101
|
Liu Y, Zhang W, Zhou H, Chen J. Steroidal saponins PPI/CCRIS/PSV induce cell death in pancreatic cancer cell through GSDME-dependent pyroptosis. Biochem Biophys Res Commun 2023; 673:51-58. [PMID: 37356145 DOI: 10.1016/j.bbrc.2023.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Pancreatic cancer is highly aggressive and lethal, and treatment options for it are limited. Gasdermin E (GSDME) is highly expressed in pancreatic cancer and can induce pyroptosis. In this type of programmed cell death, cells swell and emit large gas bubbles through their plasma membranes. Hence, GSDME induction is potentially an efficacious therapeutic approach against pancreatic cancer. In the present study, we found that the steroidal saponins polyphyllin I (PPI), collettiside III (CCRIS), and paris saponin V (PSV) significantly inhibited PANC-1, AsPC-1, and BxPC-3 cell proliferation. PPI/CCRIS/PSV altered the morphology of PANC-1 cells and induced the release of lactate dehydrogenase (LDH) from them. Therefore, these three constituents caused PANC-1 cells to undergo pyroptosis. This conclusion was confirmed by propidium iodide (PI) staining and flow cytometry assays. The present work also revealed that PPI/CCRIS/PSV induced pyroptosis via GSDME rather than gasdermin D (GSDMD). Whereas PPI/CCRIS/PSV induced caspase-3 to cleave GSDME, it had no such effect on GSDMD. We also established a PANC-1 xenograft tumor model in BALB/c nude mice and administered CCRIS to them as this compound demonstrated the most substantial pyroptotic effect in the in vitro experiments. This treatment significantly inhibited tumor growth in the mice by activating GSDME-dependent pyroptosis. This research demonstrates demonstrate that pyroptosis induction by PPI/CCRIS/PSV has important implications in basic science and clinical medicine. Future investigations should endeavor to determine the benefits and risks associated with the administration of these steroidal saponins as anti-PDAC therapy.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, PR China
| | - Weitao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, PR China
| | - Haoyan Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, PR China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, PR China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, PR China.
| |
Collapse
|
102
|
Bararia A, Das A, Mitra S, Banerjee S, Chatterjee A, Sikdar N. Deoxyribonucleic acid methylation driven aberrations in pancreatic cancer-related pathways. World J Gastrointest Oncol 2023; 15:1505-1519. [PMID: 37746645 PMCID: PMC10514732 DOI: 10.4251/wjgo.v15.i9.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023] Open
Abstract
Pancreatic cancer (PanCa) presents a catastrophic disease with poor overall survival at advanced stages, with immediate requirement of new and effective treatment options. Besides genetic mutations, epigenetic dysregulation of signaling pathway-associated enriched genes are considered as novel therapeutic target. Mechanisms beneath the deoxyribonucleic acid methylation and its utility in developing of epi-drugs in PanCa are under trails. Combinations of epigenetic medicines with conventional cytotoxic treatments or targeted therapy are promising options to improving the dismal response and survival rate of PanCa patients. Recent studies have identified potentially valid pathways that support the prediction that future PanCa clinical trials will include vigorous testing of epigenomic therapies. Epigenetics thus promises to generate a significant amount of new knowledge of biological and medical importance. Our review could identify various components of epigenetic mechanisms known to be involved in the initiation and development of pancreatic ductal adenocarcinoma and related precancerous lesions, and novel pharmacological strategies that target these components could potentially lead to breakthroughs. We aim to highlight the possibilities that exist and the potential therapeutic interventions.
Collapse
Affiliation(s)
- Akash Bararia
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Amlan Das
- Department of Biochemistry, Royal Global University, Assam 781035, India
| | - Sangeeta Mitra
- Department of Biochemistry and Biophysics, University of Kalyani, West Bengal 741235, India
| | - Sudeep Banerjee
- Department of Gastrointestinal Surgery, Tata Medical Center, Kolkata 700160, India
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
103
|
Mahadevan KK, McAndrews KM, LeBleu VS, Yang S, Lyu H, Li B, Sockwell AM, Kirtley ML, Morse SJ, Moreno Diaz BA, Kim MP, Feng N, Lopez AM, Guerrero PA, Paradiso F, Sugimoto H, Arian KA, Ying H, Barekatain Y, Sthanam LK, Kelly PJ, Maitra A, Heffernan TP, Kalluri R. KRAS G12D inhibition reprograms the microenvironment of early and advanced pancreatic cancer to promote FAS-mediated killing by CD8 + T cells. Cancer Cell 2023; 41:1606-1620.e8. [PMID: 37625401 PMCID: PMC10785700 DOI: 10.1016/j.ccell.2023.07.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/09/2023] [Accepted: 07/10/2023] [Indexed: 08/27/2023]
Abstract
The KRASG12D mutation is present in nearly half of pancreatic adenocarcinomas (PDAC). We investigated the effects of inhibiting the KRASG12D mutant protein with MRTX1133, a non-covalent small molecule inhibitor of KRASG12D, on early and advanced PDAC and its influence on the tumor microenvironment. Employing 16 different models of KRASG12D-driven PDAC, we demonstrate that MRTX1133 reverses early PDAC growth, increases intratumoral CD8+ effector T cells, decreases myeloid infiltration, and reprograms cancer-associated fibroblasts. MRTX1133 leads to regression of both established PanINs and advanced PDAC. Regression of advanced PDAC requires CD8+ T cells and immune checkpoint blockade (ICB) synergizes with MRTX1133 to eradicate PDAC and prolong overall survival. Mechanistically, inhibition of KRASG12D in advanced PDAC and human patient derived organoids induces FAS expression in cancer cells and facilitates CD8+ T cell-mediated death. Collectively, this study provides a rationale for a synergistic combination of MRTX1133 with ICB in clinical trials.
Collapse
Affiliation(s)
- Krishnan K Mahadevan
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie S LeBleu
- Feinberg School of Medicine and Kellogg School of Management, Northwestern University, Chicago, IL, USA
| | - Sujuan Yang
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hengyu Lyu
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingrui Li
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amari M Sockwell
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle L Kirtley
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sami J Morse
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara A Moreno Diaz
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael P Kim
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ningping Feng
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anastasia M Lopez
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paola A Guerrero
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Break Through Cancer, Cambridge, MA, USA
| | - Francesca Paradiso
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kent A Arian
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasaman Barekatain
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lakshmi Kavitha Sthanam
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patience J Kelly
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy P Heffernan
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
104
|
Zhao DK, Liang J, Huang XY, Shen S, Wang J. Organoids technology for advancing the clinical translation of cancer nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1892. [PMID: 37088100 DOI: 10.1002/wnan.1892] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 04/25/2023]
Abstract
The past decades have witnessed the rapid development and widespread application of nanomedicines in cancer treatment; however, the clinical translation of experimental findings has been low, as evidenced by the low percentage of commercialized nanomedicines. Incomplete understanding of nanomedicine-tumor interactions and inappropriate evaluation models are two important challenges limiting the clinical translation of cancer nanomedicines. Currently, nanomedicine-tumor interaction and therapeutic effects are mainly investigated using cell lines or mouse models, which do not recapitulate the complex tumor microenvironment in human patients. Thus, information obtained from cell lines and mouse models cannot provide adequate guidance for the rational redesign of nanomedicine. Compared with other preclinical models, tumor organoids constructed from patient-derived tumor tissues are superior in retaining the key histopathological, genetic, and phenotypic features of the parent tumor. We speculate that organoid technology would help elucidate nanomedicine-tumor interaction in the tumor microenvironment and guide the design of nanomedicine, making it a reliable tool to accurately predict drug responses in patients with cancer. This review highlighted the advantages of drug delivery systems in cancer treatment, challenges limiting the clinical translation of antitumor nanomedicines, and potential application of patient-derived organoids (PDO) in nanomedicine. We propose that combining organoids and nanotechnology would facilitate the development of safe and effective cancer nanomedicines and accelerate their clinical application. This review discussed the potential translational value of integrative research using organoids and cancer nanomedicine. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Dong-Kun Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Jie Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiao-Yi Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China
| |
Collapse
|
105
|
Jiang N, Jin L, Li S. Role of SPP1 in the diagnosis of gastrointestinal cancer. Oncol Lett 2023; 26:411. [PMID: 37614657 PMCID: PMC10442757 DOI: 10.3892/ol.2023.13997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/06/2023] [Indexed: 08/25/2023] Open
Abstract
Recently, the incidence rate of digestive system tumors has increased in China and these tumors occur in a younger population. The present study aimed to determine the expression levels and potential clinical value of secreted phosphoprotein 1 (SPP1) in gastrointestinal cancer. The microarray datasets GSE104836, GSE189830 and GSE103236, obtained from the gene expression omnibus database, were analyzed to determine differentially expressed genes in patients with colorectal cancer (CRC), gastric cancer (GC) and esophageal cancer (EC). A total of 42 patients with CRC, GC or EC and 21 healthy controls were recruited to obtain blood and tissues samples. SPP1 expression levels were detected using reverse transcription-quantitative PCR. Moreover, levels of significance of SPP1 in patients with CRC, GC and EC were analyzed using receiver operating characteristic analysis. Potential correlations between SPP1 and carcinoembryonic antigen (CEA) were assessed using Pearson's correlation coefficient. SPP1 was significantly upregulated in the serum, plasma and tissue of patients with CRC, GC or EC. In addition, the area under the curve of SPP1 was >0.5 in the plasma, serum and cancer tissue of patients with early and late CRC, GC or EC. The present study further demonstrated that the specificity and sensitivity of SPP1 was higher in patients with late CRC, GC or EC compared with patients with early CRC, GC or EC. Moreover, SPP1 and CEA were significantly positively correlated in serum of patients with CRC, GC or EC. In conclusion, the current study demonstrated that SPP1 exhibited significant diagnostic value for gastrointestinal tumors, which suggested that SPP1 may exhibit potential as a diagnostic marker of CRC, GC and EC. The present study provided a novel theoretical basis for the role of SPP1 as a diagnostic marker of digestive system tumors.
Collapse
Affiliation(s)
- Nanfang Jiang
- Department of Gastroenterology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, Hubei 430030, P.R. China
| | - Lei Jin
- Department of Gastroenterology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, Hubei 430030, P.R. China
| | - Shuyu Li
- Department of Gastroenterology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
106
|
Freires IA, Morelo DFC, Soares LFF, Costa IS, de Araújo LP, Breseghello I, Abdalla HB, Lazarini JG, Rosalen PL, Pigossi SC, Franchin M. Progress and promise of alternative animal and non-animal methods in biomedical research. Arch Toxicol 2023; 97:2329-2342. [PMID: 37394624 DOI: 10.1007/s00204-023-03532-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
Cell culture and invertebrate animal models reflect a significant evolution in scientific research by providing reliable evidence on the physiopathology of diseases, screening for new drugs, and toxicological tests while reducing the need for mammals. In this review, we discuss the progress and promise of alternative animal and non-animal methods in biomedical research, with a special focus on drug toxicity.
