101
|
Jiang D, Shu C, Lei C, Wan Y, Sun L. Early-onset colorectal cancer: A distinct entity with unique genetic features. Oncol Lett 2020; 20:33. [PMID: 32774506 PMCID: PMC7406876 DOI: 10.3892/ol.2020.11894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/26/2020] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to elucidate the genetic features of early-onset colorectal cancer (CRC), particularly the genetic mutations that may be regarded as prognostic and/or predictive markers in CRC and other malignancies. In total, 40 patients with non-polyposis CRC aged 35 or younger were selected. The formalin-fixed, paraffin-embedded tumors acquired were subjected to mismatch repair (MMR) protein immunochemical staining and gene analysis with next-generation sequencing (44 exons, 17 genes; Ion Torrent Sequencing Platform). A total of 11 (27.5%) tumors presented with MMR protein deficiency (dMMR) and 26 (65%) tumors harbored one or more genetic mutations, including K-RAS proto-oncogene (35%), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA; 20%), B-Raf proto-oncogene (5%), erb-b2 receptor tyrosine kinase 2 (5%), discoidin domain receptor tyrosine kinase 2 (5%), N-RAS proto-oncogene (2.5%), KIT proto-oncogene (2.5%), TSC complex subunit 1 (2.5%), DNA methyltransferase 3 alpha (2.5%) and ABL proto-oncogene 1 (2.5%). Of the dMMR tumors, 81.8% (9/11) of cases presented with mutations in the tested genes, while only 58.6% (17/29) of the MMR-proficient (pMMR) tumors presented with these (P=0.158). PI3KCA was frequently mutated in dMMR tumors compared to pMMR tumors (P=0.025). In a subgroup with a family history of CRC, the dMMR status (P<0.001) and PIK3CA genetic mutation status (P=0.01) were more frequently observed compared to the other two groups (with a family history of other cancer types or no malignancy). Almost all patients who had relatives with CRC presented with both dMMR and other genetic mutations, while this was not observed in the patients who had relatives with other types of carcinoma. Certain genetic mutations that are rarely reported in CRC were only identified in those patients with a family history of carcinoma. In conclusion, non-polyposis CRC in young adults presents as a distinct entity with a unique set of genetic features. However, investigation of more cases in further studies is required to verify the present results.
Collapse
Affiliation(s)
- Dan Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chang Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan 610041, P.R. China
| | - Chuanfen Lei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ying Wan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Linyong Sun
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
102
|
van Lier YF, de Bree GJ, Jonkers RE, Roelofs JJTH, Ten Berge IJM, Rutten CE, Nur E, Kuijpers TW, Hazenberg MD, Zeerleder SS. Allogeneic hematopoietic cell transplantation in the management of GATA2 deficiency and pulmonary alveolar proteinosis. Clin Immunol 2020; 218:108522. [PMID: 32682923 DOI: 10.1016/j.clim.2020.108522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Human hematopoiesis is critically dependent on the transcription factor GATA2. Patients with GATA2 deficiency typically present with myelodysplastic syndrome, reduced numbers of monocytes, NK cells and B cells, and/or opportunistic infections. Here, we present two families that harbor distinct GATA2 mutations with highly variable onset and course of disease. We discuss the use of allogeneic hematopoietic cell transplantation in these patients, especially as treatment for pulmonary alveolar proteinosis.
Collapse
Affiliation(s)
- Yannouck F van Lier
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AII), Cancer Center Amsterdam (CCA), Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; Department of Hematology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Godelieve J de Bree
- Department of Infectious Diseases, Amsterdam UMC Location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - René E Jonkers
- Department of Respiratory Medicine, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Ineke J M Ten Berge
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AII), Cancer Center Amsterdam (CCA), Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; Department of Internal Medicine, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Caroline E Rutten
- Department of Hematology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Erfan Nur
- Department of Hematology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Emma Children's Hospital, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; Department of Blood Cell Research, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Mette D Hazenberg
- Department of Hematology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Sacha S Zeerleder
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, The Netherlands; Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Switzerland and Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
103
|
Saravanaraman P, Selvam M, Ashok C, Srijyothi L, Baluchamy S. De novo methyltransferases: Potential players in diseases and new directions for targeted therapy. Biochimie 2020; 176:85-102. [PMID: 32659446 DOI: 10.1016/j.biochi.2020.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Epigenetic modifications govern gene expression by guiding the human genome on 'what to express and what not to'. DNA methyltransferases (DNMTs) establish methylation patterns on DNA, particularly in CpG islands, and such patterns play a major role in gene silencing. DNMTs are a family of proteins/enzymes (DNMT1, 2, 3A, 3B, and 3L), among which, DNMT1 (maintenance methyltransferase) and DNMT3 (de novo methyltransferases) that direct mammalian development and genome imprinting are highly investigated. In recent decades, many studies revealed a strong association of DNA methylation patterns with gene expression in various clinical conditions. Differential expression of DNMT3 family proteins and their splice variants result in changes in methylation patterns and such alterations have been associated with the initiation and progression of various diseases, especially cancer. This review will discuss the aberrant modifications generated by DNMT3 proteins under various clinical conditions, suggesting a potential signature for de novo methyltransferases in targeted disease therapy. Further, this review discusses the possibility of using 'CpG island methylation signatures' as promising biomarkers and emphasizes 'targeted hypomethylation' by disrupting the interaction of specific DNMT-protein complexes as the future of cancer therapeutics.
Collapse
Affiliation(s)
- Ponne Saravanaraman
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Murugan Selvam
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Cheemala Ashok
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Loudu Srijyothi
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Sudhakar Baluchamy
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India.
| |
Collapse
|
104
|
Kirtonia A, Pandya G, Sethi G, Pandey AK, Das BC, Garg M. A comprehensive review of genetic alterations and molecular targeted therapies for the implementation of personalized medicine in acute myeloid leukemia. J Mol Med (Berl) 2020; 98:1069-1091. [PMID: 32620999 DOI: 10.1007/s00109-020-01944-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/18/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is an extremely heterogeneous disease defined by the clonal growth of myeloblasts/promyelocytes not only in the bone marrow but also in peripheral blood and/or tissues. Gene mutations and chromosomal abnormalities are usually associated with aberrant proliferation and/or block in the normal differentiation of hematopoietic cells. So far, the combination of cytogenetic profiling and molecular and gene mutation analyses remains an essential tool for the classification, diagnosis, prognosis, and treatment for AML. This review gives an overview on how the development of novel innovative technologies has allowed us not only to detect the genetic alterations as early as possible but also to understand the molecular pathogenesis of AML to develop novel targeted therapies. We also discuss the remarkable advances made during the last decade to understand the AML genome both at primary and relapse diseases and how genetic alterations might influence the distinct biological groups as well as the clonal evolution of disease during the diagnosis and relapse. Also, the review focuses on how the persistence of epigenetic gene mutations during morphological remission is associated with relapse. It is suggested that along with the prognostic and therapeutic mutations, the novel molecular targeted therapies either approved by FDA or those under clinical trials including CART-cell therapy would be of immense importance in the effective management of AML.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology (AIB), Amity University, Gurgaon, Haryana, 122413, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
105
|
Jensen P, Carlet M, Schlenk RF, Weber A, Kress J, Brunner I, Słabicki M, Grill G, Weisemann S, Cheng YY, Jeremias I, Scholl C, Fröhling S. Requirement for LIM kinases in acute myeloid leukemia. Leukemia 2020; 34:3173-3185. [PMID: 32591645 DOI: 10.1038/s41375-020-0943-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease for which only few targeted therapies are available. Using high-throughput RNA interference (RNAi) screening in AML cell lines, we identified LIM kinase 1 (LIMK1) as a potential novel target for AML treatment. High LIMK1 expression was significantly correlated with shorter survival of AML patients and coincided with FLT3 mutations, KMT2A rearrangements, and elevated HOX gene expression. RNAi- and CRISPR-Cas9-mediated suppression as well as pharmacologic inhibition of LIMK1 and its close homolog LIMK2 reduced colony formation and decreased proliferation due to slowed cell-cycle progression of KMT2A-rearranged AML cell lines and patient-derived xenograft (PDX) samples. This was accompanied by morphologic changes indicative of myeloid differentiation. Transcriptome analysis showed upregulation of several tumor suppressor genes as well as downregulation of HOXA9 targets and mitosis-associated genes in response to LIMK1 suppression, providing a potential mechanistic basis for the anti-leukemic phenotype. Finally, we observed a reciprocal regulation between LIM kinases (LIMK) and CDK6, a kinase known to be involved in the differentiation block of KMT2A-rearranged AML, and addition of the CDK6 inhibitor palbociclib further enhanced the anti-proliferative effect of LIMK inhibition. Together, these data suggest that LIMK are promising targets for AML therapy.
Collapse
Affiliation(s)
- Patrizia Jensen
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michela Carlet
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health, Munich, Germany
| | - Richard F Schlenk
- Clinical Trials Center, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Weber
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Jana Kress
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Ines Brunner
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mikołaj Słabicki
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gregor Grill
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Simon Weisemann
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Ya-Yun Cheng
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health, Munich, Germany.,Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany. .,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.
| |
Collapse
|
106
|
Emperle M, Adam S, Kunert S, Dukatz M, Baude A, Plass C, Rathert P, Bashtrykov P, Jeltsch A. Mutations of R882 change flanking sequence preferences of the DNA methyltransferase DNMT3A and cellular methylation patterns. Nucleic Acids Res 2020; 47:11355-11367. [PMID: 31620784 PMCID: PMC6868496 DOI: 10.1093/nar/gkz911] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 02/01/2023] Open
Abstract
Somatic DNMT3A mutations at R882 are frequently observed in AML patients including the very abundant R882H, but also R882C, R882P and R882S. Using deep enzymology, we show here that DNMT3A-R882H has more than 70-fold altered flanking sequence preferences when compared with wildtype DNMT3A. The R882H flanking sequence preferences mainly differ on the 3' side of the CpG site, where they resemble DNMT3B, while 5' flanking sequence preferences resemble wildtype DNMT3A, indicating that R882H behaves like a DNMT3A/DNMT3B chimera. Investigation of the activity and flanking sequence preferences of other mutations of R882 revealed that they cause similar effects. Bioinformatic analyses of genomic methylation patterns focusing on flanking sequence effects after expression of wildtype DNMT3A and R882H in human cells revealed that genomic methylation patterns reflect the details of the altered flanking sequence preferences of R882H. Concordantly, R882H specific hypermethylation in AML patients was strongly correlated with the R882H flanking sequence preferences. R882H specific DNA hypermethylation events in AML patients were accompanied by R882H specific mis-regulation of several genes with strong cancer connection, which are potential downstream targets of R882H. In conclusion, our data provide novel and detailed mechanistic understanding of the pathogenic mechanism of the DNMT3A R882H somatic cancer mutation.
Collapse
Affiliation(s)
- Max Emperle
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Sabrina Adam
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Stefan Kunert
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Michael Dukatz
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Annika Baude
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, 28069120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, 28069120 Heidelberg, Germany
| | - Philipp Rathert
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
107
|
The Epigenetic Progenitor Origin of Cancer Reassessed: DNA Methylation Brings Balance to the Stem Force. EPIGENOMES 2020; 4:epigenomes4020008. [PMID: 34968242 PMCID: PMC8594692 DOI: 10.3390/epigenomes4020008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer initiation and progression toward malignant stages occur as the results of accumulating genetic alterations and epigenetic dysregulation. During the last decade, the development of next generation sequencing (NGS) technologies and the increasing pan-genomic knowledge have revolutionized how we consider the evolving epigenetic landscapes during homeostasis and tumor progression. DNA methylation represents the best studied mark and is considered as a common mechanism of epigenetic regulation in normal homeostasis and cancer. A remarkable amount of work has recently started clarifying the central role played by DNA methylation dynamics on the maintenance of cell identity and on cell fate decisions during the different steps of normal development and tumor evolution. Importantly, a growing number of studies show that DNA methylation is key in the maintenance of adult stemness and in orchestrating commitment in multiple ways. Perturbations of the normal DNA methylation patterns impair the homeostatic balance and can lead to tumor initiation. Therefore, DNA methylation represents an interesting therapeutic target to recover homeostasis in tumor stem cells.
