101
|
Mouse LIMR3/CD300f is a negative regulator of the antimicrobial activity of neutrophils. Sci Rep 2018; 8:17406. [PMID: 30479367 PMCID: PMC6258681 DOI: 10.1038/s41598-018-35699-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 11/06/2018] [Indexed: 01/26/2023] Open
Abstract
Leukocyte mono-immunoglobulin-like receptor (LMIR)/CD300 proteins comprise a family of immunoglobulin-like receptors that are widely expressed on the immune cell surface in humans and mice. In general, LMIR3/CD300f suppresses the inflammatory response, but it can occasionally promote it. However, the precise roles of LMIR3 in the function of neutrophils remain to be elucidated. In the present study, we investigated LMIR3 expression in mature and immature neutrophils, and evaluated the effects of LMIR3 deficiency in mouse neutrophils. Our results indicated that bone marrow (BM) neutrophils expressed LMIR3 on their cell surface during cell maturation and that surface LMIR3 expression increased in response to Pseudomonas aeruginosa infection in a TLR4/MyD88-dependent manner. LMIR3-knockout (KO) neutrophils displayed significantly increased hypochlorous acid production, and elastase release, as well as significantly augmented cytotoxic activity against P. aeruginosa and Candida albicans; meanwhile, inhibitors of elastase and myeloperoxidase offset this enhanced antimicrobial activity. Furthermore, LMIR3-KO mice were significantly more resistant to Pseudomonas peritonitis and systemic candidiasis, although this may not be entirely due to the enhanced activity of neutrophils. These results demonstrate that LMIR3/CD300f deficiency augments the antimicrobial activity of mouse neutrophils.
Collapse
|
102
|
Kim EH, Wong SW, Martinez J. Programmed Necrosis and Disease:We interrupt your regular programming to bring you necroinflammation. Cell Death Differ 2018; 26:25-40. [PMID: 30349078 DOI: 10.1038/s41418-018-0179-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Compared to the tidy and immunologically silent death during apoptosis, necrosis seems like a chaotic and unorganized demise. However, we now recognize that there is a method to its madness, as many forms of necrotic cell death are indeed programmed and function beyond lytic cell death to support homeostasis and immunity. Inherently more immunogenic than their apoptotic counterpart, programmed necrosis, such as necroptosis, pyroptosis, ferroptosis, and NETosis, releases inflammatory cytokines and danger-associated molecular patterns (DAMPs), skewing the milieu to a pro-inflammatory state. Moreover, impaired clearance of dead cells often leads to inflammation. Importantly, these pathways have all been implicated in inflammatory and autoimmune diseases, therefore careful understanding of their molecular mechanisms can have long lasting effects on how we interpret their role in disease and how we translate these mechanisms into therapy.
Collapse
Affiliation(s)
- Eui Ho Kim
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Sing-Wai Wong
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.,Oral and Craniofacial Biomedicine Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
103
|
Fu Z, Thorpe M, Akula S, Chahal G, Hellman LT. Extended Cleavage Specificity of Human Neutrophil Elastase, Human Proteinase 3, and Their Distant Ortholog Clawed Frog PR3-Three Elastases With Similar Primary but Different Extended Specificities and Stability. Front Immunol 2018; 9:2387. [PMID: 30459762 PMCID: PMC6232827 DOI: 10.3389/fimmu.2018.02387] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/26/2018] [Indexed: 01/13/2023] Open
Abstract
Serine proteases are major granule constituents of several of the human hematopoietic cell lineages. Four proteolytically active such proteases have been identified in human neutrophils: cathepsin G (hCG), N-elastase (hNE), proteinase 3 (hPR-3), and neutrophil serine protease 4 (hNSP-4). Here we present the extended cleavage specificity of two of the most potent and most abundant of these enzymes, hNE and hPR-3. Their extended specificities were determined by phage display and by the analysis of a panel of chromogenic and recombinant substrates. hNE is an elastase with a relatively broad specificity showing a preference for regions containing several aliphatic amino acids. The protease shows self-cleaving activity, which results in the loss of activity during storage even at +4°C. Here we also present the extended cleavage specificity of hPR-3. Compared with hNE, it shows considerably lower proteolytic activity. However, it is very stable, shows no self-cleaving activity and is actually more active in the presence of SDS, possibly by enhancing the accessibility of the target substrate. This enables specific analysis of hPR-3 activity even in the presence of all the other neutrophil enzymes with addition of 1% SDS. Neutrophils are the most abundant white blood cell in humans and one of the key players in our innate immune defense. The neutrophil serine proteases are very important for the function of the neutrophils and therefore also interesting from an evolutionary perspective. In order to study the origin and functional conservation of these neutrophil proteases we have identified and cloned an amphibian ortholog, Xenopus PR-3 (xPR-3). This enzyme was found to have a specificity very similar to hPR-3 but did not show the high stability in the presence of SDS. The presence of an elastase in Xenopus closely related to hPR-3 indicates a relatively early appearance of these enzymes during vertebrate evolution.
