101
|
Hong J, Guo G, Wu S, Lin S, Zhou Z, Chen S, Ye C, Li J, Lin W, Ye Y. Altered MUC1 epitope-specific CTLs: A potential target for immunotherapy of pancreatic cancer. J Leukoc Biol 2022; 112:1577-1590. [PMID: 36222123 DOI: 10.1002/jlb.5ma0922-749r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
The efficacy of conventional treatments for pancreatic cancer remains unsatisfactory, and immunotherapy is an emerging option for adjuvant treatment of this highly deadly disorder. The tumor-associated antigen (TAA) MUC1 is expressed in a variety of human cancers and is overexpressed in more than 90% of pancreatic cancer, which makes it an attractive target for cancer immunotherapy. As a self-protein, MUC1 shows a low immunogenicity because of immune tolerance, and the most effective approach to breaking immune tolerance is alteration of the antigen structure. In this study, the altered MUC11068-1076Y1 epitope (YLQRDISEM) by modification of amino acid residues in sequences presented a higher immunogenicity and elicited more CTLs relative to the wild-type (WT) MUC11068-1076 epitope (ELQRDISEM). In addition, the altered MUC11068-1076Y1 epitope was found to cross-recognize pancreatic cancer cells expressing WT MUC1 peptides in an HLA-A0201-restricted manner and trigger stronger immune responses against pancreatic cancer via the perforin/granzyme apoptosis pathway. As a potential HLA-A0201-restricted CTL epitope, the altered MUC11068-1076Y1 epitope is considered as a promising target for immunotherapy of pancreatic cancer. Alteration of epitope residues may be feasible to solve the problem of the low immunogenicity of TAA and break immune tolerance to induce immune responses against human cancers.
Collapse
Affiliation(s)
- Jingwen Hong
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China.,Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China
| | - Guoxiang Guo
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China.,Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China
| | - Suxin Wu
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China.,Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China
| | - Shengzhe Lin
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, NO. 29, Xinquan Road, Fuzhou, Fujian 350001, China
| | - Zhifeng Zhou
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China.,Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China.,Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou City, Fujian 350014, China
| | - Shuping Chen
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China.,Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou City, Fujian 350014, China
| | - Chunmei Ye
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China
| | - Jieyu Li
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China.,Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China.,Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou City, Fujian 350014, China
| | - Wansong Lin
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China.,Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China.,Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou City, Fujian 350014, China
| | - Yunbin Ye
- School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, Fujian, 350122, China.,Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian, 350014, China.,Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou City, Fujian 350014, China
| |
Collapse
|
102
|
Saini P, Adeniji OS, Abdel-Mohsen M. Inhibitory Siglec-sialic acid interactions in balancing immunological activation and tolerance during viral infections. EBioMedicine 2022; 86:104354. [PMID: 36371982 PMCID: PMC9663867 DOI: 10.1016/j.ebiom.2022.104354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
Abstract
Siglecs are a family of emerging glyco-immune checkpoints. Inhibiting them can enhance the functions of several types of immune cells, whereas engaging them can reduce hyper-inflammation and hyper-activation of immune functions. Siglec-sialoglycan interactions play an important role in modulating immunological functions during cancer, however, their roles in regulating immunological equilibrium during viral infections is less clear. In this review, we discuss the documented and potential roles of inhibitory Siglecs in balancing immune activation and tolerance during viral infections and consider how this balance could affect both the desired anti-viral immunological functions and the unwanted hyper- or chronic inflammation. Finally, we discuss the opportunities to target the Siglec immunological switches to reach an immunological balance during viral infections: inhibiting specific Siglec-sialoglycan interactions when maximum anti-viral immune responses are needed, or inducing other interactions when preventing excessive inflammation or reducing chronic immune activation are the goals.
Collapse
|
103
|
Liu J, Wang Q, Kang Y, Xu S, Pang D. Unconventional protein post-translational modifications: the helmsmen in breast cancer. Cell Biosci 2022; 12:22. [PMID: 35216622 PMCID: PMC8881842 DOI: 10.1186/s13578-022-00756-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
AbstractBreast cancer is the most prevalent malignant tumor and a leading cause of mortality among females worldwide. The tumorigenesis and progression of breast cancer involve complex pathophysiological processes, which may be mediated by post-translational modifications (PTMs) of proteins, stimulated by various genes and signaling pathways. Studies into PTMs have long been dominated by the investigation of protein phosphorylation and histone epigenetic modifications. However, with great advances in proteomic techniques, several other PTMs, such as acetylation, glycosylation, sumoylation, methylation, ubiquitination, citrullination, and palmitoylation have been confirmed in breast cancer. Nevertheless, the mechanisms, effects, and inhibitors of these unconventional PTMs (particularly, the non-histone modifications other than phosphorylation) received comparatively little attention. Therefore, in this review, we illustrate the functions of these PTMs and highlight their impact on the oncogenesis and progression of breast cancer. Identification of novel potential therapeutic drugs targeting PTMs and development of biological markers for the detection of breast cancer would be significantly valuable for the efficient selection of therapeutic regimens and prediction of disease prognosis in patients with breast cancer.
Collapse
|
104
|
Fan T, Liao Q, Zhao Y, Dai H, Song S, He T, Wang Z, Huang J, Zeng Z, Guo H, Zhang H, Qiu X. Sialylated IgG in epithelial cancers inhibits antitumor function of T cells via Siglec-7. Cancer Sci 2022; 114:370-383. [PMID: 36310398 PMCID: PMC9899632 DOI: 10.1111/cas.15631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 02/07/2023] Open
Abstract
Although effective, immune checkpoint blockade induces response in only a subset of cancer patients. There is an urgent need to discover new immune checkpoint targets. Recently, it was found that a class of sialic acid-binding immunoglobulin-like lectins (Siglecs) expressed on the surface of T cells in cancer patients inhibit T cell activation through their intracellular immunosuppressive motifs by recognizing sialic acid-carrying glycans, sialoglycans. However, ligands of Siglecs remain elusive. Here, we report sialylated IgG (SIA-IgG), a ligand to Siglec-7, that is highly expressed in epithelial cancer cells. SIA-IgG binds Siglec-7 directly and inhibits TCR signals. Blocking of either SIA-IgG or Siglec-7 elicited potent antitumor immunity in T cells. Our study suggests that blocking of Siglec-7/SIA-IgG offers an opportunity to enhance immune function while simultaneously sensitizing cancer cells to immune attack.
Collapse
Affiliation(s)
- Tianrui Fan
- Department of Immunology, School of Basic Medical SciencesPeking UniversityBeijingChina,NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Qinyuan Liao
- Department of ImmunologyGuilin Medical UniversityGuilinChina
| | - Yang Zhao
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Hui Dai
- Department of Immunology, School of Basic Medical SciencesPeking UniversityBeijingChina,NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Shiyu Song
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tianhui He
- Department of Gynecology and ObstetricsThe Third Hospital of Peking UniversityBeijingChina
| | - Zihan Wang
- Department of Immunology, School of Basic Medical SciencesPeking UniversityBeijingChina,NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Jing Huang
- Department of Immunology, School of Basic Medical SciencesPeking UniversityBeijingChina,NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Zexian Zeng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Hongyan Guo
- Department of Gynecology and ObstetricsThe Third Hospital of Peking UniversityBeijingChina
| | - Haizeng Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical SciencesPeking UniversityBeijingChina,NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| |
Collapse
|
105
|
Zhou Q, Zhang G, Liu Z, Zhang J, Shi R. Identification and exploration of novel M2 macrophage-related biomarkers in the development of acute myocardial infarction. Front Cardiovasc Med 2022; 9:974353. [PMID: 36440001 PMCID: PMC9685672 DOI: 10.3389/fcvm.2022.974353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI), one of the most severe and fatal cardiovascular diseases, is a major cause of morbidity and mortality worldwide. Macrophages play a critical role in ventricular remodeling after AMI. The regulatory mechanisms of the AMI progression remain unclear. This study aimed to identify hub regulators of macrophage-related modules and provide translational experiments with potential therapeutic targets. MATERIALS AND METHODS The GSE59867 dataset was downloaded from the Gene Expression Omnibus (GEO) database for bioinformatics analysis. The expression patterns of 22 types of immune cells were determined using CIBERSORT. GEO2R was used to identify differentially expressed genes (DEGs) through the limma package. Then, DEGs were clustered into different modules, and relationships between modules and macrophage types were analyzed using weighted gene correlation network analysis (WGCNA). Further functional enrichment analysis was performed using significantly associated modules. The module most significantly associated with M2 macrophages (Mϕ2) was chosen for subsequent analysis. Co-expressed DEGs of AMI were identified in the GSE123342 and GSE97320 datasets and module candidate hub genes. Additionally, hub gene identification was performed in GSE62646 dataset and clinical samples. RESULTS A total of 8,760 DEGs were identified and clustered into ten modules using WGCNA analysis. The blue and turquoise modules were significantly related to Mϕ2, and 482 hub genes were discerned from two hub modules that conformed to module membership values > 0.8 and gene significance values > 0.25. Subsequent analysis using a Venn diagram assessed 631 DEGs in GSE123342, 1457 DEGs in GSE97320, and module candidate hub genes for their relationship with Mϕ2 in the progression of AMI. Finally, four hub genes (CSF2RB, colony stimulating factor 2 receptor subunit beta; SIGLEC9, sialic acid-binding immunoglobulin-like lectin 9; LRRC25, leucine-rich repeat containing 25; and CSF3R, colony-stimulating factor-3 receptor) were validated to be differentially expressed and to have high diagnostic value in both GSE62646 and clinical samples. CONCLUSION Using comprehensive bioinformatics analysis, we identified four novel genes that may play crucial roles in the pathophysiological mechanism of AMI. This study provides novel insights into the impact of macrophages on the progression of AMI and directions for Mϕ2-targeted molecular therapies for AMI.
Collapse
Affiliation(s)
- Qiaoyu Zhou
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Guogang Zhang
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhaoya Liu
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Zhang
- Department of Gastroenterology, The First Hospital of Changsha, Changsha, China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, The Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
106
|
Stanczak MA, Mantuano NR, Kirchhammer N, Sanin DE, Jacob F, Coelho R, Everest-Dass AV, Wang J, Trefny MP, Monaco G, Bärenwaldt A, Gray MA, Petrone A, Kashyap AS, Glatz K, Kasenda B, Normington K, Broderick J, Peng L, Pearce OM, Pearce EL, Bertozzi CR, Zippelius A, Läubli H. Targeting cancer glycosylation repolarizes tumor-associated macrophages allowing effective immune checkpoint blockade. Sci Transl Med 2022; 14:eabj1270. [PMID: 36322632 PMCID: PMC9812757 DOI: 10.1126/scitranslmed.abj1270] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune checkpoint blockade (ICB) has substantially improved the prognosis of patients with cancer, but the majority experiences limited benefit, supporting the need for new therapeutic approaches. Up-regulation of sialic acid-containing glycans, termed hypersialylation, is a common feature of cancer-associated glycosylation, driving disease progression and immune escape through the engagement of Siglec receptors on tumor-infiltrating immune cells. Here, we show that tumor sialylation correlates with distinct immune states and reduced survival in human cancers. The targeted removal of Siglec ligands in the tumor microenvironment, using an antibody-sialidase conjugate, enhanced antitumor immunity and halted tumor progression in several murine models. Using single-cell RNA sequencing, we revealed that desialylation repolarized tumor-associated macrophages (TAMs). We also identified Siglec-E as the main receptor for hypersialylation on TAMs. Last, we found that genetic and therapeutic desialylation, as well as loss of Siglec-E, enhanced the efficacy of ICB. Thus, therapeutic desialylation represents an immunotherapeutic approach to reshape macrophage phenotypes and augment the adaptive antitumor immune response.
