are a hallmark of cancer cells and contribute to tumor initiation and development. Cancer cells primarily utilize aerobic glycolysis (the Warburg effect) to produce energy and support anabolic growth. The type Iγ phosphatidylinositol phosphate kinase (PIPKIγ) is profoundly implicated in tumorigenesis, however, little is known about its role in reprogrammed energy metabolism. METHODS Loss- and gain-of-function studies were applied to determine the oncogenic roles of PIPKIγ in colorectal cancer. Transcriptome analysis, real-time qPCR, immunohistochemical staining, Western blotting, and metabolic analysis were carried out to uncover the cellular mechanism of PIPKIγ. FINDINGS In this study, we showed that PIPKIγ was frequently upregulated in colorectal cancer and predicted a poor prognosis. Genetic silencing of pan-PIPKIγ suppressed cell proliferation and aerobic glycolysis of colorectal cancer. In contrast, the opposite effects were observed by overexpression of PIPKIγ_i2. Importantly, PIPKIγ-induced prolific effect was largely glycolysis-dependent. Mechanistically, PIPKIγ facilitated activation of PI3K/Akt/mTOR signaling pathways to upregulate c-Myc and HIF1α levels, which regulate expression of glycolytic enzymes to enhance glycolysis. Moreover, pharmacological inhibition by PIPKIγ activity with the specific inhibitor UNC3230 significantly inhibited colorectal cancer glycolysis and tumor growth. INTERPRETATION Our findings reveal a new regulatory role of PIPKIγ in Warburg effect and provide a key contributor in colorectal cancer metabolism with potential therapeutic potentials. FUND: National Key Research and Development Program of China, Outstanding Clinical Discipline Project of Shanghai Pudong, Natural Science Foundation of China, and Science and Technology Commission of Shanghai Municipality.
Collapse
Affiliation(s)
- Wei Peng
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Wei Huang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Xiaoxiao Ge
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Liqiong Xue
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Wei Zhao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China.
| |
Collapse
|
125
|
Yang H, Zhu R, Zhao X, Liu L, Zhou Z, Zhao L, Liang B, Ma W, Zhao J, Liu J, Huang G. Sirtuin-mediated deacetylation of hnRNP A1 suppresses glycolysis and growth in hepatocellular carcinoma. Oncogene 2019; 38:4915-4931. [PMID: 30858544 DOI: 10.1038/s41388-019-0764-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/25/2019] [Accepted: 02/16/2019] [Indexed: 01/06/2023]
Abstract
Tumor cells undergo a metabolic shift in order to adapt to the altered microenvironment, although the underlying mechanisms have not been fully explored. HnRNP A1 is involved in the alternative splicing of the pyruvate kinase (PK) mRNA, allowing tumor cells to specifically produce the PKM2 isoform. We found that the acetylation status of hnRNP A1 in hepatocellular carcinoma (HCC) cells was dependent on glucose availability, which affected the PKM2-dependent glycolytic pathway. In the glucose-starved HCC cells, SIRT1 and SIRT6, members of deacetylase sirtuin family, were highly expressed and deacetylated hnRNP A1 after direct binding. We identified four lysine residues in hnRNP A1 that were deacetylated by SIRT1 and SIRT6, resulting in significant inhibition of glycolysis in HCC cells. Deacetylated hnRNP A1 reduced PKM2 and increased PKM1 alternative splicing in HCC cells under normal glucose conditions, thereby reducing the metabolic activity of PK and the non-metabolic PKM2-β-catenin signaling pathway. However, under glucose starvation, the low levels of acetylated hnRNP A1 reduced HCC cell metabolism to adapt to the nutrient deficiency. Taken together, sirtuin-mediated hnRNP A1 deacetylation inhibits HCC cell proliferation and tumorigenesis in a PKM2-dependent manner. These findings point to the metabolic reprogramming induced by hnRNP A1 acetylation in order to adapt to the nutritional status of the tumor microenvironment.
Collapse
Affiliation(s)
- Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Rongxuan Zhu
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Beibei Liang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Wenjing Ma
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jian Zhao
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, 200433, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
126
|
Quercetin Inhibits the Proliferation of Glycolysis-Addicted HCC Cells by Reducing Hexokinase 2 and Akt-mTOR Pathway. Molecules 2019; 24:molecules24101993. [PMID: 31137633 PMCID: PMC6572074 DOI: 10.3390/molecules24101993] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Increased glycolysis in tumor cells is associated with increased risk of tumor progression and mortality. Therefore, disruption of glycolysis, one of the main sources of cellular energy supply, can serve as a target for suppressing tumor growth and progression. Of note, hexokinase-2 (HK2) plays vital roles in glucose metabolism. Moreover, the expression of HK2 alters the metabolic phenotype and supports the continuous growth of tumor cells, making it an attractive target for cancer therapy. Quercetin (QUE), a bioactive flavonoid, has a profound anti-tumor effect on hepatocellular carcinoma (HCC), but the precise underlying mechanism of this effect is unclear. In the present study, we reported that QUE inhibited the proliferation of HCC cells that relied on aerobic glycolysis. We further found that QUE could decrease the protein levels of HK2 and suppress the AKT/mTOR pathway in HCC cells. In addition, QUE significantly restrained the growth of HCC xenografts and decreased HK-2 expression in vivo. Taken together, we have revealed that QUE suppresses the progression of HCC by inhibiting HK2-dependentglycolysis, which may have a promising potential to be an effective treatments for HCC, especially for those patients with high HK2 expression.
Collapse
|
127
|
Bi YH, Han WQ, Li RF, Wang YJ, Du ZS, Wang XJ, Jiang Y. Signal transducer and activator of transcription 3 promotes the Warburg effect possibly by inducing pyruvate kinase M2 phosphorylation in liver precancerous lesions. World J Gastroenterol 2019; 25:1936-1949. [PMID: 31086462 PMCID: PMC6487376 DOI: 10.3748/wjg.v25.i16.1936] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Study shows that signal transducer and activator of transcription 3 (STAT3) can increase the Warburg effect by stimulating hexokinase 2 in breast cancer and upregulate lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 in myeloma. STAT3 and pyruvate kinase M2 (PKM2) can also be activated and enhance the Warburg effect in hepatocellular carcinoma. Precancerous lesions are critical to human and rodent hepatocarcinogenesis. However, the underlying molecular mechanism for the development of liver precancerous lesions remains unknown. We hypothesized that STAT3 promotes the Warburg effect possibly by upregulating p-PKM2 in liver precancerous lesions in rats.
AIM To investigate the mechanism of the Warburg effect in liver precancerous lesions in rats.