Collapse
Affiliation(s)
- Irlan Almeida Freires
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| | - David Fernando Colon Morelo
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | | | | | | | - Henrique Ballassini Abdalla
- Laboratory of Neuroimmune Interface of Pain Research, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Josy Goldoni Lazarini
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
- Graduate Program in Biological Sciences, Federal University of Alfenas, Alfenas, Brazil
| | | | - Marcelo Franchin
- School of Dentistry, Federal University of Alfenas, Alfenas, Brazil
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
107
|
Yang Q, Li M, Yang X, Xiao Z, Tong X, Tuerdi A, Li S, Lei L. Flourishing tumor organoids: History, emerging technology, and application. Bioeng Transl Med 2023; 8:e10559. [PMID: 37693042 PMCID: PMC10487342 DOI: 10.1002/btm2.10559] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Malignant tumors are one of the leading causes of death which impose an increasingly heavy burden on all countries. Therefore, the establishment of research models that closely resemble original tumor characteristics is crucial to further understanding the mechanisms of malignant tumor development, developing safer and more effective drugs, and formulating personalized treatment plans. Recently, organoids have been widely used in tumor research owing to their advantages including preserving the structure, heterogeneity, and cellular functions of the original tumor, together with the ease of manipulation. This review describes the history and characteristics of tumor organoids and the synergistic combination of three-dimensional (3D) culture approaches for tumor organoids with emerging technologies, including tissue-engineered cell scaffolds, microfluidic devices, 3D bioprinting, rotating wall vessels, and clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9). Additionally, the progress in research and the applications in basic and clinical research of tumor organoid models are summarized. This includes studies of the mechanism of tumor development, drug development and screening, precision medicine, immunotherapy, and simulation of the tumor microenvironment. Finally, the existing shortcomings of tumor organoids and possible future directions are discussed.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ayinuer Tuerdi
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
108
|
Kayser C, Brauer A, Susanne S, Wandmacher AM. The challenge of making the right choice: patient avatars in the era of cancer immunotherapies. Front Immunol 2023; 14:1237565. [PMID: 37638045 PMCID: PMC10449253 DOI: 10.3389/fimmu.2023.1237565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Immunotherapies are a key therapeutic strategy to fight cancer. Diverse approaches are used to activate tumor-directed immunity and to overcome tumor immune escape. The dynamic interplay between tumor cells and their tumor(immune)microenvironment (T(I)ME) poses a major challenge to create appropriate model systems. However, those model systems are needed to gain novel insights into tumor (immune) biology and a prerequisite to accurately develop and test immunotherapeutic approaches which can be successfully translated into clinical application. Several model systems have been established and advanced into so-called patient avatars to mimic the patient´s tumor biology. All models have their advantages but also disadvantages underscoring the necessity to pay attention in defining the rationale and requirements for which the patient avatar will be used. Here, we briefly outline the current state of tumor model systems used for tumor (immune)biological analysis as well as evaluation of immunotherapeutic agents. Finally, we provide a recommendation for further development to make patient avatars a complementary tool for testing and predicting immunotherapeutic strategies for personalization of tumor therapies.
Collapse
Affiliation(s)
- Charlotte Kayser
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Annika Brauer
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Sebens Susanne
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Anna Maxi Wandmacher
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
- Department of Internal Medicine II, University Hospital Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
109
|
Zhou B, Feng Z, Xu J, Xie J. Organoids: approaches and utility in cancer research. Chin Med J (Engl) 2023; 136:1783-1793. [PMID: 37365679 PMCID: PMC10406116 DOI: 10.1097/cm9.0000000000002477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 06/28/2023] Open
Abstract
ABSTRACT Organoids are three-dimensional cellular structures with self-organizing and self-differentiation capacities. They faithfully recapitulate structures and functions of in vivo organs as represented by functionality and microstructural definitions. Heterogeneity in in vitro disease modeling is one of the main reasons for anti-cancer therapy failures. Establishing a powerful model to represent tumor heterogeneity is crucial for elucidating tumor biology and developing effective therapeutic strategies. Tumor organoids can retain the original tumor heterogeneity and are commonly used to mimic the cancer microenvironment when co-cultured with fibroblasts and immune cells; therefore, considerable effort has been made recently to promote the use of this new technology from basic research to clinical studies in tumors. In combination with gene editing technology and microfluidic chip systems, engineered tumor organoids show promising abilities to recapitulate tumorigenesis and metastasis. In many studies, the responses of tumor organoids to various drugs have shown a positive correlation with patient responses. Owing to these consistent responses and personalized characteristics with patient data, tumor organoids show excellent potential for preclinical research. Here, we summarize the properties of different tumor models and review their current state and progress in tumor organoids. We further discuss the substantial challenges and prospects in the rapidly developing tumor organoid field.
Collapse
Affiliation(s)
- Bingrui Zhou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhiwei Feng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jun Xu
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
110
|
Fang Z, Li P, Du F, Shang L, Li L. The role of organoids in cancer research. Exp Hematol Oncol 2023; 12:69. [PMID: 37537666 PMCID: PMC10401879 DOI: 10.1186/s40164-023-00433-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023] Open
Abstract
Organoids are established through in vitro 3D culture, and they can mimic the structure and physiological functions of organs or tissues in vivo. Organoids have attracted much attention in recent years. They can provide a reliable technology platform for cancer research and treatment and are a valuable preclinical model for academic research and personalized medicine. A number of studies have confirmed that organoids have great application prospects in new drug development, drug screening, tumour mechanism research, and precision medicine. In this review, we mainly focus on recent advances in the application of organoids in cancer research. We also discussed the opportunities and challenges facing organoids, hoping to indicate directions for the development of organoids in the future.
Collapse
Affiliation(s)
- Zhen Fang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital of Shandong First Medical University, Jingwuweiqi street, 324, Jinan, 250021, Shandong, China
- Department of Digestive Tumour Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China
| | - Peijuan Li
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fengying Du
- Department of Gastroenterological Surgery, Shandong Provincial Hospital of Shandong First Medical University, Jingwuweiqi street, 324, Jinan, 250021, Shandong, China
- Department of Digestive Tumour Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China
| | - Liang Shang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital of Shandong First Medical University, Jingwuweiqi street, 324, Jinan, 250021, Shandong, China.
- Department of Digestive Tumour Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China.
| | - Leping Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital of Shandong First Medical University, Jingwuweiqi street, 324, Jinan, 250021, Shandong, China.
- Department of Digestive Tumour Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China.
| |
Collapse
|
111
|
Li C, Holman JB, Shi Z, Qiu B, Ding W. On-chip modeling of tumor evolution: Advances, challenges and opportunities. Mater Today Bio 2023; 21:100724. [PMID: 37483380 PMCID: PMC10359640 DOI: 10.1016/j.mtbio.2023.100724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor evolution is the accumulation of various tumor cell behaviors from tumorigenesis to tumor metastasis and is regulated by the tumor microenvironment (TME). However, the mechanism of solid tumor progression has not been completely elucidated, and thus, the development of tumor therapy is still limited. Recently, Tumor chips constructed by culturing tumor cells and stromal cells on microfluidic chips have demonstrated great potential in modeling solid tumors and visualizing tumor cell behaviors to exploit tumor progression. Herein, we review the methods of developing engineered solid tumors on microfluidic chips in terms of tumor types, cell resources and patterns, the extracellular matrix and the components of the TME, and summarize the recent advances of microfluidic chips in demonstrating tumor cell behaviors, including proliferation, epithelial-to-mesenchymal transition, migration, intravasation, extravasation and immune escape of tumor cells. We also outline the combination of tumor organoids and microfluidic chips to elaborate tumor organoid-on-a-chip platforms, as well as the practical limitations that must be overcome.
Collapse
Affiliation(s)
- Chengpan Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Joseph Benjamin Holman
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhengdi Shi
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Weiping Ding
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
112
|
Rana M, Kansal RG, Bisunke B, Fang J, Shibata D, Bajwa A, Yang J, Glazer ES. Bromo- and Extra-Terminal Domain Inhibitors Induce Mitochondrial Stress in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2023; 22:936-946. [PMID: 37294884 PMCID: PMC10527726 DOI: 10.1158/1535-7163.mct-23-0149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
Identifying novel, unique, and personalized molecular targets for patients with pancreatic ductal adenocarcinoma (PDAC) remains the greatest challenge in altering the biology of fatal tumors. Bromo- and extra-terminal domain (BET) proteins are activated in a noncanonical fashion by TGFβ, a ubiquitous cytokine in the PDAC tumor microenvironment (TME). We hypothesized that BET inhibitors (BETi) represent a new class of drugs that attack PDAC tumors via a novel mechanism. Using a combination of patient and syngeneic murine models, we investigated the effects of the BETi drug BMS-986158 on cellular proliferation, organoid growth, cell-cycle progression, and mitochondrial metabolic disruption. These were investigated independently and in combination with standard cytotoxic chemotherapy (gemcitabine + paclitaxel [GemPTX]). BMS-986158 reduced cell viability and proliferation across multiple PDAC cell lines in a dose-dependent manner, even more so in combination with cytotoxic chemotherapy (P < 0.0001). We found that BMS-986158 reduced both human and murine PDAC organoid growth (P < 0.001), with associated perturbations in the cell cycle leading to cell-cycle arrest. BMS-986158 disrupts normal cancer-dependent mitochondrial function, leading to aberrant mitochondrial metabolism and stress via dysfunctional cellular respiration, proton leakage, and ATP production. We demonstrated mechanistic and functional data that BETi induces metabolic mitochondrial dysfunction, abrogating PDAC progression and proliferation, alone and in combination with systemic cytotoxic chemotherapies. This novel approach improves the therapeutic window in patients with PDAC and offers another treatment approach distinct from cytotoxic chemotherapy that targets cancer cell bioenergetics.
Collapse
Affiliation(s)
- Manjul Rana
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Rita G. Kansal
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Bijay Bisunke
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Jie Fang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN
| | - David Shibata
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Amandeep Bajwa
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN
- Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, St. Jude Children’s Research Hospital, Memphis, TN
| | - Evan S. Glazer
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
113
|
Waldow A, Beier LS, Arndt J, Schallenberg S, Vollbrecht C, Bischoff P, Farrera-Sal M, Loch FN, Bojarski C, Schumann M, Winkler L, Kamphues C, Ehlen L, Piontek J. cCPE Fusion Proteins as Molecular Probes to Detect Claudins and Tight Junction Dysregulation in Gastrointestinal Cell Lines, Tissue Explants and Patient-Derived Organoids. Pharmaceutics 2023; 15:1980. [PMID: 37514167 PMCID: PMC10385049 DOI: 10.3390/pharmaceutics15071980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Claudins regulate paracellular permeability, contribute to epithelial polarization and are dysregulated during inflammation and carcinogenesis. Variants of the claudin-binding domain of Clostridium perfringens enterotoxin (cCPE) are highly sensitive protein ligands for generic detection of a broad spectrum of claudins. Here, we investigated the preferential binding of YFP- or GST-cCPE fusion proteins to non-junctional claudin molecules. Plate reader assays, flow cytometry and microscopy were used to assess the binding of YFP- or GST-cCPE to non-junctional claudins in multiple in vitro and ex vivo models of human and rat gastrointestinal epithelia and to monitor formation of a tight junction barrier. Furthermore, YFP-cCPE was used to probe expression, polar localization and dysregulation of claudins in patient-derived organoids generated from gastric dysplasia and gastric cancer. Live-cell imaging and immunocytochemistry revealed cell polarity and presence of tight junctions in glandular organoids (originating from intestinal-type gastric cancer and gastric dysplasia) and, in contrast, a disrupted diffusion barrier for granular organoids (originating from discohesive tumor areas). In sum, we report the use of cCPE fusion proteins as molecular probes to specifically and efficiently detect claudin expression, localization and tight junction dysregulation in cell lines, tissue explants and patient-derived organoids of the gastrointestinal tract.
Collapse
Affiliation(s)
- Ayk Waldow
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Laura-Sophie Beier
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Arndt
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Simon Schallenberg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
| | - Claudia Vollbrecht
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
| | - Philip Bischoff
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martí Farrera-Sal
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| | - Florian N Loch
- Department of General and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Christian Bojarski
- Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Michael Schumann
- Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Lars Winkler
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, 13125 Berlin, Germany
| | - Carsten Kamphues
- Park-Klinik Weißensee, Department of General-Visceral and Minimally-Invasive Surgery, 13086 Berlin, Germany
| | - Lukas Ehlen
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| |
Collapse
|
114
|
Yan HHN, Chan AS, Lai FPL, Leung SY. Organoid cultures for cancer modeling. Cell Stem Cell 2023; 30:917-937. [PMID: 37315564 DOI: 10.1016/j.stem.2023.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Organoids derived from adult stem cells (ASCs) and pluripotent stem cells (PSCs) are important preclinical models for studying cancer and developing therapies. Here, we review primary tissue-derived and PSC-derived cancer organoid models and detail how they have the potential to inform personalized medical approaches in different organ contexts and contribute to the understanding of early carcinogenic steps, cancer genomes, and biology. We also compare the differences between ASC- and PSC-based cancer organoid systems, discuss their limitations, and highlight recent improvements to organoid culture approaches that have helped to make them an even better representation of human tumors.