Collapse
Affiliation(s)
- Michal A. Stanczak
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | | | - Nicole Kirchhammer
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - David E. Sanin
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Francis Jacob
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Ricardo Coelho
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Arun V. Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast QLD4222, Australia
| | - Jinyu Wang
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Marcel P. Trefny
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Gianni Monaco
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Anne Bärenwaldt
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Melissa A. Gray
- Department of Chemistry, Stanford ChEM-H, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | - Abhishek S. Kashyap
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Katharina Glatz
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Benjamin Kasenda
- Division of Oncology, Department of Theragnostics, University Hospital Basel, 4031 Basel, Switzerland
| | | | | | - Li Peng
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | - Oliver M.T. Pearce
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University, London EC1M 6BQ, UK
| | - Erika L. Pearce
- Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford ChEM-H, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Alfred Zippelius
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
- Division of Oncology, Department of Theragnostics, University Hospital Basel, 4031 Basel, Switzerland
| | - Heinz Läubli
- Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
- Division of Oncology, Department of Theragnostics, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
107
|
Ganguly K, Shah A, Atri P, Rauth S, Ponnusamy MP, Kumar S, Batra SK. Chemokine-mucinome interplay in shaping the heterogeneous tumor microenvironment of pancreatic cancer. Semin Cancer Biol 2022; 86:511-520. [PMID: 35346803 PMCID: PMC9793394 DOI: 10.1016/j.semcancer.2022.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is exemplified by a complex immune-suppressive, fibrotic tumor microenvironment (TME), and aberrant expression of mucins. The constant crosstalk between cancer cells, cancer-associated fibroblasts (CAFs), and the immune cells mediated by the soluble factors and inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) promote the dynamic temporal switch towards an immune-escape phenotype in the neoplastic cells and its microenvironment that bolsters disease progression. Chemokines have been studied in PC pathogenesis, albeit poorly in the context of mucins, tumor glycocalyx, and TME heterogeneity (CAFs and immune cells). With correlative analysis from PC patients' transcriptome data, support from available literature, and scientific arguments-based speculative extrapolations in terms of disease pathogenesis, we have summarized in this review a comprehensive understanding of chemokine-mucinome interplay during stromal modulation and immune-suppression in PC. Future studies should focus on deciphering the complexities of chemokine-mediated control of glycocalyx maturation, immune infiltration, and CAF-associated immune suppression. Knowledge extracted from such studies will be beneficial to mechanistically correlate the mucin-chemokine abundance in serum versus pancreatic tumors of patients, which may aid in prognostication and stratification of PC patients for immunotherapy.
Collapse
Affiliation(s)
- Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
108
|
Huang J, Li M, Mei B, Li J, Zhu Y, Guo Q, Huang J, Zhang G. Whole-cell tumor vaccines desialylated to uncover tumor antigenic Gal/GalNAc epitopes elicit anti-tumor immunity. J Transl Med 2022; 20:496. [PMID: 36316782 PMCID: PMC9620617 DOI: 10.1186/s12967-022-03714-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Aberrant sialoglycans on the surface of tumor cells shield potential tumor antigen epitopes, escape recognition, and suppress activation of immunocytes. α2,3/α2,6Gal- and α2,6GalNAc (Gal/GalNAc)-linked sialic acid residues of sialoglycans could affect macrophage galactose-type lectins (MGL) mediated-antigen uptake and presentation and promote sialic acid-binding immunoglobulin-like lectins (Siglecs) mediated-immunosuppression. Desialylating sialoglycans on tumor cells could present tumor antigens with Gal/GalNAc residues and overcome glyco-immune checkpoints. Thus, we explored whether vaccination with desialylated whole-cell tumor vaccines (DWCTVs) triggers anti-tumor immunity in ovarian cancer (OC). METHODS Sialic acid (Sia) and Gal/GalNAc residues on OC A2780, OVCAR3, and ID8 cells treated with α2-3 neuraminidase (α2-3NA) and α2-6NA, and Sigec-9 or Siglec-E and MGL on DCs pulsed with desialylated OC cells were identified using flow cytometry (FCM); RT-qPCR determined IFNG expression of T cells, TRBV was sequenced using Sanger sequencing and cytotoxicity of αβ T cells was measured with LDH assay; Anti-tumor immunity in vivo was validated via vaccination with desialylated whole-cell ID8 vaccine (ID8 DWCTVs). RESULTS Gal/GalNAc but not Sia residues were significantly increased in the desialylated OC cells. α2-3NA-modified DWCTV increased MGL but decreased Siglec-9 or Siglec E expression on DCs. MGLbright/Siglec-9dim DCs significantly up-regulated IFNG expression and CD4/CD8 ratio of T cells and diversified the TCR repertoire of αβ T-cells that showed enhanced cytotoxic activity. Vaccination with α2-3NA-modified ID8 DWCTVs increased MGLbright/Siglec-Edim DCs in draining lymph nodes, limited tumor growth, and extended survival in tumor-challenged mice. CONCLUSION Desialylated tumor cell vaccine could promote anti-tumor immunity and provide a strategy for OC immunotherapy in a clinical setting.
Collapse
Affiliation(s)
- Jianmei Huang
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Meiying Li
- grid.415880.00000 0004 1755 2258Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Bingjie Mei
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Junyang Li
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Zhu
- grid.54549.390000 0004 0369 4060Department of Ultrasound, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiaoshan Guo
- grid.415880.00000 0004 1755 2258Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Jianming Huang
- grid.415880.00000 0004 1755 2258Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Guonan Zhang
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China ,grid.54549.390000 0004 0369 4060Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
109
|
Qian Y, Yang T, Liang H, Deng M. Myeloid checkpoints for cancer immunotherapy. Chin J Cancer Res 2022; 34:460-482. [PMID: 36398127 PMCID: PMC9646457 DOI: 10.21147/j.issn.1000-9604.2022.05.07] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2023] Open
Abstract
Myeloid checkpoints are receptors on the myeloid cell surface which can mediate inhibitory signals to modulate anti-tumor immune activities. They can either inhibit cellular phagocytosis or suppress T cells and are thus involved in the pathogenesis of various diseases. In the tumor microenvironment, besides killing tumor cells by phagocytosis or activating anti-tumor immunity by tumor antigen presentation, myeloid cells could execute pro-tumor efficacies through myeloid checkpoints by interacting with counter-receptors on other immune cells or cancer cells. In summary, myeloid checkpoints may be promising therapeutic targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Yixin Qian
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Ting Yang
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Huan Liang
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Mi Deng
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, China
| |
Collapse
|
110
|
Gu W, Xu Y, Chen X, Jiang H. Characteristics of clinical trials for non-small cell lung cancer therapeutic vaccines registered on ClinicalTrials.gov. Front Immunol 2022; 13:936667. [PMID: 36341464 PMCID: PMC9627174 DOI: 10.3389/fimmu.2022.936667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Even after complete surgical treatment or chemotherapy, Non-Small Cell Lung Cancer (NSCLC) patients are also at substantial risk for recurrence and spread trend. Therapeutic cancer vaccination could increase the anti-tumor immune response and prevent tumor relapse. This study aimed to assess the characteristics of NSCLC therapeutic vaccines registered on ClinicalTrials.gov. Methods We conducted a cross-sectional, descriptive study of clinical trials for Non-Small Cell Lung Cancer Therapeutic Vaccines Registered on ClinicalTrials.gov (https://clinicaltrials.gov/) through March 17, 2022. Results This study encompassed 117 registered trials included for data analysis. The number of trials was significantly correlated with a beginning year (r = 0.504, P < 0.010). Of these trials, 45.30% were completed, 12.82% were terminated, and 8.55% were withdrawn. More than half of trials (52.99%) were funded by industry, and more than half of trials (52.14%) were located in economically developed North America. Regarding study designs of these trials, 27.35% were randomized, 52.14% were single group assignment, 83.76% were without masking, 35.90% were phase 1, and more than half of the trials (56.41%) recruited less than 50 participants. The highest proportion of vaccine types was protein/peptide vaccines (41.88%). Regarding TNM staging, the highest proportion of the trials is stage III-IV (26.50%). Conclusion The number of clinical trials about the cancer therapeutic vaccines was sustained an increase in recent years. The main characteristic of clinical trials for NSCLC therapeutic vaccines is lack of randomized control, lack of mask, and recruiting less than 50 participants. In recent years, the protein/peptide vaccines for NSCLC active immunotherapy have been well studied.
Collapse
Affiliation(s)
- Wenyue Gu
- Department of Pathology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, China
| | - Yangjie Xu
- Department of Oncology, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Xiaohong Chen
- Intensive Care Unit, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, China
| | - Hao Jiang
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
- *Correspondence: Hao Jiang,
| |
Collapse
|
111
|
Xu C, Xiao M, Li X, Xin L, Song J, Zhan Q, Wang C, Zhang Q, Yuan X, Tan Y, Fang C. Origin, activation, and targeted therapy of glioma-associated macrophages. Front Immunol 2022; 13:974996. [PMID: 36275720 PMCID: PMC9582955 DOI: 10.3389/fimmu.2022.974996] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
The glioma tumor microenvironment plays a crucial role in the development, occurrence, and treatment of gliomas. Glioma-associated macrophages (GAMs) are the most widely infiltrated immune cells in the tumor microenvironment (TME) and one of the major cell populations that exert immune functions. GAMs typically originate from two cell types-brain-resident microglia (BRM) and bone marrow-derived monocytes (BMDM), depending on a variety of cytokines for recruitment and activation. GAMs mainly contain two functionally and morphologically distinct activation types- classically activated M1 macrophages (antitumor/immunostimulatory) and alternatively activated M2 macrophages (protumor/immunosuppressive). GAMs have been shown to affect multiple biological functions of gliomas, including promoting tumor growth and invasion, angiogenesis, energy metabolism, and treatment resistance. Both M1 and M2 macrophages are highly plastic and can polarize or interconvert under various malignant conditions. As the relationship between GAMs and gliomas has become more apparent, GAMs have long been one of the promising targets for glioma therapy, and many studies have demonstrated the therapeutic potential of this target. Here, we review the origin and activation of GAMs in gliomas, how they regulate tumor development and response to therapies, and current glioma therapeutic strategies targeting GAMs.