Collapse
Affiliation(s)
- Zhirong Fu
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Gurdeep Chahal
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Lars T Hellman
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
104
|
Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort AS, Lauritzen C, Łȩgowska M, Lesner A, Marchand-Adam S, McKaig SJ, Moss C, Pedersen J, Roberts H, Schreiber A, Seren S, Thakker NS. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 2018; 190:202-236. [DOI: 10.1016/j.pharmthera.2018.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
105
|
Jugniot N, Duttagupta I, Rivot A, Massot P, Cardiet C, Pizzoccaro A, Jean M, Vanthuyne N, Franconi JM, Voisin P, Devouassoux G, Parzy E, Thiaudiere E, Marque SRA, Bentaher A, Audran G, Mellet P. An elastase activity reporter for Electronic Paramagnetic Resonance (EPR) and Overhauser-enhanced Magnetic Resonance Imaging (OMRI) as a line-shifting nitroxide. Free Radic Biol Med 2018; 126:101-112. [PMID: 30092349 DOI: 10.1016/j.freeradbiomed.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022]
Abstract
Pulmonary inflammatory diseases are a major burden worldwide. They have in common an influx of neutrophils. Neutrophils secrete unchecked proteases at inflammation sites consequently leading to a protease/inhibitor imbalance. Among these proteases, neutrophil elastase is responsible for the degradation of the lung structure via elastin fragmentation. Therefore, monitoring the protease/inhibitor status in lungs non-invasively would be an important diagnostic tool. Herein we present the synthesis of a MeO-Suc-(Ala)2-Pro-Val-nitroxide, a line-shifting elastase activity probe suitable for Electron Paramagnetic Resonance spectroscopy (EPR) and Overhauser-enhanced Magnetic Resonance Imaging (OMRI). It is a fast and sensitive neutrophil elastase substrate with Km = 15 ± 2.9 µM, kcat/Km = 930,000 s-1 M-1 and Km = 25 ± 5.4 µM, kcat/Km = 640,000 s-1 M-1 for the R and S isomers, respectively. These properties are suitable to detect accurately concentrations of neutrophil elastase as low as 1 nM. The substrate was assessed with broncho-alveolar lavages samples derived from a mouse model of Pseudomonas pneumonia. Using EPR spectroscopy we observed a clear-cut difference between wild type animals and animals deficient in neutrophil elastase or deprived of neutrophil Elastase, Cathepsin G and Proteinase 3 or non-infected animals. These results provide new preclinical ex vivo and in vivo diagnostic methods. They can lead to clinical methods to promote in time lung protection.