Collapse
Affiliation(s)
- Helen H N Yan
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
| | - April S Chan
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Frank Pui-Ling Lai
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China; Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for PanorOmic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
115
|
Cao R, Li NT, Latour S, Cadavid JL, Tan CM, Forman A, Jackson HW, McGuigan AP. An Automation Workflow for High-Throughput Manufacturing and Analysis of Scaffold-Supported 3D Tissue Arrays. Adv Healthc Mater 2023; 12:e2202422. [PMID: 37086259 PMCID: PMC11468893 DOI: 10.1002/adhm.202202422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Patient-derived organoids have emerged as a useful tool to model tumour heterogeneity. Scaling these complex culture models while enabling stratified analysis of different cellular sub-populations, however, remains a challenge. One strategy to enable higher throughput organoid cultures is the scaffold-supported platform for organoid-based tissues (SPOT). SPOT allows the generation of flat, thin, and dimensionally-defined microtissues in both 96- and 384-well plate footprints that are compatible with longitudinal image-based readouts. SPOT is currently manufactured manually, however, limiting scalability. In this study, an automation approach to engineer tumour-mimetic 3D microtissues in SPOT using a liquid handler is optimized and comparable within- and between-sample variation to standard manual manufacturing is shown. Further, a liquid handler-supported cell extraction protocol to support single-cell-based end-point analysis using high-throughput flow cytometry and multiplexed cytometry by time of flight is developed. As a proof-of-value demonstration, 3D complex tissues containing different proportions of tumour and stromal cells are generated to probe the reciprocal impact of co-culture. It is also demonstrated that primary patient-derived organoids can be incorporated into the pipeline to capture patient-level tumour heterogeneity. It is envisioned that this automated 96/384-SPOT workflow will provide opportunities for future applications in high-throughput screening for novel personalized therapeutic targets.
Collapse
Affiliation(s)
- Ruonan Cao
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
| | - Nancy T. Li
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
| | - Simon Latour
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital600 University AveTorontoONM5G 1X5Canada
| | - Jose L. Cadavid
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
| | - Cassidy M. Tan
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
| | - Ari Forman
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital600 University AveTorontoONM5G 1X5Canada
- Department of Molecular GeneticsUniversity of Toronto1 King's College CirTorontoONM5S 1A8Canada
| | - Hartland W. Jackson
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital600 University AveTorontoONM5G 1X5Canada
- Department of Molecular GeneticsUniversity of Toronto1 King's College CirTorontoONM5S 1A8Canada
- Ontario Institute of Cancer Research661 University AveTorontoONM5G 0A3Canada
| | - Alison P. McGuigan
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
| |
Collapse
|
116
|
Chen Y, Liu Y, Chen S, Zhang L, Rao J, Lu X, Ma Y. Liver organoids: a promising three-dimensional model for insights and innovations in tumor progression and precision medicine of liver cancer. Front Immunol 2023; 14:1180184. [PMID: 37334366 PMCID: PMC10272526 DOI: 10.3389/fimmu.2023.1180184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Primary liver cancer (PLC) is one type of cancer with high incidence rate and high mortality rate in the worldwide. Systemic therapy is the major treatment for PLC, including surgical resection, immunotherapy and targeted therapy. However, mainly due to the heterogeneity of tumors, responses to the above drug therapy differ from person to person, indicating the urgent needs for personalized treatment for PLC. Organoids are 3D models derived from adult liver tissues or pluripotent stem cells. Based on the ability to recapitulate the genetic and functional features of in vivo tissues, organoids have assisted biomedical research to make tremendous progress in understanding disease origin, progression and treatment strategies since their invention and application. In liver cancer research, liver organoids contribute greatly to reflecting the heterogeneity of liver cancer and restoring tumor microenvironment (TME) by co-organizing tumor vasculature and stromal components in vitro. Therefore, they provide a promising platform for further investigation into the biology of liver cancer, drug screening and precision medicine for PLC. In this review, we discuss the recent advances of liver organoids in liver cancer, in terms of generation methods, application in precision medicine and TME modeling.
Collapse
Affiliation(s)
- Yukun Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yujun Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shimin Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Long Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiawei Rao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
117
|
Sato Y, Elbadawy M, Suzuki K, Tsunedomi R, Nagano H, Ishihara Y, Yamamoto H, Azakami D, Uchide T, Nabeta R, Fukushima R, Abugomaa A, Kaneda M, Yamawaki H, Shinohara Y, Usui T, Sasaki K. Establishment of an experimental model of canine malignant mesothelioma organoid culture using a three-dimensional culture method. Biomed Pharmacother 2023; 162:114651. [PMID: 37030135 DOI: 10.1016/j.biopha.2023.114651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Canine malignant mesothelioma (cMM) is a rare and drug-resistant malignant tumor. Due to few patients and experimental models, there have not been enough studies to demonstrate the pathogenesis of the disease and novel effective treatment for cMM. Since cMM resembles human MM (hMM) in histopathological characteristics, it is also considered a promising research model of hMM. Compared with conventional 2-dimensional (2D) culture methods, 3-dimensional (3D) organoid culture can recapitulate the properties of original tumor tissues. However, cMM organoids have never been developed. In the present study, we for the first time generated cMM organoids using the pleural effusion samples. Organoids from individual MM dogs were successfully generated. They exhibited the characteristics of MM and expressed mesothelial cell markers, such as WT-1 and mesothelin. The sensitivity to anti-cancer drugs was different in each strain of cMM organoids. RNA sequencing analysis showed cell adhesion molecule pathways were specifically upregulated in cMM organoids compared with their corresponding 2D cultured cells. Among these genes, the expression level of E-cadherin was drastically higher in the organoids than that in the 2D cells. In conclusion, our established cMM organoids might become a new experimental tool to provide new insights into canine and human MM therapy.
Collapse
Affiliation(s)
- Yomogi Sato
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736, Moshtohor, Toukh, Elqaliobiya, Egypt.
| | - Kazuhiko Suzuki
- Laboratory of Veterinary Toxicology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Haru Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Clinical Oncology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tsuyoshi Uchide
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Rina Nabeta
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryuji Fukushima
- Animal Medical Emergency Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23 ban-cho, Towada, Aomori 034-8628, Japan
| | - Yuta Shinohara
- Pet Health & Food Division, Iskara Industry CO., LTD, 1-14-2, Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
118
|
Kinoshita K, Tsukamoto Y, Hirashita Y, Fuchino T, Kurogi S, Uchida T, Nakada C, Matsumoto T, Okamoto K, Motomura M, Fukuchi S, Sagami R, Nagai T, Gotoh Y, Fukuda K, Ogawa R, Mizukami K, Okimoto T, Kodama M, Murakami K, Moriyama M, Hijiya N. Efficient Establishment of Bile-Derived Organoids From Biliary Cancer Patients. J Transl Med 2023; 103:100105. [PMID: 36842278 DOI: 10.1016/j.labinv.2023.100105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Patient-derived tumor organoids have considerable potential as an in vitro diagnostic tool for drug susceptibility testing. In the present study, we investigated whether bile collected for diagnostic purposes could be a potential source for the establishment of biliary cancer organoids. Among 68 cases of biliary cancer, we successfully generated 60 bile-derived organoids (BDOs) from individual patients. Consistent with previous reports that described biliary cancer organoids from surgical tissues, the BDOs showed diverse morphologies such as simple cysts, multiloculated cysts, thick capsulated cysts, and solid masses. They also harbored mutations in KRAS and TP53 at frequencies of 15% and 55%, respectively. To enrich the cancer organoids by removing contaminated noncancerous components of BDOs, we attempted to verify the effectiveness of 3 different procedures, including repeat passage, xenografting, and selection with an MDM2 inhibitor for TP53 mutation-harboring BDOs. By monitoring the sequence and expression of mutated TP53, we found that all these procedures successfully enriched the cancer organoids. Our data suggest that BDOs can be established with minimal invasiveness from almost all patients with biliary cancers, including inoperable cases. Thus, despite some limitations with respect to the characterization of BDOs and methods for the enrichment of cancer cell-derived organoids, our data suggest that BDOs could have potential applications in personalized medicine.
Collapse
Affiliation(s)
- Keisuke Kinoshita
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan; Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan.
| | - Yuka Hirashita
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan; Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takafumi Fuchino
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan; Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Shusaku Kurogi
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Chisato Nakada
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazuhisa Okamoto
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | | | - Satoshi Fukuchi
- Department of Gastroenterology, Oita City Medical Association Almeida Memorial Hospital, Oita, Japan
| | - Ryota Sagami
- Department of Gastroenterology, Oita San-ai Medical Center, Oita, Japan
| | - Takayuki Nagai
- Department of Gastroenterology, Oita Kouseiren Tsurumi Hospital, Beppu, Japan
| | - Yasuhiko Gotoh
- Department of Gastroenterology, Shinbeppu Hospital, Beppu, Japan
| | - Kensuke Fukuda
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Ryo Ogawa
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazuhiro Mizukami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Tadayoshi Okimoto
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masaaki Kodama
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan.
| |
Collapse
|
119
|
Ou L, Liu S, Wang H, Guo Y, Guan L, Shen L, Luo R, Elder DE, Huang AC, Karakousis G, Miura J, Mitchell T, Schuchter L, Amaravadi R, Flowers A, Mou H, Yi F, Guo W, Ko J, Chen Q, Tian B, Herlyn M, Xu X. Patient-derived melanoma organoid models facilitate the assessment of immunotherapies. EBioMedicine 2023; 92:104614. [PMID: 37229906 PMCID: PMC10277922 DOI: 10.1016/j.ebiom.2023.104614] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Only a minority of melanoma patients experience durable responses to immunotherapies due to inter- and intra-tumoral heterogeneity in melanoma. As a result, there is a pressing need for suitable preclinical models to investigate resistance mechanisms and enhance treatment efficacy. METHODS Here, we report two different methods for generating melanoma patient-derived organoids (MPDOs), one is embedded in collagen gel, and the other is inlaid in Matrigel. MPDOs in Matrigel are used for assessing the therapeutic effects of anti-PD-1 antibodies (αPD-1), autochthonous tumor infiltrating lymphocytes (TILs), and small molecule compounds. MPDOs in collagen gel are used for evaluating the chemotaxis and migratory capacity of TILs. FINDING The MPDOs in collagen gel and Matrigel have similar morphology and immune cell composition to their parental melanoma tissues. MPDOs show inter- and intra-tumoral heterogeneity and contain diverse immune cells such as CD4+, CD8+ T, Treg, CD14+ monocytic, CD15+, and CD11b+ myeloid cells. The tumor microenvironment (TME) in MPDOs is highly immunosuppressive, and the lymphoid and myeloid lineages express similar levels of PD-1, PD-L1, and CTLA-4 as their parental melanoma tissues. Anti-PD-1 antibodies (αPD-1) reinvigorate CD8+ T cells and induce melanoma cell death in the MPDOs. TILs expanded by IL-2 and αPD-1 show significantly lower expression of TIM-3, better migratory capacity and infiltration of autochthonous MPDOs, and more effective killing of melanoma cells than TILs expanded by IL-2 alone or IL-2 with αCD3. A small molecule screen discovers that Navitoclax increases the cytotoxicity of TIL therapy. INTERPRETATION MPDOs may be used to test immune checkpoint inhibitors and cellular and targeted therapies. FUNDING This work was supported by the NIH grants CA114046, CA261608, CA258113, and the Tara Miller Melanoma Foundation.