Collapse
Affiliation(s)
- Can Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Menglin Xiao
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Xiang Li
- Hebei University School of Basic Medical Sciences, Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Lei Xin
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Jia Song
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- Hebei University School of Basic Medical Sciences, Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Qi Zhan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Changsheng Wang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Qisong Zhang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Xiaoye Yuan
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- Hebei University School of Basic Medical Sciences, Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanli Tan
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- Hebei University School of Basic Medical Sciences, Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
- *Correspondence: Chuan Fang, ; Yanli Tan,
| | - Chuan Fang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- *Correspondence: Chuan Fang, ; Yanli Tan,
| |
Collapse
|
112
|
Wang JL, Hu XY, Han CG, Hou SY, Wang HS, Zheng F. Lanthanide Complexes for Tumor Diagnosis and Therapy by Targeting Sialic Acid. ACS NANO 2022; 16:14827-14837. [PMID: 35981089 DOI: 10.1021/acsnano.2c05715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sialic acid (SA) is overexpressed on cell membranes of tumor cells, and increased serum SA concentration has been observed in tumor-bearing patients. Herein, a series of lanthanide-containing bimetallic complexes (TDA-M-Lns) for targeting SA were prepared via coordination among luminescent lanthanide ions (Ln3+ = Tb3+, Eu3+, Dy3+, or Sm3+), metal ion quenchers (M2+ = Cu2+ or Co2+), and the organic ligand 2,2'-thiodiacetic acid (TDA). SA can competitively coordinate with Ln3+, resulting in the "signal-on" of the Ln3+. Therefore, the TDA-M-Lns can be simply used for cost-saving detection of SA in the blood samples. Among the TDA-M-Lns, TDA-Co-Eu showed the highest sensitivity to detect SA in the blood of tumor-bearing mice. Furthermore, the TDA-Co-Eu was successfully used to target SA and deposit Eu3+ on the surfaces of tumor cells for the inhibition of tumor cell growth and migration. The therapeutic effect of TDA-Co-Eu on a Balb/c mouse liver tumor model was evaluated. It was proved that TDA-Co-Eu can be applied for SA detection as well as for inhibiting tumor growth.
Collapse
Affiliation(s)
- Jia-Li Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Xin-Yuan Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng-Gang Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Shao-Yuan Hou
- Administration for Market Regulation of Shanting district, Zaozhuang 277200, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Zheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
113
|
The new progress in cancer immunotherapy. Clin Exp Med 2022:10.1007/s10238-022-00887-0. [DOI: 10.1007/s10238-022-00887-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022]
Abstract
AbstractThe cross talk between immune and non-immune cells in the tumor microenvironment leads to immunosuppression, which promotes tumor growth and survival. Immunotherapy is an advanced treatment that boosts humoral and cellular immunity rather than using chemotherapy or radiation-based strategy associated with non-specific targets and toxic effects on normal cells. Immune checkpoint inhibitors and T cell-based immunotherapy have already exhibited significant effects against solid tumors and leukemia. Tumor cells that escape immune surveillance create a major obstacle to acquiring an effective immune response in cancer patients. Tremendous progress had been made in recent years on a wide range of innate and adaptive immune checkpoints which play a significant role to prevent tumorigenesis, and might therefore be potential targets to suppress tumor cells growth. This review aimed to summarize the underlying molecular mechanisms of existing immunotherapy approaches including T cell and NK-derived immune checkpoint therapy, as well as other intrinsic and phagocytosis checkpoints. Together, these insights will pave the way for new innate and adaptive immunomodulatory targets for the development of highly effective new therapy in the future.
Collapse
|
114
|
Jiang K, Wen X, Pettersson T, Crouzier T. Engineering Surfaces with Immune Modulating Properties of Mucin Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39727-39735. [PMID: 36000701 PMCID: PMC9460428 DOI: 10.1021/acsami.1c19250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Hydrogels of cross-linked mucin glycoproteins (Muc-gel) have shown strong immune-modulating properties toward macrophages in vitro, which are translated in vivo by the dampening of the foreign body response to implantation in mice. Beyond mucin hydrogels, other biomaterials such as sensors, electrodes, and other long-term implants would also benefit from such immune-modulating properties. In this work, we aimed to transfer the bioactivity observed for three-dimensional Muc-gels to the surface of two model materials by immobilizing mucin into thin films (Muc-film) using covalent layer-by-layer assembly. We tested how the surface immobilization of mucins affects macrophage responses compared to Muc-gels. We showed that Muc-films on soft polyacrylamide gels mimic Muc-gel in their modulation of macrophage responses with activated gene expression of inflammatory cytokines on day 1 and then dampening them on day 3. Also, the markers of polarized macrophages, M1 and M2, were expressed at the same level for macrophages on Muc-film-coated soft polyacrylamide gels and Muc-gel. In contrast, Muc-film-coated hard polystyrene led to a different macrophage response compared to Muc-gel, having no activated expression of inflammatory cytokines and a different M1 marker expression. This suggested that the substrate mechanical properties and mucin molecular configuration determined by substrate-mucin interactions affect mucin immune-modulating properties. We conclude that mucin immune-modulating properties can be transferred to materials by mucin surface immobilization but will be dependent on the substrate chemical and mechanical properties.
Collapse
Affiliation(s)
- Kun Jiang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden
- AIMES
- Center for the Advancement of Integrated Medical and Engineering
Sciences at Karolinska Institutet and KTH
Royal Institute of Technology, Stockholm SE-100 44, Sweden
- Department
of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Xueyu Wen
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden
| | - Torbjörn Pettersson
- Division
of Fibre Technology, Department of Fibre and Polymer Technology, School
of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Thomas Crouzier
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden
- AIMES
- Center for the Advancement of Integrated Medical and Engineering
Sciences at Karolinska Institutet and KTH
Royal Institute of Technology, Stockholm SE-100 44, Sweden
- Department
of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
115
|
Wen R, Zhao H, Zhang D, Chiu CL, Brooks JD. Sialylated glycoproteins as biomarkers and drivers of progression in prostate cancer. Carbohydr Res 2022; 519:108598. [PMID: 35691122 DOI: 10.1016/j.carres.2022.108598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Sialic acids have been implicated in cancer initiation, progression, and immune evasion in diverse human malignancies. Sialylation of terminal glycans on cell surface and secreted glycoproteins is a long-recognized feature of cancer cells. Recently, immune checkpoint inhibitor immunotherapy has tremendously improved the outcomes of patients with various cancers. However, available immunotherapy approaches have had limited efficacy in metastatic castration-resistant prostate cancer. Sialic acid modified glycoproteins in prostate cancers and their interaction with Siglec receptors on tumor infiltrating immune cells might underlie immunosuppressive signaling in prostate cancer. Here, we summarize the function of sialic acids and relevant glycosynthetic enzymes in cancer initiation and progression. We also discuss the possible uses of sialic acids as biomarkers in prostate cancer and the potential methods for targeting Siglec-sialic acid interactions for prostate cancer treatment.
Collapse
Affiliation(s)
- Ru Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
116
|
Bohm MS, Sipe LM, Pye ME, Davis MJ, Pierre JF, Makowski L. The role of obesity and bariatric surgery-induced weight loss in breast cancer. Cancer Metastasis Rev 2022; 41:673-695. [PMID: 35870055 PMCID: PMC9470652 DOI: 10.1007/s10555-022-10050-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Obesity is a complex metabolic condition considered a worldwide public health crisis, and a deeper mechanistic understanding of obesity-associated diseases is urgently needed. Obesity comorbidities include many associated cancers and are estimated to account for 20% of female cancer deaths in the USA. Breast cancer, in particular, is associated with obesity and is the focus of this review. The exact causal links between obesity and breast cancer remain unclear. Still, interactions have emerged between body mass index, tumor molecular subtype, genetic background, and environmental factors that strongly suggest obesity influences the risk and progression of certain breast cancers. Supportive preclinical research uses various diet-induced obesity models to demonstrate that weight loss, via dietary interventions or changes in energy expenditure, reduces the onset or progression of breast cancers. Ongoing and future studies are now aimed at elucidating the underpinning mechanisms behind weight-loss-driven observations to improve therapy and outcomes in patients with breast cancer and reduce risk. This review aims to summarize the rapidly emerging literature on obesity and weight loss strategies with a focused discussion of bariatric surgery in both clinical and preclinical studies detailing the complex interactions between metabolism, immune response, and immunotherapy in the setting of obesity and breast cancer.
Collapse
Affiliation(s)
- Margaret S Bohm
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Laura M Sipe
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Madeline E Pye
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Matthew J Davis
- Division of Bariatric Surgery, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Joseph F Pierre
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Nutritional Sciences, College of Agriculture and Life Science, The University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Liza Makowski
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- College of Medicine, UTHSC Center for Cancer Research, The University of Tennessee Health Science Center, Cancer Research Building Room 322, 19 S Manassas Street, Memphis, TN, 38163, USA.
| |
Collapse
|
117
|
Aberrant Sialylation in Cancer: Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14174248. [PMID: 36077781 PMCID: PMC9454432 DOI: 10.3390/cancers14174248] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The surface of every eukaryotic cell is coated in a thick layer of glycans that acts as a key interface with the extracellular environment. Cancer cells have a different ‘glycan coat’ to healthy cells and aberrant glycosylation is a universal feature of cancer cells linked to all of the cancer hallmarks. This means glycans hold huge potential for the development of new diagnostic and therapeutic strategies. One key change in tumour glycosylation is increased sialylation, both on N-glycans and O-glycans, which leads to a dense forest of sialylated structures covering the cell surface. This hypersialylation has far-reaching consequences for cancer cells, and sialylated glycans are fundamental in tumour growth, metastasis, immune evasion and drug resistance. The development of strategies to inhibit aberrant sialylation in cancer represents an important opportunity to develop new therapeutics. Here, I summarise recent advances to target aberrant sialylation in cancer, including the development of sialyltransferase inhibitors and strategies to inhibit Siglecs and Selectins, and discuss opportunities for the future.
Collapse
|
118
|
Shiratori K, Yokoi Y, Wakui H, Hirane N, Otaki M, Hinou H, Yoneyama T, Hatakeyama S, Kimura S, Ohyama C, Nishimura SI. Selective reaction monitoring approach using structure-defined synthetic glycopeptides for validating glycopeptide biomarkers pre-determined by bottom-up glycoproteomics. RSC Adv 2022; 12:21385-21393. [PMID: 35975084 PMCID: PMC9347767 DOI: 10.1039/d2ra02903k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Clusterin is a heavily glycosylated protein that is upregulated in various cancer and neurological diseases. The findings by the Hancock and Iliopoulos group that levels of the tryptic glycopeptide derived from plasma clusterin, 372Leu-Ala-Asn-Leu-Thr-Gln-Gly-Glu-Asp-Gln-Tyr-Tyr-Leu-Arg385 with a biantennary disialyl N-glycan (A2G2S2 or FA2G2S2) at Asn374 differed significantly prior to and after curative nephrectomy for clear cell renal cell carcinoma (RCC) patients motivated us to verify the feasibility of this glycopeptide as a novel biomarker of RCC. To determine the precise N-glycan structure attached to Asn374, whether A2G2S2 is composed of the Neu5Acα2,3Gal or/and the Neu5Acα2,6Gal moiety, we synthesized key glycopeptides having one of the two putative isomers. Selective reaction monitoring assay using synthetic glycopeptides as calibration standards allowed "top-down glycopeptidomics" for the absolute quantitation of targeted label-free glycopeptides in a range from 313.3 to 697.5 nM in the complex tryptic digests derived from serum samples of RCC patients and healthy controls. Our results provided evidence that the Asn374 residue of human clusterin is modified dominantly with the Neu5Acα2,6Gal structure and the levels of clusterin bearing an A2G2S2 with homo Neu5Acα2,6Gal terminals at Asn374 decrease significantly in RCC patients as compared with healthy controls. The present study elicits that a new strategy integrating the bottom-up glycoproteomics with top-down glycopeptidomics using structure-defined synthetic glycopeptides enables the confident identification and quantitation of the glycopeptide targets pre-determined by the existing methods for intact glycopeptide profiling.