METHODS A model of liver precancerous lesions was established by a modified Solt-Farber method. The liver pathological changes were observed by HE staining and immunohistochemistry. The transformation of WB-F344 cells induced with N-methyl-N’-nitro-N-nitrosoguanidine and hydrogen peroxide was evaluated by the soft agar assay and aneuploidy. The levels of glucose and lactate in the tissue and culture medium were detected with a spectrophotometer. The protein levels of glutathione S-transferase-π, proliferating cell nuclear antigen (PCNA), STAT3, and PKM2 were examined by Western blot and immunofluorescence.
RESULTS We found that the Warburg effect was increased in liver precancerous lesions in rats. PKM2 and p-STAT3 were upregulated in activated oval cells in liver precancerous lesions in rats. The Warburg effect, p-PKM2, and p-STAT3 expression were also increased in transformed WB-F344 cells. STAT3 activation promoted the clonal formation rate, aneuploidy, alpha-fetoprotein expression, PCNA expression, G1/S phase transition, the Warburg effect, PKM2 phosphorylation, and nuclear translocation in transformed WB-F344 cells. Moreover, the Warburg effect was inhibited by stattic, a specific inhibitor of STAT3, and further reduced in transformed WB-F344 cells after the intervention for PKM2.
CONCLUSION The Warburg effect is initiated in liver precancerous lesions in rats. STAT3 activation promotes the Warburg effect by enhancing the phosphorylation of PKM2 in transformed WB-F344 cells.
Collapse
Affiliation(s)
- Yang-Hui Bi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wen-Qi Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ruo-Fei Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yun-Jiao Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zun-Shu Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xue-Jiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ying Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
128
|
Palazzo L, Mikolčević P, Mikoč A, Ahel I. ADP-ribosylation signalling and human disease. Open Biol 2019; 9:190041. [PMID: 30991935 PMCID: PMC6501648 DOI: 10.1098/rsob.190041] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
ADP-ribosylation (ADPr) is a reversible post-translational modification of proteins, which controls major cellular and biological processes, including DNA damage repair, cell proliferation and differentiation, metabolism, stress and immune responses. In order to maintain the cellular homeostasis, diverse ADP-ribosyl transferases and hydrolases are involved in the fine-tuning of ADPr systems. The control of ADPr network is vital, and dysregulation of enzymes involved in the regulation of ADPr signalling has been linked to a number of inherited and acquired human diseases, such as several neurological disorders and in cancer. Conversely, the therapeutic manipulation of ADPr has been shown to ameliorate several disorders in both human and animal models. These include cardiovascular, inflammatory, autoimmune and neurological disorders. Herein, we summarize the recent findings in the field of ADPr, which support the impact of this modification in human pathophysiology and highlight the curative potential of targeting ADPr for translational and molecular medicine.
Collapse
Affiliation(s)
- Luca Palazzo
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| |
Collapse
|
129
|
Yao N, Chen Q, Shi W, Tang L, Fu Y. PARP14 promotes the proliferation and gemcitabine chemoresistance of pancreatic cancer cells through activation of NF-κB pathway. Mol Carcinog 2019; 58:1291-1302. [PMID: 30968979 DOI: 10.1002/mc.23011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer (PC) is the most fatal gastrointestinal malignancy in the world, with a 5-year relative survival of only 8%. Poly(ADP-ribose) polymerase (PARP)14, a member of the macro-PARP subfamily proteins, has been reported to participate in various biologic and pathologic processes in multiple cancers. The roles and underlying molecular mechanisms of PARP14 in PC carcinogenesis, however, remain to be elucidated. In this study, we for the first time discovered that PARP14 was highly expressed in human primary PC specimens and significantly correlated with poor patient prognosis. Using loss-of-function studies in vitro and in vivo, we showed that the knockdown of PARP14 led to enhanced apoptosis, repressed proliferation, and gemcitabine (GEM) resistance of PC cells. Further investigations revealed that PARP14 was significantly overexpressed in GEM-resistant PC cells (SW1990/GZ). And silencing of PARP14 significantly reversed the GEM resistance of SW1990/GZ cells. To the mechanism, PARP14 could stimulate PC progression by the activation of nuclear factor-κB (NF-κB) signaling pathway. And inhibition of NF-κB signal could significantly reverse PARP14-overexpression triggered PC carcinogenesis. In conclusion, PARP14 could promote PC cell proliferation, antiapoptosis, and GEM resistance via NF-κB signaling pathway, highlighting its potential role as a therapeutic target for PC.
Collapse
Affiliation(s)
- Na Yao
- Department of Thyroid & Breast Surgery, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Qiuyang Chen
- Department of General Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Wuxi, China
| | - Weihai Shi
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospitalof Nanjing Medical University, Changzhou, China
| | - Liming Tang
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospitalof Nanjing Medical University, Changzhou, China
| | - Yue Fu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospitalof Nanjing Medical University, Changzhou, China
| |
Collapse
|
130
|
Qin W, Wu HJ, Cao LQ, Li HJ, He CX, Zhao D, Xing L, Li PQ, Jin X, Cao HL. Research Progress on PARP14 as a Drug Target. Front Pharmacol 2019; 10:172. [PMID: 30890936 PMCID: PMC6411704 DOI: 10.3389/fphar.2019.00172] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
Poly-adenosine diphosphate-ribose polymerase (PARP) implements posttranslational mono- or poly-ADP-ribosylation modification of target proteins. Among the known 18 members in the enormous family of PARP enzymes, several investigations about PARP1, PARP2, and PARP5a/5b have been launched in the past few decades; more specifically, PARP14 is gradually emerging as a promising drug target. An intact PARP14 (also named ARTD8 or BAL2) is constructed by macro1, macro2, macro3, WWE, and the catalytic domain. PARP14 takes advantage of nicotinamide adenine dinucleotide (NAD+) as a metabolic substrate to conduct mono-ADP-ribosylation modification on target proteins, taking part in cellular responses and signaling pathways in the immune system. Therefore, PARP14 has been considered a fascinating target for treatment of tumors and allergic inflammation. More importantly, PARP14 could be a potential target for a chemosensitizer based on the theory of synthetic lethality and its unique role in homologous recombination DNA repair. This review first gives a brief introduction on several representative PARP members. Subsequently, current literatures are presented to reveal the molecular mechanisms of PARP14 as a novel drug target for cancers (e.g., diffuse large B-cell lymphoma, multiple myeloma, prostate cancer, and hepatocellular carcinoma) and allergic inflammatory. Finally, potential PARP inhibitor-associated adverse effects are discussed. The review could be a meaningful reference for innovative drug or chemosensitizer discovery targeting to PARP14.