Collapse
Affiliation(s)
- Lingling Ou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huaishan Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yeye Guo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lei Guan
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Longbin Shen
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ruhui Luo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - David E Elder
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexander C Huang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giorgos Karakousis
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Miura
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tara Mitchell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lynn Schuchter
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ravi Amaravadi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ahron Flowers
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Haiwei Mou
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Fan Yi
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jina Ko
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qing Chen
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Bin Tian
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | | | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
120
|
Loewa A, Feng JJ, Hedtrich S. Human disease models in drug development. NATURE REVIEWS BIOENGINEERING 2023; 1:1-15. [PMID: 37359774 PMCID: PMC10173243 DOI: 10.1038/s44222-023-00063-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 06/20/2023]
Abstract
Biomedical research is undergoing a paradigm shift towards approaches centred on human disease models owing to the notoriously high failure rates of the current drug development process. Major drivers for this transition are the limitations of animal models, which, despite remaining the gold standard in basic and preclinical research, suffer from interspecies differences and poor prediction of human physiological and pathological conditions. To bridge this translational gap, bioengineered human disease models with high clinical mimicry are being developed. In this Review, we discuss preclinical and clinical studies that benefited from these models, focusing on organoids, bioengineered tissue models and organs-on-chips. Furthermore, we provide a high-level design framework to facilitate clinical translation and accelerate drug development using bioengineered human disease models.
Collapse
Affiliation(s)
- Anna Loewa
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - James J. Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC Canada
- Department of Mathematics, University of British Columbia, Vancouver, BC Canada
| | - Sarah Hedtrich
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Center of Biological Design, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC Canada
- Max-Delbrück Center for Molecular Medicine (MCD), Helmholtz Association, Berlin, Germany
| |
Collapse
|
121
|
Lumibao JC, Okhovat SR, Peck KL, Lin X, Lande K, Zou J, Engle DD. The impact of extracellular matrix on the precision medicine utility of pancreatic cancer patient-derived organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525757. [PMID: 36747742 PMCID: PMC9900943 DOI: 10.1101/2023.01.26.525757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The use of patient-derived organoids (PDOs) to characterize therapeutic sensitivity and resistance (pharmacotyping) is a promising precision medicine approach. The potential of this approach to inform clinical decisions is now being tested in several large multi-institutional clinical trials. PDOs are cultivated in extracellular matrix from basement membrane extracts (BMEs) that are most commonly acquired commercially. Each clinical site utilizes distinct BME lots and may be restricted due to the availability of commercial BME sources. However, the impact of different sources and lots of BMEs on organoid drug response is unknown. Here, we tested the impact of BME source and lot on proliferation, chemotherapy and targeted therapy drug response, and gene expression in mouse and human pancreatic ductal adenocarcinoma (PDA) organoids. Both human and mouse organoids displayed increased proliferation in Matrigel (Corning) compared to Cultrex (RnD) and UltiMatrix (RnD). However, we observed no substantial impact on drug response when oragnoids were cultured in Matrigel, Cultrex, or UltiMatrix. We also did not observe major shifts in gene expression across the different BME sources, and PDOs maintained their Classical or Basal-like designation. Overall, we find that BME source (Matrigel, Cultrex, UltiMatrix) does not shift PDO dose-response curves and drug testing results, indicating that PDO pharmacotyping is a robust approach for precision medicine.
Collapse
|
122
|
Vandana JJ, Manrique C, Lacko LA, Chen S. Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation. Cell Stem Cell 2023; 30:571-591. [PMID: 37146581 PMCID: PMC10775018 DOI: 10.1016/j.stem.2023.04.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
Human pluripotent stem cells (hPSCs) and three-dimensional organoids have ushered in a new era for disease modeling and drug discovery. Over the past decade, significant progress has been in deriving functional organoids from hPSCs, which have been applied to recapitulate disease phenotypes. In addition, these advancements have extended the application of hPSCs and organoids for drug screening and clinical-trial safety evaluations. This review provides an overview of the achievements and challenges in using hPSC-derived organoids to conduct relevant high-throughput, high-contentscreens and drug evaluation. These studies have greatly enhanced our knowledge and toolbox for precision medicine.
Collapse
Affiliation(s)
- J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Cassandra Manrique
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY, USA
| | - Lauretta A Lacko
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
123
|
Zhou T, Xie Y, Hou X, Bai W, Li X, Liu Z, Man Q, Sun J, Fu D, Yan J, Zhang Z, Wang Y, Wang H, Jiang W, Gao S, Zhao T, Chang A, Wang X, Sun H, Zhang X, Yang S, Huang C, Hao J, Liu J. Irbesartan overcomes gemcitabine resistance in pancreatic cancer by suppressing stemness and iron metabolism via inhibition of the Hippo/YAP1/c-Jun axis. J Exp Clin Cancer Res 2023; 42:111. [PMID: 37143164 PMCID: PMC10157938 DOI: 10.1186/s13046-023-02671-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Chemoresistance is the main reason for the poor prognosis of pancreatic ductal adenocarcinoma (PDAC). Thus, there is an urgent need to screen out new targets and compounds to reverse chemotherapeutic resistance. METHODS We established a bio-bank of human PDAC organoid models, covering a representative range of PDAC tumor subtypes. We screened a library of 1304 FDA-approved compounds to identify candidates efficiently overcoming chemotherapy resistance. The effects of the compounds were evaluated with a CellTiter-Glo-3D assay, organoid apoptosis assay and in vivo patient-derived xenograft (PDX), patient-derived organoid (PDO) and LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) genetically engineered mouse models. RNA-sequencing, genome editing, sphere formation assays, iron assays and luciferase assays were conducted to elucidate the mechanism. RESULTS High-throughput drug screening of chemotherapy-resistant PDOs identified irbesartan, an angiotensin ‖ type 1 (AT1) receptor antagonist, which could synergistically enhance the ability of chemotherapy to kill PDAC cells. In vitro and in vivo validation using PDO, PDX and KPC mouse models showed that irbesartan efficiently sensitized PDAC tumors to chemotherapy. Mechanistically, we found that irbesartan decreased c-Jun expression by inhibiting the Hippo/YAP1 pathway and further overcame chemotherapy resistance in PDAC. We also explored c-Jun, a potential target of irbesartan, which can transcriptionally upregulate the expression of key genes involved in stemness maintenance (SOX9/SOX2/OCT4) and iron metabolism (FTH1/FTL/TFRC). More importantly, we observed that PDAC patients with high levels of c-Jun expression demonstrated poor responses to the current standard chemotherapy regimen (gemcitabine plus nab-paclitaxel). Moreover, patients with PDAC had significant survival benefits from treatment with irbesartan plus a standard chemotherapy regimen in two-center retrospective clinical cohorts and patients with high c-Jun expression exhibited a better response to combination chemotherapy. CONCLUSIONS Irbesartan could be used in combination with chemotherapy to improve the therapeutic efficacy in PDAC patients with high levels of c-Jun expression. Irbesartan effectively inhibited chemotherapy resistance by suppressing the Hippo/YAP1/c-Jun/stemness/iron metabolism axis. Based on our findings, we are designing an investigator-initiated phase II clinical trial on the efficacy and safety of irbesartan plus a standard gemcitabine/nab-paclitaxel regimen in the treatment of patients with advanced III/IV staged PDAC and are hopeful that we will observe patient benefits.
Collapse
Affiliation(s)
- Tianxing Zhou
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Xupeng Hou
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
- Department of Breast Oncoplastic Surgery and Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, PR China
| | - Weiwei Bai
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Xueyang Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
- Department of Breast Oncoplastic Surgery and Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, PR China
| | - Ziyun Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
- Department of Breast Oncoplastic Surgery and Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, PR China
| | - Quan Man
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
- Department of Hepatopancreatobiliary Surgery, Tongliao City Hospital, Tongliao, 028000, Inner Mongolia, China
| | - Jingyan Sun
- Department of Breast Oncoplastic Surgery and Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, PR China
| | - Danqi Fu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Jingrui Yan
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Zhaoyu Zhang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Yifei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Hongwei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Wenna Jiang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Antao Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiufeng Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China.
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China.
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China.
- Department of Breast Oncoplastic Surgery and Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, PR China.
| |
Collapse
|
124
|
Senkowski W, Gall-Mas L, Falco MM, Li Y, Lavikka K, Kriegbaum MC, Oikkonen J, Bulanova D, Pietras EJ, Voßgröne K, Chen YJ, Erkan EP, Dai J, Lundgren A, Grønning Høg MK, Larsen IM, Lamminen T, Kaipio K, Huvila J, Virtanen A, Engelholm L, Christiansen P, Santoni-Rugiu E, Huhtinen K, Carpén O, Hynninen J, Hautaniemi S, Vähärautio A, Wennerberg K. A platform for efficient establishment and drug-response profiling of high-grade serous ovarian cancer organoids. Dev Cell 2023:S1534-5807(23)00182-X. [PMID: 37148882 DOI: 10.1016/j.devcel.2023.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
The broad research use of organoids from high-grade serous ovarian cancer (HGSC) has been hampered by low culture success rates and limited availability of fresh tumor material. Here, we describe a method for generation and long-term expansion of HGSC organoids with efficacy markedly improved over previous reports (53% vs. 23%-38%). We established organoids from cryopreserved material, demonstrating the feasibility of using viably biobanked tissue for HGSC organoid derivation. Genomic, histologic, and single-cell transcriptomic analyses revealed that organoids recapitulated genetic and phenotypic features of original tumors. Organoid drug responses correlated with clinical treatment outcomes, although in a culture conditions-dependent manner and only in organoids maintained in human plasma-like medium (HPLM). Organoids from consenting patients are available to the research community through a public biobank and organoid genomic data are explorable through an interactive online tool. Taken together, this resource facilitates the application of HGSC organoids in basic and translational ovarian cancer research.
Collapse
Affiliation(s)
- Wojciech Senkowski
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Laura Gall-Mas
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matías Marín Falco
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Yilin Li
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Kari Lavikka
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Mette C Kriegbaum
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Daria Bulanova
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elin J Pietras
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Karolin Voßgröne
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yan-Jun Chen
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Erdogan Pekcan Erkan
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Jun Dai
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Anastasia Lundgren
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Mia Kristine Grønning Høg
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Finsen Laboratory, Rigshospitalet, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Ida Marie Larsen
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Finsen Laboratory, Rigshospitalet, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Tarja Lamminen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Katja Kaipio
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Jutta Huvila
- Department of Pathology, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Anni Virtanen
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, 00260 Helsinki, Finland
| | - Lars Engelholm
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Finsen Laboratory, Rigshospitalet, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Pernille Christiansen
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Olli Carpén
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, 00260 Helsinki, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Anna Vähärautio
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Krister Wennerberg
- Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
125
|
Magré L, Verstegen MMA, Buschow S, van der Laan LJW, Peppelenbosch M, Desai J. Emerging organoid-immune co-culture models for cancer research: from oncoimmunology to personalized immunotherapies. J Immunother Cancer 2023; 11:jitc-2022-006290. [PMID: 37220953 DOI: 10.1136/jitc-2022-006290] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
In the past decade, treatments targeting the immune system have revolutionized the cancer treatment field. Therapies such as immune checkpoint inhibitors have been approved as first-line treatment in a variety of solid tumors such as melanoma and non-small cell lung cancer while other therapies, for instance, chimeric antigen receptor (CAR) lymphocyte transfer therapies, are still in development. Although promising results are obtained in a small subset of patients, overall clinical efficacy of most immunotherapeutics is limited due to intertumoral heterogeneity and therapy resistance. Therefore, prediction of patient-specific responses would be of great value for efficient use of costly immunotherapeutic drugs as well as better outcomes. Because many immunotherapeutics operate by enhancing the interaction and/or recognition of malignant target cells by T cells, in vitro cultures using the combination of these cells derived from the same patient hold great promise to predict drug efficacy in a personalized fashion. The use of two-dimensional cancer cell lines for such cultures is unreliable due to altered phenotypical behavior of cells when compared with the in vivo situation. Three-dimensional tumor-derived organoids, better mimic in vivo tissue and are deemed a more realistic approach to study the complex tumor-immune interactions. In this review, we present an overview of the development of patient-specific tumor organoid-immune co-culture models to study the tumor-specific immune interactions and their possible therapeutic infringement. We also discuss applications of these models which advance personalized therapy efficacy and understanding the tumor microenvironment such as: (1) Screening for efficacy of immune checkpoint inhibition and CAR therapy screening in a personalized manner. (2) Generation of tumor reactive lymphocytes for adoptive cell transfer therapies. (3) Studying tumor-immune interactions to detect cell-specific roles in tumor progression and remission. Overall, these onco-immune co-cultures might hold a promising future toward developing patient-specific therapeutic approaches as well as increase our understanding of tumor-immune interactions.