Collapse
Affiliation(s)
- Kouta Shiratori
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Yasuhiro Yokoi
- ENU Pharma, Co., Ltd N7, W6, Kita-ku Sapporo 060-0807 Japan
| | - Hajime Wakui
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Nozomi Hirane
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Michiru Otaki
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Tohru Yoneyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Shingo Hatakeyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Satoshi Kimura
- Department of Laboratory Medicine and Central Clinical Laboratory, Showa University, Northern Yokohama Hospital Yokohama 224-8503 Japan
| | - Chikara Ohyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
- ENU Pharma, Co., Ltd N7, W6, Kita-ku Sapporo 060-0807 Japan
| |
Collapse
|
119
|
MUC1-mediated Macrophage Activation Promotes Colitis-associated Colorectal Cancer via Activating the Interleukin-6/ Signal Transducer and Activator of Transcription 3 Axis. Cell Mol Gastroenterol Hepatol 2022; 14:789-811. [PMID: 35809803 PMCID: PMC9424590 DOI: 10.1016/j.jcmgh.2022.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS MUC1 is abnormally expressed in colorectal cancer, including colitis-associated colorectal cancer (CAC), but its role in tumorigenesis is unclear. This study investigated MUC1's effects in murine models of colitis and CAC and elucidated mechanisms of action. METHODS Colitis and CAC were induced in mice by exposure to dextran sodium sulfate or azoxymethane plus dextran sodium sulphate. Clinical parameters, immune cell infiltration, and tumor development were monitored throughout disease progression. Experiments in knockout mice and bone marrow chimeras were combined with an exploration of immune cell abundance and function. RESULTS Deficiency of Muc1 suppressed inflammation, inhibited tumor progression, increased abundance of CD8+ T lymphocytes, and reduced abundance of macrophages in colon tumors. Bone marrow chimeras showed promotion of CAC was primarily mediated by Muc1-expressing hematopoietic cells, and that MUC1 promoted a pro-tumoral immunosuppressive macrophage phenotype within tumors. Mechanistic studies revealed that Muc1 deficiency remarkably reduced interleukin-6 levels in the colonic tissues and tumors that was mainly produced by infiltrating macrophages at day 21, 42, and 85. In bone marrow-derived macrophages, MUC1 promoted responsiveness to chemoattractant and promoted activation into a phenotype with high Il6 and Ido1 expression, secreting factors which inhibited CD8+ T cell proliferation. MUC1 potently drives macrophages to produce interleukin-6, which in turn drives a pro-tumorigenic activation of signal transducer and activator of transcription 3 in colon epithelial tumor and stromal cells, ultimately increasing the occurrence and development of CAC. CONCLUSIONS Our findings provide cellular and molecular mechanisms for the pro-tumorigenic functions of MUC1 in the inflamed colon. Therapeutic strategies to inhibit MUC1 signal transduction warrant consideration for the prevention or therapy of CAC.
Collapse
|
120
|
Chan C, Lustig M, Baumann N, Valerius T, van Tetering G, Leusen JHW. Targeting Myeloid Checkpoint Molecules in Combination With Antibody Therapy: A Novel Anti-Cancer Strategy With IgA Antibodies? Front Immunol 2022; 13:932155. [PMID: 35865547 PMCID: PMC9295600 DOI: 10.3389/fimmu.2022.932155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy with therapeutic antibodies has shown a lack of durable responses in some patients due to resistance mechanisms. Checkpoint molecules expressed by tumor cells have a deleterious impact on clinical responses to therapeutic antibodies. Myeloid checkpoints, which negatively regulate macrophage and neutrophil anti-tumor responses, are a novel type of checkpoint molecule. Myeloid checkpoint inhibition is currently being studied in combination with IgG-based immunotherapy. In contrast, the combination with IgA-based treatment has received minimal attention. IgA antibodies have been demonstrated to more effectively attract and activate neutrophils than their IgG counterparts. Therefore, myeloid checkpoint inhibition could be an interesting addition to IgA treatment and has the potential to significantly enhance IgA therapy.
Collapse
Affiliation(s)
- Chilam Chan
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marta Lustig
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Niklas Baumann
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Geert van Tetering
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Jeanette H. W. Leusen,
| |
Collapse
|
121
|
Xu H, Feng Y, Kong W, Wang H, Feng Y, Zhen J, Tian L, Yuan K. High Expression Levels of SIGLEC9 Indicate Poor Outcomes of Glioma and Correlate With Immune Cell Infiltration. Front Oncol 2022; 12:878849. [PMID: 35756603 PMCID: PMC9218569 DOI: 10.3389/fonc.2022.878849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study aimed to investigate the diagnostic value and underlying mechanisms of sialic acid-binding Ig-like lectin 9 (SIGLEC9) in gliomas. Patients and Methods The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases were used to analyze the association of SIGLEC9 expression levels with tumor stages and survival probability. Immunohistochemical staining of SIGLEC9 and survival analysis were performed in 177 glioma patients. Furthermore, related mechanisms were discovered about SIGLEC9 in glioma tumorigenesis, and we reveal how SIGLEC9 functions in macrophages through single-cell analysis. Results TCGA and CGGA databases indicated that patients with high SIGLEC9 expression manifested a significantly shorter survival probability than those with low SIGLEC9 expression. SIGLEC9 was upregulated significantly in malignant pathological types, such as grade III, grade IV, mesenchymal subtype, and isocitrate dehydrogenase wild-type gliomas. The immunohistochemical staining of tissue sections from 177 glioma patients showed that high-SIGLEC9-expression patients manifested a significantly shorter survival probability than low-SIGLEC9-expression patients with age ≧60 years, grade IV, glioblastoma multiforme, alpha thalassemia/intellectual disability syndrome X-linked loss, and without radiotherapy or chemotherapy. Furthermore, the SIGLEC9 expression level was positively correlated with myeloid-derived suppressor cell infiltration and neutrophil activation. The SIGLEC9 expression was also positively correlated with major immune checkpoints, such as LAIR1, HAVCR2, CD86, and LGALS9. Through single-cell analysis, we found that the SIGLEC9 gene is related to the ability of macrophages to process antigens and the proliferation of macrophages. Conclusion These findings suggested that SIGLEC9 is a diagnostic marker of poor outcomes in glioma and might serve as a potential immunotherapy target for glioma patients in the future.
Collapse
Affiliation(s)
- Heng Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yanyan Feng
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Weijia Kong
- Beijing Hospital of Traditional Chinese Medicine Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Hesong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyin Feng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jianhua Zhen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lichun Tian
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Yuan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
122
|
Stewart N, Wisnovsky S. Bridging Glycomics and Genomics: New Uses of Functional Genetics in the Study of Cellular Glycosylation. Front Mol Biosci 2022; 9:934584. [PMID: 35782863 PMCID: PMC9243437 DOI: 10.3389/fmolb.2022.934584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
All living cells are coated with a diverse collection of carbohydrate molecules called glycans. Glycans are key regulators of cell behavior and important therapeutic targets for human disease. Unlike proteins, glycans are not directly templated by discrete genes. Instead, they are produced through multi-gene pathways that generate a heterogenous array of glycoprotein and glycolipid antigens on the cell surface. This genetic complexity has sometimes made it challenging to understand how glycosylation is regulated and how it becomes altered in disease. Recent years, however, have seen the emergence of powerful new functional genomics technologies that allow high-throughput characterization of genetically complex cellular phenotypes. In this review, we discuss how these techniques are now being applied to achieve a deeper understanding of glyco-genomic regulation. We highlight specifically how methods like ChIP-seq, RNA-seq, CRISPR genomic screening and scRNA-seq are being used to map the genomic basis for various cell-surface glycosylation states in normal and diseased cell types. We also offer a perspective on how emerging functional genomics technologies are likely to create further opportunities for studying cellular glycobiology in the future. Taken together, we hope this review serves as a primer to recent developments at the glycomics-genomics interface.
Collapse
Affiliation(s)
- Natalie Stewart
- Biochemistry and Microbiology Dept, University of Victoria, Victoria, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Simon Wisnovsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Simon Wisnovsky,
| |
Collapse
|
123
|
Metcalf KJ, Hayward MK, Berens E, Ironside AJ, Stashko C, Hwang ES, Weaver VM. Immunosuppressive glycoproteins associate with breast tumor fibrosis and aggression. Matrix Biol Plus 2022; 14:100105. [PMID: 35392183 PMCID: PMC8981759 DOI: 10.1016/j.mbplus.2022.100105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Tumors feature elevated sialoglycoprotein content. Sialoglycoproteins promote tumor progression and are linked to immune suppression via the sialic acid-Siglec axis. Understanding factors that increase sialoglycoprotein biosynthesis in tumors could identify approaches to improve patient response to immunotherapy. We quantified higher levels of sialoglycoproteins in the fibrotic regions within human breast tumor tissues. Human breast tumor subtypes, which are more fibrotic, similarly featured increased sialoglycoprotein content. Further analysis revealed the breast cancer cells as the primary cell type synthesizing and secreting the tumor tissue sialoglycoproteins and confirmed that the more aggressive, fibrotic breast cancer subtypes expressed the highest levels of sialoglycoprotein biosynthetic genes. The more aggressive breast cancer subtypes also featured greater infiltration of immunosuppressive SIGLEC7, SIGLEC9, and SIGLEC10-pos myeloid cells, indicating that triple-negative breast tumors had higher expression of both immunosuppressive Siglec receptors and their cognate ligands. The findings link sialoglycoprotein biosynthesis and secretion to tumor fibrosis and aggression in human breast tumors. The data suggest targeting of the sialic acid-Siglec axis may comprise an attractive therapeutic target particularly for the more aggressive HER2+ and triple-negative breast cancer subtypes.
Collapse
Affiliation(s)
- Kevin James Metcalf
- Department of Surgery, University of California, San Francisco, CA, United States
| | - Mary-Kate Hayward
- Department of Surgery, University of California, San Francisco, CA, United States
| | - Eric Berens
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Alastair J. Ironside
- Department of Pathology, Western General Hospital, NHS Lothian, Edinburgh, United Kingdom
| | - Connor Stashko
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - E. Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Valerie M. Weaver
- Department of Surgery, University of California, San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States
| |
Collapse
|
124
|
Gao S, Sugimura R. The Single-Cell Level Perspective of the Tumor Microenvironment and Its Remodeling by CAR-T Cells. Cancer Treat Res 2022; 183:275-285. [PMID: 35551664 DOI: 10.1007/978-3-030-96376-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The tumor microenvironment (TME) is a complex milieu consisting of lymphoid cells, myeloid cells, fibroblasts, and multiple molecules, which play a key role in tumor progression and immunotherapy. TME is characterized by immune-suppressive features, which release anti-inflammatory cytokines such as IL-4 and TGFβ to skew the T cells to a Th2 state as well to polarize tumor-associated macrophages (TAMs) to an anti-inflammatory phenotype to curb the immunotherapy. Considering the heterogeneity of the TME and its role in determining response to chimeric antigen receptor (CAR)-T cells, delineating TME at a single-cell level will provide useful information for cancer treatment. First, we discuss cellular and molecular features that curb the response to CAR-T cells, for example, high expression of immune checkpoint molecules (PD-1, LAG3) and anti-inflammatory cytokines (IL-4, TGFb) that block CAR-T cell function. Then, we summarize how newly invented single-cell technologies such as spatial multi-omics would benefit the understanding of cancer immunotherapy. Finally, we will further describe recent attempts of CAR-T to remodel TME by arming the CAR-T with anti-PD-1 single-chain variants or Th1 triggering cytokines (such as IL-7, IL-12) to remodel TME into a pro-inflammatory state. Herein, we review the single-cell-level signatures of TME and the strategies of CAR-T to remodel TME.