Collapse
|
108
|
The Influence of Methylating Mutations on Acute Myeloid Leukemia: Preliminary Analysis on 56 Patients. Diagnostics (Basel) 2020; 10:diagnostics10050263. [PMID: 32365516 PMCID: PMC7277399 DOI: 10.3390/diagnostics10050263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by abnormal proliferation and a lack of differentiation of myeloid blasts. Considering the dismal prognosis this disease presents, several efforts have been made to better classify it and offer a tailored treatment to each subtype. This has been formally done by the World Health Organization (WHO) with the AML classification schemes from 2008 and 2016. Nonetheless, there are still mutations that are not currently included in the WHO AML classification, as in the case of some mutations that influence methylation. In this regard, the present study aimed to determine if some of the mutations that influence DNA methylation can be clustered together regarding methylation, expression, and clinical profile. Data from the TCGA LAML cohort were downloaded via cBioPortal. The analysis was performed using R 3.5.2, and the necessary packages for classical statistics, dimensionality reduction, and machine learning. We included only patients that presented mutations in DNMT3A, TET2, IDH1/2, ASXL1, WT1, and KMT2A. Afterwards, mutations that were present in too few patients were removed from the analysis, thus including a total of 57 AML patients. We observed that regarding expression, methylation, and clinical profile, patients with mutated TET2, IDH1/2, and WT1 presented a high degree of similarity, indicating the equivalence that these mutations present between themselves. Nonetheless, we did not observe this similarity between DNMT3A- and KMT2A-mutated AML. Moreover, when comparing the hypermethylating group with the hypomethylating one, we also observed important differences regarding expression, methylation, and clinical profile. In the current manuscript we offer additional arguments for the similarity of the studied hypermethylating mutations and suggest that those should be clustered together in further classifications. The hypermethylating and hypomethylating groups formed above were shown to be different from each other considering overall survival, methylation profile, expression profile, and clinical characteristics. In this manuscript, we present additional arguments for the similarity of the effect generated by TET2, IDH1/2, and WT1 mutations in AML patients. Thus, we hypothesize that hypermethylating mutations skew the AML cells to a similar phenotype with a possible sensitivity to hypermethylating agents.
Collapse
|
109
|
Norvil AB, AlAbdi L, Liu B, Tu YH, Forstoffer NE, Michie A, Chen T, Gowher H. The acute myeloid leukemia variant DNMT3A Arg882His is a DNMT3B-like enzyme. Nucleic Acids Res 2020; 48:3761-3775. [PMID: 32123902 PMCID: PMC7144950 DOI: 10.1093/nar/gkaa139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
We have previously shown that the highly prevalent acute myeloid leukemia (AML) mutation, Arg882His, in DNMT3A disrupts its cooperative mechanism and leads to reduced enzymatic activity, thus explaining the genomic hypomethylation in AML cells. However, the underlying cause of the oncogenic effect of Arg882His in DNMT3A is not fully understood. Here, we discovered that DNMT3A WT enzyme under conditions that favor non-cooperative kinetic mechanism as well as DNMT3A Arg882His variant acquire CpG flanking sequence preference akin to that of DNMT3B, which is non-cooperative. We tested if DNMT3A Arg882His could preferably methylate DNMT3B-specific target sites in vivo. Rescue experiments in Dnmt3a/3b double knockout mouse embryonic stem cells show that the corresponding Arg878His mutation in mouse DNMT3A severely impairs its ability to methylate major satellite DNA, a DNMT3A-preferred target, but has no overt effect on the ability to methylate minor satellite DNA, a DNMT3B-preferred target. We also observed a previously unappreciated CpG flanking sequence bias in major and minor satellite repeats that is consistent with DNMT3A and DNMT3B specificity suggesting that DNA methylation patterns are guided by the sequence preference of these enzymes. We speculate that aberrant methylation of DNMT3B target sites could contribute to the oncogenic potential of DNMT3A AML variant.
Collapse
Affiliation(s)
- Allison B Norvil
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Lama AlAbdi
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yu Han Tu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nicole E Forstoffer
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Amie R Michie
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
110
|
Jang JE, Eom JI, Jeung HK, Chung H, Kim YR, Kim JS, Cheong JW, Min YH. PERK/NRF2 and autophagy form a resistance mechanism against G9a inhibition in leukemia stem cells. J Exp Clin Cancer Res 2020; 39:66. [PMID: 32293500 PMCID: PMC7158163 DOI: 10.1186/s13046-020-01565-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The histone methyltransferase G9a has recently been identified as a potential target for epigenetic therapy of acute myeloid leukemia (AML). However, the effect of G9a inhibition on leukemia stem cells (LSCs), which are responsible for AML drug resistance and recurrence, is unclear. In this study, we investigated the underlying mechanisms of the LSC resistance to G9a inhibition. METHODS We evaluated the effects of G9a inhibition on the unfolded protein response and autophagy in AML and LSC-like cell lines and in primary CD34+CD38- leukemic blasts from patients with AML and investigated the underlying mechanisms. The effects of treatment on cells were evaluated by flow cytometry, western blotting, confocal microscopy, reactive oxygen species (ROS) production assay. RESULTS The G9a inhibitor BIX-01294 effectively induced apoptosis in AML cell lines; however, the effect was limited in KG1 LSC-like cells. BIX-01294 treatment or siRNA-mediated G9a knockdown led to the activation of the PERK/NRF2 pathway and HO-1 upregulation in KG1 cells. Phosphorylation of p38 and intracellular generation of reactive oxygen species (ROS) were suppressed. Pharmacological or siRNA-mediated inhibition of the PERK/NRF2 pathway synergistically enhanced BIX-01294-induced apoptosis, with suppressed HO-1 expression, increased p38 phosphorylation, and elevated ROS generation, indicating that activated PERK/NRF2 signaling suppressed ROS-induced apoptosis in KG1 cells. By contrast, cotreatment of normal hematopoietic stem cells with BIX-01294 and a PERK inhibitor had no significant proapoptotic effect. Additionally, G9a inhibition induced autophagy flux in KG1 cells, while autophagy inhibitors significantly increased the BIX-01294-induced apoptosis. This prosurvival autophagy was not abrogated by PERK/NRF2 inhibition. CONCLUSIONS PERK/NRF2 signaling plays a key role in protecting LSCs against ROS-induced apoptosis, thus conferring resistance to G9a inhibitors. Treatment with PERK/NRF2 or autophagy inhibitors could overcome resistance to G9a inhibition and eliminate LSCs, suggesting the potential clinical utility of these unique targeted therapies against AML.
Collapse
Affiliation(s)
- Ji Eun Jang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ju-In Eom
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hoi-Kyung Jeung
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Haerim Chung
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Ri Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Seok Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - June-Won Cheong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoo Hong Min
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
111
|
Guan Y, Liu H, Ma Z, Li SY, Park J, Sheng X, Susztak K. Dnmt3a and Dnmt3b-Decommissioned Fetal Enhancers are Linked to Kidney Disease. J Am Soc Nephrol 2020; 31:765-782. [PMID: 32127410 PMCID: PMC7191927 DOI: 10.1681/asn.2019080797] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cytosine methylation is an epigenetic mark that dictates cell fate and response to stimuli. The timing and establishment of methylation logic during kidney development remains unknown. DNA methyltransferase 3a and 3b are the enzymes capable of establishing de novo methylation. METHODS We generated mice with genetic deletion of Dnmt3a and Dnmt3b in nephron progenitor cells (Six2CreDnmt3a/3b) and kidney tubule cells (KspCreDnmt3a/3b). We characterized KspCreDnmt3a/3b mice at baseline and after injury. Unbiased omics profiling, such as whole genome bisulfite sequencing, reduced representation bisulfite sequencing and RNA sequencing were performed on whole-kidney samples and isolated renal tubule cells. RESULTS KspCreDnmt3a/3b mice showed no obvious morphologic and functional alterations at baseline. Knockout animals exhibited increased resistance to cisplatin-induced kidney injury, but not to folic acid-induced fibrosis. Whole-genome bisulfite sequencing indicated that Dnmt3a and Dnmt3b play an important role in methylation of gene regulatory regions that act as fetal-specific enhancers in the developing kidney but are decommissioned in the mature kidney. Loss of Dnmt3a and Dnmt3b resulted in failure to silence developmental genes. We also found that fetal-enhancer regions methylated by Dnmt3a and Dnmt3b were enriched for kidney disease genetic risk loci. Methylation patterns of kidneys from patients with CKD showed defects similar to those in mice with Dnmt3a and Dnmt3b deletion. CONCLUSIONS Our results indicate a potential locus-specific convergence of genetic, epigenetic, and developmental elements in kidney disease development.
Collapse
Affiliation(s)
- Yuting Guan
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hongbo Liu
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ziyuan Ma
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Szu-Yuan Li
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jihwan Park
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xin Sheng
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
112
|
Park DJ, Kwon A, Cho BS, Kim HJ, Hwang KA, Kim M, Kim Y. Characteristics of DNMT3A mutations in acute myeloid leukemia. Blood Res 2020; 55:17-26. [PMID: 32269971 PMCID: PMC7106122 DOI: 10.5045/br.2020.55.1.17] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background DNMT3A mutations occur in approximately 20% of AML cases and are associated with changes in DNA methylation. CDKN2B plays an important role in the regulation of hematopoietic progenitor cells and DNMT3A mutation is associated with CDKN2B promoter methylation. We analyzed the characteristics of DNMT3A mutations including their clinical significance in AML and their influence on promoter methylation and CDKN2B expression. Methods A total of 142 adults, recently diagnosed with de novo AML, were enrolled in the study. Mutations in DNMT3A, CEBPA, and NPM1 were analyzed by bidirectional Sanger sequencing. We evaluated CDKN2B promoter methylation and expression using pyrosequencing and RT-qPCR. Results We identified DNMT3A mutations in 19.7% (N=28) of enrolled patients with AML, which increased to 29.5% when analysis was restricted to cytogenetically normal-AML. Mutations were located on exons from 8–23, and the majority, including R882, were found to be present on exon 23. We also identified a novel frameshift mutation, c.1590delC, in AML with biallelic mutation of CEBPA. There was no significant difference in CDKN2B promoter methylation according to the presence or type of DNMT3A mutations. CDKN2B expression inversely correlated with CDKN2B promoter methylation and was significantly higher in AML with R882H mutation in DNMT3A. We demonstrated that DNMT3A mutation was associated with poor AML outcomes, especially in cytogenetically normal-AML. The DNMT3A mutation remained as the independent unfavorable prognostic factor after multivariate analysis. Conclusion We characterized DNMT3A mutations in AML and revealed the association between the DNMT3A mutation and CDKN2B expression and clinical outcome.