Collapse
Affiliation(s)
- Luc Magré
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Sonja Buschow
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Maikel Peppelenbosch
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jyaysi Desai
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
126
|
Giuli L, Santopaolo F, Pallozzi M, Pellegrino A, Coppola G, Gasbarrini A, Ponziani FR. Cellular therapies in liver and pancreatic diseases. Dig Liver Dis 2023; 55:563-579. [PMID: 36543708 DOI: 10.1016/j.dld.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 04/29/2023]
Abstract
Over the past two decades, developments in regenerative medicine in gastroenterology have been greatly enhanced by the application of stem cells, which can self-replicate and differentiate into any somatic cell. The discovery of induced pluripotent stem cells has opened remarkable perspectives on tissue regeneration, including their use as a bridge to transplantation or as supportive therapy in patients with organ failure. The improvements in DNA manipulation and gene editing strategies have also allowed to clarify the physiopathology and to correct the phenotype of several monogenic diseases, both in vivo and in vitro. Further progress has been made with the development of three-dimensional cultures, known as organoids, which have demonstrated morphological and functional complexity comparable to that of a miniature organ. Hence, owing to its protean applications and potential benefits, cell and organoid transplantation has become a hot topic for the management of gastrointestinal diseases. In this review, we describe current knowledge on cell therapies in hepatology and pancreatology, providing insight into their future applications in regenerative medicine.
Collapse
Affiliation(s)
- Lucia Giuli
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Pallozzi
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Pellegrino
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
127
|
Kutle I, Polten R, Hachenberg J, Klapdor R, Morgan M, Schambach A. Tumor Organoid and Spheroid Models for Cervical Cancer. Cancers (Basel) 2023; 15:cancers15092518. [PMID: 37173984 PMCID: PMC10177622 DOI: 10.3390/cancers15092518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Cervical cancer is one of the most common malignant diseases in women worldwide. Despite the global introduction of a preventive vaccine against the leading cause of cervical cancer, human papillomavirus (HPV) infection, the incidence of this malignant disease is still very high, especially in economically challenged areas. New advances in cancer therapy, especially the rapid development and application of different immunotherapy strategies, have shown promising pre-clinical and clinical results. However, mortality from advanced stages of cervical cancer remains a significant concern. Precise and thorough evaluation of potential novel anti-cancer therapies in pre-clinical phases is indispensable for efficient development of new, more successful treatment options for cancer patients. Recently, 3D tumor models have become the gold standard in pre-clinical cancer research due to their capacity to better mimic the architecture and microenvironment of tumor tissue as compared to standard two-dimensional (2D) cell cultures. This review will focus on the application of spheroids and patient-derived organoids (PDOs) as tumor models to develop novel therapies against cervical cancer, with an emphasis on the immunotherapies that specifically target cancer cells and modulate the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Ivana Kutle
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Polten
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jens Hachenberg
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Rüdiger Klapdor
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
128
|
Manduca N, Maccafeo E, De Maria R, Sistigu A, Musella M. 3D cancer models: One step closer to in vitro human studies. Front Immunol 2023; 14:1175503. [PMID: 37114038 PMCID: PMC10126361 DOI: 10.3389/fimmu.2023.1175503] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer immunotherapy is the great breakthrough in cancer treatment as it displayed prolonged progression-free survival over conventional therapies, yet, to date, in only a minority of patients. In order to broad cancer immunotherapy clinical applicability some roadblocks need to be overcome, first among all the lack of preclinical models that faithfully depict the local tumor microenvironment (TME), which is known to dramatically affect disease onset, progression and response to therapy. In this review, we provide the reader with a detailed overview of current 3D models developed to mimick the complexity and the dynamics of the TME, with a focus on understanding why the TME is a major target in anticancer therapy. We highlight the advantages and translational potentials of tumor spheroids, organoids and immune Tumor-on-a-Chip models in disease modeling and therapeutic response, while outlining pending challenges and limitations. Thinking forward, we focus on the possibility to integrate the know-hows of micro-engineers, cancer immunologists, pharmaceutical researchers and bioinformaticians to meet the needs of cancer researchers and clinicians interested in using these platforms with high fidelity for patient-tailored disease modeling and drug discovery.
Collapse
Affiliation(s)
- Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ester Maccafeo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario ‘A. Gemelli’ - Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
129
|
Visalakshan RM, Lowrey MK, Sousa MGC, Helms HR, Samiea A, Schutt CE, Moreau JM, Bertassoni LE. Opportunities and challenges to engineer 3D models of tumor-adaptive immune interactions. Front Immunol 2023; 14:1162905. [PMID: 37081897 PMCID: PMC10110941 DOI: 10.3389/fimmu.2023.1162905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Augmenting adaptive immunity is a critical goal for developing next-generation cancer therapies. T and B cells infiltrating the tumor dramatically influence cancer progression through complex interactions with the local microenvironment. Cancer cells evade and limit these immune responses by hijacking normal immunologic pathways. Current experimental models using conventional primary cells, cell lines, or animals have limitations for studying cancer-immune interactions directly relevant to human biology and clinical translation. Therefore, engineering methods to emulate such interplay at local and systemic levels are crucial to expedite the development of better therapies and diagnostic tools. In this review, we discuss the challenges, recent advances, and future directions toward engineering the tumor-immune microenvironment (TME), including key elements of adaptive immunity. We first offer an overview of the recent research that has advanced our understanding of the role of the adaptive immune system in the tumor microenvironment. Next, we discuss recent developments in 3D in-vitro models and engineering approaches that have been used to study the interaction of cancer and stromal cells with B and T lymphocytes. We summarize recent advancement in 3D bioengineering and discuss the need for 3D tumor models that better incorporate elements of the complex interplay of adaptive immunity and the tumor microenvironment. Finally, we provide a perspective on current challenges and future directions for modeling cancer-immune interactions aimed at identifying new biological targets for diagnostics and therapeutics.
Collapse
Affiliation(s)
- Rahul M. Visalakshan
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, United States
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Mary K. Lowrey
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Mauricio G. C. Sousa
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, United States
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Haylie R. Helms
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Abrar Samiea
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Carolyn E. Schutt
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Josh M. Moreau
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, United States
- Division of Oncological Sciences, Oregon Health and Science University, Portland, OR, United States
- Department of Dermatology, Oregon Health and Science University, Portland, OR, United States
| | - Luiz E. Bertassoni
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, United States
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, United States
- Division of Oncological Sciences, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
130
|
Wan L, Kral AJ, Voss D, Krainer AR. Preclinical Screening of Splice-Switching Antisense Oligonucleotides in PDAC Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535161. [PMID: 37066201 PMCID: PMC10103938 DOI: 10.1101/2023.03.31.535161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aberrant alternative splicing is emerging as a cancer hallmark and a potential therapeutic target. It is the result of dysregulated splicing factors or genetic alterations in splicing-regulatory cis -elements. Targeting individual altered splicing events associated with cancer-cell dependencies is a potential therapeutic strategy, but several technical limitations need to be addressed. Patient-derived organoids (PDOs) are a promising platform to recapitulate key aspects of disease states and to facilitate drug development for precision medicine. Here, we report an efficient antisense-oligonucleotide (ASO) transfection method to systematically evaluate and screen individual splicing events as therapeutic targets in pancreatic ductal adenocarcinoma (PDAC) organoids. This optimized delivery method allows fast and efficient screening of ASOs that reverse oncogenic alternative splicing. In combination with advancements in chemical modifications and ASO-delivery strategies, this method has the potential to accelerate the discovery of anti-tumor ASO drugs that target pathological alternative splicing.
Collapse
|
131
|
Beydag-Tasöz BS, Yennek S, Grapin-Botton A. Towards a better understanding of diabetes mellitus using organoid models. Nat Rev Endocrinol 2023; 19:232-248. [PMID: 36670309 PMCID: PMC9857923 DOI: 10.1038/s41574-022-00797-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/22/2023]
Abstract
Our understanding of diabetes mellitus has benefited from a combination of clinical investigations and work in model organisms and cell lines. Organoid models for a wide range of tissues are emerging as an additional tool enabling the study of diabetes mellitus. The applications for organoid models include studying human pancreatic cell development, pancreatic physiology, the response of target organs to pancreatic hormones and how glucose toxicity can affect tissues such as the blood vessels, retina, kidney and nerves. Organoids can be derived from human tissue cells or pluripotent stem cells and enable the production of human cell assemblies mimicking human organs. Many organ mimics relevant to diabetes mellitus are already available, but only a few relevant studies have been performed. We discuss the models that have been developed for the pancreas, liver, kidney, nerves and vasculature, how they complement other models, and their limitations. In addition, as diabetes mellitus is a multi-organ disease, we highlight how a merger between the organoid and bioengineering fields will provide integrative models.
Collapse
Affiliation(s)
- Belin Selcen Beydag-Tasöz
- The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen, Denmark
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Siham Yennek
- The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen, Denmark
| | - Anne Grapin-Botton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Paul Langerhans Institute Dresden, Dresden, Germany.
| |
Collapse
|
132
|
Vudatha V, Herremans KM, Freudenberger DC, Liu C, Trevino JG. In vivo models of pancreatic ductal adenocarcinoma. Adv Cancer Res 2023; 159:75-112. [PMID: 37268402 DOI: 10.1016/bs.acr.2023.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high mortality rate. Within the next decade, PDAC is projected to become the second leading cause of cancer-associated death in the United States. Understanding the pathophysiology of PDAC tumorigenesis and metastases is crucial toward developing new therapeutics. One of the challenges in cancer research is generating in vivo models that closely recapitulate the genomic, histological, and clinical characteristics of human tumors. An ideal model for PDAC not only captures the tumor and stromal environment of human disease, but also allows for mutational control and is easy to reproduce in terms of time and cost. In this review, we highlight evolution of in vivo models for PDAC including spontaneous tumors models (i.e., chemical induction, genetic modification, viral delivery), implantation models including patient derived xenografts (PDX), and humanized PDX. We discuss the implementation of each system and evaluate the benefits and shortcomings of these models. Overall, this review provides a broad overview of prior and current techniques of in vivo PDAC modeling and their associated challenges.