Collapse
Affiliation(s)
- Sanxing Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
125
|
Jiang KY, Qi LL, Kang FB, Wang L. The intriguing roles of Siglec family members in the tumor microenvironment. Biomark Res 2022; 10:22. [PMID: 35418152 PMCID: PMC9008986 DOI: 10.1186/s40364-022-00369-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Sialic acid-binding receptors are expressed on the surfaces of a variety of immune cells and have complex and diverse immunoregulatory functions in health and diseases. Recent studies have shown that Siglecs could play diverse immune and nonimmune regulatory roles in the tumor microenvironment (TME) and participate in tumor progression through various mechanisms, such as regulating tumor growth and metastasis, mediating the inflammatory response, and promoting tumor immune escape, thereby affecting the prognoses and outcomes of patients. However, depending on the cell type in which they are expressed, each Siglec member binds to corresponding ligands in the microenvironment milieu to drive diverse cell physiological and pathological processes in tumors. Therefore, we herein summarize the expression spectra and functions of the Siglec family in human diseases, particularly cancer, and highlight the possibility of therapeutic interventions targeting the TME in the future.
Collapse
Affiliation(s)
- Kui-Ying Jiang
- Department of Orthopedic Oncology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Li-Li Qi
- Experimental Center for Teaching of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Fu-Biao Kang
- The Liver Disease Center of PLA, the 980Th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, Hebei, People's Republic of China.
| | - Ling Wang
- Department of Orthopedic Oncology, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
126
|
Abstract
Glycosaminoglycans (GAGs) are an important component of the tumor microenvironment (TME). GAGs can interact with a variety of binding partners and thereby influence cancer progression on multiple levels. GAGs can modulate growth factor and chemokine signaling, invasion and metastasis formation. Moreover, GAGs are able to change the physical property of the extracellular matrix (ECM). Abnormalities in GAG abundance and structure (e.g., sulfation patterns and molecular weight) are found across various cancer types and show biomarker potential. Targeting GAGs, as well as the usage of GAGs and their mimetics, are promising approaches to interfere with cancer progression. In addition, GAGs can be used as drug and cytokine carriers to induce an anti-tumor response. In this review, we summarize the role of GAGs in cancer and the potential use of GAGs and GAG derivatives to target cancer.
Collapse
Affiliation(s)
- Ronja Wieboldt
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Heinz Läubli
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Switzerland; Division of Oncology, Department of Theragnostics, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
127
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
128
|
Wang Y, Pan P, Khan A, Çil Ç, Pineda MA. Synovial Fibroblast Sialylation Regulates Cell Migration and Activation of Inflammatory Pathways in Arthritogenesis. Front Immunol 2022; 13:847581. [PMID: 35371069 PMCID: PMC8971784 DOI: 10.3389/fimmu.2022.847581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022] Open
Abstract
Synovial fibroblasts have emerged as critical underlying factors to perpetuate chronic joint inflammation in Rheumatoid Arthritis. Like any other cell, synovial fibroblasts are covered with a complex layer of glycans that can change in response to extracellular signals, such as inflammation. We have previously shown that inflammatory synovial fibroblasts show decreased levels of sialic acid, but our understanding of sialic acid-dependent pathophysiological pathways in these stromal cells is still very limited. In this report, we used in vivo and in vitro studies with exogenous sialidases and RNA sequencing to investigate the responses of murine synovial fibroblasts upon desialylation. Our results show that hyposialylated fibroblasts present a dysregulated migratory ability and an activated phenotype characterized by the expression of inflammatory mediators, such as cytokines and chemokines, and anti-viral related mechanisms. Removal of surface sialic acid also affected the expression of sialyltransferases, revealing the existence of a positive feedback to sustain reduced sialylation. Moreover, we demonstrate that synovial fibroblasts subsets have distinct sialyltransferase expression profiles, both in healthy and arthritic mice. These findings underline the ability of sialic acid to modulate homeostatic and inflammatory responses in non-immune synovial fibroblasts, suggesting that sialylation plays a key role in perpetuating local inflammation in the arthritic joint.
Collapse
Affiliation(s)
- Yilin Wang
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Piaopiao Pan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Aneesah Khan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Çağlar Çil
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Miguel A. Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom,Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom,*Correspondence: Miguel A. Pineda,
| |
Collapse
|
129
|
Poggi A, Zocchi MR. Natural killer cells and immune-checkpoint inhibitor therapy: Current knowledge and new challenges. Mol Ther Oncolytics 2022; 24:26-42. [PMID: 34977340 PMCID: PMC8693432 DOI: 10.1016/j.omto.2021.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The discovery of immune checkpoints (ICs) and the development of specific blockers to relieve immune effector cells from this inhibiting mechanism has changed the view of anti-cancer therapy. In addition to cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed death 1 (PD1), classical ICs of T lymphocytes and recently described also on a fraction of natural killer (NK) cells, several NK cell receptors, including killer immunoglobulin-like inhibitory receptors (KIRs) and NGK2A, have been recognized as checkpoint members typical of the NK cell population. This offers the opportunity of a dual-checkpoint inhibition approach, targeting classical and non-classical ICs and leading to a synergistic therapeutic effect. In this review, we will overview and discuss this new perspective, focusing on the most relevant candidates for this role among the variety of potential NK ICs. Beside listing and defining classical ICs expressed also by NK cells, or non-classical ICs either on T or on NK cells, we will address their role in NK cell survival, chronic stimulation or functional exhaustion, and the potential relevance of this phenomenon on anti-tumor immune response. Furthermore, NK ICs will be proposed as possible new targets for the development of efficient combined immunotherapy, not forgetting the relevant concerns that may be raised on NK IC blockade. Finally, the impact of epigenetic drugs in such a complex therapeutic picture will be briefly addressed.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Building 90 Tower C, 4th Floor, 16132 Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
130
|
Wu Y, Huang W, Xie Y, Wang C, Luo N, Chen Y, Wang L, Cheng Z, Gao Z, Liu S. Siglec-9, a Putative Immune Checkpoint Marker for Cancer Progression Across Multiple Cancer Types. Front Mol Biosci 2022; 9:743515. [PMID: 35372497 PMCID: PMC8968865 DOI: 10.3389/fmolb.2022.743515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/08/2022] [Indexed: 01/01/2023] Open
Abstract
Siglec-9, a cell surface transmembrane receptor mainly expressed on B cells, CD56+ NK cells, and CD4+ and CD8+ T cells, is strongly related to the tumor immune microenvironment. However, the expression pattern of Siglec-9 and its prognostic potential have not been investigated in a pan-cancer perspective. This study aimed to explore the association of Siglec-9 with prognosis, tumor stage, molecular subtype, and the immune microenvironment in pan-cancer. The mRNA expression of Siglec-9 was obtained from The Cancer Genome Atlas (TCGA), the Broad Institute Cancer Cell Line Encyclopedia (CCLE), and Genotype-Tissue Expression (GTEx). The relationship between Siglec-9 mRNA expression and prognosis was evaluated by the Kaplan–Meier analysis. The correlation between Siglec-9 and tumor-infiltrating immune cells, immune subtype, and molecular subtype was evaluated on Tumor Immune Estimation Resource (TIMER) and Integrated Repository Portal for Tumor-Immune System Interactions (TISIDB). The correlation between Siglec-9 expression and immune checkpoint, mismatch repair (MMR), DNA methyltransferase (DNMT), tumor mutation burden (TMB), and microsatellite instability (MSI) was also analyzed. It showed that Siglec-9 expression was significantly altered in most TCGA tumors. Siglec-9 expression was associated with the prognosis of patients with adrenocortical carcinoma (ACC), lung adenocarcinoma (LUSC), thymoma (THYM), colon adenocarcinoma (COAD), glioblastoma multiforme (GBM), prostate adenocarcinoma (PRAD), esophageal carcinoma (ESCA), and brain lower-grade glioma (LGG). Particularly, increased Siglec-9 expression was strongly correlated with poor prognosis in LGG. Correlation between Siglec-9 expression and tumor stage was also observed in various cancers. In addition, Siglec-9 was positively associated with infiltration of immune cells including neutrophils, dendritic cells (DCs), macrophage, and CD4+ and CD8+ T cells. Moreover, a significant correlation between Siglec-9 and MSI, TMB, MMR, DNMT, immune checkpoint, immune subtype, molecular subtype, and immunomodulators was observed in multiple cancers. Specifically, poor prognostic value and strong correlation to immune cell infiltration were verified with the LGG dataset from the Chinese Glioma Genome Atlas (CGGA). These findings indicated that Siglec-9 can be a novel biomarker and a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuliang Wu
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai, China
| | - Wei Huang
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai, China
| | - Yutong Xie
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
| | - Chunyan Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Ning Luo
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai, China
| | - Yingying Chen
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Liefu Wang
- Xinyang Vocational and Technical College, Xinyang, China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Zhongping Cheng, ; Zhengliang Gao, ; Shupeng Liu,
| | - Zhengliang Gao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
- Xinyang Vocational and Technical College, Xinyang, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- *Correspondence: Zhongping Cheng, ; Zhengliang Gao, ; Shupeng Liu,
| | - Shupeng Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Department of Obstetrics and Gynecology, Putuo District People’s Hospital of Shanghai City, Shanghai, China
- *Correspondence: Zhongping Cheng, ; Zhengliang Gao, ; Shupeng Liu,
| |
Collapse
|
131
|
Targeting hypersialylation in multiple myeloma represents a novel approach to enhance NK cell-mediated tumor responses. Blood Adv 2022; 6:3352-3366. [PMID: 35294519 PMCID: PMC9198929 DOI: 10.1182/bloodadvances.2021006805] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Hypersialylation in MM facilitates immune evasion of NK cells but can be overcome by targeted desialylation or genetic deletion of Siglec-7. Desialylation unmasks CD38 expression on MM cells, enhancing NK cell–mediated ADCC induced by CD38 targeting of monoclonal antibodies.
Abnormal glycosylation is a hallmark of cancer, and the hypersialylated tumor cell surface facilitates abnormal cell trafficking and drug resistance in several malignancies, including multiple myeloma (MM). Furthermore, hypersialylation has also been implicated in facilitating evasion of natural killer (NK) cell–mediated immunosurveillance but not in MM to date. In this study, we explore the role of hypersialylation in promoting escape from NK cells. We document strong expression of sialic acid-derived ligands for Siglec-7 (Siglec-7L) on primary MM cells and MM cell lines, highlighting the possibility of Siglec-7/Siglec-7L interactions in the tumor microenvironment. Interactomics experiments in MM cell lysates revealed PSGL-1 as the predominant Siglec-7L in MM. We show that desialylation, using both a sialidase and sialyltransferase inhibitor (SIA), strongly enhances NK cell–mediated cytotoxicity against MM cells. Furthermore, MM cell desialylation results in increased detection of CD38, a well-validated target in MM. Desialylation enhanced NK cell cytotoxicity against CD38+ MM cells after treatment with the anti-CD38 monoclonal antibody daratumumab. Additionally, we show that MM cells with low CD38 expression can be treated with all trans-retinoic acid (ATRA), SIA and daratumumab to elicit a potent NK cell cytotoxic response. Finally, we demonstrate that Siglec-7KO potentiates NK cell cytotoxicity against Siglec-7L+ MM cells. Taken together, our work shows that desialylation of MM cells is a promising novel approach to enhance NK cell efficacy against MM, which can be combined with frontline therapies to elicit a potent anti-MM response.