Collapse
Affiliation(s)
- Dong Jin Park
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ahlm Kwon
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung-Sik Cho
- Cancer Research Institute, Division of Hematology, Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee-Je Kim
- Cancer Research Institute, Division of Hematology, Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Ah Hwang
- Department of Research and Development, Genetree Research, Seoul, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
113
|
Liu LP, Zhang AL, Ruan M, Chang LX, Liu F, Chen X, Qi BQ, Zhang L, Zou Y, Chen YM, Chen XJ, Yang WY, Guo Y, Zhu XF. Prognostic stratification of molecularly and clinically distinct subgroup in children with acute monocytic leukemia. Cancer Med 2020; 9:3647-3655. [PMID: 32216042 PMCID: PMC7286455 DOI: 10.1002/cam4.3023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Background The prognosis of children with acute monocytic leukemia (AML‐M5) remains unsatisfactory and the risk profile is still controversial. We aim to investigate the prognostic value of clinical and cytogenetic features and propose a new risk stratification in AML‐M5 children. Methods We included 132 children with AML‐M5. Overall survival (OS) and progression‐free survival (PFS) were documented. Cox regression was performed to evaluate the potential risk factors of prognosis. Results The 5‐year‐OS was 46.0% (95% confidence intervals, 41.6%‐50.4%) in all patients. There was significantly lower OS in the age ≤ 3 years old (P = .009) and hyperleukocytosis (P < .001). The FMS‐like tyrosine kinase 3 (FLT3)‐internal tandem duplication (ITD) and MLL‐rearrangement carriers were associated with fewer survivors in all patients (37.1% and 36.7%) and chemotherapy‐only group (19.0% and 35.0%). Notably, the number of survivor with MLL‐rearrangement did not increase in hematopoietic stem cell transplant (HSCT) group. According to the Cox regression analysis, HSCT was a significantly favorable factor (P = .001), while hyperleukocytosis, age ≤ 3 years old, and BM blast ≥ 70% adversely affected the OS in all patients (all P < .05). Additionally, FLT3‐ITD was a risk factor for OS in the chemotherapy‐only group (P = .023), while hyperleukocytosis and age ≤ 3 years independently contributed to poor PFS (both P < .05). In comparison to the standard‐risk group, significant poorer outcome was found in the high‐risk group (both P < .005). Conclusions We propose that AML‐M5 children with any of MLL‐rearrangement, FLT3‐ITD, hyperleukocytosis, BM blast ≥ 70%, or age ≤ 3 years old are classified into the high‐risk group, and HSCT is beneficial especially in patients with FLT3‐ITD mutation, hyperleukocytosis, and age ≤ 3 years old. Importantly, the choice of HSCT should be made more carefully in children with MLL‐rearrangement for its suboptimal performance.
Collapse
Affiliation(s)
- Li-Peng Liu
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ao-Li Zhang
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Min Ruan
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li-Xian Chang
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Fang Liu
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xia Chen
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ben-Quan Qi
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li Zhang
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yao Zou
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yu-Mei Chen
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiao-Juan Chen
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wen-Yu Yang
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ye Guo
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiao-Fan Zhu
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
114
|
Sapienza MR, Pileri S. Molecular Features of Blastic Plasmacytoid Dendritic Cell Neoplasm: DNA Mutations and Epigenetics. Hematol Oncol Clin North Am 2020; 34:511-521. [PMID: 32336416 DOI: 10.1016/j.hoc.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic neoplasm with a dismal prognosis and no standard therapy. In the past, its cellular ontogenesis was obscure, and BPDCN had been erroneously named CD56+/TdT+ blastic NK cell tumor and CD4+/CD56+ hematodermic neoplasm. Finally, in 2008, the BPDCN was correctly recognized as a neoplasm deriving from the malignant transformation of plasmacytoid dendritic cell precursors and classified among the myeloid neoplasms. Since then, the understanding of BPDCN biology has improved rapidly: the DNA mutational status of BPDCN has been extensively investigated revealing a spectrum perfectly resembling its myeloid lineage derivation.
Collapse
Affiliation(s)
- Maria Rosaria Sapienza
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Via Ripamonti 435, Milan 20141, Italy.
| | - Stefano Pileri
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Via Ripamonti 435, Milan 20141, Italy
| |
Collapse
|
115
|
Dai YJ, Hu F, He SY, Wang YY. Epigenetic landscape analysis of lncRNAs in acute myeloid leukemia with DNMT3A mutations. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:318. [PMID: 32355762 PMCID: PMC7186694 DOI: 10.21037/atm.2020.02.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Acute myeloid leukemia (AML) is a type of cancer that consists of a group of hematological malignancies with high heterogeneity. DNA methyltransferase 3A (DNMT3A)-mutated AML patients have a poor prognosis. Some long non-coding RNAs (lncRNAs) have been reported to enhance therapeutic sensitivity, and so could affect the overall survival rate of elderly cytogenetically normal acute myeloid leukemia (CN-AML) patients; however, studies on the lncRNA signature in DNMT3A-mutated AML are rare. Method The DNMT3A R878H conditional knock-in mouse model was constructed to explore the lncRNAs of DNMT3A mutation by using the Cuffcomparison method. Cis and trans regulation networks were used to predict candidate genes. The expression levels in leukemic cell lines and the prognostic index of these candidate genes were analyzed with the Broad Institute Cancer Cell Line Encyclopedia (CCLE) and OncoLnc databases. The data for each sample were statistically analyzed using GraphPad Prism. Results In this study, we applied the DNMT3A R878H conditional knock-in mouse model to explore the lncRNA epigenetic landscape of DNMT3A mutation by using the Cuffcomparison method. Twenty-three differentially expressed lncRNAs were identified in Dnmt3aR878H/WTMx1-Cre+ mice. We next predicted the downstream targetable genes regulated by these lncRNAs through cis and trans regulation networks and found 124 candidate genes are related to these lncRNAs. In further analysis of 124 genes, we found that increased mRNA expression levels of interleukin 1 receptor type 2 (IL1R2), Krüppel-like factor 13 (KLF13), ATPase H+ transporting V1 subunit A (ATP6V1A), proteasome 26S Subunit, non-ATPase 3 (PSMD3), and pyrroline-5-carboxylate reductase 2 (PYCR2) were associated with poor prognosis in AML. Functional analysis of these genes demonstrated that the pathways involved in autophagy, cell cycle, and hematopoietic stem cell differentiation were more enriched in Dnmt3aR878H/WTMx1-Cre+ mice. Conclusion Our study was the first to use DNMT3A R878H conditional knock-in mouse model to predict the specific lncRNAs regulated by the DNMT3A mutation in AML. Six candidate genes were found to be associated with DNMT3A mutation with poor prognosis. Our results provided a possible treatment strategy for this disease.
Collapse
Affiliation(s)
- Yu-Jun Dai
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510000, China.,Center State Key Laboratory of Oncology in South China, Guangzhou 510000, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Fang Hu
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510000, China.,Center State Key Laboratory of Oncology in South China, Guangzhou 510000, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Si-Yuan He
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yue-Ying Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
116
|
Lee CJ, Ahn H, Jeong D, Pak M, Moon JH, Kim S. Impact of mutations in DNA methylation modification genes on genome-wide methylation landscapes and downstream gene activations in pan-cancer. BMC Med Genomics 2020; 13:27. [PMID: 32093698 PMCID: PMC7038532 DOI: 10.1186/s12920-020-0659-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background In cancer, mutations of DNA methylation modification genes have crucial roles for epigenetic modifications genome-wide, which lead to the activation or suppression of important genes including tumor suppressor genes. Mutations on the epigenetic modifiers could affect the enzyme activity, which would result in the difference in genome-wide methylation profiles and, activation of downstream genes. Therefore, we investigated the effect of mutations on DNA methylation modification genes such as DNMT1, DNMT3A, MBD1, MBD4, TET1, TET2 and TET3 through a pan-cancer analysis. Methods First, we investigated the effect of mutations in DNA methylation modification genes on genome-wide methylation profiles. We collected 3,644 samples that have both of mRNA and methylation data from 12 major cancer types in The Cancer Genome Atlas (TCGA). The samples were divided into two groups according to the mutational signature. Differentially methylated regions (DMR) that overlapped with the promoter region were selected using minfi and differentially expressed genes (DEG) were identified using EBSeq. By integrating the DMR and DEG results, we constructed a comprehensive DNA methylome profiles on a pan-cancer scale. Second, we investigated the effect of DNA methylations in the promoter regions on downstream genes by comparing the two groups of samples in 11 cancer types. To investigate the effects of promoter methylation on downstream gene activations, we performed clustering analysis of DEGs. Among the DEGs, we selected highly correlated gene set that had differentially methylated promoter regions using graph based sub-network clustering methods. Results We chose an up-regulated DEGs cluster where had hypomethylated promoter in acute myeloid leukemia (LAML) and another down-regulated DEGs cluster where had hypermethylated promoter in colon adenocarcinoma (COAD). To rule out effects of gene regulation by transcription factor (TF), if differentially expressed TFs bound to the promoter of DEGs, that DEGs did not included to the gene set that effected by DNA methylation modifiers. Consequently, we identified 54 hypomethylated promoter DMR up-regulated DEGs in LAML and 45 hypermethylated promoter DMR down-regulated DEGs in COAD. Conclusions Our study on DNA methylation modification genes in mutated vs. non-mutated groups could provide useful insight into the epigenetic regulation of DEGs in cancer.
Collapse
Affiliation(s)
- Chai-Jin Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Hongryul Ahn
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - Dabin Jeong
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Minwoo Pak
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - Ji Hwan Moon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea. .,Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Korea. .,Bioinformatics Institute, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
117
|
Kühnel T, Heinz HSB, Utz N, Božić T, Horsthemke B, Steenpass L. A human somatic cell culture system for modelling gene silencing by transcriptional interference. Heliyon 2020; 6:e03261. [PMID: 32021933 PMCID: PMC6994850 DOI: 10.1016/j.heliyon.2020.e03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 11/30/2022] Open
Abstract
Transcriptional interference and transcription through regulatory elements (transcriptional read-through) are implicated in gene silencing and the establishment of DNA methylation. Transcriptional read-through is needed to seed DNA methylation at imprinted genes in the germ line and can lead to aberrant gene silencing by DNA methylation in human disease. To enable the study of parameters and factors influencing transcriptional interference and transcriptional read-through at human promoters, we established a somatic cell culture system. At two promoters of imprinted genes (UBE3A and SNRPN) and two promoters shown to be silenced by aberrant transcriptional read-through in human disease (MSH2 and HBA2) we tested, if transcriptional read-through is sufficient for gene repression and the acquisition of DNA methylation. Induction of transcriptional read-through from the doxycycline-inducible CMV promoter resulted in consistent repression of all downstream promoters, independent of promoter type and orientation. Repression was dependent on ongoing transcription, since withdrawal of induction resulted in reactivation. DNA methylation was not acquired at any of the promoters. Overexpression of DNMT3A and DNMT3L, factors needed for DNA methylation establishment in oocytes, was still not sufficient for the induction of DNA methylation. This indicates that induction of DNA methylation has more complex requirements than transcriptional read-through and the presence of de novo DNA methyltransferases.
Collapse
Affiliation(s)
- Theresa Kühnel
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Helena Sophie Barbara Heinz
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Nadja Utz
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
- Present address: Institute of Neuropathology, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Tanja Božić
- Helmholtz Institute for Biomedical Engineering, Division of Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Laura Steenpass
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
- Corresponding author.
| |
Collapse
|
118
|
DNMT3A mutants provide proliferating advantage with augmentation of self-renewal activity in the pathogenesis of AML in KMT2A-PTD-positive leukemic cells. Oncogenesis 2020; 9:7. [PMID: 32015320 PMCID: PMC6997180 DOI: 10.1038/s41389-020-0191-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) with partial tandem duplication of histone-lysine N-methyltransferase 2A (KMT2A-PTD) is a subtype of AML and is associated with adverse survival, yet the molecular pathogenesis of KMT2A-PTD is not fully understood. DNA methyltransferase 3A (DNMT3A) is mutated in various myeloid neoplasms including AML, especially at the Arg882. Recently, it has been found that DNMT3A mutations frequently coexisted with KMT2A-PTD and are associated with inferior outcomes. We aimed to understand the biological role of DNMT3A mutation in KMT2A-PTD-positive cells. Herein, we found that overexpression of DNMT3A mutants (MT) in KMT2A-PTD-positive EOL-1 cells augmented cell proliferation and clonogenicity. Serial colony replating assays indicated that DNMT3A-MT increased the self-renewal ability of Kmt2a-PTD-expressing mouse bone marrow cells with immature morphology. At 10 months post bone marrow transplantation, mice with the combined Kmt2a-PTD and DNMT3A-MT showed hepatosplenomegaly and leukocytosis with a shorter latency compared to control and DNMT3A-wild-type. Gene expression microarray analyses of bone marrow samples from human AML with KMT2A-PTD/DNMT3A-MT showed a stem cell signature and myeloid hematopoietic lineage with dysregulation of HOXB gene expression. In addition, human bone marrow AML cells carrying KMT2A-PTD/DNMT3A-MT showed abnormal growth and augmented self-renewal activity in primary cell culture. The present study provides information underlying the pathogenic role of DNMT3A-MT with KMT2A-PTD in proliferating advantage with augmentation of self-renewal activity in human leukemia, which may help to better understand the disease and to design better therapy for AML patients with these mutations.