Collapse
Affiliation(s)
- Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Kelly M Herremans
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Devon C Freudenberger
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Christopher Liu
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Jose G Trevino
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Division of Surgical Oncology, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
133
|
Melzer MK, Resheq Y, Navaee F, Kleger A. The application of pancreatic cancer organoids for novel drug discovery. Expert Opin Drug Discov 2023; 18:429-444. [PMID: 36945198 DOI: 10.1080/17460441.2023.2194627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma presents with a dismal prognosis. Personalized therapy is urgently warranted to overcome the treatment limitations of the "one-size-fits-all" scheme. Organoids have emerged as fundamental novel tools to study tumor biology and heterogeneity, hence overcoming limitations of other model systems by better-reflecting tissue heterogeneity and recapitulating in-vivo processes. Besides their crucial role in basic research, they have evolved as tools for translational drug discovery and patient stratification. AREAS COVERED This review highlights the achievements of an organoid-based drug investigation and discovery. The authors present an overview of studies using organoids for drug testing. Further, they pinpoint studies correlating the in vitro prediction of organoids to the actual patient`s response. Furthermore, the authors describe novel model systems and take a thorough overlook of microfluidic chips, synthetic matrices, multicellular systems, bioprinting, and stem cell-derived pancreatic organoid systems. EXPERT OPINION Organoid systems promise great potential for future clinical applications. Indeed, they may be implemented into informed decision-making for guiding therapies. However, validation by randomized trials is mandatory. Additionally, organoids in combination with other cellular compartments may be exploited for drug discovery by studying niche-tumor interaction. Yet, several precautions must be kept in mind, such as standardization and reproducibility.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Department of Urology, Ulm University Hospital, Ulm, Germany
| | - Yazid Resheq
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Fatemeh Navaee
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
- Core Facility Organoids, Ulm University, Ulm, Germany
| |
Collapse
|
134
|
O'Connor CE, Neufeld A, Fortin CL, Johansson F, Mene J, Saxton SH, Simmonds SP, Kopyeva I, Gregorio NE, DeForest CA, Witten DM, Stevens KR. Highly Parallel Tissue Grafting for Combinatorial In Vivo Screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533029. [PMID: 36993278 PMCID: PMC10055160 DOI: 10.1101/2023.03.16.533029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Material- and cell-based technologies such as engineered tissues hold great promise as human therapies. Yet, the development of many of these technologies becomes stalled at the stage of pre-clinical animal studies due to the tedious and low-throughput nature of in vivo implantation experiments. We introduce a 'plug and play' in vivo screening array platform called Highly Parallel Tissue Grafting (HPTG). HPTG enables parallelized in vivo screening of 43 three-dimensional microtissues within a single 3D printed device. Using HPTG, we screen microtissue formations with varying cellular and material components and identify formulations that support vascular self-assembly, integration and tissue function. Our studies highlight the importance of combinatorial studies that vary cellular and material formulation variables concomitantly, by revealing that inclusion of stromal cells can "rescue" vascular self-assembly in manner that is material-dependent. HPTG provides a route for accelerating pre-clinical progress for diverse medical applications including tissue therapy, cancer biomedicine, and regenerative medicine.
Collapse
|
135
|
Sereti E, Papapostolou I, Dimas K. Pancreatic Cancer Organoids: An Emerging Platform for Precision Medicine? Biomedicines 2023; 11:890. [PMID: 36979869 PMCID: PMC10046065 DOI: 10.3390/biomedicines11030890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/17/2023] Open
Abstract
Despite recent therapeutic advances, pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive malignancies, with remarkable resistance to treatment, poor prognosis, and poor clinical outcome. More efficient therapeutic approaches are urgently needed to improve patients' survival. Recently, the development of organoid culture systems has gained substantial attention as an emerging preclinical research model. PDAC organoids have been developed to study pancreatic cancer biology, progression, and treatment response, filling the translational gap between in vitro and in vivo models. Here, we review the rapidly evolving field of PDAC organoids and their potential as powerful preclinical tools that could pave the way towards precision medicine for pancreatic cancer.
Collapse
Affiliation(s)
- Evangelia Sereti
- Department of Translational Medicine, Lund University, 22363 Lund, Sweden
| | - Irida Papapostolou
- Department of Biochemistry and Molecular Medicine, 3012 Bern, Switzerland
| | - Konstantinos Dimas
- Department of Pharmacology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
136
|
Functional precision oncology using patient-derived assays: bridging genotype and phenotype. Nat Rev Clin Oncol 2023; 20:305-317. [PMID: 36914745 DOI: 10.1038/s41571-023-00745-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
Genomics-based precision medicine has revolutionized oncology but also has inherent limitations. Functional precision oncology is emerging as a complementary approach that aims to bridge the gap between genotype and phenotype by modelling individual tumours in vitro. These patient-derived ex vivo models largely preserve several tumour characteristics that are not captured by genomics approaches and enable the functional dissection of tumour vulnerabilities in a personalized manner. In this Review, we discuss several examples of personalized functional assays involving tumour organoids, spheroids and explants and their potential to predict treatment responses and drug-induced toxicities in individual patients. These developments have opened exciting new avenues for precision oncology, with the potential for successful clinical applications in contexts in which genomic data alone are not informative. To implement these assays into clinical practice, we outline four key barriers that need to be overcome: assay success rates, turnaround times, the need for standardized conditions and the definition of in vitro responders. Furthermore, we discuss novel technological advances such as microfluidics that might reduce sample requirements, assay times and labour intensity and thereby enable functional precision oncology to be implemented in routine clinical practice.
Collapse
|
137
|
Treacy NJ, Clerkin S, Davis JL, Kennedy C, Miller AF, Saiani A, Wychowaniec JK, Brougham DF, Crean J. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels. Bioact Mater 2023; 21:142-156. [PMID: 36093324 PMCID: PMC9420433 DOI: 10.1016/j.bioactmat.2022.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived kidney organoids have prospective applications ranging from basic disease modelling to personalised medicine. However, there remains a necessity to refine the biophysical and biochemical parameters that govern kidney organoid formation. Differentiation within fully-controllable and physiologically relevant 3D growth environments will be critical to improving organoid reproducibility and maturation. Here, we matured hiPSC-derived kidney organoids within fully synthetic self-assembling peptide hydrogels (SAPHs) of variable stiffness (storage modulus, G'). The resulting organoids contained complex structures comparable to those differentiated within the animal-derived matrix, Matrigel. Single-cell RNA sequencing (scRNA-seq) was then used to compare organoids matured within SAPHs to those grown within Matrigel or at the air-liquid interface. A total of 13,179 cells were analysed, revealing 14 distinct clusters. Organoid compositional analysis revealed a larger proportion of nephron cell types within Transwell-derived organoids, while SAPH-derived organoids were enriched for stromal-associated cell populations. Notably, differentiation within a higher G' SAPH generated podocytes with more mature gene expression profiles. Additionally, maturation within a 3D microenvironment significantly reduced the derivation of off-target cell types, which are a known limitation of current kidney organoid protocols. This work demonstrates the utility of synthetic peptide-based hydrogels with a defined stiffness, as a minimally complex microenvironment for the selected differentiation of kidney organoids.
Collapse
Affiliation(s)
- Niall J Treacy
- Diabetes Complications Research Centre, University College Dublin (UCD) Conway Institute of Biomolecular and Biomedical Research and Belfield, Dublin 4, Ireland.,UCD School of Biomolecular and Biomedical Science, Belfield, Dublin 4, Ireland
| | - Shane Clerkin
- Diabetes Complications Research Centre, University College Dublin (UCD) Conway Institute of Biomolecular and Biomedical Research and Belfield, Dublin 4, Ireland.,UCD School of Biomolecular and Biomedical Science, Belfield, Dublin 4, Ireland
| | - Jessica L Davis
- Diabetes Complications Research Centre, University College Dublin (UCD) Conway Institute of Biomolecular and Biomedical Research and Belfield, Dublin 4, Ireland.,UCD School of Biomolecular and Biomedical Science, Belfield, Dublin 4, Ireland
| | - Ciarán Kennedy
- Diabetes Complications Research Centre, University College Dublin (UCD) Conway Institute of Biomolecular and Biomedical Research and Belfield, Dublin 4, Ireland.,UCD School of Biomolecular and Biomedical Science, Belfield, Dublin 4, Ireland
| | - Aline F Miller
- Department of Materials & Manchester Institute of Biotechnology (MIB), School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, UK
| | - Alberto Saiani
- Department of Materials & Manchester Institute of Biotechnology (MIB), School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, UK
| | - Jacek K Wychowaniec
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dermot F Brougham
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - John Crean
- Diabetes Complications Research Centre, University College Dublin (UCD) Conway Institute of Biomolecular and Biomedical Research and Belfield, Dublin 4, Ireland.,UCD School of Biomolecular and Biomedical Science, Belfield, Dublin 4, Ireland
| |
Collapse
|
138
|
Chen L, Wei X, Gu D, Xu Y, Zhou H. Human liver cancer organoids: Biological applications, current challenges, and prospects in hepatoma therapy. Cancer Lett 2023; 555:216048. [PMID: 36603689 DOI: 10.1016/j.canlet.2022.216048] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Liver cancer and disease are among the most socially challenging global health concerns. Although organ transplantation, surgical resection and anticancer drugs are the main methods for the treatment of liver cancer, there are still no proven cures owing to the lack of donor livers and tumor heterogeneity. Recently, advances in tumor organoid technology have attracted considerable attention as they can simulate the spatial constructs and pathophysiological characteristics of tumorigenesis and metastasis in a more realistic manner. Organoids may further contribute to the development of tailored therapies. Combining organoids with other emerging techniques, such as CRISPR-HOT, organ-on-a-chip, and 3D bioprinting, may further develop organoids and address their bottlenecks to create more practical models that generalize different tissue or organ interactions in tumor progression. In this review, we summarize the various methods in which liver organoids may be generated and describe their biological and clinical applications, present challenges, and prospects for their integration with emerging technologies. These rapidly developing liver organoids may become the focus of in vitro clinical model development and therapeutic research for liver diseases in the near future.
Collapse
Affiliation(s)
- Lichan Chen
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xiafei Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Dayong Gu
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yong Xu
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hongzhong Zhou
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
139
|
Wang HM, Zhang CY, Peng KC, Chen ZX, Su JW, Li YF, Li WF, Gao QY, Zhang SL, Chen YQ, Zhou Q, Xu C, Xu CR, Wang Z, Su J, Yan HH, Zhang XC, Chen HJ, Wu YL, Yang JJ. Using patient-derived organoids to predict locally advanced or metastatic lung cancer tumor response: A real-world study. Cell Rep Med 2023; 4:100911. [PMID: 36657446 PMCID: PMC9975107 DOI: 10.1016/j.xcrm.2022.100911] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/23/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Predicting the clinical response to chemotherapeutic or targeted treatment in patients with locally advanced or metastatic lung cancer requires an accurate and affordable tool. Tumor organoids are a potential approach in precision medicine for predicting the clinical response to treatment. However, their clinical application in lung cancer has rarely been reported because of the difficulty in generating pure tumor organoids. In this study, we have generated 214 cancer organoids from 107 patients, of which 212 are lung cancer organoids (LCOs), primarily derived from malignant serous effusions. LCO-based drug sensitivity tests (LCO-DSTs) for chemotherapy and targeted therapy have been performed in a real-world study to predict the clinical response to the respective treatment. LCO-DSTs accurately predict the clinical response to treatment in this cohort of patients with advanced lung cancer. In conclusion, LCO-DST is a promising precision medicine tool in treating of advanced lung cancer.
Collapse
Affiliation(s)
- Han-Min Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Chan-Yuan Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Kai-Cheng Peng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Ze-Xin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou 510530, China
| | - Jun-Wei Su
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yu-Fa Li
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wen-Feng Li
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qing-Yun Gao
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shi-Ling Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yu-Qing Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Cong Xu
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou 510530, China
| | - Chong-Rui Xu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhen Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jian Su
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Hong-Hong Yan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
140
|
Mahadevan KK, McAndrews KM, LeBleu VS, Yang S, Lyu H, Li B, Sockwell AM, Kirtley ML, Morse SJ, Moreno Diaz BA, Kim MP, Feng N, Lopez AM, Guerrero PA, Sugimoto H, Arian KA, Ying H, Barekatain Y, Kelly PJ, Maitra A, Heffernan TP, Kalluri R. Oncogenic Kras G12D specific non-covalent inhibitor reprograms tumor microenvironment to prevent and reverse early pre-neoplastic pancreatic lesions and in combination with immunotherapy regresses advanced PDAC in a CD8 + T cells dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528757. [PMID: 36824971 PMCID: PMC9948969 DOI: 10.1101/2023.02.15.528757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with mutations in Kras, a known oncogenic driver of PDAC; and the KRAS G12D mutation is present in nearly half of PDAC patients. Recently, a non-covalent small molecule inhibitor (MRTX1133) was identified with specificity to the Kras G12D mutant protein. Here we explore the impact of Kras G12D inhibition by MRTX1133 on advanced PDAC and its influence on the tumor microenvironment. Employing different orthotopic xenograft and syngeneic tumor models, eight different PDXs, and two different autochthonous genetic models, we demonstrate that MRTX1133 reverses early PDAC growth, increases intratumoral CD8 + effector T cells, decreases myeloid infiltration, and reprograms cancer associated fibroblasts. Autochthonous genetic mouse models treated with MRTX1133 leads to regression of both established PanINs and advanced PDAC. Regression of advanced PDAC requires CD8 + T cells and immune checkpoint blockade therapy (iCBT) synergizes with MRTX1133 to eradicate PDAC and prolong overall survival. Mechanistically, inhibition of mutant Kras in advanced PDAC and human patient derived organoids (PDOs) induces Fas expression in cancer cells and facilitates CD8 + T cell mediated death. These results demonstrate the efficacy of MRTX1133 in different mouse models of PDAC associated with reprogramming of stromal fibroblasts and a dependency on CD8 + T cell mediated tumor clearance. Collectively, this study provides a rationale for a synergistic combination of MRTX1133 with iCBT in clinical trials.