Collapse
|
132
|
Wang J, Manni M, Bärenwaldt A, Wieboldt R, Kirchhammer N, Ivanek R, Stanczak M, Zippelius A, König D, Rodrigues Manutano N, Läubli H. Siglec Receptors Modulate Dendritic Cell Activation and Antigen Presentation to T Cells in Cancer. Front Cell Dev Biol 2022; 10:828916. [PMID: 35309936 PMCID: PMC8927547 DOI: 10.3389/fcell.2022.828916] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/21/2022] [Indexed: 01/22/2023] Open
Abstract
Interactions between sialylated glycans and sialic acid-binding immunoglobulin-like lectin (Siglec) receptors have been recently described as potential new immune checkpoint that can be targeted to improve anticancer immunity. Myeloid cells have been reported to express a wide range of different Siglecs; however, their expression and functions on cancer-associated dendritic cells (DCs) were not fully characterized. We found that classical conventional DCs (cDCs) from cancer patient samples have a high expression of several inhibitory Siglecs including Siglec-7, Siglec-9, and Siglec-10. In subcutaneous murine tumor models, we also found an upregulation of the inhibitory Siglec-E receptor on cancer-associated cDCs. DC lines and bone marrow-derived DCs (BMDCs) with expression of these inhibitory Siglecs showed impaired maturation states on transcriptome and protein level. Furthermore, ablation of these inhibitory Siglecs from DCs enhanced their capability to prime antigen-specific T cells and induce proliferation. Our work provides a deeper understanding of the influence of inhibitory Siglecs on DCs and reveals a potential new target to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Michela Manni
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Anne Bärenwaldt
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Ronja Wieboldt
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Nicole Kirchhammer
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michal Stanczak
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Division of Oncology, Department of Theragnostic, University Hospital Basel, Basel, Switzerland
| | - David König
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Division of Oncology, Department of Theragnostic, University Hospital Basel, Basel, Switzerland
| | | | - Heinz Läubli
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Division of Oncology, Department of Theragnostic, University Hospital Basel, Basel, Switzerland
- *Correspondence: Heinz Läubli,
| |
Collapse
|
133
|
Critcher M, Hassan AA, Huang ML. Seeing the forest through the trees: characterizing the glycoproteome. Trends Biochem Sci 2022; 47:492-505. [DOI: 10.1016/j.tibs.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
|
134
|
Diniz F, Coelho P, Duarte HO, Sarmento B, Reis CA, Gomes J. Glycans as Targets for Drug Delivery in Cancer. Cancers (Basel) 2022; 14:cancers14040911. [PMID: 35205658 PMCID: PMC8870586 DOI: 10.3390/cancers14040911] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Alterations in glycosylation are frequently observed in cancer cells. Different strategies have been proposed to increase drug delivery to the tumor site in order to improve the therapeutic efficacy of anti-cancer drugs and avoid collateral cytotoxicity. The exploitation of drug delivery approaches directed to cancer-associated glycans has the potential to pave the way for better and more efficient personalized treatment practices. Such strategies taking advantage of aberrant cell surface glycosylation patterns enhance the targeting efficiency and optimize the delivery of clinically used drugs to cancer cells, with major potential for the clinical applications. Abstract Innovative strategies have been proposed to increase drug delivery to the tumor site and avoid cytotoxicity, improving the therapeutic efficacy of well-established anti-cancer drugs. Alterations in normal glycosylation processes are frequently observed in cancer cells and the resulting cell surface aberrant glycans can be used as direct molecular targets for drug delivery. In the present review, we address the development of strategies, such as monoclonal antibodies, antibody–drug conjugates and nanoparticles that specific and selectively target cancer-associated glycans in tumor cells. The use of nanoparticles for drug delivery encompasses novel applications in cancer therapy, including vaccines encapsulated in synthetic nanoparticles and specific nanoparticles that target glycoproteins or glycan-binding proteins. Here, we highlight their potential to enhance targeting approaches and to optimize the delivery of clinically approved drugs to the tumor microenvironment, paving the way for improved personalized treatment approaches with major potential importance for the pharmaceutical and clinical sectors.
Collapse
Affiliation(s)
- Francisca Diniz
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Pedro Coelho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Henrique O. Duarte
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- CESPU—Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal
| | - Celso A. Reis
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (C.A.R.); (J.G.); Tel.: +351-220-408-800 (C.A.R. & J.G.)
| | - Joana Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Correspondence: (C.A.R.); (J.G.); Tel.: +351-220-408-800 (C.A.R. & J.G.)
| |
Collapse
|
135
|
Greco B, Malacarne V, De Girardi F, Scotti GM, Manfredi F, Angelino E, Sirini C, Camisa B, Falcone L, Moresco MA, Paolella K, Di Bono M, Norata R, Sanvito F, Arcangeli S, Doglioni C, Ciceri F, Bonini C, Graziani A, Bondanza A, Casucci M. Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies. Sci Transl Med 2022; 14:eabg3072. [PMID: 35044789 DOI: 10.1126/scitranslmed.abg3072] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Immunotherapy with chimeric antigen receptor (CAR)-engineered T cells showed exceptional successes in patients with refractory B cell malignancies. However, first-in-human studies in solid tumors revealed unique hurdles contributing to poor demonstration of efficacy. Understanding the determinants of tumor recognition by CAR T cells should translate into the design of strategies that can overcome resistance. Here, we show that multiple carcinomas express extracellular N-glycans, whose abundance negatively correlates with CAR T cell killing. By knocking out mannoside acetyl-glucosaminyltransferase 5 (MGAT5) in pancreatic adenocarcinoma (PAC), we showed that N-glycans protect tumors from CAR T cell killing by interfering with proper immunological synapse formation and reducing transcriptional activation, cytokine production, and cytotoxicity. To overcome this barrier, we exploited the high metabolic demand of tumors to safely inhibit N-glycans synthesis with the glucose/mannose analog 2-deoxy-d-glucose (2DG). Treatment with 2DG disrupts the N-glycan cover on tumor cells and results in enhanced CAR T cell activity in different xenograft mouse models of PAC. Moreover, 2DG treatment interferes with the PD-1-PD-L1 axis and results in a reduced exhaustion profile of tumor-infiltrating CAR T cells in vivo. The combined 2DG and CAR T cell therapy was successful against multiple carcinomas besides PAC, including those arising from the lung, ovary, and bladder, and with different clinically relevant CAR specificities, such as CD44v6 and CEA. Overall, our results indicate that tumor N-glycosylation regulates the quality and magnitude of CAR T cell responses, paving the way for the rational design of improved therapies against solid malignancies.
Collapse
Affiliation(s)
- Beatrice Greco
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valeria Malacarne
- Lipid Signaling in Cancer and Metabolism Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10124 Torino, Italy
| | - Federica De Girardi
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giulia Maria Scotti
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elia Angelino
- Lipid Signaling in Cancer and Metabolism Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10124 Torino, Italy
| | - Camilla Sirini
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Barbara Camisa
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Falcone
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marta Angiola Moresco
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Katia Paolella
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mattia Di Bono
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rossana Norata
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Sanvito
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Arcangeli
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Doglioni
- Vita-Salute San Raffaele University, 20132 Milan, Italy.,Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, 20132 Milan, Italy.,Hematology and Hematopoietic Stem Cell Transplantation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, 20132 Milan, Italy.,Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Graziani
- Lipid Signaling in Cancer and Metabolism Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10124 Torino, Italy
| | - Attilio Bondanza
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
136
|
Derosiers N, Aguilar W, DeGaramo DA, Posey AD. Sweet Immune Checkpoint Targets to Enhance T Cell Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:278-285. [PMID: 35017217 DOI: 10.4049/jimmunol.2100706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/17/2021] [Indexed: 12/21/2022]
Abstract
Despite tremendous success against hematological malignancies, the performance of chimeric Ag receptor T cells against solid tumors remains poor. In such settings, the lack of success of this groundbreaking immunotherapy is in part mediated by ligand engagement of immune checkpoint molecules on the surface of T cells in the tumor microenvironment. Although CTLA-4 and programmed death-1 (PD-1) are well-established checkpoints that inhibit T cell activity, the engagement of glycans and glycan-binding proteins are a growing area of interest due to their immunomodulatory effects. This review discusses exemplary strategies to neutralize checkpoint molecules through an in-depth overview of genetic engineering approaches aimed at overcoming the inhibitory programmed death ligand-1 (PD-L1)/PD-1 axis in T cell therapies and summarizes current knowledge on glycoimmune interactions that mediate T cell immunosuppression.
Collapse
Affiliation(s)
- Nohelly Derosiers
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - William Aguilar
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - David A DeGaramo
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Avery D Posey
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and .,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| |
Collapse
|
137
|
Choi Y, Kim J, Chae J, Hong J, Park J, Jeong E, Kim H, Tanaka M, Okochi M, Choi J. Surface glycan targeting for cancer nano-immunotherapy. J Control Release 2022; 342:321-336. [PMID: 34998918 DOI: 10.1016/j.jconrel.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy is an emerging therapeutic strategy for cancer treatment. Most of the immunotherapeutics approved by the FDA regulate the innate immune system and associated immune cell activity, with immune check inhibitors in particular having transformed the field of cancer immunotherapy due to their significant clinical potential. However, previously reported immunotherapeutics have exhibited undesirable side effects, including autoimmune toxicity and inflammation. Controlling these deleterious responses and designing therapeutics that can precisely target specific regions are thus crucial to improving the efficacy of cancer immunotherapies. Recent studies have reported that cancer cells employ glycan-immune checkpoint interactions to modulate immune cell activity. Thus, the recognition of cancer glycan moieties such as sialoglycans may improve the anticancer activity of immune cells. In this review, we discuss recent advances in cancer immunotherapies involving glycans and glycan-targeting technologies based on nanomaterial-assisted local delivery systems.
Collapse
Affiliation(s)
- Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jayoung Chae
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Joohye Hong
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jongjun Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Eunseo Jeong
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Hayoung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
138
|
Antoñana-Vildosola A, Zanetti SR, Palazon A. Enabling CAR-T cells for solid tumors: Rage against the suppressive tumor microenvironment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:123-147. [PMID: 35798503 DOI: 10.1016/bs.ircmb.2022.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Adoptive T cell therapies based on chimeric antigen receptors (CAR-T) are emerging as genuine therapeutic options for the treatment of hematological malignancies. The observed clinical success has not yet been extended into solid tumor indications as a result of multiple factors including immunosuppressive features of the tumor microenvironment (TME). In this context, an emerging strategy is to design CAR-T cells for the elimination of defined cellular components of the TME, with the objective of re-shaping the tumor immune contexture to control tumor growth. Relevant cell components that are currently under investigation as targets of CAR-T therapies include the tumor vasculature, cancer-associated fibroblasts (CAFs), and immunosuppressive tumor associated macrophages (TAMs) and myeloid derived suppressor cells (MDSCs). In this review, we recapitulate the rapidly expanding field of CAR-T cell therapies that directly target cellular components within the TME with the ultimate objective of promoting immune function, either alone or in combination with other cancer therapies.