Collapse
Affiliation(s)
- Wei Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hong-Jie Wu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lu-Qi Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hui-Jin Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Chun-Xia He
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Dong Zhao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lu Xing
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Peng-Quan Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xi Jin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hui-Ling Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
131
|
Palma E, Ma X, Riva A, Iansante V, Dhawan A, Wang S, Ni HM, Sesaki H, Williams R, Ding WX, Chokshi S. Dynamin-1-Like Protein Inhibition Drives Megamitochondria Formation as an Adaptive Response in Alcohol-Induced Hepatotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:580-589. [PMID: 30553835 PMCID: PMC6436109 DOI: 10.1016/j.ajpath.2018.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 10/18/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
Abstract
Despite the growing global burden of alcoholic liver diseases, therapeutic options are limited, and novel targets are urgently needed. Accumulating evidence suggests that mitochondria adapt in response to ethanol and formation of megamitochondria in the livers of patients is recognized as a hallmark of alcoholic liver diseases. The processes involved in ethanol-induced hepatic mitochondrial changes, the impact on mitochondria-shaping proteins, and the significance of megamitochondria formation remain unknown. In this study, we investigated the mitochondrial and cellular response to alcohol in hepatoma cell line VL-17A. The mitochondrial architecture rapidly changed after 3 or 14 days of ethanol exposure with double-pronged presentation of hyperfragmentation and megamitochondria, and cell growth was inhibited. Dynamin-1-like protein (Drp1) was identified as the main mediator driving these mitochondrial alterations, and its genetic inactivation was determined to foster megamitochondria development, preserving the capacity of the cells to grow despite alcohol toxicity. The role of Drp1 in mediating megamitochondria formation in mice with liver-specific inactivation of Drp1 was further confirmed. Finally, when these mice were fed with ethanol, the presentation of hepatic megamitochondria was exacerbated compared with wild type fed with the same diet. Ethanol-induced toxicity was also reduced. Our study demonstrates that megamitochondria formation is mediated by Drp1, and this phenomenon is a beneficial adaptive response during alcohol-induced hepatotoxicity.
Collapse
Affiliation(s)
- Elena Palma
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Antonio Riva
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Valeria Iansante
- Institute of Liver Studies, King's College London, London, United Kingdom
| | - Anil Dhawan
- Institute of Liver Studies, King's College London, London, United Kingdom
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roger Williams
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Shilpa Chokshi
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
132
|
Ye G, Qin Y, Wang S, Pan D, Xu S, Wu C, Wang X, Wang J, Ye H, Shen H. Lamc1 promotes the Warburg effect in hepatocellular carcinoma cells by regulating PKM2 expression through AKT pathway. Cancer Biol Ther 2019; 20:711-719. [PMID: 30755064 PMCID: PMC6605989 DOI: 10.1080/15384047.2018.1564558] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/21/2018] [Accepted: 12/25/2018] [Indexed: 01/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common aggressive malignancy of liver, is the third leading cause of cancer death across the world. Laminin gamma 1 (Lamc1), encodes laminin-γ1, an extracellular matrix protein involved in various progresses such as tumor cell proliferation and metabolism. In the present study, high expression of Lamc1 and PKM2 was observed in tumor tissues of HCC patients. In vitro, down-regulation of Lamc1 inhibited proliferation of HCC cells by promoting cell death, reduced glucose consumption and lactate production, accompanied by a decrease in the expression of glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA), and PTEN increased, as well as PTEN S380 and AKT S473/T308 phosphorylation decreased, while Lamc1 up-regulation had the opposite effect. The effects of PKM2 were similar to that of Lamc1 and markedly counteracted the effects of Lamc1 down-regulation. In addition, Lamc1-induced increase in PKM2 expression was strongly attenuated by a PI3K inhibitor, LY294002 or a si-p110 PI3K, with a significant decrease in GLUT1 and LDHA expression, as well as decreased AKT T308 phosphorylation. Thus, we speculated that Lamc1 was implicated in the progression of HCC probably by regulating PKM2 expression through PTEN/AKT pathway.
Collapse
Affiliation(s)
- GuanXiong Ye
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, LiShui, Zhejiang, PR China
| | - Yong Qin
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, LiShui, Zhejiang, PR China
| | - Shi Wang
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, LiShui, Zhejiang, PR China
| | - DeBiao Pan
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, LiShui, Zhejiang, PR China
| | - ShengQian Xu
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, LiShui, Zhejiang, PR China
| | - ChengJun Wu
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, LiShui, Zhejiang, PR China
| | - XinMei Wang
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, LiShui, Zhejiang, PR China
| | - Jun Wang
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, LiShui, Zhejiang, PR China
| | - HaiLin Ye
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, LiShui, Zhejiang, PR China
| | - HeJuan Shen
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, LiShui, Zhejiang, PR China
| |
Collapse
|
133
|
D'Angeli F, Scalia M, Cirnigliaro M, Satriano C, Barresi V, Musso N, Trovato-Salinaro A, Barbagallo D, Ragusa M, Di Pietro C, Purrello M, Spina-Purrello V. PARP-14 Promotes Survival of Mammalian α but Not β Pancreatic Cells Following Cytokine Treatment. Front Endocrinol (Lausanne) 2019; 10:271. [PMID: 31130919 PMCID: PMC6509146 DOI: 10.3389/fendo.2019.00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
PARP-14 (poly-ADP Ribose Polymerase-14), a member of the PARP family, belongs to the group of Bal proteins (B Aggressive Lymphoma). PARP-14 has recently appeared to be involved in the transduction pathway mediated by JNKs (c Jun N terminal Kinases), among which JNK2 promotes cancer cell survival. Several pharmacological PARP inhibitors are currently used as antitumor agents, even though they have also proved to be effective in many inflammatory diseases. Cytokine release from immune system cells characterizes many autoimmune inflammatory disorders, including type I diabetes, in which the inflammatory state causes β cell loss. Nevertheless, growing evidence supports a concomitant implication of glucagon secreting α cells in type I diabetes progression. Here, we provide evidence on the activation of a survival pathway, mediated by PARP-14, in pancreatic α cells, following treatment of αTC1.6 glucagonoma and βTC1 insulinoma cell lines with a cytokine cocktail: interleukin 1 beta (IL-1β), interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). Through qPCR, western blot and confocal analysis, we demonstrated higher expression levels of PARP-14 in αTC1.6 cells with respect to βTC1 cells under inflammatory stimuli. By cytofluorimetric and caspase-3 assays, we showed the higher resistance of α cells compared to β cells to apoptosis induced by cytokines. Furthermore, the ability of PJ-34 to modulate the expression of the proteins involved in the survival pathway suggests a protective role of PARP-14. These data shed light on a poorly characterized function of PARP-14 in αTC1.6 cells in inflammatory contexts, widening the potential pharmacological applications of PARP inhibitors.