Collapse
|
141
|
Aggarwal D, Russo S, Naik P, Bhatia S, Spector DL. Establishment and Culture of Patient-Derived Breast Organoids. J Vis Exp 2023:10.3791/64889. [PMID: 36876940 PMCID: PMC10193304 DOI: 10.3791/64889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Breast cancer is a complex disease that has been classified into several different histological and molecular subtypes. Patient-derived breast tumor organoids developed in our laboratory consist of a mix of multiple tumor-derived cell populations, and thus represent a better approximation of tumor cell diversity and milieu than the established 2D cancer cell lines. Organoids serve as an ideal in vitro model, allowing for cell-extracellular matrix interactions, known to play an important role in cell-cell interactions and cancer progression. Patient-derived organoids also have advantages over mouse models as they are of human origin. Furthermore, they have been shown to recapitulate the genomic, transcriptomic as well as metabolic heterogeneity of patient tumors; thus, they are capable of representing tumor complexity as well as patient diversity. As a result, they are poised to provide more accurate insights into target discovery and validation and drug sensitivity assays. In this protocol, we provide a detailed demonstration of how patient-derived breast organoids are established from resected breast tumors (cancer organoids) or reductive mammoplasty-derived breast tissue (normal organoids). This is followed by a comprehensive account of 3D organoid culture, expansion, passaging, freezing, as well as thawing of patient-derived breast organoid cultures.
Collapse
Affiliation(s)
- Disha Aggarwal
- Cold Spring Harbor Laboratory, Cold Spring Harbor; Genetics Graduate Program, Stony Brook University
| | | | - Payal Naik
- Cold Spring Harbor Laboratory, Cold Spring Harbor
| | - Sonam Bhatia
- Cold Spring Harbor Laboratory, Cold Spring Harbor;
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor; Genetics Graduate Program, Stony Brook University;
| |
Collapse
|
142
|
Knapinska AM, Drotleff G, Chai C, Twohill D, Ernce A, Tokmina-Roszyk D, Grande I, Rodriguez M, Larson B, Fields GB. Screening MT1-MMP Activity and Inhibition in Three-Dimensional Tumor Spheroids. Biomedicines 2023; 11:biomedicines11020562. [PMID: 36831098 PMCID: PMC9953393 DOI: 10.3390/biomedicines11020562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Membrane type 1 matrix metalloproteinase (MT1-MMP) has been shown to be crucial for tumor angiogenesis, invasion, and metastasis, and thus MT1-MMP is a high priority target for potential cancer therapies. To properly evaluate MT1-MMP inhibitors, a screening protocol is desired by which enzyme activity can be quantified in a tumor microenvironment-like model system. In the present study, we applied a fluorogenic, collagen model triple-helical substrate to quantify MT1-MMP activity for tumor spheroids embedded in a collagen hydrogel. The substrate was designed to be MT1-MMP selective and to possess fluorescent properties compatible with cell-based assays. The proteolysis of the substrate correlated to glioma spheroid invasion. In turn, the application of either small molecule or protein-based MMP inhibitors reduced proteolytic activity and glioma spheroid invasion. The presence of MT1-MMP in glioma spheroids was confirmed by western blotting. Thus, spheroid invasion was dependent on MT1-MMP activity, and inhibitors of MT1-MMP and invasion could be conveniently screened in a high-throughput format. The combination of the fluorogenic, triple-helical substrate, the three-dimensional tumor spheroids embedded in collagen, and Hit-Pick software resulted in an easily adaptable in vivo-like tumor microenvironment for rapidly processing inhibitor potential for anti-cancer use.
Collapse
Affiliation(s)
- Anna M. Knapinska
- Alphazyme, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Gary Drotleff
- Alphazyme, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Cedric Chai
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Destiny Twohill
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Alexa Ernce
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Dorota Tokmina-Roszyk
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Isabella Grande
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Michelle Rodriguez
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Brad Larson
- Agilent Technologies, Raleigh, NC 27606, USA
| | - Gregg B. Fields
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
143
|
Chai C, Ji P, Xu H, Tang H, Wang Z, Zhang H, Zhou W. Targeting cancer drug resistance utilizing organoid technology. Biomed Pharmacother 2023; 158:114098. [PMID: 36528918 DOI: 10.1016/j.biopha.2022.114098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer organoids generated from 3D in vitro cell cultures have contributed to the study of drug resistance. Maintenance of genomic and transcriptomic similarity between organoids and parental cancer allows organoids to have the ability of accurate prediction in drug resistance testing. Protocols of establishing therapy-sensitive and therapy-resistant organoids are concluded in two aspects, which are generated directly from respective patients' cancer and by induction of anti-cancer drug. Genomic and transcriptomic analyses and gene editing have been applied to organoid studies to identify key targets in drug resistance and FGFR3, KHDRBS3, lnc-RP11-536 K7.3 and FBN1 were found to be key targets. Furthermore, mechanisms contributing to resistance have been identified, including metabolic adaptation, activation of DNA damage response, defects in apoptosis, reduced cellular senescence, cellular plasticity, subpopulation interactions and gene fusions. Additionally, cancer stem cells (CSCs) have been verified to be involved in drug resistance utilizing organoid technology. Reversal of drug resistance can be achieved by targeting key genes and CSCs in cancer organoids. In this review, we summarize applications of organoids to cancer drug resistance research, indicating prospects and limitations.
Collapse
Affiliation(s)
- Changpeng Chai
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China; The Forth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Pengfei Ji
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Hao Xu
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Huan Tang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Zhengfeng Wang
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Hui Zhang
- The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Wence Zhou
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, Gansu, China; The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China.
| |
Collapse
|
144
|
Kokumai T, Omori Y, Ishida M, Ohtsuka H, Mizuma M, Nakagawa K, Maeda C, Ono Y, Mizukami Y, Miura S, Kume K, Masamune A, Morikawa T, Unno M, Furukawa T. GATA6 and CK5 Stratify the Survival of Patients With Pancreatic Cancer Undergoing Neoadjuvant Chemotherapy. Mod Pathol 2023; 36:100102. [PMID: 36788090 DOI: 10.1016/j.modpat.2023.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Relevant protein expression of GATA6, CK5, vimentin, and mucins using immunohistochemistry was assessed for predicting the prognosis of and chemotherapy efficacy in patients with pancreatic cancers (PCs). The protein expression was examined in 159 PCs resected after neoadjuvant chemotherapy (NAC-PCs) and compared with that of 120 matched biopsy specimens taken before NAC. KRAS mutations were assessed by digital PCR. NAC-PCs were classified by GATA6 expression initially and CK5 expression subsequently into 4 types: classical-type (n = 22) with GATA6-high (≥50%)/CK5-low (<10%) PCs; hybrid-type (n = 45) with GATA6-high/CK5-high (≥10%) PCs; basal-like-type (n = 53) with GATA6-low (<50%)/CK5-high (≥30%) PCs; and null-type (n = 39) with GATA6-low/CK5-low (<30%) PCs, which resulted in clear stratification of patient prognosis. The classical-type was associated with the most favorable prognosis, whereas the null-type was associated with the worst prognosis (multivariate hazard ratio: 3.56; 95% CI: 1.63-7.77; P = .0015). The hybrid and basal-like types correlated with in-between levels of prognosis. The risk of hepatic recurrence was lower in the classical-type than in null (multivariate odds ratio [mOR]: 0.18; 95% CI: 0.04-0.96; P = .0449) and basal-like (mOR: 0.24; 95% CI: 0.05-1.16; P =.0750) types. By contrast, the risk of locoregional recurrence was higher in the classical-type than in the basal-like-type (mOR: 5.03; 95% CI: 1.20-21.1; P = .0272). The hybrid-type was subclassified into transition and coexpression patterns with different gastric mucin expression levels. High levels of vimentin (≥10%, n = 30) in pre-NAC-PC tissues was associated with poor prognosis (P = .0256). Phenotypic transitions between pre-NAC and post-NAC-PCs were common (73/120; 61%). PCs with NAC regression grades 2 and 3 showed a transition to poorer prognostic phenotypes (P = .0497). KRAS mutations were not associated with these phenotypes. In conclusion, GATA6 and CK5 immunohistochemical expression phenotypes may stratify the survival of patients with NAC-PCs and reflect post-NAC phenotypic transitions associated with poor prognosis. Prompt evaluation of immunohistochemical phenotypes may contribute to designing a precision therapeutic strategy for patients with PCs.
Collapse
Affiliation(s)
- Takashi Kokumai
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuko Omori
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan; Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chiho Maeda
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan; Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Mizukami
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan; Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Shin Miura
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyoshi Kume
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
145
|
Shukla HD, Dukic T, Roy S, Bhandary B, Gerry A, Poirier Y, Lamichhane N, Molitoris J, Carrier F, Banerjee A, Regine WF, Polf JC. Pancreatic cancer derived 3D organoids as a clinical tool to evaluate the treatment response. Front Oncol 2023; 12:1072774. [PMID: 36713532 PMCID: PMC9879007 DOI: 10.3389/fonc.2022.1072774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023] Open
Abstract
Background and purpose Pancreatic cancer (PC) is the fourth leading cause of cancer death in both men and women. The standard of care for patients with locally advanced PC of chemotherapy, stereotactic radiotherapy (RT), or chemo-radiation-therapy has shown highly variable and limited success rates. However, three-dimensional (3D) Pancreatic tumor organoids (PTOs) have shown promise to study tumor response to drugs, and emerging treatments under in vitro conditions. We investigated the potential for using 3D organoids to evaluate the precise radiation and drug dose responses of in vivo PC tumors. Methods PTOs were created from mouse pancreatic tumor tissues, and their microenvironment was compared to that of in vivo tumors using immunohistochemical and immunofluorescence staining. The organoids and in vivo PC tumors were treated with fractionated X-ray RT, 3-bromopyruvate (3BP) anti-tumor drug, and combination of 3BP + fractionated RT. Results Pancreatic tumor organoids (PTOs) exhibited a similar fibrotic microenvironment and molecular response (as seen by apoptosis biomarker expression) as in vivo tumors. Untreated tumor organoids and in vivo tumor both exhibited proliferative growth of 6 folds the original size after 10 days, whereas no growth was seen for organoids and in vivo tumors treated with 8 (Gray) Gy of fractionated RT. Tumor organoids showed reduced growth rates of 3.2x and 1.8x when treated with 4 and 6 Gy fractionated RT, respectively. Interestingly, combination of 100 µM of 3BP + 4 Gy of RT showed pronounced growth inhibition as compared to 3-BP alone or 4 Gy of radiation alone. Further, positive identification of SOX2, SOX10 and TGFβ indicated presence of cancer stem cells in tumor organoids which might have some role in resistance to therapies in pancreatic cancer. Conclusions PTOs produced a similar microenvironment and exhibited similar growth characteristics as in vivo tumors following treatment, indicating their potential for predicting in vivo tumor sensitivity and response to RT and combined chemo-RT treatments.