Collapse
|
119
|
Ding X, Zhao S, Zhang Q, Yan Z, Wang Y, Wu Y, Li X, Liu J, Niu Y, Zhang Y, Zhang M, Wang H, Zhang Y, Chen W, Yang XZ, Liu P, Posey JE, Lupski JR, Wu Z, Yang X, Wu N, Wang K. Exome sequencing reveals a novel variant in NFX1 causing intracranial aneurysm in a Chinese family. J Neurointerv Surg 2020; 12:221-226. [PMID: 31401562 PMCID: PMC7014815 DOI: 10.1136/neurintsurg-2019-014900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Genetic risk factors play an important role in the pathogenesis of familial intracranial aneurysms (FIAs); however, the molecular mechanisms remain largely unknown. OBJECTIVE To investigate potential FIA-causing genetic variants by rare variant interrogation and a family-based genomics approach in a large family with an extensive multigenerational pedigree with FIAs. METHOD Exome sequencing (ES) was performed in a dominant likely family with intracranial aneurysms (IAs). Variants were analyzed by an in-house developed pipeline and prioritized using various filtering strategies, including population frequency, variant type, and predicted variant pathogenicity. Sanger sequencing was also performed to evaluate the segregation of the variants with the phenotype. RESULTS Based on the ES data obtained from five individuals from a family with 7/21 living members affected with IAs, a total of 14 variants were prioritized as candidate variants. Familial segregation analysis revealed that NFX1 c.2519T>C (p.Leu840Pro) segregated in accordance with Mendelian expectations with the phenotype within the family-that is, present in all IA-affected cases and absent from all unaffected members of the second generation. This missense variant is absent from public databases (1000genome, ExAC, gnomAD, ESP5400), and has damaging predictions by bioinformatics tools (Gerp ++ score = 5.88, CADD score = 16.43, MutationTaster score = 1, LRT score = 0). In addition, 840Leu in NFX1 is robustly conserved in mammals and maps in a region before the RING-type zinc finger domain. CONCLUSION NFX1 c.2519T>C (p.Leu840Pro) may contribute to the pathogenetics of a subset of FIAs.
Collapse
Affiliation(s)
- Xinghuan Ding
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Sen Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of
Medical Sciences, Beijing 100730, China
- Department of Orthopedic Surgery, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Qianqian Zhang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Zihui Yan
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of
Medical Sciences, Beijing 100730, China
- Department of Orthopedic Surgery, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital
of Nanchang University, Nanchang University, Nanchang 330000, China
| | - Yong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Mingqi Zhang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Huizi Wang
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Ying Zhang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Weisheng Chen
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Department of Orthopedic Surgery, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Xin-Zhuang Yang
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, Texas 77030, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, Texas 77030, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine,
Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine,
Houston Texas 77030 USA
- Texas Children’s Hospital, Houston, Texas 77030,
USA
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of
Medical Sciences, Beijing 100730, China
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Nan Wu
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of
Medical Sciences, Beijing 100730, China
- Department of Orthopedic Surgery, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Kun Wang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| |
Collapse
|
120
|
Remethylation of Dnmt3a -/- hematopoietic cells is associated with partial correction of gene dysregulation and reduced myeloid skewing. Proc Natl Acad Sci U S A 2020; 117:3123-3134. [PMID: 31996479 PMCID: PMC7022185 DOI: 10.1073/pnas.1918611117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations that reduce the function of the de novo DNA methyltransferase, DNMT3A, are very common in patients with clonal hematopoiesis and hematopoietic malignancies. Restoring the function of DNMT3A in mouse hematopoietic cells deficient for this protein corrects the DNA methylation defect in an ordered fashion, and partially restores abnormalities in gene expression and myeloid population skewing. These data may be relevant for therapeutic strategies designed to restore DNMT3A activity in patients with diseases caused by mutations in this gene. Mutations in the DNA methyltransferase 3A (DNMT3A) gene are the most common cause of age-related clonal hematopoiesis (ARCH) in older individuals, and are among the most common initiating events for acute myeloid leukemia (AML). The most frequent DNMT3A mutation in AML patients (R882H) encodes a dominant-negative protein that reduces methyltransferase activity by ∼80% in cells with heterozygous mutations, causing a focal, canonical DNA hypomethylation phenotype; this phenotype is partially recapitulated in murine Dnmt3a−/− bone marrow cells. To determine whether the hypomethylation phenotype of Dnmt3a−/− hematopoietic cells is reversible, we developed an inducible transgene to restore expression of DNMT3A in transplanted bone marrow cells from Dnmt3a−/− mice. Partial remethylation was detected within 1 wk, but near-complete remethylation required 6 mo. Remethylation was accurate, dynamic, and highly ordered, suggesting that differentially methylated regions have unique properties that may be relevant for their functions. Importantly, 22 wk of DNMT3A addback partially corrected dysregulated gene expression, and mitigated the expansion of myeloid cells. These data show that restoring DNMT3A expression can alter the epigenetic “state” created by loss of Dnmt3a activity; this genetic proof-of-concept experiment suggests that this approach could be relevant for patients with ARCH or AML caused by loss-of-function DNMT3A mutations.
Collapse
|
121
|
Balci TB, Strong A, Kalish JM, Zackai E, Maris JM, Reilly A, Surrey LF, Wertheim GB, Marcadier JL, Graham GE, Carter MT. Tatton-Brown-Rahman syndrome: Six individuals with novel features. Am J Med Genet A 2020; 182:673-680. [PMID: 31961069 DOI: 10.1002/ajmg.a.61475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
Tatton-Brown Rahman syndrome (TBRS) is an overgrowth-intellectual disability syndrome caused by heterozygous variants in DNMT3A. Seventy-eight individuals have been reported with a consistent phenotype of somatic overgrowth, mild to moderate intellectual disability, and similar dysmorphisms. We present six individuals with TBRS, including the youngest individual thus far reported, first individual to be diagnosed with tumor testing and two individuals with variants at the Arg882 domain, bringing the total number of reported cases to 82. Patients reported herein have additional clinical features not previously reported in TBRS. One patient had congenital diaphragmatic hernia. One patient carrying the recurrent p.Arg882His DNMT3A variant, who was previously reported as having a phenotype due to a truncating variant in the CLTC gene, developed a ganglioneuroblastoma at 18 months and T-cell lymphoblastic lymphoma at 6 years of age. Four patients manifested symptoms suggestive of autonomic dysfunction, including central sleep apnea, postural orthostatic hypotension, and episodic vasomotor instability in the extremities. We discuss the molecular and clinical findings in our patients with TBRS in context of existing literature.
Collapse
Affiliation(s)
- Tugce B Balci
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Alana Strong
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jennifer M Kalish
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine Zackai
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John M Maris
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Anne Reilly
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lea F Surrey
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gerald B Wertheim
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Julien L Marcadier
- Department of Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Gail E Graham
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Melissa T Carter
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
122
|
Shahkarami S, Zoghi S, Rezaei N. The Role of DNA Methylation in Cancer. CANCER IMMUNOLOGY 2020:491-511. [DOI: 10.1007/978-3-030-30845-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
123
|
Scalable Prediction of Acute Myeloid Leukemia Using High-Dimensional Machine Learning and Blood Transcriptomics. iScience 2019; 23:100780. [PMID: 31918046 PMCID: PMC6992905 DOI: 10.1016/j.isci.2019.100780] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023] Open
Abstract
Acute myeloid leukemia (AML) is a severe, mostly fatal hematopoietic malignancy. We were interested in whether transcriptomic-based machine learning could predict AML status without requiring expert input. Using 12,029 samples from 105 different studies, we present a large-scale study of machine learning-based prediction of AML in which we address key questions relating to the combination of machine learning and transcriptomics and their practical use. We find data-driven, high-dimensional approaches—in which multivariate signatures are learned directly from genome-wide data with no prior knowledge—to be accurate and robust. Importantly, these approaches are highly scalable with low marginal cost, essentially matching human expert annotation in a near-automated workflow. Our results support the notion that transcriptomics combined with machine learning could be used as part of an integrated -omics approach wherein risk prediction, differential diagnosis, and subclassification of AML are achieved by genomics while diagnosis could be assisted by transcriptomic-based machine learning. Study presents one of the largest transcriptomics datasets to date for AML prediction Effective classifiers can be obtained by high-dimensional machine learning Accuracy increases with dataset size Includes challenging scenarios such as cross-study and cross-technology
Collapse
|
124
|
Leubolt G, Redondo Monte E, Greif PA. GATA2
mutations in myeloid malignancies: Two zinc fingers in many pies. IUBMB Life 2019; 72:151-158. [DOI: 10.1002/iub.2204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/13/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Georg Leubolt
- Department of Medicine IIIUniversity Hospital, LMU Munich Munich Germany
| | | | - Philipp A. Greif
- Department of Medicine IIIUniversity Hospital, LMU Munich Munich Germany
| |
Collapse
|
125
|
Quentmeier H, Pommerenke C, Dirks WG, Fähnrich S, Hauer V, Uphoff CC, Zaborski M, Drexler HG. DNMT3A R882H mutation in acute myeloid leukemia cell line SET-2. Leuk Res 2019; 88:106270. [PMID: 31739141 DOI: 10.1016/j.leukres.2019.106270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Hilmar Quentmeier
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Wilhelm G Dirks
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Silke Fähnrich
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Vivien Hauer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cord C Uphoff
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Margarete Zaborski
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
126
|
Shi X, Yang Y, Shang S, Wu S, Zhang W, Peng L, Huang T, Zhang R, Ren R, Mi J, Wang Y. Cooperation of Dnmt3a R878H with Nras G12D promotes leukemogenesis in knock-in mice: a pilot study. BMC Cancer 2019; 19:1072. [PMID: 31703632 PMCID: PMC6842226 DOI: 10.1186/s12885-019-6207-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND DNMT3A R882H, a frequent mutation in acute myeloid leukemia (AML), plays a critical role in malignant hematopoiesis. Recent findings suggest that DNMT3A mutant acts as a founder mutation and requires additional genetic events to induce full-blown AML. Here, we investigated the cooperation of mutant DNMT3A and NRAS in leukemogenesis by generating a double knock-in (DKI) mouse model harboring both Dnmt3a R878H and Nras G12D mutations. METHODS DKI mice with both Dnmt3a R878H and Nras G12D mutations were generated by crossing Dnmt3a R878H knock-in (KI) mice and Nras G12D KI mice. Routine blood test, flow cytometry analysis and morphological analysis were performed to determine disease phenotype. RNA-sequencing (RNA-seq), RT-PCR and Western blot were carried out to reveal the molecular mechanism. RESULTS The DKI mice developed a more aggressive AML with a significantly shortened lifespan and higher percentage of blast cells compared with KI mice expressing Dnmt3a or Nras mutation alone. RNA-seq analysis showed that Dnmt3a and Nras mutations collaboratively caused abnormal expression of a series of genes related to differentiation arrest and growth advantage. Myc transcription factor and its target genes related to proliferation and apoptosis were up-regulated, thus contributing to promote the process of leukemogenesis. CONCLUSION This study showed that cooperation of DNMT3A mutation and NRAS mutation could promote the onset of AML by synergistically disturbing the transcriptional profiling with Myc pathway involvement in DKI mice.