Collapse
Affiliation(s)
- Floriana D'Angeli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Marina Scalia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Matilde Cirnigliaro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Angela Trovato-Salinaro
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Vittoria Spina-Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
- *Correspondence: Vittoria Spina-Purrello
| |
Collapse
|
134
|
Kirby IT, Kojic A, Arnold MR, Thorsell AG, Karlberg T, Vermehren-Schmaedick A, Sreenivasan R, Schultz C, Schüler H, Cohen MS. A Potent and Selective PARP11 Inhibitor Suggests Coupling between Cellular Localization and Catalytic Activity. Cell Chem Biol 2018; 25:1547-1553.e12. [PMID: 30344052 DOI: 10.1016/j.chembiol.2018.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/08/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022]
Abstract
Poly-ADP-ribose polymerases (PARPs1-16) play pivotal roles in diverse cellular processes. PARPs that catalyze poly-ADP-ribosylation (PARylation) are the best characterized PARP family members because of the availability of potent and selective inhibitors for these PARPs. There has been comparatively little success in developing selective small-molecule inhibitors of PARPs that catalyze mono-ADP-ribosylation (MARylation), limiting our understanding of the cellular role of MARylation. Here we describe the structure-guided design of inhibitors of PARPs that catalyze MARylation. The most selective analog, ITK7, potently inhibits the MARylation activity of PARP11, a nuclear envelope-localized PARP. ITK7 is greater than 200-fold selective over other PARP family members. Using live-cell imaging, we show that ITK7 causes PARP11 to dissociate from the nuclear envelope. These results suggest that the cellular localization of PARP11 is regulated by its catalytic activity.
Collapse
Affiliation(s)
- Ilsa T Kirby
- Program in Chemical Biology, Oregon Health & Science University, Portland, OR 97210, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States
| | - Ana Kojic
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany; EMBL, Heidelberg University, Heidelberg, Germany
| | - Moriah R Arnold
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States
| | - Ann-Gerd Thorsell
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157, Huddinge, Sweden
| | - Tobias Karlberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157, Huddinge, Sweden
| | - Anke Vermehren-Schmaedick
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States
| | - Raashi Sreenivasan
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States
| | - Carsten Schultz
- Program in Chemical Biology, Oregon Health & Science University, Portland, OR 97210, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States; European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Herwig Schüler
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157, Huddinge, Sweden
| | - Michael S Cohen
- Program in Chemical Biology, Oregon Health & Science University, Portland, OR 97210, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, United States.
| |
Collapse
|
135
|
Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Microbiol Mol Biol Rev 2018; 83:83/1/e00038-18. [PMID: 30567936 DOI: 10.1128/mmbr.00038-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The literature review presented here details recent research involving members of the poly(ADP-ribose) polymerase (PARP) family of proteins. Among the 17 recognized members of the family, the human enzyme PARP1 is the most extensively studied, resulting in a number of known biological and metabolic roles. This review is focused on the roles played by PARP enzymes in host-pathogen interactions and in diseases with an associated inflammatory response. In mammalian cells, several PARPs have specific roles in the antiviral response; this is perhaps best illustrated by PARP13, also termed the zinc finger antiviral protein (ZAP). Plant stress responses and immunity are also regulated by poly(ADP-ribosyl)ation. PARPs promote inflammatory responses by stimulating proinflammatory signal transduction pathways that lead to the expression of cytokines and cell adhesion molecules. Hence, PARP inhibitors show promise in the treatment of inflammatory disorders and conditions with an inflammatory component, such as diabetes, arthritis, and stroke. These functions are correlated with the biophysical characteristics of PARP family enzymes. This work is important in providing a comprehensive understanding of the molecular basis of pathogenesis and host responses, as well as in the identification of inhibitors. This is important because the identification of inhibitors has been shown to be effective in arresting the progression of disease.
Collapse
|
136
|
Papa S, Choy PM, Bubici C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene 2018; 38:2223-2240. [PMID: 30487597 PMCID: PMC6398583 DOI: 10.1038/s41388-018-0582-8] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/24/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Most tumor cells reprogram their glucose metabolism as a result of mutations in oncogenes and tumor suppressors, leading to the constitutive activation of signaling pathways involved in cell growth. This metabolic reprogramming, known as aerobic glycolysis or the Warburg effect, allows tumor cells to sustain their fast proliferation and evade apoptosis. Interfering with oncogenic signaling pathways that regulate the Warburg effect in cancer cells has therefore become an attractive anticancer strategy. However, evidence for the occurrence of the Warburg effect in physiological processes has also been documented. As such, close consideration of which signaling pathways are beneficial targets and the effect of their inhibition on physiological processes are essential. The MAPK/ERK and MAPK/JNK pathways, crucial for normal cellular responses to extracellular stimuli, have recently emerged as key regulators of the Warburg effect during tumorigenesis and normal cellular functions. In this review, we summarize our current understanding of the roles of the ERK and JNK pathways in controlling the Warburg effect in cancer and discuss their implication in controlling this metabolic reprogramming in physiological processes and opportunities for targeting their downstream effectors for therapeutic purposes.
Collapse
Affiliation(s)
- Salvatore Papa
- Cell Signaling and Cancer Laboratory, Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Beckett Street, Leeds, UK.