Collapse
Affiliation(s)
- Hem D Shukla
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, United States,*Correspondence: Hem D Shukla,
| | - Tijana Dukic
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Sanjit Roy
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Binny Bhandary
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Andrew Gerry
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Yannick Poirier
- Division of Medical Physics, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Narottam Lamichhane
- Division of Medical Physics, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Jason Molitoris
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - France Carrier
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - William F. Regine
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Jerimy C. Polf
- Division of Medical Physics, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, United States
| |
Collapse
|
146
|
Hossan MS, Lin ES, Riedl E, Stram A, Mehlhaff E, Koeppel L, Warner J, Uko I, Mankowski Gettle L, Lubner S, McGregor SM, Zhang W, Murphy W, Kratz JD. Spatial Alignment of Organoids Tracking Subclonal Chemotherapy Resistance in Pancreatic and Ampullary Cancer. Bioengineering (Basel) 2023; 10:bioengineering10010091. [PMID: 36671664 PMCID: PMC9854538 DOI: 10.3390/bioengineering10010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Pancreatic and ampullary cancers remain highly morbid diseases for which accurate clinical predictions are needed for precise therapeutic predictions. Patient-derived cancer organoids have been widely adopted; however, prior work has focused on well-level therapeutic sensitivity. To characterize individual oligoclonal units of therapeutic response, we introduce a low-volume screening assay, including an automated alignment algorithm. The oligoclonal growth response was compared against validated markers of response, including well-level viability and markers of single-cell viability. Line-specific sensitivities were compared with clinical outcomes. Automated alignment algorithms were generated to match organoids across time using coordinates across a single projection of Z-stacked images. After screening for baseline size (50 μm) and circularity (>0.4), the match efficiency was found to be optimized by accepting the diffusion thresholded with the root mean standard deviation of 75 μm. Validated well-level viability showed a limited correlation with the mean organoid size (R = 0.408), and a normalized growth assayed by normalized changes in area (R = 0.474) and area (R = 0.486). Subclonal populations were defined by both residual growth and the failure to induce apoptosis and necrosis. For a culture with clinical resistance to gemcitabine and nab-paclitaxel, while a therapeutic challenge induced a robust effect in inhibiting cell growth (GΔ = 1.53), residual oligoclonal populations were able to limit the effect on the ability to induce apoptosis (GΔ = 0.52) and cell necrosis (GΔ = 1.07). Bioengineered approaches are feasible to capture oligoclonal heterogeneity in organotypic cultures, integrating ongoing efforts for utilizing organoids across cancer types as integral biomarkers and in novel therapeutic development.
Collapse
Affiliation(s)
- Md Shahadat Hossan
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Ethan Samuel Lin
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Eleanor Riedl
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Austin Stram
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Eric Mehlhaff
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Luke Koeppel
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Jamie Warner
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Inem Uko
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Lori Mankowski Gettle
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, 600 Highland Ave., Madison, WI 53705, USA
| | - Sam Lubner
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, 600 Highland Ave., Madison, WI 53705, USA
- William S. Middleton Veterans Administration Health System, Madison, WI 53705, USA
| | - Stephanie M. McGregor
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, 600 Highland Ave., Madison, WI 53705, USA
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Wei Zhang
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, 600 Highland Ave., Madison, WI 53705, USA
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - William Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI 53705, USA
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706, USA
| | - Jeremy D. Kratz
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, 600 Highland Ave., Madison, WI 53705, USA
- William S. Middleton Veterans Administration Health System, Madison, WI 53705, USA
- Center for Human Genomics and Precision Medicine, University of Wisconsin, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
147
|
Chen D, Su X, Zhu L, Jia H, Han B, Chen H, Liang Q, Hu C, Yang H, Liu L, Li P, Wei W, Zhao Y. Papillary thyroid cancer organoids harboring BRAF V600E mutation reveal potentially beneficial effects of BRAF inhibitor-based combination therapies. J Transl Med 2023; 21:9. [PMID: 36624452 PMCID: PMC9827684 DOI: 10.1186/s12967-022-03848-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUNDS Papillary thyroid cancer (PTC), which is often driven by acquired somatic mutations in BRAF genes, is the most common pathologic type of thyroid cancer. PTC has an excellent prognosis after treatment with conventional therapies such as surgical resection, thyroid hormone therapy and adjuvant radioactive iodine therapy. Unfortunately, about 20% of patients develop regional recurrence or distant metastasis, making targeted therapeutics an important treatment option. Current in vitro PTC models are limited in representing the cellular and mutational characteristics of parental tumors. A clinically relevant tool that predicts the efficacy of therapy for individuals is urgently needed. METHODS Surgically removed PTC tissue samples were dissociated, plated into Matrigel, and cultured to generate organoids. PTC organoids were subsequently subjected to histological analysis, DNA sequencing, and drug sensitivity assays, respectively. RESULTS We established 9 patient-derived PTC organoid models, 5 of which harbor BRAFV600E mutation. These organoids have been cultured stably for more than 3 months and closely recapitulated the histological architectures as well as mutational landscapes of the respective primary tumors. Drug sensitivity assays of PTC organoid cultures demonstrated the intra- and inter-patient specific drug responses. BRAFV600E inhibitors, vemurafenib and dabrafenib monotherapy was mildly effective in treating BRAFV600E-mutant PTC organoids. Nevertheless, BRAF inhibitors in combination with MEK inhibitors, RTK inhibitors, or chemotherapeutic agents demonstrated improved efficacy compared to BRAF inhibition alone. CONCLUSIONS These data indicate that patient-derived PTC organoids may be a powerful research tool to investigate tumor biology and drug responsiveness, thus being useful to validate or discover targeted drug combinations.
Collapse
Affiliation(s)
- Dong Chen
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Xi Su
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Lizhang Zhu
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Hao Jia
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Bin Han
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Haibo Chen
- grid.440601.70000 0004 1798 0578Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Qingzhuang Liang
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Chenchen Hu
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Hao Yang
- grid.440601.70000 0004 1798 0578Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Lisa Liu
- grid.264727.20000 0001 2248 3398Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19122 USA
| | - Peng Li
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Wei Wei
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Yongsheng Zhao
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China ,grid.440601.70000 0004 1798 0578Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| |
Collapse
|
148
|
Tong T, Zhang C, Li J, Deng M, Wang X. Preclinical models derived from endoscopic ultrasound-guided tissue acquisition for individualized treatment of pancreatic ductal adenocarcinoma. Front Med (Lausanne) 2023; 9:934974. [PMID: 36687406 PMCID: PMC9849774 DOI: 10.3389/fmed.2022.934974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with poor outcomes. Although the management strategies have evolved in recent years, the PDAC 5-year survival rate remains at only 9%; it may become the second leading cause of cancer death in the USA by 2030. Only 15-20% of PDAC patients are eligible to undergo surgery; diagnostic biopsies and individualized treatment present a more significant challenge for the remaining group. Endoscopic ultrasound-guided tissue acquisition (EUS-TA) has been widely used in the diagnosis of pancreatic masses. With the advancement of this sampling technique, adequate specimens can be obtained from all patients with PDAC in both early and late clinical stages. Recent data suggest that the specimens obtained from EUS-TA might be used to establish viable preclinical models, which conserve the genetic mutation and preserve the heterogeneity of the original tumors. Additionally, any drug sensitivity evident in the EUS-TA-derived preclinical models might predict the clinical response, thus guiding the prospective therapeutic selection. As we move toward the era of precision medicine, this review provides an update on the role of EUS-TA as a method for obtaining genetic material used in preclinical models that can assess and stratify individuals according to their individual cancer biology.
Collapse
Affiliation(s)
- Ting Tong
- Endoscopic Center, The First Affiliated Hospital of Xiamen University, Xiamen, China,Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China
| | - Chao Zhang
- Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China
| | - Jingbo Li
- Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China
| | - Minzi Deng
- Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China,*Correspondence: Minzi Deng,
| | - Xiaoyan Wang
- Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China,Xiaoyan Wang,
| |
Collapse
|
149
|
Merz S, Breunig M, Melzer MK, Heller S, Wiedenmann S, Seufferlein T, Meier M, Krüger J, Mulaw MA, Hohwieler M, Kleger A. Single-cell profiling of GP2-enriched pancreatic progenitors to simultaneously create acinar, ductal, and endocrine organoids. Theranostics 2023; 13:1949-1973. [PMID: 37064874 PMCID: PMC10091881 DOI: 10.7150/thno.78323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/12/2023] [Indexed: 04/18/2023] Open
Abstract
Rationale: Pancreatic lineage specification follows the formation of tripotent pancreatic progenitors (PPs). Current protocols rebuilding PPs in vitro have an endocrine lineage bias and are mostly based on PDX1/NKX6-1 coexpression neglecting other markers decisive for PP heterogeneity and lineage potential. However, true tripotent PPs are of utmost interest to study also exocrine disorders such as pancreatic cancer and to simultaneously generate all three pancreatic lineages from the same ancestor. Methods: Here, we performed a comprehensive compound testing to advance the generation of multipotent progenitors, which were further characterized for their trilineage potential in vitro and in vivo. The heterogeneity and cell-cell communication across the PP subpopulations were analyzed via single-cell transcriptomics. Results: We introduce a novel PP differentiation platform based on a comprehensive compound screening with an advanced design of experiments computing tool to reduce impurities and to increase Glycoprotein-2 expression and subsequent trilineage potential. Superior PP tripotency was proven in vitro by the generation of acinar, endocrine, and ductal cells as well as in vivo upon orthotopic transplantation revealing all three lineages at fetal maturation level. GP2 expression levels at PP stage ascribed varying pancreatic lineage potential. Intermediate and high GP2 levels were superior in generating endocrine and duct-like organoids (PDLO). FACS-based purification of the GP2high PPs allowed the generation of pancreatic acinar-like organoids (PALO) with proper morphology and expression of digestive enzymes. scRNA-seq confirmed multipotent identity, positioned the GP2/PDX1/NKX6-1high population next to human fetal tip and trunk progenitors and identified novel ligand-receptor (LR) interactions in distinct PP subpopulations. LR validation experiments licensed midkine and VEGF signaling to increase markers labelling the single cell clusters with high GP2 expression. Conclusion: In this study, we guide human pluripotent stem cells into multipotent pancreatic progenitors. This common precursor population, which has the ability to mature into acinar, ductal and functional β-cells, serves as a basis for studying developmental processes and deciphering early cancer formation in a cell type-specific context. Using single-cell RNA sequencing and subsequent validation studies, we were able to dissect PP heterogeneity and specific cell-cell communication signals.
Collapse
Affiliation(s)
- Sarah Merz
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Markus Breunig
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Michael Karl Melzer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Department of Urology, Ulm University Hospital, Ulm, Germany
| | - Sandra Heller
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Sandra Wiedenmann
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jana Krüger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Medhanie A Mulaw
- Central Unit Single Cell Sequencing, Medical Faculty, Ulm University, Ulm, Germany
| | - Meike Hohwieler
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- ✉ Corresponding author: Prof. Dr. Alexander Kleger, Director, Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany. Phone: +49-731-500-44728; Fax: +49-731-500-44612;
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
- ✉ Corresponding author: Prof. Dr. Alexander Kleger, Director, Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany. Phone: +49-731-500-44728; Fax: +49-731-500-44612;
| |
Collapse
|
150
|
Immune index: A gene and cell prognostic signature for immunotherapy response prediction in hepatocellular carcinoma. Pharmacol Res 2023; 187:106583. [PMID: 36574578 DOI: 10.1016/j.phrs.2022.106583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
The heterogeneity of tumor immune microenvironment (TIME) plays important roles in the development and immunotherapy response of hepatocellular carcinoma (HCC). Using machine learning algorithms, we introduced the immune index (IMI), a prognostic model based on the HCC immune landscape. We found that IMI low HCCs were enriched in stem cell and proliferating signatures, and yielded more TP53 mutation and 17p loss compared with IMI high HCCs. More importantly, patients with high IMI exhibited better immune-checkpoint blockade (ICB) response. To facilitate clinical application, we employed machine learning algorithms to develop a gene model of the IMI (IMIG), which contained 10 genes. According to our HCC cohort examination and single-cell level analysis, we found that IMIG high HCCs exhibited favorable survival outcomes and high levels of NK and CD8+ T cells infiltration. Finally, after coculture with autologous tumor infiltrating lymphocytes, IMIG high tumor cells exhibited a better response to nivolumab treatment. Collectively, the IMI and IMIG may serve as powerful tools for the prognosis, classification and ICB treatment response prediction of HCC.
Collapse
|