Collapse
Affiliation(s)
- Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Samanta Romina Zanetti
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bizkaia, Spain.
| |
Collapse
|
139
|
Hugonnet M, Singh P, Haas Q, von Gunten S. The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Front Immunol 2021; 12:799861. [PMID: 34975914 PMCID: PMC8718907 DOI: 10.3389/fimmu.2021.799861] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant glycosylation is a key feature of malignant transformation. Hypersialylation, the enhanced expression of sialic acid-terminated glycoconjugates on the cell surface, has been linked to immune evasion and metastatic spread, eventually by interaction with sialoglycan-binding lectins, including Siglecs and selectins. The biosynthesis of tumor-associated sialoglycans involves sialyltransferases, which are differentially expressed in cancer cells. In this review article, we provide an overview of the twenty human sialyltransferases and their roles in cancer biology and immunity. A better understanding of the individual contribution of select sialyltransferases to the tumor sialome may lead to more personalized strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Marjolaine Hugonnet
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Pushpita Singh
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| |
Collapse
|
140
|
Yuge S, Tateishi A, Numata K, Ohmae M. Chemoenzymatic Synthesis of Sialyl Sulfo-Oligosaccharides as Potent Siglec-8 Ligands via Transglycosylation Catalyzed by Keratanase II. Biomacromolecules 2021; 23:316-325. [PMID: 34914356 DOI: 10.1021/acs.biomac.1c01289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sialyl type-II sulfo-oligosaccharides are gaining much attention as bioactive ligands for Siglecs. In this study, we have achieved the first synthesis of sialyl type-II sulfo-oligosaccharides chemoenzymatically by utilizing the transglycosylation activity of keratanase II. The oxazoline derivative of α(2→3)-sialylated 6,6'-di-sulfo-LacNAc (3) was newly designed as the glycosyl donor for enzymatic transglycosylation. Keratanase II efficiently catalyzed the transglycosylation of 3 with two kinds of glycosyl acceptors, 6-sulfo-Lewis X and 6,6'-di-sulfo-LacNAc derivatives, providing sialyl sulfo-hexasaccharide (1) and sialyl sulfo-pentasaccharide (2) with 86 and 95% yields, respectively. The products 1 and 2 showed higher affinity to Siglec-8 with KD 70 and 25 μmol·L-1, respectively, compared to the known ligand of the α(2→3)-sialylated 6,6'-di-sulfo-Lewis X with KD 185 μmol·L-1. Thus, this study will advance not only the study of Siglec-8 biology but also the exploration of functions of sialyl sulfo-oligosaccharides having various microstructures.
Collapse
Affiliation(s)
- Shiori Yuge
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Ayaka Tateishi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Masashi Ohmae
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
141
|
van Houtum EJH, Büll C, Cornelissen LAM, Adema GJ. Siglec Signaling in the Tumor Microenvironment. Front Immunol 2021; 12:790317. [PMID: 34966391 PMCID: PMC8710542 DOI: 10.3389/fimmu.2021.790317] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors that recognize sialoglycans - sialic acid containing glycans that are abundantly present on cell membranes. Siglecs are expressed on most immune cells and can modulate their activity and function. The majority of Siglecs contains immune inhibitory motifs comparable to the immune checkpoint receptor PD-1. In the tumor microenvironment (TME), signaling through the Siglec-sialoglycan axis appears to be enhanced through multiple mechanisms favoring tumor immune evasion similar to the PD-1/PD-L1 signaling pathway. Siglec expression on tumor-infiltrating immune cells appears increased in the immune suppressive microenvironment. At the same time, enhanced Siglec ligand expression has been reported for several tumor types as a result of aberrant glycosylation, glycan modifications, and the increased expression of sialoglycans on proteins and lipids. Siglec signaling has been identified as important regulator of anti-tumor immunity in the TME, but the key factors contributing to Siglec activation by tumor-associated sialoglycans are diverse and poorly defined. Among others, Siglec activation and signaling are co-determined by their expression levels, cell surface distribution, and their binding preferences for cis- and trans-ligands in the TME. Siglec binding preference are co-determined by the nature of the proteins/lipids to which the sialoglycans are attached and the multivalency of the interaction. Here, we review the current understanding and emerging conditions and factors involved in Siglec signaling in the TME and identify current knowledge gaps that exist in the field.
Collapse
Affiliation(s)
- Eline J. H. van Houtum
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Büll
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lenneke A. M. Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
142
|
Hitchcock CL, Povoski SP, Mojzisik CM, Martin EW. Survival Advantage Following TAG-72 Antigen-Directed Cancer Surgery in Patients With Colorectal Carcinoma: Proposed Mechanisms of Action. Front Oncol 2021; 11:731350. [PMID: 34950576 PMCID: PMC8688248 DOI: 10.3389/fonc.2021.731350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/25/2021] [Indexed: 12/09/2022] Open
Abstract
Patients with colorectal carcinoma (CRC) continue to have variable clinical outcomes despite undergoing the same surgical procedure with curative intent and having the same pathologic and clinical stage. This problem suggests the need for better techniques to assess the extent of disease during surgery. We began to address this problem 35 years ago by injecting patients with either primary or recurrent CRC with 125I-labeled murine monoclonal antibodies against the tumor-associated glycoprotein-72 (TAG-72) and using a handheld gamma-detecting probe (HGDP) for intraoperative detection and removal of radioactive, i.e., TAG-72-positive, tissue. Data from these studies demonstrated a significant difference in overall survival data (p < 0.005 or better) when no TAG-72-positive tissue remained compared to when TAG-72-positive tissue remained at the completion of surgery. Recent publications indicate that aberrant glycosylation of mucins and their critical role in suppressing tumor-associated immune response help to explain the cellular mechanisms underlying our results. We propose that monoclonal antibodies to TAG-72 recognize and bind to antigenic epitopes on mucins that suppress the tumor-associated immune response in both the tumor and tumor-draining lymph nodes. Complete surgical removal of all TAG-72-positive tissue serves to reverse the escape phase of immunoediting, allowing a resetting of this response that leads to improved overall survival of the patients with either primary or recurrent CRC. Thus, the status of TAG-72 positivity after resection has a significant impact on patient survival.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Stephen P. Povoski
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cathy M. Mojzisik
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Edward W. Martin
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
143
|
Choi H, Ho M, Adeniji OS, Giron L, Bordoloi D, Kulkarni AJ, Puchalt AP, Abdel-Mohsen M, Muthumani K. Development of Siglec-9 Blocking Antibody to Enhance Anti-Tumor Immunity. Front Oncol 2021; 11:778989. [PMID: 34869028 PMCID: PMC8640189 DOI: 10.3389/fonc.2021.778989] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Sialic acid-binding Immunoglobulin-like lectin-9 (Siglec-9) is a glyco-immune negative checkpoint expressed on several immune cells. Siglec-9 exerts its inhibitory effects by binding to sialoglycan ligands expressed on cancer cells, enabling them to evade immunosurveillance. We developed a panel of human anti-Siglec-9 hybridoma clones by immunizing mice with Siglec-9-encoding DNA and Siglec-9 protein. The lead antibodies, with high specificity and functionality against Siglec-9, were identified through screening of clones. The in vitro cytotoxicity assays showed that our lead antibody enhances anti-tumor immune activity. Further, in vivo testing utilizing ovarian cancer humanized mouse model showed a drastic reduction in tumor volume. Together, we developed novel antibodies that augment anti-tumor immunity through interference with Siglec-9-mediated immunosuppression.
Collapse
Affiliation(s)
- Hyeree Choi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Michelle Ho
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Opeyemi S Adeniji
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Leila Giron
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Devivasha Bordoloi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Abhijeet J Kulkarni
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | | | - Mohamed Abdel-Mohsen
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
144
|
Berghuis AY, Pijnenborg JFA, Boltje TJ, Pijnenborg JMA. Sialic acids in gynecological cancer development and progression: Impact on diagnosis and treatment. Int J Cancer 2021; 150:678-687. [PMID: 34741527 PMCID: PMC9299683 DOI: 10.1002/ijc.33866] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
Gynecological cancers are in the top 10 of most common cancers in women. Survival and outcome are strongly related to the stage at diagnosis. Therefore, early diagnosis is essential in reducing morbidity and mortality. The high mortality rate of gynecological cancers can mainly be attributed to ovarian cancer (OC). OC is commonly diagnosed at an advanced stage due to a lack of proper screening tools allowing early detection. Endometrial cancer (EC) on the contrary, is mostly diagnosed at an early stage and has, in general, better outcomes. The incidence of nonendometrioid EC has increased in the last decade, displaying a shared tumor biology with OC and consequently significantly worse outcome. New approaches allowing detection of gynecological cancers in an early stage are therefore desired. Recent studies on cancer biology have shown the relevance of altered glycosylation in the occurrence and progression of cancer. The aberrant expression of sialic acid, a specific carbohydrate terminating glycoproteins and glycolipids on the cell‐surface, is frequently correlated with malignancy. We aimed to determine the current understanding of sialic acid function in different gynecological cancers to identify the gaps in knowledge and its potential use for new diagnostic and therapeutic avenues. Therefore we performed a review on current literature focusing on studies where sialylation was linked to gynecological cancers. The identified studies showed elevated levels of sialic acid in serum, tissue and sialylated antigens in most patients with gynecological cancers, underlining its potential for diagnosis.
What's new?
Recent studies have shown the relevance of altered glycosylation in the occurrence and progression of cancer. In this review, the authors found elevated levels of sialic acid in serum and tissue and high levels of sialylated antigens in most patients with gynaecological cancers, underlining the potential of sialic acid for diagnosis. Elevated levels of sialylation were related with tumour growth, poor differentiation, inhibition of apoptosis, and chemoresistance. Taken together, the studies suggest that sialylation levels could be used to discriminate healthy and benign samples from cancer samples and even early and advanced stages in ovarian, cervical, and endometrial cancer.
Collapse
Affiliation(s)
- Anna Y Berghuis
- Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Johan F A Pijnenborg
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Johanna M A Pijnenborg
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Science, Nijmegen, The Netherlands
| |
Collapse
|
145
|
Qiang Z, Zhang H, Jin S, Yan C, Li Z, Tao L, Yu H. The prognostic value of arginase-1 and glypican-3 expression levels in patients after surgical intrahepatic cholangiocarcinoma resection. World J Surg Oncol 2021; 19:316. [PMID: 34715880 PMCID: PMC8556943 DOI: 10.1186/s12957-021-02426-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to investigate the prognostic value of arginase-1 (Arg-1) and glypican-3 (GPC-3) in patients with intrahepatic cholangiocarcinoma (ICC). Methods Two hundred and thirty-seven patients with ICC were included in this study. All patients had undergone radical surgery and had complete clinical information. Immunohistochemistry was used to assess the levels of Arg-1 and GPC-3 in ICC tissues. Univariate and multivariate analyses were conducted to identify independent risk factors in ICC. The relationship between Arg-1 and GPC-3 levels and patient survival was determined using the Kaplan-Meier method. Results High Arg-1 and GPC-3 expression levels were associated with poor prognosis in patients with ICC, and they could be as new prognostic biomarkers in ICC. Conclusion Arg-1 and GPC-3 can serve as independent prognostic biomarkers in ICC. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02426-9.