| | - Pui Man Choy
- Cell Signaling and Cancer Laboratory, Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Beckett Street, Leeds, UK.,Department of Research & Development, hVIVO PLC, Biopark, Broadwater Road, Welwyn Garden City, UK
| | - Concetta Bubici
- College of Health and Life Sciences, Department of Life Sciences, Institute of Environment, Health and Societies, Division of Biosciences, Brunel University London, Uxbridge, UK. .,Department of Medicine, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
137
|
Lee C, Kim M, Lee JH, Oh J, Shin HH, Lee SM, Scherer PE, Kwon HM, Choi JH, Park J. COL6A3-derived endotrophin links reciprocal interactions among hepatic cells in the pathology of chronic liver disease. J Pathol 2018; 247:99-109. [PMID: 30246318 DOI: 10.1002/path.5172] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/23/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
Abstract
Extracellular matrix dysregulation is associated with chronic liver disease. CollagenVI-alpha3 chain (COL6A3) is a biomarker for hepatic fibrosis and poor prognosis of hepatocellular carcinoma (HCC), but its function in liver pathology remains unknown. High levels of COL6A3 and its cleaved product, endotrophin (ETP) in tumor-neighboring regions are strongly associated with poor prognosis in HCC patients. Here, we report that the high levels of ETP in injured hepatocytes induce JNK-dependent hepatocyte apoptosis and activate nonparenchymal cells to lead further activation of hepatic inflammation, fibrosis, and apoptosis. Nevertheless ETP per se showed limited phenotypic changes in normal liver tissues. Furthermore, inhibition of ETP activity by utilizing neutralizing antibodies efficiently suppressed the pathological consequences in chronic liver diseases. Our results implicate ETP mechanistically as a crucial mediator in reciprocal interactions among various hepatic cell populations in the pathogenesis of chronic liver disease, and it could be a promising therapeutic target particularly in individuals with high local levels of COL6A3. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Changhu Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Min Kim
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.,National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea
| | - Jun Ho Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jiyoung Oh
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Hyun-Hee Shin
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Sang Min Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Philipp E Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hyug Moo Kwon
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jang Hyun Choi
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jiyoung Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|
138
|
Zhu Y, Zhu J, Lu C, Zhang Q, Xie W, Sun P, Dong X, Yue L, Sun Y, Yi X, Zhu T, Ruan G, Aebersold R, Huang S, Guo T. Identification of Protein Abundance Changes in Hepatocellular Carcinoma Tissues Using PCT-SWATH. Proteomics Clin Appl 2018; 13:e1700179. [PMID: 30365225 DOI: 10.1002/prca.201700179] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/16/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To rapidly identify protein abundance changes in biopsy-level fresh-frozen hepatocellular carcinoma (HCC). EXPERIMENTAL DESIGN The pressure-cycling technology (PCT) is applied and sequential window acquisition of all theoretical mass spectra (SWATH-MS) workflow is optimized to analyze 38 biopsy-level tissue samples from 19 HCC patients. Each proteome is analyzed with 45 min LC gradient. MCM7 is validated using immunohistochemistry (IHC). RESULTS A total of 11 787 proteotypic peptides from 2579 SwissProt proteins are quantified with high confidence. The coefficient of variation (CV) of peptide yield using PCT is 32.9%, and the R2 of peptide quantification is 0.9729. Five hundred forty-one proteins showed significant abundance change between the tumor area and its adjacent benign area. From 24 upregulated pathways and 13 suppressed ones, enhanced biomolecule synthesis and suppressed small molecular metabolism in liver tumor tissues are observed. Protein changes based on α-fetoprotein expression and hepatitis B virus infection are further analyzed. The data altogether highlight 16 promising tumor marker candidates. The upregulation of minichromosome maintenance complex component 7 (MCM7) is further observed in multiple HCC tumor tissues by IHC. CONCLUSIONS AND CLINICAL RELEVANCE The practicality of rapid proteomic analysis of biopsy-level fresh-frozen HCC tissue samples with PCT-SWATH has been demonstrated and promising tumor marker candidates including MCM7 are identified.
Collapse
Affiliation(s)
- Yi Zhu
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China.,Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Jiang Zhu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Cong Lu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Qiushi Zhang
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China
| | - Wei Xie
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Xiaochuan Dong
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Liang Yue
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China
| | - Yaoting Sun
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China
| | - Xiao Yi
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China
| | - Tiansheng Zhu
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China
| | - Guan Ruan
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.,Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Shi'ang Huang
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Tiannan Guo
- Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, P. R. China.,Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
139
|
Zhang D, Li Z, Li T, Luo D, Feng X, Liu Y, Huang J. miR-517a promotes Warburg effect in HCC by directly targeting FBP1. Onco Targets Ther 2018; 11:8025-8032. [PMID: 30519044 PMCID: PMC6239112 DOI: 10.2147/ott.s172084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies worldwide. Our aim is to explore the expression and biological function of miR-517a in HCC. MATERIALS AND METHODS We performed qRT-PCR to detect the expression of miR-517a in clinical samples and cell lines. CKK-8 assay and colony formation assay were employed to detect the miR-517a regulated cell proliferation. Glucose uptake and lactate production were examined to determine the Warburg effect. We also performed ECAR assay using Seahorse system. Luciferase acitivy assay was used to examine the binding of FBP1 3'UTR by miR-517a. RESULTS miR-517a was upregulated in HCC samples in both genomic and mRNA levels. Moreover, overexpression of miR-517a promoted cell proliferation and Warburg effect. Mechanically, miR-517a could directly target the 3'-UTR of FBP1. In addition, restoring the expression of FBP1 inhibited cell growth. CONCLUSION We demonstrated that miR-517a acts as an oncogene to promote Warburg effect in HCC, favoring tumor growth, and miR-517a/FBP1 could be a novel target for HCC treatment.
Collapse
Affiliation(s)
- Delin Zhang
- Department of Hepatobiliary Surgery, Guizhou People's Hospital, Guiyang 550002, China,
| | - Zhu Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
| | - Tao Li
- Department of Hepatobiliary Surgery, Guizhou People's Hospital, Guiyang 550002, China,
| | - Dan Luo
- Department of Hepatobiliary Surgery, Guizhou People's Hospital, Guiyang 550002, China,
| | - Xinfu Feng
- Department of Hepatobiliary Surgery, Guizhou People's Hospital, Guiyang 550002, China,
| | - Yan Liu
- Department of Hepatobiliary Surgery, Guizhou People's Hospital, Guiyang 550002, China,
| | - Jianzhao Huang
- Department of Hepatobiliary Surgery, Guizhou People's Hospital, Guiyang 550002, China,
| |
Collapse
|
140
|
Lee NCW, Carella MA, Papa S, Bubici C. High Expression of Glycolytic Genes in Cirrhosis Correlates With the Risk of Developing Liver Cancer. Front Cell Dev Biol 2018; 6:138. [PMID: 30430110 PMCID: PMC6220322 DOI: 10.3389/fcell.2018.00138] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/26/2018] [Indexed: 01/09/2023] Open
Abstract
A marked increase in the rate of glycolysis is a key event in the pathogenesis of hepatocellular carcinoma (HCC), the main type of primary liver cancer. Liver cirrhosis is considered to be a key player in HCC pathogenesis as it precedes HCC in up to 90% of patients. Intriguingly, the biochemical events that underlie the progression of cirrhosis to HCC are not well understood. In this study, we examined the expression profile of metabolic gene transcripts in liver samples from patients with HCC and patients with cirrhosis. We found that gene expression of glycolytic enzymes is up-regulated in precancerous cirrhotic livers and significantly associated with an elevated risk for developing HCC. Surprisingly, expression levels of genes involved in mitochondrial oxidative metabolism are markedly increased in HCC compared to normal livers but remain unchanged in cirrhosis. Our findings suggest that key glycolytic enzymes such as hexokinase 2 (HK2), aldolase A (ALDOA), and pyruvate kinase M2 (PKM2) may represent potential markers and molecular targets for early detection and chemoprevention of HCC.