Collapse
Affiliation(s)
- Xiaodong Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Yang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Siqi Shang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Songfang Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weina Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lijun Peng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruihong Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruibao Ren
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianqing Mi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yueying Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
127
|
Guo M, Peng Y, Gao A, Du C, Herman JG. Epigenetic heterogeneity in cancer. Biomark Res 2019; 7:23. [PMID: 31695915 PMCID: PMC6824025 DOI: 10.1186/s40364-019-0174-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Phenotypic and functional heterogeneity is one of the hallmarks of human cancers. Tumor genotype variations among tumors within different patients are known as interpatient heterogeneity, and variability among multiple tumors of the same type arising in the same patient is referred to as intra-patient heterogeneity. Subpopulations of cancer cells with distinct phenotypic and molecular features within a tumor are called intratumor heterogeneity (ITH). Since Nowell proposed the clonal evolution of tumor cell populations in 1976, tumor heterogeneity, especially ITH, was actively studied. Research has focused on the genetic basis of cancer, particularly mutational activation of oncogenes or inactivation of tumor-suppressor genes (TSGs). The phenomenon of ITH is commonly explained by Darwinian-like clonal evolution of a single tumor. Despite the monoclonal origin of most cancers, new clones arise during tumor progression due to the continuous acquisition of mutations. It is clear that disruption of the "epigenetic machinery" plays an important role in cancer development. Aberrant epigenetic changes occur more frequently than gene mutations in human cancers. The epigenome is at the intersection of the environment and genome. Epigenetic dysregulation occurs in the earliest stage of cancer. The current trend of epigenetic therapy is to use epigenetic drugs to reverse and/or delay future resistance to cancer therapies. A majority of cancer therapies fail to achieve durable responses, which is often attributed to ITH. Epigenetic therapy may reverse drug resistance in heterogeneous cancer. Complete understanding of genetic and epigenetic heterogeneity may assist in designing combinations of targeted therapies based on molecular information extracted from individual tumors.
Collapse
Affiliation(s)
- Mingzhou Guo
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, 40 Daxue Road, Zhengzhou, Henan 450052 China
| | - Yaojun Peng
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Aiai Gao
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Chen Du
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - James G Herman
- 3The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Ave., Pittsburgh, PA 15213 USA
| |
Collapse
|
128
|
Identification of Two DNMT3A Mutations Compromising Protein Stability and Methylation Capacity in Acute Myeloid Leukemia. JOURNAL OF ONCOLOGY 2019; 2019:5985923. [PMID: 31827512 PMCID: PMC6881567 DOI: 10.1155/2019/5985923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022]
Abstract
Somatic mutations of DNMT3A occur in about 20% of acute myeloid leukemia (AML) patients. They mostly consist in heterozygous missense mutations targeting a hotspot site at R882 codon, which exhibit a dominant negative effect and are associated with high myeloblast count, advanced age, and poor prognosis. Other types of mutations such as truncations, insertions, or single-nucleotide deletion also affect the DNMT3A gene, though with lower frequency. The present study aimed to characterize two DNMT3A gene mutations identified by next-generation sequencing (NGS), through analysis of protein stability and DNA methylation status at CpG islands. The first mutation was a single-nucleotide variant of DNMT3A at exon 20 causing a premature STOP codon (c.2385G > A; p.Trp795 ∗ ; NM_022552.4). The DNMT3A mutation load increased from 4.5% to 38.2% during guadecitabine treatment, with a dominant negative effect on CpG methylation and on protein expression. The second mutation was a novel insertion of 35 nucleotides in exon 22 of DNMT3A (NM_022552.4) that introduced a STOP codon too, after the amino acid Glu863 caused by a frameshift insertion (c.2586_2587insTCATGAATGAGAAAGAGGACATCTTATGGTGCACT; p. Thr862_Glu863fsins). The mutation, which was associated with reduced DNMT3A expression and CpG methylation, persisted at relapse with minor changes in the methylation profile and at protein level. Our data highlight the need to better understand the consequences of DNMT3A mutations other than R882 substitutions in the leukemogenic process in order to tailor patient treatments, thus avoiding therapeutic resistance and disease relapse.
Collapse
|
129
|
Yang L, Shen K, Zhang M, Zhang W, Cai H, Lin L, Long X, Xing S, Tang Y, Xiong J, Wang J, Li D, Zhou J, Xiao M. Clinical Features and MicroRNA Expression Patterns Between AML Patients With DNMT3A R882 and Frameshift Mutations. Front Oncol 2019; 9:1133. [PMID: 31709191 PMCID: PMC6821681 DOI: 10.3389/fonc.2019.01133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Background: DNA methyltransferase 3A (DNMT3A) plays a unique role in hematopoiesis and acute myeloid leukemia (AML) pathogenesis. While the influences of DNMT3A mutation subtypes are still under debate. Purpose: Exploration of the clinical and molecular differences between AML patients carrying DNMT3A R882 mutations and DNMT3A frameshift mutations. Methods: Next generation of sequencing (NGS) and clinical data of 118 AML patients in our center were analyzed and compared. NGS, mRNA and miRNA profiling and clinical data from 12 patients in TCGA database were integrative analyzed. Results: Among all patients enrolled, 113 patients were positive for the variants of interest. Overall, a total of 295 variants were discovered, among which 24 DNMT3A mutations were detected, including 1 non-sense, 20 missense, 3 frameshift mutations. And 7 DNMT3A R882 mutations (3 R882H, 2 R882C, and 2 R882P) were found. Clinical analysis from our cohort and TCGA database indicated that patients carrying DNMT3A R882 mutation exhibited significantly higher levels of peripheral blood hemoglobin and non-significantly inferior prognosis compared with patients with DNMT3A frameshift mutations. Integrative analysis indicated that miR-10b, miR-143, and miR-30a were significantly decreased in the DNMT3A R882 group. High miR-143 expression is significantly associated with better prognosis in AML patients with DNMT3A mutations. Conclusion: Different molecular and clinical characteristics existed between patients with DNMT3A variant subtypes. The distinct microRNA expression pattern for DNMT3A R882 AML patients might not only act as markers to predict disease prognosis, but also could be further investigated to develop novel therapeutic targets for patients with DNMT3A mutations.
Collapse
Affiliation(s)
- Li Yang
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ke'Feng Shen
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Mei'Lan Zhang
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hao'Dong Cai
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li'Man Lin
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao'Lu Long
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shu'Gang Xing
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Tang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Xiong
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jia'Chen Wang
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Deng'Ju Li
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jian'Feng Zhou
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
130
|
Wurm AA, Pina C. Long Non-coding RNAs as Functional and Structural Chromatin Modulators in Acute Myeloid Leukemia. Front Oncol 2019; 9:899. [PMID: 31572684 PMCID: PMC6749032 DOI: 10.3389/fonc.2019.00899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/29/2019] [Indexed: 01/17/2023] Open
Abstract
Acute myeloid leukemia is a hematopoietic neoplasm of dismal prognosis that results from the accumulation of immature myeloid blasts in the bone marrow and the peripheral blood. It is strongly dependent on epigenetic regulation for disease onset, maintenance and in response to treatment. Epigenetic regulation refers to the multiple chemical modifications of DNA or DNA-associated proteins that alter chromatin structure and DNA accessibility in a heritable manner, without changing DNA sequence. Unlike sequence-specific transcription factors, epigenetic regulators do not necessarily bind DNA at consensus sequences, but still achieve reproducible target binding in a manner that is cell and maturation-type specific. A growing body of evidence indicates that epigenetic regulators rely, amongst other factors, on their interaction with untranslated RNA molecules for guidance to particular targets on DNA. Non (protein)-coding RNAs are the most abundant transcriptional products of the coding genome, and comprise several different classes of molecules with unique lengths, conformations and targets. Amongst these, long non-coding RNAs (lncRNAs) are species of 200 bp to >100 K bp in length, that recognize, and bind unique and largely uncharacterized DNA conformations. Some have been shown to bind epigenetic regulators, and thus constitute attractive candidates to mediate epigenetic target specificity. Herein, we postulate that lncRNAs are central players in the unique epigenetic programming of AML and review recent evidence in support of this view. We discuss the value of lncRNAs as putative diagnostic, prognostic and therapeutic targets in myeloid leukemias and indicate novel directions in this exciting research field.
Collapse
Affiliation(s)
- Alexander A Wurm
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Cristina Pina
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
131
|
Wang H, Kuang Y, Li J, Shen R, Sun R, Huang D, Sheng Z, Shi J, Zhang M, Huang F, Yang H, Fei J. Dnmt3a is required for the tumor stemness of B16 melanoma cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:945-952. [PMID: 31435645 DOI: 10.1093/abbs/gmz081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 11/14/2022] Open
Abstract
The relationship of carcinogenesis and DNA methyltransferases has attracted extensive attention in tumor research. We reported previously that inhibition of de novo DNA methyltransferase 3a (Dnmt3a) in murine B16 melanoma cells significantly suppressed tumor growth and metastasis in xenografted mouse model. Here, we further demonstrated that knockdown of Dnmt3a enhanced the proliferation in anchor-independent conditions of B16 cells, but severely disrupted its multipotent differentiation capacity in vitro. Furthermore, transforming growth factor β1, a key trigger in stem cell differentiation and tumor cell epithelial-mesenchymal transition (EMT), mainly induced apoptosis, but not EMT in Dnmt3a-deficient B16 cells. These data suggested that Dnmt3a is required for maintaining the tumor stemness of B16 cells and it assists B16 cells to escape from death during cell differentiation. Thus it is hypothesized that not only extraordinary self-renewal ability, but also the capacity of multipotent differentiation is necessary for the melanoma tumorigenesis. Inhibition of multipotent differentiation of tumor cells may shed light on the tumor treatment.