Collapse
Affiliation(s)
- Natacha Jugniot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Indranil Duttagupta
- Aix Marseille Univ., CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Angélique Rivot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Philippe Massot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Colleen Cardiet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Anne Pizzoccaro
- Equipe "Inflammation et Immunité de l'Epithélium Respiratoire" - EA7426 Faculté de Médecine Lyon Sud, 165, Chemin du Grand Revoyet, 69495 Pierre Bénite, France
| | - Marion Jean
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Pierre Voisin
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Gilles Devouassoux
- Equipe "Inflammation et Immunité de l'Epithélium Respiratoire" - EA7426 Faculté de Médecine Lyon Sud, 165, Chemin du Grand Revoyet, 69495 Pierre Bénite, France
| | - Elodie Parzy
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Eric Thiaudiere
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France.
| | - Sylvain R A Marque
- Aix Marseille Univ., CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France; Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia.
| | - Abderrazzak Bentaher
- Equipe "Inflammation et Immunité de l'Epithélium Respiratoire" - EA7426 Faculté de Médecine Lyon Sud, 165, Chemin du Grand Revoyet, 69495 Pierre Bénite, France.
| | - Gérard Audran
- Aix Marseille Univ., CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | - Philippe Mellet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France; INSERM, 33076 Bordeaux Cedex, France.
| |
Collapse
|
106
|
Keszei M, Record J, Kritikou JS, Wurzer H, Geyer C, Thiemann M, Drescher P, Brauner H, Köcher L, James J, He M, Baptista MA, Dahlberg CI, Biswas A, Lain S, Lane DP, Song W, Pütsep K, Vandenberghe P, Snapper SB, Westerberg LS. Constitutive activation of WASp in X-linked neutropenia renders neutrophils hyperactive. J Clin Invest 2018; 128:4115-4131. [PMID: 30124469 PMCID: PMC6118594 DOI: 10.1172/jci64772] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Congenital neutropenia is characterized by low absolute neutrophil numbers in blood, leading to recurrent bacterial infections, and patients often require life-long granulocyte CSF (G-CSF) support. X-linked neutropenia (XLN) is caused by gain-of-function mutations in the actin regulator Wiskott-Aldrich syndrome protein (WASp). To understand the pathophysiology in XLN and the role of WASp in neutrophils, we here examined XLN patients and 2 XLN mouse models. XLN patients had reduced myelopoiesis and extremely low blood neutrophil number. However, their neutrophils had a hyperactive phenotype and were present in normal numbers in XLN patient saliva. Murine XLN neutrophils were hyperactivated, with increased actin dynamics and migration into tissues. We provide molecular evidence that the hyperactivity of XLN neutrophils is caused by WASp in a constitutively open conformation due to contingent phosphorylation of the critical tyrosine-293 and plasma membrane localization. This renders WASp activity less dependent on regulation by PI3K. Our data show that the amplitude of WASp activity inside a cell could be enhanced by cell-surface receptor signaling even in the context in which WASp is already in an active conformation. Moreover, these data categorize XLN as an atypical congenital neutropenia in which constitutive activation of WASp in tissue neutrophils compensates for reduced myelopoiesis.
Collapse
Affiliation(s)
- Marton Keszei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julien Record
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joanna S. Kritikou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chiara Geyer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Meike Thiemann
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Paul Drescher
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Brauner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Köcher
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jaime James
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Minghui He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marisa A.P. Baptista
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carin I.M. Dahlberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Amlan Biswas
- Gastroenterology Division, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sonia Lain
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - David P. Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Katrin Pütsep
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Vandenberghe
- Center for Human Genetics, Katholieke Universiteit (KU) Leuven and Hematology/Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Scott B. Snapper
- Gastroenterology Division, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
107
|
Chen KW, Monteleone M, Boucher D, Sollberger G, Ramnath D, Condon ND, von Pein JB, Broz P, Sweet MJ, Schroder K. Noncanonical inflammasome signaling elicits gasdermin D–dependent neutrophil extracellular traps. Sci Immunol 2018; 3:3/26/eaar6676. [DOI: 10.1126/sciimmunol.aar6676] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
|
108
|
Kumar H, Choi H, Jo MJ, Joshi HP, Muttigi M, Bonanomi D, Kim SB, Ban E, Kim A, Lee SH, Kim KT, Sohn S, Zeng X, Han I. Neutrophil elastase inhibition effectively rescued angiopoietin-1 decrease and inhibits glial scar after spinal cord injury. Acta Neuropathol Commun 2018; 6:73. [PMID: 30086801 PMCID: PMC6080383 DOI: 10.1186/s40478-018-0576-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/13/2023] Open