Collapse
Affiliation(s)
- Nathan C W Lee
- Cell Signaling and Cancer Laboratory, Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, St James's University Hospital, Leeds, United Kingdom
| | - Maria Annunziata Carella
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Salvatore Papa
- Cell Signaling and Cancer Laboratory, Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, St James's University Hospital, Leeds, United Kingdom
| | - Concetta Bubici
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom.,Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
141
|
Carter-O’Connell I, Vermehren-Schmaedick A, Jin H, Morgan RK, David LL, Cohen MS. Combining Chemical Genetics with Proximity-Dependent Labeling Reveals Cellular Targets of Poly(ADP-ribose) Polymerase 14 (PARP14). ACS Chem Biol 2018; 13:2841-2848. [PMID: 30247868 DOI: 10.1021/acschembio.8b00567] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Poly(ADP-ribose) polymerase 14 (PARP14) is a member of the PARP family of enzymes that transfer ADP-ribose from NAD+ to nucleophilic amino acids on target proteins, a process known as mono-ADP-ribosylation (MARylation). PARP14 is involved in normal immune function through the IL-4 signaling pathway and is a prosurvival factor in multiple myeloma and hepatocellular carcinoma. A mechanistic understanding of the physiological and pathophysiological roles of PARP14 has been limited by the dearth of PARP14-specific MARylation targets. Herein we engineered a PARP14 variant that uses an NAD+ analog that is orthogonal to wild-type PARPs for identifying PARP14-specific MARylation targets. Combining this chemical genetics approach with a BioID approach for proximity-dependent labeling of PARP14 interactors, we identified 114 PARP14-specific protein substrates, several of which are RNA regulatory proteins. One of these targets is PARP13, a protein known to play a role in regulating RNA stability. PARP14 MARylates PARP13 on several acidic amino acids. This study not only reveals crosstalk among PARP family members but also highlights the advantage of using disparate approaches for identifying the direct targets of individual PARP family members.
Collapse
Affiliation(s)
- Ian Carter-O’Connell
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97210, United States
| | - Anke Vermehren-Schmaedick
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97210, United States
| | - Haihong Jin
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97210, United States
| | - Rory K. Morgan
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97210, United States
| | - Larry L. David
- Department of Biochemistry, Oregon Health and Science University, Portland, Oregon 97210, United States
| | - Michael S. Cohen
- Program in Chemical Biology and Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97210, United States
| |
Collapse
|
142
|
Yumnam S, Raha S, Kim SM, Venkatarame Gowda Saralamma V, Lee HJ, Ha SE, Heo JD, Lee SJ, Kim EH, Lee WS, Kim JA, Kim GS. Identification of a novel biomarker in tangeretin‑induced cell death in AGS human gastric cancer cells. Oncol Rep 2018; 40:3249-3260. [PMID: 30272339 PMCID: PMC6196609 DOI: 10.3892/or.2018.6730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 09/18/2018] [Indexed: 01/16/2023] Open
Abstract
Proteomic analysis serves as an important biological tool for identifying biological events. Novel biomarkers of a specific disease such as cancer may be identified using these promising techniques. The aim of the present study was to investigate the effect of tangeretin and to identify potential biomarkers in AGS gastric cancer cells using a proteomics approach. The results of the present study revealed that tangeretin inhibited AGS cell viability dose‑dependently with a half‑maximal inhibitory concentration of 100 µM. Two‑dimensional gel electrophoresis was performed to determine the potential biomarker between control and tangeretin (100 µM)‑treated AGS cells. A total of 16 proteins was identified from 36 significant protein spots using matrix‑assisted laser‑desorption/ionization time‑of‑flight‑mass spectrometry using peptide fingerprinting. The bioinformatics tools Protein ANalysis THrough Evolutionary Relationships (PANTHER) and Database for Annotation, Visualization and Integrated Discovery (DAVID) were used to identify the functional properties and association of the proteins obtained. Using western blot analysis, the regulatory pattern of four selected proteins, protein kinase Cε, mitogen‑activated protein kinase 4, phosphoinositide 4‑kinase and poly(ADP‑ribose) polymerase 14, were successfully verified in replicate sample sets. These selected proteins are primarily involved in apoptosis signaling, angiogenesis, cell cycle regulation, receptor kinase binding, intracellular cytoplasmic and nuclear alterations. Therefore, aim of the present study was to identify potential diagnostic biomarkers from the functional categories of altered protein expression in tangeretin‑inhibited AGS gastric cancer cell viability.
Collapse
Affiliation(s)
- Silvia Yumnam
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Suchismita Raha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Seong Min Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Venu Venkatarame Gowda Saralamma
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Ho Jeong Lee
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Sang Eun Ha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Department of Environment Toxicology and Chemistry, Toxicology Screening Research Center, Korea Institute of Toxicology, Jinju, Gyeongsang 52828, Republic of Korea
| | - Sang Joon Lee
- Gyeongnam Department of Environment Toxicology and Chemistry, Toxicology Screening Research Center, Korea Institute of Toxicology, Jinju, Gyeongsang 52828, Republic of Korea
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, Jinju, Gyeongsang 52833, Republic of Korea
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University, School of Medicine, Jinju, Gyeongsang 52727, Republic of Korea
| | - Jin A Kim
- Department of Physical Therapy, International University of Korea, Jinju, Gyeongsang 52833, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| |
Collapse
|
143
|
Langiewicz M, Graf R, Humar B, Clavien PA. JNK1 induces hedgehog signaling from stellate cells to accelerate liver regeneration in mice. J Hepatol 2018; 69:666-675. [PMID: 29709677 DOI: 10.1016/j.jhep.2018.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS To improve outcomes of two-staged hepatectomies for large/multiple liver tumors, portal vein ligation (PVL) has been combined with parenchymal transection (associating liver partition and portal vein ligation for staged hepatectomy [coined ALPPS]) to greatly accelerate liver regeneration. In a novel ALPPS mouse model, we have reported paracrine Indian hedgehog (IHH) signaling from stellate cells as an early contributor to augmented regeneration. Here, we sought to identify upstream regulators of IHH. METHODS ALPPS in mice was compared against PVL and additional control surgeries. Potential IHH regulators were identified through in silico mining of transcriptomic data. c-Jun N-terminal kinase (JNK1 [Mapk8]) activity was reduced through SP600125 to evaluate its effects on IHH signaling. Recombinant IHH was injected after JNK1 diminution to substantiate their relationship during accelerated liver regeneration. RESULTS Transcriptomic analysis linked Ihh to Mapk8. JNK1 upregulation after ALPPS was validated and preceded the IHH peak. On immunofluorescence, JNK1 and IHH co-localized in alpha-smooth muscle actin-positive non-parenchymal cells. Inhibition of JNK1 prior to ALPPS surgery reduced liver weight gain to PVL levels and was accompanied by downregulation of hepatocellular proliferation and the IHH-GLI1-CCND1 axis. In JNK1-inhibited mice, recombinant IHH restored ALPPS-like acceleration of regeneration and re-elevated JNK1 activity, suggesting the presence of a positive IHH-JNK1 feedback loop. CONCLUSIONS JNK1-mediated induction of IHH paracrine signaling from hepatic stellate cells is essential for accelerated regeneration of parenchymal mass. The JNK1-IHH axis is a mechanism unique to ALPPS surgery and may point to therapeutic alternatives for patients with insufficient regenerative capacity. LAY SUMMARY Associating liver partition and portal vein ligation for staged hepatectomy (so called ALPPS), is a new two-staged approach to hepatectomy, which induces an unprecedented acceleration of liver regeneration, enabling treatment of patients with liver tumors that would otherwise be considered unresectable. Herein, we demonstrate that JNK1-IHH signaling from stellate cells is a key mechanism underlying the regenerative acceleration that is induced by ALPPS.