Collapse
Affiliation(s)
- Haoyue Wang
- School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Ying Kuang
- Shanghai Engineering Research Center for Model Organisms, Shanghai Research Center for Model Organisms/Shanghai Model Organisms Center, Inc., Shanghai 201203, China
| | - Jun Li
- Shanghai Engineering Research Center for Model Organisms, Shanghai Research Center for Model Organisms/Shanghai Model Organisms Center, Inc., Shanghai 201203, China
| | - Ruling Shen
- Shanghai Engineering Research Center for Model Organisms, Shanghai Research Center for Model Organisms/Shanghai Model Organisms Center, Inc., Shanghai 201203, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, Shanghai Research Center for Model Organisms/Shanghai Model Organisms Center, Inc., Shanghai 201203, China
| | - Danyi Huang
- Shanghai Engineering Research Center for Model Organisms, Shanghai Research Center for Model Organisms/Shanghai Model Organisms Center, Inc., Shanghai 201203, China
| | - Zhejin Sheng
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Fang Huang
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and The Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Engineering Research Center for Model Organisms, Shanghai Research Center for Model Organisms/Shanghai Model Organisms Center, Inc., Shanghai 201203, China
| |
Collapse
|
132
|
Qian P, De Kumar B, He XC, Nolte C, Gogol M, Ahn Y, Chen S, Li Z, Xu H, Perry JM, Hu D, Tao F, Zhao M, Han Y, Hall K, Peak A, Paulson A, Zhao C, Venkatraman A, Box A, Perera A, Haug JS, Parmely T, Li H, Krumlauf R, Li L. Retinoid-Sensitive Epigenetic Regulation of the Hoxb Cluster Maintains Normal Hematopoiesis and Inhibits Leukemogenesis. Cell Stem Cell 2019; 22:740-754.e7. [PMID: 29727682 DOI: 10.1016/j.stem.2018.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/15/2017] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Hox genes modulate the properties of hematopoietic stem cells (HSCs) and reacquired Hox expression in progenitors contributes to leukemogenesis. Here, our transcriptome and DNA methylome analyses revealed that Hoxb cluster and retinoid signaling genes are predominantly enriched in LT-HSCs, and this coordinate regulation of Hoxb expression is mediated by a retinoid-dependent cis-regulatory element, distal element RARE (DERARE). Deletion of the DERARE reduced Hoxb expression, resulting in changes to many downstream signaling pathways (e.g., non-canonical Wnt signaling) and loss of HSC self-renewal and reconstitution capacity. DNA methyltransferases mediate DNA methylation on the DERARE, leading to reduced Hoxb cluster expression. Acute myeloid leukemia patients with DNMT3A mutations exhibit DERARE hypomethylation, elevated HOXB expression, and adverse outcomes. CRISPR-Cas9-mediated specific DNA methylation at DERARE attenuated HOXB expression and alleviated leukemogenesis. Collectively, these findings demonstrate pivotal roles for retinoid signaling and the DERARE in maintaining HSCs and preventing leukemogenesis by coordinate regulation of Hoxb genes.
Collapse
Affiliation(s)
- Pengxu Qian
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christof Nolte
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Zhenrui Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hanzhang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - John M Perry
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Deqing Hu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Tianjin Medical University School of Basic Medicine, Tian Jin 300070, China
| | - Fang Tao
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Yingli Han
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Allison Peak
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Chongbei Zhao
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Andrew Box
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jeffrey S Haug
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Tari Parmely
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
133
|
Fomchenko EI, Erson-Omay EZ, Zhao A, Bindra RS, Huttner A, Fulbright RK, Moliterno J. DNMT3A co-mutation in an IDH1-mutant glioblastoma. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004119. [PMID: 31371348 PMCID: PMC6672028 DOI: 10.1101/mcs.a004119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 11/24/2022] Open
Abstract
Glioblastomas are highly aggressive, infiltrative, and genetically heterogeneous primary brain tumors that arise de novo or secondarily progress over time from low-grade tumors. Along with well-established signature mutational profiles, emerging research suggests that the epigenetic tumor landscape plays an important role in gliomagenesis via transcriptional regulation, DNA methylation, and histone modifications. The pursuit of targeted therapeutic approaches, based not only on expression profiles but also on somatic mutations, is fundamental to the effort of improving survival in patients with glioblastoma. Here, we describe a missense DNMT3A p.P904S mutation in an IDH1-mutant glioblastoma. Although never previously reported in gliomas, this mutation is predicted to be pathogenic and has been reported in several other malignancies. Our report suggests that elucidating epigenetic control is important to understanding glioblastoma biology and may likely unveil targets potentially important to glioblastoma treatment in an effort to improve survival.
Collapse
Affiliation(s)
- Elena I Fomchenko
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Amy Zhao
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Anita Huttner
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Robert K Fulbright
- Department of Radiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
134
|
Monaghan L, Massett ME, Bunschoten RP, Hoose A, Pirvan PA, Liskamp RMJ, Jørgensen HG, Huang X. The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia. Front Oncol 2019; 9:705. [PMID: 31428579 PMCID: PMC6687838 DOI: 10.3389/fonc.2019.00705] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022] Open
Abstract
Growing evidence has demonstrated that epigenetic dysregulation is a common pathological feature in human cancer cells. Global alterations in the epigenetic landscape are prevalent in malignant cells across different solid tumors including, prostate cancer, non-small-cell lung cancer, renal cell carcinoma, and in haemopoietic malignancy. In particular, DNA hypomethylation and histone hypoacetylation have been observed in acute myeloid leukemia (AML) patient blasts, with histone methylation being an emerging area of study. Histone 3 lysine 9 trimethylation (H3K9me3) is a post-translational modification known to be involved in the regulation of a broad range of biological processes, including the formation of transcriptionally silent heterochromatin. Following the observation of its aberrant methylation status in hematological malignancy and several other cancer phenotypes, recent studies have associated H3K9me3 levels with patient outcome and highlighted key molecular mechanisms linking H3K9me3 profile with AML etiology in a number of large-scale meta-analysis. Consequently, the development and application of small molecule inhibitors which target the histone methyltransferases or demethylase enzymes known to participate in the oncogenic regulation of H3K9me3 in AML represents an advancing area of ongoing study. Here, we provide a comprehensive review on how this particular epigenetic mark is regulated within cells and its emerging role as a potential therapeutic target in AML, along with an update on the current research into advancing the generation of more potent and selective inhibitors against known H3K9 methyltransferases and demethylases.
Collapse
Affiliation(s)
- Laura Monaghan
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew E. Massett
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Alex Hoose
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
135
|
GATA2 mutations and overexpression in pediatric acute myeloid leukemia. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2019. [DOI: 10.1016/j.phoj.2019.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
136
|
Fang Y, Sun F, Zhang RJ, Zhang CR, Yan CY, Zhou Z, Zhang QY, Li L, Ying YX, Zhao SX, Liang J, Song HD. Mutation screening of the TSHR gene in 220 Chinese patients with congenital hypothyroidism. Clin Chim Acta 2019; 497:147-152. [PMID: 31356790 DOI: 10.1016/j.cca.2019.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Defects in the human thyroid stimulating hormone receptor (TSHR) gene are reported to be one of the causes of congenital hypothyroidism (CH). We aimed to identify mutations in Chinese patients with CH and analyze the relationships between TSHR phenotypes and clinical phenotypes. METHODS 220 patients with primary CH were screened for TSHR mutations by performing next-generation sequencing. All the exons and exon-intron boundaries of TSHR were analyzed. The function of 8 mutants in TSHR were further investigated in vitro. RESULTS Among 220 patients with CH, 15 distinct TSHR mutations were identified in 13 patients (5.91%, 13/220, including our previous reported 110 patients, carried with 10 mutations in 8 patients). We found five distinct mutations in the additional cohort of 110 CH patients and identified 7 mutations (including a novel mutation, p.S567R) were loss-of-function mutations. CONCLUSION Our study indicated that the prevalence of TSHR mutations was 5.91% among studied Chinese patients with CH. One novel TSHR variant was found and four genetic alterations revealed important role of the Ile216, Ala275, Asn372, Ser567 residues in signaling.
Collapse
Affiliation(s)
- Ya Fang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Feng Sun
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Rui-Jia Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Chang-Run Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Chen-Yan Yan
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Zheng Zhou
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Qian-Yue Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Lu Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Ying-Xia Ying
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province 221109, China
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200011, China; Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province 221109, China.
| |
Collapse
|
137
|
Emperle M, Rajavelu A, Kunert S, Arimondo PB, Reinhardt R, Jurkowska RZ, Jeltsch A. The DNMT3A R882H mutant displays altered flanking sequence preferences. Nucleic Acids Res 2019. [PMID: 29518238 PMCID: PMC5887309 DOI: 10.1093/nar/gky168] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The DNMT3A R882H mutation is frequently observed in acute myeloid leukemia (AML). It is located in the subunit and DNA binding interface of DNMT3A and has been reported to cause a reduction in activity and dominant negative effects. We investigated the mechanistic consequences of the R882H mutation on DNMT3A showing a roughly 40% reduction in overall DNA methylation activity. Biochemical assays demonstrated that R882H does not change DNA binding affinity, protein stability or subnuclear distribution of DNMT3A. Strikingly, DNA methylation experiments revealed pronounced changes in the flanking sequence preference of the DNMT3A-R882H mutant. Based on these results, different DNA substrates with selected flanking sequences were designed to be favored or disfavored by R882H. Kinetic analyses showed that the R882H favored substrate was methylated by R882H with 45% increased rate when compared with wildtype DNMT3A, while methylation of the disfavored substrate was reduced 7-fold. Our data expand the model of the potential carcinogenic effect of the R882H mutation by showing CpG site specific activity changes. This result suggests that R882 is involved in the indirect readout of flanking sequence preferences of DNMT3A and it may explain the particular enrichment of the R882H mutation in cancer patients by revealing mutation specific effects.
Collapse
Affiliation(s)
- Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Arumugam Rajavelu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Stefan Kunert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Paola B Arimondo
- CNRS ETaC FRE3600, Bât. IBCG. 118, Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Richard Reinhardt
- Max-Planck-Genomzentrum Köln, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
138
|
Mazzola M, Deflorian G, Pezzotta A, Ferrari L, Fazio G, Bresciani E, Saitta C, Ferrari L, Fumagalli M, Parma M, Marasca F, Bodega B, Riva P, Cotelli F, Biondi A, Marozzi A, Cazzaniga G, Pistocchi A. NIPBL: a new player in myeloid cell differentiation. Haematologica 2019; 104:1332-1341. [PMID: 30630974 PMCID: PMC6601076 DOI: 10.3324/haematol.2018.200899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022] Open
Abstract
The nucleophosmin 1 gene (NPM1) is the most frequently mutated gene in acute myeloid leukemia. Notably, NPM1 mutations are always accompanied by additional mutations such as those in cohesin genes RAD21, SMC1A, SMC3, and STAG2 but not in the cohesin regulator, nipped B-like (NIPBL). In this work, we analyzed a cohort of adult patients with acute myeloid leukemia and NPM1 mutation and observed a specific reduction in the expression of NIPBL but not in other cohesin genes. In our zebrafish model, overexpression of the mutated form of NPM1 also induced downregulation of nipblb, the zebrafish ortholog of human NIPBL To investigate the hematopoietic phenotype and the interaction between mutated NPM1 and nipblb, we generated a zebrafish model with nipblb downregulation which showed an increased number of myeloid progenitors. This phenotype was due to hyper-activation of the canonical Wnt pathway: myeloid cells blocked in an undifferentiated state could be rescued when the Wnt pathway was inhibited by dkk1b mRNA injection or indomethacin administration. Our results reveal, for the first time, a role for NIPBL during zebrafish hematopoiesis and suggest that an interplay between NIPBL/NPM1 may regulate myeloid differentiation in zebrafish and humans through the canonical Wnt pathway and that dysregulation of these interactions may drive leukemic transformation.