Abstract
After spinal cord injury (SCI), neutrophil elastase (NE) released at injury site disrupts vascular endothelium integrity and stabilization. Angiopoietins (ANGPTs) are vascular growth factors that play an important role in vascular stabilization. We hypothesized that neutrophil elastase is one of the key determinants of vascular endothelium disruption/destabilization and affects angiopoietins expression after spinal cord injury. To test this, tubule formation and angiopoietins expression were assessed in endothelial cells exposed to different concentrations of recombinant neutropil elastase. Then, the expression of angiopoietin-1, angiopoietin-2, and neutrophil elastase was determined at 3 h and at 1, 3, 5, 7, 14, 21, and 28 days in a clinically relevant model of moderate compression (35 g for 5 min at T10) spinal cord injury. A dichotomy between the levels of angiopoietin-1 and angiopoietin-2 was observed; thus, we utilized a specific neutrophil elastase inhibitor (sivelestat sodium; 30 mg/kg, i.p., b.i.d.) after spinal cord injury. The expression levels of neutropil elastase and angiopoietin-2 increased, and that of angiopoietin-1 decreased after spinal cord injury in rats. The sivelestat regimen, optimized via a pharmacokinetics study, had potent effects on vascular stabilization by upregulating angiopoietin-1 via the AKT pathway and preventing tight junction protein degradation. Moreover, sivelestat attenuated the levels of inflammatory cytokines and chemokines after spinal cord injury and hence subsequently alleviated secondary damage observed as a reduction in glial scar formation and the promotion of blood vessel formation and stabilization. As a result, hindlimb locomotor function significantly recovered in the sivelestat-treated animals as determined by the Basso, Beattie, and Bresnahan scale and footprint analyses. Furthermore, sivelestat treatment attenuated neuropathic pain as assessed by responses to von Frey filaments after spinal cord injury. Thus, our result suggests that inhibiting neutropil elastase by administration of sivelestat is a promising therapeutic strategy to inhibit glial scar and promote functional recovery by upregulating angiopoietin-1 after spinal cord injury.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Min-Jae Jo
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Hari Prasad Joshi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Manjunatha Muttigi
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Dario Bonanomi
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Sung Bum Kim
- Department of Neurosurgery, Kyung Hee University, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Eunmi Ban
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Aeri Kim
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University Hospital, Kyungpook National University, 130, Dongdeok-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Neurosurgery, School of Medicine,Kyungpook National University, 130, Dongdeok-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Seil Sohn
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, China.
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
109
|
Claushuis TAM, de Stoppelaar SF, de Vos AF, Grootemaat AE, van der Wel NN, Roelofs JJTH, Ware J, Van't Veer C, van der Poll T. Nbeal2 Deficiency Increases Organ Damage but Does Not Affect Host Defense During Gram-Negative Pneumonia-Derived Sepsis. Arterioscler Thromb Vasc Biol 2018; 38:1772-1784. [PMID: 29930006 DOI: 10.1161/atvbaha.118.311332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective- Nbeal2-/- mice, a model of human gray platelet syndrome, have reduced neutrophil granularity and impaired host defense against systemic Staphylococcus aureus infection. We here aimed to study the role of Nbeal2 deficiency in both leukocytes and platelets during gram-negative pneumonia and sepsis. Approach and Results- We studied the role of Nbeal2 in platelets and leukocytes during murine pneumonia and sepsis by Klebsiella pneumoniae. Apart from platelet α-granule deficiency and reduced neutrophil granularity, also monocyte granularity was reduced in Nbeal2-/- mice, whereas plasma levels of MPO (myeloperoxidase), elastase, NGAL (neutrophil gelatinase-associated lipocalin), and MMP-9 (matrix metalloproteinase 9), and leukocyte CD11b expression were increased. Nbeal2-/- leukocytes showed unaltered in vitro antibacterial response and phagocytosis capacity against Klebsiella, and unchanged reactive nitrogen species and cytokine production. Also during Klebsiella pneumonia and sepsis, Nbeal2-/- mice had similar bacterial growth in lung and distant body sites, with enhanced leukocyte migration to the bronchoalveolar space. Despite similar infection-induced inflammation, organ damage was increased in Nbeal2-/- mice, which was also seen during endotoxemia. Platelet-specific Nbeal2 deficiency did not influence leukocyte functions, indicating that Nbeal2 directly modifies leukocytes. Transfusion of Nbeal2-/- but not of Nbeal2+/+ platelets into thrombocytopenic mice was associated with bleeding in the lung but similar host defense, pointing at a role for platelet α-granules in maintaining vascular integrity but not host defense during Klebsiella pneumosepsis. Conclusions- These data show that Nbeal2 deficiency-resulting in gray platelet syndrome-affects platelets, neutrophils, and monocytes, with intact host defense but increased organ damage during gram-negative pneumosepsis.