Collapse
Affiliation(s)
- Magda Langiewicz
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zurich, Raemistrasse 100, Zurich CH-8091, Switzerland
| | - Rolf Graf
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zurich, Raemistrasse 100, Zurich CH-8091, Switzerland
| | - Bostjan Humar
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zurich, Raemistrasse 100, Zurich CH-8091, Switzerland.
| | - Pierre A Clavien
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zurich, Raemistrasse 100, Zurich CH-8091, Switzerland.
| |
Collapse
|
144
|
Papa S, Bubici C. Feeding the Hedgehog: A new meaning for JNK signalling in liver regeneration. J Hepatol 2018; 69:572-574. [PMID: 29870764 DOI: 10.1016/j.jhep.2018.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Salvatore Papa
- Cell Signaling and Cancer Laboratory, Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Beckett Street, Leeds LS9 7TF, United Kingdom.
| | - Concetta Bubici
- College of Health and Life Sciences, Department of Life Sciences, Institute of Environment, Health and Societies, Division of Biosciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| |
Collapse
|
145
|
Iansante V, Dhawan A, Masmoudi F, Lee CA, Fernandez-Dacosta R, Walker S, Fitzpatrick E, Mitry RR, Filippi C. A New High Throughput Screening Platform for Cell Encapsulation in Alginate Hydrogel Shows Improved Hepatocyte Functions by Mesenchymal Stromal Cells Co-encapsulation. Front Med (Lausanne) 2018; 5:216. [PMID: 30140676 PMCID: PMC6095031 DOI: 10.3389/fmed.2018.00216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatocyte transplantation has emerged as an alternative to liver transplant for liver disease. Hepatocytes encapsulated in alginate microbeads have been proposed for the treatment of acute liver failure, as they are able to provide hepatic functions while the liver regenerates. Furthermore, they do not require immunosuppression, as the alginate protects the hepatocytes from the recipient's immune cells. Mesenchymal stromal cells are very attractive candidates for regenerative medicine, being able to differentiate into cells of the mesenchymal lineages and having extensive proliferative ability. When co-cultured with hepatocytes in two-dimensional cultures, they exert a trophic role, drastically improving hepatocytes survival and functions. In this study we aimed to (i) devise a high throughput system (HTS) to allow testing of a variety of different parameters for cell encapsulation and (ii) using this HTS, investigate whether mesenchymal stromal cells could have beneficial effects on the hepatocytes when co-encapsulated in alginate microbeads. Using our HTS platform, we observed some improvement of hepatocyte behavior with MSCs, subsequently confirmed in the low throughput analysis of cell function in alginate microbeads. Therefore, our study shows that mesenchymal stromal cells may be a good option to improve the function of hepatocytes microbeads. Furthermore, the platform developed may be used for HTS studies on cell encapsulation, in which several conditions (e.g., number of cells, combinations of cells, alginate modifications) could be easily compared at the same time.
Collapse
Affiliation(s)
- Valeria Iansante
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre, King's College London, King's College Hospital, London, United Kingdom
| | - Fatma Masmoudi
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Charlotte A Lee
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Raquel Fernandez-Dacosta
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Simon Walker
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Emer Fitzpatrick
- Paediatric Liver, GI and Nutrition Centre, King's College London, King's College Hospital, London, United Kingdom
| | - Ragai R Mitry
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Céline Filippi
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| |
Collapse
|
146
|
Wiese EK, Hitosugi T. Tyrosine Kinase Signaling in Cancer Metabolism: PKM2 Paradox in the Warburg Effect. Front Cell Dev Biol 2018; 6:79. [PMID: 30087897 PMCID: PMC6066570 DOI: 10.3389/fcell.2018.00079] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022] Open
Abstract
The Warburg Effect, or aerobic glycolysis, is one of the major metabolic alterations observed in cancer. Hypothesized to increase a cell's proliferative capacity via regenerating NAD+, increasing the pool of glycolytic biosynthetic intermediates, and increasing lactate production that affects the tumor microenvironment, the Warburg Effect is important for the growth and proliferation of tumor cells. The mechanisms by which a cell acquires the Warburg Effect phenotype are regulated by the expression of numerous oncogenes, including oncogenic tyrosine kinases. Oncogenic tyrosine kinases play a significant role in phosphorylating and regulating the activity of numerous metabolic enzymes. Tyrosine phosphorylation of glycolytic enzymes increases the activities of a majority of glycolytic enzymes, thus promoting increased glycolytic rate and tumor cell proliferation. Paradoxically however, tyrosine phosphorylation of pyruvate kinase M2 isoform (PKM2) results in decreased PKM2 activity, and this decrease in PKM2 activity promotes the Warburg Effect. Furthermore, recent studies have shown that PKM2 is also able to act as a protein kinase using phosphoenolpyruvate (PEP) as a substrate to promote tumorigenesis. Therefore, numerous recent studies have investigated both the role of the classical and non-canonical activity of PKM2 in promoting the Warburg Effect and tumor growth, which raise further interesting questions. In this review, we will summarize these recent advances revealing the importance of tyrosine kinases in the regulation of the Warburg Effect as well as the role of PKM2 in the promotion of tumor growth.