Collapse
MESH Headings
- Adult
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Differentiation
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/pathology
- Gene Expression Regulation, Neoplastic
- Hematopoiesis
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mutation
- Nuclear Proteins/genetics
- Nucleophosmin
- Phenotype
- Wnt Signaling Pathway
- Zebrafish
- Cohesins
Collapse
Affiliation(s)
- Mara Mazzola
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | | | - Alex Pezzotta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | - Laura Ferrari
- Istituto FIRC di Oncologia Molecolare, IFOM, Milano, Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Erica Bresciani
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Saitta
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Luca Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | - Monica Fumagalli
- Clinica Ematologica e Centro Trapianti di Midollo Osseo, Ospedale San Gerardo, Università di Milano-Bicocca, Monza, Italy
| | - Matteo Parma
- Clinica Ematologica e Centro Trapianti di Midollo Osseo, Ospedale San Gerardo, Università di Milano-Bicocca, Monza, Italy
| | - Federica Marasca
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milano, Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milano, Italy
| | - Paola Riva
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | - Franco Cotelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| |
Collapse
|
139
|
Lu J, Xu J, Li J, Pan T, Bai J, Wang L, Jin X, Lin X, Zhang Y, Li Y, Sahni N, Li X. FACER: comprehensive molecular and functional characterization of epigenetic chromatin regulators. Nucleic Acids Res 2019; 46:10019-10033. [PMID: 30102398 PMCID: PMC6212842 DOI: 10.1093/nar/gky679] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/04/2018] [Indexed: 01/09/2023] Open
Abstract
Epigenetic alterations, a well-recognized cancer hallmark, are driven by chromatin regulators (CRs). However, little is known about the extent of CR deregulation in cancer, and less is known about their common and specialized roles across various cancers. Here, we performed genome-wide analyses and constructed molecular signatures and network profiles of functional CRs in over 10 000 tumors across 33 cancer types. By integration of DNA mutation, genome-wide methylation, transcriptional/post-transcriptional regulation, and protein interaction networks with clinical outcomes, we identified CRs associated with cancer subtypes and clinical prognosis as potential oncogenic drivers. Comparative network analysis revealed principles of CR regulatory specificity and functionality. In addition, we identified common and specific CRs by assessing their prevalence across cancer types. Common CRs tend to be histone modifiers and chromatin remodelers with fundamental roles, whereas specialized CRs are involved in context-dependent functions. Finally, we have made a user-friendly web interface-FACER (Functional Atlas of Chromatin Epigenetic Regulators) available for exploring clinically relevant CRs for the development of CR biomarkers and therapeutic targets. Our integrative analysis reveals specific determinants of CRs across cancer types and presents a resource for investigating disease-associated CRs.
Collapse
Affiliation(s)
- Jianping Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, China
| | - Junyi Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Tao Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Liqiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiyun Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiaoyu Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, China.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nidhi Sahni
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, TX 77030, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, China
| |
Collapse
|
140
|
Torroglosa A, Villalba-Benito L, Luzón-Toro B, Fernández RM, Antiñolo G, Borrego S. Epigenetic Mechanisms in Hirschsprung Disease. Int J Mol Sci 2019; 20:ijms20133123. [PMID: 31247956 PMCID: PMC6650840 DOI: 10.3390/ijms20133123] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
Hirschsprung disease (HSCR, OMIM 142623) is due to a failure of enteric precursor cells derived from neural crest (EPCs) to proliferate, migrate, survive or differentiate during Enteric Nervous System (ENS) formation. This is a complex process which requires a strict regulation that results in an ENS specific gene expression pattern. Alterations at this level lead to the onset of neurocristopathies such as HSCR. Gene expression is regulated by different mechanisms, such as DNA modifications (at the epigenetic level), transcriptional mechanisms (transcription factors, silencers, enhancers and repressors), postranscriptional mechanisms (3′UTR and ncRNA) and regulation of translation. All these mechanisms are finally implicated in cell signaling to determine the migration, proliferation, differentiation and survival processes for correct ENS development. In this review, we have performed an overview on the role of epigenetic mechanisms at transcriptional and posttranscriptional levels on these cellular events in neural crest cells (NCCs), ENS development, as well as in HSCR.
Collapse
Affiliation(s)
- Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| |
Collapse
|
141
|
Ahn JS, Kim T, Kim YK, Cho YC, Cho S, Jung SH, Ahn SY, Jung SY, Yang DH, Lee JJ, Choi S, Lee JY, Shin MG, Yoshida K, Ogawa S, Kim IC, Zhang Z, Kim HJ, Kim DDH. Remission clone in acute myeloid leukemia shows growth advantage after chemotherapy but is distinct from leukemic clone. Exp Hematol 2019; 75:26-30. [PMID: 31199945 DOI: 10.1016/j.exphem.2019.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023]
Abstract
In a previously published case study of acute myeloid leukemia, we tracked the dynamics of somatic mutations over 9 years. Interestingly, we observed a group of mutations that expanded during remission, which we named the "remission clone." To determine the nature of the remission clones, we performed flow cytometry-based cell sorting followed by ultradeep sequencing. The remission clone repeatedly expanded after chemotherapeutic cycles and was suppressed during relapse in the myeloid lineage (multipotent hematopoietic stem, progenitor, and myeloid cells). On the other hand, the remission clone was consistently observed in lymphoid lineages (B and T cells) regardless of the disease state. When transfected into the HEK-293 cell line, the NR2C2(A93V) mutant exhibited a growth advantage (all p values < 0.05). The results indicate that the remission clone seems to be another form of clonal hematopoiesis, but without a clear association with leukemia. As the remission clone is present in both myeloid and lymphoid lineages, it likely originates from ancestral hematopoietic cell lineages. More importantly, the remission clone is distinct from the leukemic clone; therefore, mutations expanded during remission require special interpretation when performing next-generation sequencing-based measurable residual disease assessment.
Collapse
Affiliation(s)
- Jae-Sook Ahn
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea; Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - TaeHyung Kim
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | | | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - SaYeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sung-Hoon Jung
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - Seo-Yeon Ahn
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Yeon Jung
- St. Carollo General Hospital, Jeollanam-do, Republic of Korea
| | - Deok-Hwan Yang
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - Je-Jung Lee
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - SeungHyun Choi
- Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Ja-Yeon Lee
- Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Kenichi Yoshida
- Department of Pathology and Tumour Biology, Kyoto University Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Kyoto University Kyoto, Japan
| | - Il-Chul Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Zhaolei Zhang
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hyeoung-Joon Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea; Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea.
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
142
|
Lu R, Wang J, Ren Z, Yin J, Wang Y, Cai L, Wang GG. A Model System for Studying the DNMT3A Hotspot Mutation (DNMT3A R882) Demonstrates a Causal Relationship between Its Dominant-Negative Effect and Leukemogenesis. Cancer Res 2019; 79:3583-3594. [PMID: 31164355 DOI: 10.1158/0008-5472.can-18-3275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/03/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023]
Abstract
Mutation of DNA methyltransferase 3A at arginine 882 (DNMT3AR882mut) is prevalent in hematologic cancers and disorders. Recently, DNMT3AR882mut has been shown to have hypomorphic, dominant-negative, and/or gain-of-function effects on DNA methylation under different biological contexts. However, the causal role for such a multifaceted effect of DNMT3AR882mut in leukemogenesis remains undetermined. Here, we report TF-1 leukemia cells as a robust system useful for modeling the DNMT3AR882mut-dependent transformation and for dissecting the cause-effect relationship between multifaceted activities of DNMT3AR882mut and leukemic transformation. Ectopic expression of DNMT3AR882mut and not wild-type DNMT3A promoted TF-1 cell transformation characterized by cytokine-independent growth, and induces CpG hypomethylation predominantly at enhancers. This effect was dose dependent, acted synergistically with the isocitrate dehydrogenase 1 (IDH1) mutation, and resembled what was seen in human leukemia patients carrying DNMT3AR882mut. The transformation- and hypomethylation-inducing capacities of DNMT3AR882mut relied on a motif involved in heterodimerization, whereas its various chromatin-binding domains were dispensable. Mutation of the heterodimerization motif that interferes with DNMT3AR882mut binding to endogenous wild-type DNMT proteins partially reversed the CpG hypomethylation phenotype caused by DNMT3AR882mut, thus supporting a dominant-negative mechanism in cells. In mice, bromodomain inhibition repressed gene-activation events downstream of DNMT3AR882mut-induced CpG hypomethylation, thereby suppressing leukemogenesis mediated by DNMT3AR882mut. Collectively, this study reports a model system useful for studying DNMT3AR882mut, shows a requirement of the dominant-negative effect by DNMT3AR882mut for leukemogenesis, and describes an attractive strategy for the treatment of leukemias carrying DNMT3AR882mut. SIGNIFICANCE: These findings highlight a model system to study the functional impact of a hotspot mutation of DNMT3A at R882 in leukemia.
Collapse
Affiliation(s)
- Rui Lu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jun Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Zhihong Ren
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, California.,Department of Chemistry, University of California, Riverside, California
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California.,Department of Chemistry, University of California, Riverside, California
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina. .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
143
|
Xing S, Wang B, Gao Y, Li M, Wang T, Sun Y, Shen Y, Chao H. Cytogenetics and associated mutation profile in patients with acute monocytic leukemia. Int J Lab Hematol 2019; 41:485-492. [PMID: 31099482 DOI: 10.1111/ijlh.13030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Shanshan Xing
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Biao Wang
- Department of Hematology The Third Affiliated Hospital of Soochow University Changzhou China
| | - Yu Gao
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Mengjie Li
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Tong Wang
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Yiwu Sun
- Department of Hematology Affiliated Changzhou Second Hospital of Nanjing Medical University Changzhou China
| | - Yimin Shen
- Department of Hematology Zhejiang Hospital Hangzhou China
| | - Hongying Chao
- Department of Hematology Affiliated Changzhou Second Hospital of Nanjing Medical University Changzhou China
| |
Collapse
|
144
|
Sweeney KJ, Mottolese C, Belot A, Szathmari A, Frappaz D, Lesca G, Putoux A, Di Rocco F. The first case report of medulloblastoma associated with Tatton-Brown-Rahman syndrome. Am J Med Genet A 2019; 179:1357-1361. [PMID: 31066180 DOI: 10.1002/ajmg.a.61180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/13/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
DNMT3A codes for a DNA methyl transferase enzyme that plays a central role embryogenesis. Somatic mutations in this gene have been associated with tumorigenesis and are associated with a number of cancers. The recently described Tatton-Brown-Rahman syndrome (TBRS) is due to heterozygous germline mutations in the DNMT3A gene. So far, only one case of hematological malignancy associated with TBRS have been reported. Here, we describe the first case presenting with TBRS and medulloblastoma. We also discuss the associations between mutations in DNMT3A found in TBRS, AML, and medulloblastoma.
Collapse
Affiliation(s)
- Kieron J Sweeney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Le service de neurochirurgie pédiatrique, Hopital Mere Femme, Hospices Civils de Lyon, Lyon, France
| | - Carmine Mottolese
- Le service de neurochirurgie pédiatrique, Hopital Mere Femme, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Belot
- Service de néphrologie-rhumatologie-dermatologie pédiatriques, Hopital Mere Femme, Hospices Civils de Lyon, Lyon, France
| | - Alexandru Szathmari
- Le service de neurochirurgie pédiatrique, Hopital Mere Femme, Hospices Civils de Lyon, Lyon, France
| | | | - Gaetan Lesca
- Service de cytogenetique constitutionnelle, Hospices Civils de Lyon, Lyon, France
| | - Audrey Putoux
- Service de génétique, CHU de Lyon, Lyon, France.,Centre de Recherche en Neurosciences de Lyon, équipe GENDEV, INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Federico Di Rocco
- Le service de neurochirurgie pédiatrique, Hopital Mere Femme, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
145
|
de Matos MR, Posa I, Carvalho FS, Morais VA, Grosso AR, de Almeida SF. A Systematic Pan-Cancer Analysis of Genetic Heterogeneity Reveals Associations with Epigenetic Modifiers. Cancers (Basel) 2019; 11:E391. [PMID: 30897760 PMCID: PMC6468518 DOI: 10.3390/cancers11030391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/09/2019] [Accepted: 03/17/2019] [Indexed: 12/30/2022] Open
Abstract
Intratumor genetic heterogeneity (ITH) is the main obstacle to effective cancer treatment and a major mechanism of drug resistance. It results from the continuous evolution of different clones of a tumor over time. However, the molecular features underlying the emergence of genetically-distinct subclonal cell populations remain elusive. Here, we conducted an exhaustive characterization of ITH across 2807 tumor samples from 16 cancer types. Integration of ITH scores and somatic variants detected in each tumor sample revealed that mutations in epigenetic modifier genes are associated with higher ITH levels. In particular, genes that regulate genome-wide histone and DNA methylation emerged as being determinant of high ITH. Indeed, the knockout of histone methyltransferase SETD2 or DNA methyltransferase DNMT3A using the CRISPR/Cas9 system on cancer cells led to significant expansion of genetically-distinct clones and culminated in highly heterogeneous cell populations. The ITH scores observed in knockout cells recapitulated the heterogeneity levels observed in patient tumor samples and correlated with a better mitochondrial bioenergetic performance under stress conditions. Our work provides new insights into tumor development, and discloses new drivers of ITH, which may be useful as either predictive biomarkers or therapeutic targets to improve cancer treatment.