Collapse
Affiliation(s)
- Zeyuan Qiang
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Haofeng Zhang
- Department of Hepatobiliary Surgery, Medical College of Zhengzhou University, Zhengzhou, China
| | - Shuai Jin
- Department of Hepatobiliary Surgery, Medical College of Zhengzhou University, Zhengzhou, China
| | - Cao Yan
- Department of Hepatobiliary Surgery, Medical College of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lianyuan Tao
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Haibo Yu
- Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China. .,Department of Hepatobiliary Surgery, Medical College of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
146
|
Hyun SW, Imamura A, Ishida H, Piepenbrink KH, Goldblum SE, Lillehoj EP. The sialidase NEU1 directly interacts with the juxtamembranous segment of the cytoplasmic domain of mucin-1 to inhibit downstream PI3K-Akt signaling. J Biol Chem 2021; 297:101337. [PMID: 34688655 PMCID: PMC8591358 DOI: 10.1016/j.jbc.2021.101337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/04/2022] Open
Abstract
The extracellular domain (ED) of the membrane-spanning sialoglycoprotein, mucin-1 (MUC1), is an in vivo substrate for the lysosomal sialidase, neuraminidase-1 (NEU1). Engagement of the MUC1-ED by its cognate ligand, Pseudomonas aeruginosa-expressed flagellin, increases NEU1-MUC1 association and NEU1-mediated MUC1-ED desialylation to unmask cryptic binding sites for its ligand. However, the mechanism(s) through which intracellular NEU1 might physically interact with its surface-expressed MUC1-ED substrate are unclear. Using reciprocal coimmunoprecipitation and in vitro binding assays in a human airway epithelial cell system, we show here that NEU1 associates with the MUC1-cytoplasmic domain (CD) but not with the MUC1-ED. Prior pharmacologic inhibition of the NEU1 catalytic activity using the NEU1-selective sialidase inhibitor, C9-butyl amide-2-deoxy-2,3-dehydro-N-acetylneuraminic acid, did not diminish NEU1-MUC1-CD association. In addition, glutathione-S-transferase (GST) pull-down assays using the deletion mutants of the MUC1-CD mapped the NEU1-binding site to the membrane-proximal 36 aa of the MUC1-CD. In a cell-free system, we found that the purified NEU1 interacted with the immobilized GST-MUC1-CD and the purified MUC1-CD associated with the immobilized 6XHis-NEU1, indicating that the NEU1-MUC1-CD interaction was direct and independent of its chaperone protein, protective protein/cathepsin A. However, the NEU1-MUC1-CD interaction was not required for the NEU1-mediated MUC1-ED desialylation. Finally, we demonstrated that overexpression of either WT NEU1 or a catalytically dead NEU1 G68V mutant diminished the association of the established MUC1-CD binding partner, PI3K, to MUC1-CD and reduced downstream Akt kinase phosphorylation. These results indicate that NEU1 associates with the juxtamembranous region of the MUC1-CD to inhibit PI3K-Akt signaling independent of NEU1 catalytic activity.
Collapse
Affiliation(s)
- Sang W Hyun
- US Department of Veterans Affairs, Veterans Affairs Medical Center, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Akihiro Imamura
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu, Japan
| | - Hideharu Ishida
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu, Japan
| | - Kurt H Piepenbrink
- Food Science and Technology Department, University of Nebraska, Lincoln, Nebraska, USA
| | - Simeon E Goldblum
- US Department of Veterans Affairs, Veterans Affairs Medical Center, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
147
|
Wardman JF, Rahfeld P, Liu F, Morgan-Lang C, Sim L, Hallam SJ, Withers SG. Discovery and Development of Promiscuous O-Glycan Hydrolases for Removal of Intact Sialyl T-Antigen. ACS Chem Biol 2021; 16:2004-2015. [PMID: 34309358 DOI: 10.1021/acschembio.1c00316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mucin-type O-glycosylation (O-glycosylation) is a common post-translational modification that confers distinct biophysical properties to proteins and plays crucial roles in intercellular signaling. Yet, despite the importance of O-glycans, relatively few tools exist for their analysis and modification. In particular, there is a need for enzymes that can cleave the wide range of O-glycan structures found on protein surfaces, to facilitate glycan profiling and editing. Through functional metagenomic screening of the human gut microbiome, we discovered endo-O-glycan hydrolases from CAZy family GH101 that are capable of slowly cleaving the intact sialyl T-antigen trisaccharide (a ubiquitous O-glycan structure in humans) in addition to their primary activity against the T-antigen disaccharide. We then further explored this sequence space through phylogenetic profiling and analysis of representative enzymes, revealing large differences in the levels of this promiscuous activity between enzymes within the family. Through structural and sequence analysis, we identified active site residues that modulate specificity. Through subsequent rational protein engineering, we improved the activity of an enzyme identified by phylogenetic profiling sufficiently that substantial removal of the intact sialyl T-antigen from proteins could be readily achieved. Our best sialyl T-antigen hydrolase mutant, SpGH101 Q868G, is further shown to function on a number of proteins, tissues, and cells. Access to this enzyme opens up improved methodologies for unraveling the glycan code.
Collapse
Affiliation(s)
- Jacob F. Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Peter Rahfeld
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Feng Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Lyann Sim
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Steven J. Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Stephen G. Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, British Columbia V6T 1Z4, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
148
|
Lünemann JD, von Gunten S, Neumann H. Targeting sialylation to treat central nervous system diseases. Trends Pharmacol Sci 2021; 42:998-1008. [PMID: 34607695 DOI: 10.1016/j.tips.2021.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/03/2023]
Abstract
Sialic acid-binding immunoglobulin-type lectins (SIGLECs) are membrane receptors that are preferentially expressed on immune cells and recognize sialylated proteins, lipids, and RNA. Sialic acids and signaling through SIGLECs are increasingly recognized for their essential roles in immune system homeostasis as well as nervous system development, plasticity, and repair. Dysregulated sialylation and SIGLEC dysfunctions contribute to several chronic diseases of the central nervous system (CNS) in which current therapeutic options are very limited. While only a few therapies targeting SIGLECs are currently being tested in clinical trials, the area emerged as one of the most dynamic and active fields in glycobiology and drug development. This review highlights recent insights into sialic acid and SIGLEC function in CNS pathologies and illustrates opportunities and challenges for the development of sialic acid-based and SIGLEC-targeted therapies for neurological diseases.
Collapse
Affiliation(s)
- Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| | | | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
149
|
Xu F, Zhao H, Li J, Jiang H. Mucin-type sialyl-Tn antigen is associated with PD-L1 expression and predicts poor clinical prognosis in breast cancer. Gland Surg 2021; 10:2159-2169. [PMID: 34422587 DOI: 10.21037/gs-21-83] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/21/2021] [Indexed: 11/06/2022]
Abstract
Background A recent study showed that mucin-type sialylated O-linked glycans could induce the increased expression of PD-L1 via binding to Siglec receptors. However, the relationship between the expression of the mucin-type sialyl-Tn antigen (sTn) and PD-L1 remains unclear in breast cancer (BC). Therefore, we investigate the clinicopathological and prognostic effects of sTn expression and its relationship with PD-L1 expression in BC tissues. Methods We retrospectively analyzed the clinical data of 380 invasive BC patients between January 2011 and January 2014. The last follow-up time was January 31, 2019 with a median follow-up of 62 months. The expression of the sTn antigen and PD-L1 in 380 tumor specimens was assessed by immunohistochemistry. Correlations between sTn/PD-L1 expression and clinicopathological features and prognoses were analyzed. Results In BC tissues, the positive expression rate of PD-L1 (20.5%) was much lower than that of sTn (41.8%). Pearson's contingency analysis showed that sTn and PD-L1 expression in tumor tissues demonstrated a high correlation (P<0.001). High sTn expression was associated with negative ER expression (P<0.001), positive HER-2 status (P<0.001), advanced tumor stage (P<0.001), high density of CD8+ tumor-infiltrating lymphocytes (TILs) (P=0.028), and positive lymph node metastasis (P=0.002). Moreover, patients with concomitant high expression of both markers had the highest risk of relapse (P<0.001) and mortality (P<0.001). The multivariate Cox regression model revealed that positive sTn expression (HRos: 1.941, 95% CI: 1.168, 3.223, Pos=0.028; HRpfs: 1.739, 95% CI: 1.063, 2.847, Ppfs=0.010) and positive PD-L1 expression (HRos: 1.912, 95% CI: 1.138, 3.212, Pos=0.017; HRpfs: 1.863, 95% CI: 1.116, 3.110, Ppfs=0.014) were independent indicators for poor overall survival (OS) and progression-free survival (PFS), respectively. Conclusions BC patients who expressed both sTn and PD-L1 had poorer survival. Therefore, combinational therapy with dual blockade might benefit BC patients with sTn(+)/PD-L1(+) expression, which requires further examination in future clinical trials.
Collapse
Affiliation(s)
- Feng Xu
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Beijing, China
| | - Hongying Zhao
- Department of Pathology, Beijing Chao-Yang Hospital, Beijing, China
| | - Jie Li
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Beijing, China
| | - Hongchuan Jiang
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Beijing, China
| |
Collapse
|
150
|
Friedman DJ, Crotts SB, Shapiro MJ, Rajcula M, McCue S, Liu X, Khazaie K, Dong H, Shapiro VS. ST8Sia6 Promotes Tumor Growth in Mice by Inhibiting Immune Responses. Cancer Immunol Res 2021; 9:952-966. [PMID: 34074677 PMCID: PMC8338779 DOI: 10.1158/2326-6066.cir-20-0834] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/05/2021] [Accepted: 05/26/2021] [Indexed: 01/27/2023]
Abstract
Many tumors exhibit increased incorporation of sialic acids into cell-surface glycans, which impact the tumor microenvironment. Sialic acid immunoglobulin-like lectins (Siglec) are receptors that recognize sialic acids and modulate immune responses, including responses to tumors. However, the roles of individual sialyltransferases in tumorigenesis and tumor growth are not well understood. Here, we examined the sialyltransferase ST8Sia6, which generated α2,8-linked disialic acids that bind to murine Siglec-E and human Siglec-7 and -9. Increased ST8Sia6 expression was found on many human tumors and associated with decreased survival in several cancers, including colon cancer. Because of this, we engineered MC38 and B16-F10 tumor lines to express ST8Sia6. ST8Sia6-expressing MC38 and B16-F10 tumors exhibited faster growth and led to decreased survival, which required host Siglec-E. ST8Sia6 expression on tumors also altered macrophage polarization toward M2, including upregulation of the immune modulator arginase, which also required Siglec-E. ST8Sia6 also accelerated tumorigenesis in a genetically engineered, spontaneous murine model of colon cancer, decreasing survival from approximately 6 months to 67 days. Thus, ST8Sia6 expression on tumors inhibits antitumor immune responses to accelerate tumor growth.
Collapse
Affiliation(s)
| | | | | | | | - Shaylene McCue
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Xin Liu
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | | | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
- Department of Urology, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|