Collapse
Affiliation(s)
- Elizabeth K Wiese
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States.,Molecular Pharmacology and Experimental Therapeutics Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Taro Hitosugi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States.,Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
147
|
Design, synthesis and evaluation of potent and selective inhibitors of mono-(ADP-ribosyl)transferases PARP10 and PARP14. Bioorg Med Chem Lett 2018; 28:2050-2054. [DOI: 10.1016/j.bmcl.2018.04.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 02/01/2023]
|
148
|
Li X, Zhao Q, Qi J, Wang W, Zhang D, Li Z, Qin C. lncRNA Ftx promotes aerobic glycolysis and tumor progression through the PPARγ pathway in hepatocellular carcinoma. Int J Oncol 2018; 53:551-566. [PMID: 29845188 PMCID: PMC6017247 DOI: 10.3892/ijo.2018.4418] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
Aerobic glycolysis is a phenomenon by which malignant cells preferentially metabolize glucose through the glycolytic pathway, rather than oxidative phosphorylation to proliferate efficiently. The present study aimed to investigate the expression and functional implications of long non-coding (lnc)RNA Ftx in the aerobic glycolysis and tumorigenesis of hepatocellular carcinoma (HCC). It was identified that lncRNA Ftx was upregulated in human HCC tissues and cell lines and, notably, was associated with aggressive clinicopathological features. lncRNA Ftx overexpression promoted the proliferation, invasion and migration of HCC cells, whereas lncRNA Ftx knockdown resulted in the opposite effects. Furthermore, lncRNA Ftx affected the activity and expression of key enzymes in carbohydrate metabolism, suggesting that lncRNA Ftx may be involved in aerobic glycolysis in HCC. The measurement of glucose consumption, lactate production and glucose transporter expression further supported this assumption. Mechanistically, peroxisome proliferator-activated receptor γ (PPARγ) expression in human HCC tissues and cell lines was positively correlated with lncRNA Ftx. Inhibiting PPARγ in Huh7 cells partially abrogated the alterations in glucose uptake, lactate production and relative glycolytic enzyme expression induced by lncRNA Ftx; similarly, PPARγ activation in Bel-7402 cells partially rescued the lncRNA Ftx-mediated alterations. In conclusion, lncRNA Ftx is a promoter of the Warburg effect and tumor progression, partly via the PPARγ pathway, and may serve as a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xiao Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qi Zhao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jianni Qi
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong 250021, P.R. China
| | - Wenwen Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Di Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhen Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chengyong Qin
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
149
|
Cassim S, Raymond VA, Dehbidi-Assadzadeh L, Lapierre P, Bilodeau M. Metabolic reprogramming enables hepatocarcinoma cells to efficiently adapt and survive to a nutrient-restricted microenvironment. Cell Cycle 2018; 17:903-916. [PMID: 29633904 DOI: 10.1080/15384101.2018.1460023] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a metabolically heterogeneous cancer and the use of glucose by HCC cells could impact their tumorigenicity. Dt81Hepa1-6 cells display enhanced tumorigenicity compared to parental Hepa1-6 cells. This increased tumorigenicity could be explained by a metabolic adaptation to more restrictive microenvironments. When cultured at high glucose concentrations, Dt81Hepa1-6 displayed an increased ability to uptake glucose (P<0.001), increased expression of 9 glycolytic genes, greater GTP and ATP (P<0.001), increased expression of 7 fatty acid synthesis-related genes (P<0.01) and higher levels of Acetyl-CoA, Citrate and Malonyl-CoA (P<0.05). Under glucose-restricted conditions, Dt81Hepa1-6 used their stored fatty acids with increased expression of fatty acid oxidation-related genes (P<0.01), decreased triglyceride content (P<0.05) and higher levels of GTP and ATP (P<0.01) leading to improved proliferation (P<0.05). Inhibition of lactate dehydrogenase and aerobic glycolysis with sodium oxamate led to decreased expression of glycolytic genes, reduced lactate, GTP and ATP levels (P<0.01), increased cell doubling time (P<0.001) and reduced fatty acid synthesis. When combined with cisplatin, this inhibition led to lower cell viability and proliferation (P<0.05). This metabolic-induced tumorigenicity was also reflected in human Huh7 cells by a higher glucose uptake and proliferative capacity compared to HepG2 cells (P<0.05). In HCC patients, increased tumoral expression of Glut-1, Hexokinase II and Lactate dehydrogenase correlated with poor survival (P = 2.47E-5, P = 0.016 and P = 6.58E-5). In conclusion, HCC tumorigenicity can stem from a metabolic plasticity allowing them to thrive in a broader range of glucose concentrations. In HCC, combining glycolytic inhibitors with conventional chemotherapy could lead to improved treatment efficacy.
Collapse
Affiliation(s)
- Shamir Cassim
- a Laboratoire d'hépatologie cellulaire , Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) , Montréal , QC , Canada
| | - Valérie-Ann Raymond
- a Laboratoire d'hépatologie cellulaire , Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) , Montréal , QC , Canada
| | - Layla Dehbidi-Assadzadeh
- a Laboratoire d'hépatologie cellulaire , Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) , Montréal , QC , Canada
| | - Pascal Lapierre
- a Laboratoire d'hépatologie cellulaire , Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) , Montréal , QC , Canada.,b Département de médecine , Université de Montréal , Montréal , QC , Canada
| | - Marc Bilodeau
- a Laboratoire d'hépatologie cellulaire , Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) , Montréal , QC , Canada.,b Département de médecine , Université de Montréal , Montréal , QC , Canada
| |
Collapse
|
150
|
Discovery of a novel allosteric inhibitor scaffold for polyadenosine-diphosphate-ribose polymerase 14 (PARP14) macrodomain 2. Bioorg Med Chem 2018; 26:2965-2972. [PMID: 29567296 PMCID: PMC6008491 DOI: 10.1016/j.bmc.2018.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 01/08/2023]
Abstract
The polyadenosine-diphosphate-ribose polymerase 14 (PARP14) has been implicated in DNA damage response pathways for homologous recombination. PARP14 contains three (ADP ribose binding) macrodomains (MD) whose exact contribution to overall PARP14 function in pathology remains unclear. A medium throughput screen led to the identification of N-(2(-9H-carbazol-1-yl)phenyl)acetamide (GeA-69, 1) as a novel allosteric PARP14 MD2 (second MD of PARP14) inhibitor. We herein report medicinal chemistry around this novel chemotype to afford a sub-micromolar PARP14 MD2 inhibitor. This chemical series provides a novel starting point for further development of PARP14 chemical probes.
Collapse
|