Collapse
Affiliation(s)
- Mafalda Ramos de Matos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Ioana Posa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Filipa Sofia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Vanessa Alexandra Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Ana Rita Grosso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Sérgio Fernandes de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
146
|
El Gammal MM, Ebid GT, Madney YM, Abo-Elazm OM, Kelany AK, Torra OS, Radich JP. Clinical Effect of Combined Mutations in DNMT3A, FLT3-ITD, and NPM1 Among Egyptian Acute Myeloid Leukemia Patients. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:e281-e290. [PMID: 30926392 DOI: 10.1016/j.clml.2019.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Genotypic mutation of fms like tyrosine kinase 3 (FLT3), Nucleophosmin (NPM1), and DNA-methyltransferase 3A (DNMT3A) has been involved in the leukemogenesis of acute myeloid leukemia (AML), with the well known poor prognostic role of FLT3 and DNMT3A and favorable role for the NPM1 mutation. PATIENTS AND METHODS A total of 123 patients with AML treated at the National Cancer Institute, Cairo University were examined for mutations in DNMT3A, FLT3, and NPM1 using polymerase chain reaction (PCR) for detecting FLT3 internal tandem duplication (ITD) and allele-specific PCR to detect DNMT3A and NPM1A mutations. Two-way direct sequencing and Gene Mapper version 4.0 software (Fred Hutchinson Cancer Research Center) sequencing were used as confirmatory tests for DNMT3A and NPM1A mutations, respectively. RESULTS DNMT3A, FLT3-ITD, and NPM1A gene mutations were detected in 22 (17.9%), 22 (17.9%), and 24 (19.5%) patients, respectively. DNMT3A/FLT3, NPM1A/FLT3, and DNMT3A/NPM1A combined mutant genotypes were detected in 5 (4.1%), 9 (7.3%), and 3 (2.4%) patients, respectively. Two patients (1.6%) had triple mutant genotypes (DNMT3A/FLT3/NPM1A). FLT3 and DNMT3A mutations had a significant negative effect on complete response (CR) rates (P = .016). FLT3-ITD mutation was significantly associated with older age (P = .029), and lower overall survival (OS) rates (P = .046). DNMT3A/FLT3 combined mutant genotypes were significantly associated with a lower OS rate (P = .016). Mutant NPM1/wild type FLT3, wild type DNMT3A/FLT3, and mutant NPM1A/wild type DNMT3A combinations were significantly associated with higher CR rates (P = .006, P = .006, and P = .023, respectively). CONCLUSION DNMT3A, FLT3-ITD, and NPM1A are frequent mutations in Egyptian AML. FLT3-ITD mutations are frequent in older patients. DNMT3A and FLT3-ITD mutations were associated with an unfavorable prognosis, but the NPM1A mutation has tendency to indicate a good prognosis.
Collapse
Affiliation(s)
| | - Gamal T Ebid
- Clinical Pathology Department, National Cancer Institute, Cairo, Egypt
| | - Youssef M Madney
- Pediatric Oncology, Cairo University and Children Cancer Hospital, Cairo, Egypt
| | - Omnia M Abo-Elazm
- Cancer Epidemiology, Biostatistics Department, National Cancer Institute, Cairo, Egypt
| | | | - Olga S Torra
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | | |
Collapse
|
147
|
Kogan AA, Lapidus RG, Baer MR, Rassool FV. Exploiting epigenetically mediated changes: Acute myeloid leukemia, leukemia stem cells and the bone marrow microenvironment. Adv Cancer Res 2019; 141:213-253. [PMID: 30691684 DOI: 10.1016/bs.acr.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) derives from the clonal expansion of immature myeloid cells in the bone marrow, and results in the disruption of normal hematopoiesis and subsequent bone marrow failure. The bone marrow microenvironment (BME) and its immune and other supporting cells are regarded to facilitate the survival, differentiation and proliferation of leukemia stem cells (LSCs), which enables AML cells to persist and expand despite treatment. Recent studies have identified epigenetic modifications among AML cells and BME constituents in AML, and have shown that epigenetic therapy can potentially reprogram these alterations. In this review, we summarize the interactions between the BME and LSCs, and discuss changes in how the BME and immune cells interact with AML cells. After describing the epigenetic modifications seen across chromatin, DNA, the BME, and the immune microenvironment, we explore how demethylating agents may reprogram these pathological interactions, and potentially re-sensitize AML cells to treatment.
Collapse
Affiliation(s)
- Aksinija A Kogan
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Rena G Lapidus
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria R Baer
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.
| |
Collapse
|
148
|
Bond J, Touzart A, Leprêtre S, Graux C, Bargetzi M, Lhermitte L, Hypolite G, Leguay T, Hicheri Y, Guillerm G, Bilger K, Lhéritier V, Hunault M, Huguet F, Chalandon Y, Ifrah N, Macintyre E, Dombret H, Asnafi V, Boissel N. DNMT3A mutation is associated with increased age and adverse outcome in adult T-cell acute lymphoblastic leukemia. Haematologica 2019; 104:1617-1625. [PMID: 30655366 PMCID: PMC6669163 DOI: 10.3324/haematol.2018.197848] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/10/2019] [Indexed: 11/26/2022] Open
Abstract
The prognostic implications of DNMT3A genotype in T-cell acute lymphoblastic leukemia are incompletely understood. We performed comprehensive genetic and clinico-biological analyses of T-cell acute lymphoblastic leukemia patients with DNMT3A mutations treated during the GRAALL-2003 and -2005 studies. Eighteen of 198 cases (9.1%) had DNMT3A alterations. Two patients also had DNMT3A mutations in non-leukemic cell DNA, providing the first potential evidence of age-related clonal hematopoiesis in T-cell acute lymphoblastic leukemia. DNMT3A mutation was associated with older age (median 43.9 years vs. 29.4 years, P<0.001), immature T-cell receptor genotype (53.3% vs. 24.4%, P=0.016) and lower remission rates (72.2% mutated vs. 94.4% non-mutated, P=0.006). DNMT3A alterations were significantly associated with worse clinical outcome, with higher cumulative incidence of relapse (HR 2.33, 95% CI: 1.05-5.16, P=0.037) and markedly poorer event-free survival (HR 3.22, 95% CI: 1.81-5.72, P<0.001) and overall survival (HR 2.91, 95% CI: 1.56-5.43, P=0.001). Adjusting for age as a covariate, or restricting the analysis to patients over 40 years, who account for almost 90% of DNMT3A-mutated cases, did not modify these observations. In multivariate analysis using the risk factors that were used to stratify treatment during the GRAALL studies, DNMT3A mutation was significantly associated with shorter event-free survival (HR 2.33, 95% CI: 1.06 – 4.04, P=0.02). Altogether, these results identify DNMT3A genotype as a predictor of aggressive T-cell acute lymphoblastic leukemia biology. The GRAALL-2003 and -2005 studies were registered at http://www.ClinicalTrials.gov as #NCT00222027 and #NCT00327678, respectively.
Collapse
Affiliation(s)
- Jonathan Bond
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France.,Systems Biology Ireland, School of Medicine, University College Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Aurore Touzart
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Stéphane Leprêtre
- INSERM U1245 and Department of Hematology, Centre Henri Becquerel and Normandie Université UNIROUEN, Rouen, France
| | - Carlos Graux
- Department of Hematology, Université Catholique de Louvain (UCL), Centre Hospitalier Universitaire (CHU) Namur - Godinne site, Yvoir, Belgium
| | - Mario Bargetzi
- University Medical Department, Division of Oncology, Hematology and Transfusion Medicine, Kantonsspital Aarau, Aarau, Switzerland.,Swiss Group for Clinical Cancer Research (SAKK), Bern, Switerland
| | - Ludovic Lhermitte
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Guillaume Hypolite
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | | | - Yosr Hicheri
- Hematology Service, Hôpital St Eloi, Montpellier, France
| | | | - Karin Bilger
- Hematology Service, CHU Hautepierre, Strasbourg, France
| | - Véronique Lhéritier
- Group for Research on Adult Acute Lymphoblastic Leukemia, Coordination Office, Centre Hospitalier Lyon Sud, Lyon, France
| | - Mathilde Hunault
- PRES LUNAM, CHU Angers Service des Maladies du Sang and CRCINA INSERM, Angers, France
| | - Françoise Huguet
- Department of Hematology, CHU de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Yves Chalandon
- University Medical Department, Division of Oncology, Hematology and Transfusion Medicine, Kantonsspital Aarau, Aarau, Switzerland.,Department of Oncology, Hematology Division, University Hospital, Geneva, Switzerland
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers Service des Maladies du Sang and CRCINA INSERM, Angers, France
| | - Elizabeth Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Hervé Dombret
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, AP-HP, University Hospital Saint-Louis, Paris, France
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Nicolas Boissel
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, AP-HP, University Hospital Saint-Louis, Paris, France
| |
Collapse
|
149
|
Alfayez M, Wang SA, Bannon SA, Kontoyiannis DP, Kornblau SM, Orange JS, Mace EM, DiNardo CD. Myeloid malignancies with somatic GATA2 mutations can be associated with an immunodeficiency phenotype. Leuk Lymphoma 2019; 60:2025-2033. [PMID: 30648453 DOI: 10.1080/10428194.2018.1551535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germline mutations in GATA2 are associated with a complex immunodeficiency and cancer predisposition syndrome. Somatic GATA2mut in myeloid malignancies may impart a similar phenotype. We reviewed adult patients with a diagnosis of GATA2mut hematological malignancy who were referred to our HHMC for genetic testing, and identified to have somatic GATA2mut. Nine patients with a median age of 63 years were included. Six patients (66.7%) were males. Atypical CML and acute myeloid leukemia were the most common initial presentation. The median overall VAF was 47.14%. Monocytopenia was pronounced when the GATA2mut involved the C-terminal ZFD. GATA2 N-terminal ZFD mutations tend to be co-mutated with biCEBPAmut. Unlike germline GATA2 mutations, monocytopenia associated with somatic GATA2 mutations often resolved at remission. We concluded that similar to germline GATA2 mutations, a subset of somatic GATA2 mutations can impart a germline phenotype.
Collapse
Affiliation(s)
- Mansour Alfayez
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Sa A Wang
- b Department of Hematopathology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Sarah A Bannon
- c Clinical Cancer Genetics Program , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Dimitrios P Kontoyiannis
- d Department of Infectious Diseases , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Steven M Kornblau
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jordan S Orange
- e Department of Pediatrics , Columbia University Medical Center , New York , NY , USA
| | - Emily M Mace
- e Department of Pediatrics , Columbia University Medical Center , New York , NY , USA
| | - Courtney D DiNardo
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
150
|
Liu L, Shi T, Houk KN, Zhao YL. Understanding the R882H mutation effects of DNA methyltransferase DNMT3A: a combination of molecular dynamics simulations and QM/MM calculations. RSC Adv 2019; 9:31425-31434. [PMID: 35527972 PMCID: PMC9072302 DOI: 10.1039/c9ra06791d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 01/15/2023] Open
Abstract
The AML-related high-frequent R882H mutation of DNA (cytosine-5)-methyltransferase 3A (DNMT3A), a key enzyme forde novoepigenetic methylation in human beings, was characterized by a disturbing conformation ofS-adenosylmethionine (SAM).
Collapse
Affiliation(s)
- Lanxuan Liu
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|