Collapse
Affiliation(s)
- Theodora A M Claushuis
- From the Center for Experimental and Molecular Medicine (T.A.M.C., S.F.d.S., A.F.d.V., C.v.V., T.v.d.P.)
| | - Sacha F de Stoppelaar
- From the Center for Experimental and Molecular Medicine (T.A.M.C., S.F.d.S., A.F.d.V., C.v.V., T.v.d.P.)
| | - Alex F de Vos
- From the Center for Experimental and Molecular Medicine (T.A.M.C., S.F.d.S., A.F.d.V., C.v.V., T.v.d.P.)
| | - Anita E Grootemaat
- Academic Medical Center, University of Amsterdam, The Netherlands; Electron Microscopy Center Amsterdam, Medical Biology, Academic Medical Center, The Netherlands (A.E.G., N.N.v.d.W.)
| | - Nicole N van der Wel
- Academic Medical Center, University of Amsterdam, The Netherlands; Electron Microscopy Center Amsterdam, Medical Biology, Academic Medical Center, The Netherlands (A.E.G., N.N.v.d.W.)
| | | | - Jerry Ware
- University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Cornelis Van't Veer
- From the Center for Experimental and Molecular Medicine (T.A.M.C., S.F.d.S., A.F.d.V., C.v.V., T.v.d.P.)
| | - Tom van der Poll
- From the Center for Experimental and Molecular Medicine (T.A.M.C., S.F.d.S., A.F.d.V., C.v.V., T.v.d.P.)
- Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, The Netherlands (T.v.d.P.)
| |
Collapse
|
110
|
Sun Y, Luo G, Zhao L, Huang L, Qin Y, Su Y, Yan Q. Integration of RNAi and RNA-seq Reveals the Immune Responses of Epinephelus coioides to sigX Gene of Pseudomonas plecoglossicida. Front Immunol 2018; 9:1624. [PMID: 30061893 PMCID: PMC6054955 DOI: 10.3389/fimmu.2018.01624] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/02/2018] [Indexed: 11/15/2022] Open
Abstract
Pseudomonas plecoglossicida is an important pathogen for aquaculture and causes high mortality in various marine fishes. Expression of sigX was found significantly up-regulated at 18°C than at 28°C, which was verified by quantitative real-time PCR (qRT-PCR). RNAi significantly reduced the content of sigX mRNA of P. plecoglossicida, whether in in vitro or in the spleen at all sampling time points. Compared with the wild-type strain, the infection of sigX-RNAi strain resulted in the onset time delay, and 20% reduction in mortality of Epinephelus coioides, as well as alleviates in the symptoms of E. coioides spleen. Compared with wild-type strain, the gene silence of sigX in P. plecoglossicida resulted in a significant change in transcriptome of infected E. coioides. The result of gene ontology and KEGG analysis on E. coioides showed that genes of serine-type endopeptidase and chemokine signaling pathway, coagulation and complement system, and intestinal immune network for IgA production pathway were mostly affected by sigX of P. plecoglossicida. Meanwhile, the immune genes were associated with different number of miRNA and lncRNA, and some miRNAs were associated with more than one gene at the same time. The results indicated that sigX was a virulent gene of P. plecoglossicida. The up-regulation of the immune pathways made E. coioides more likely to kill sigX-RNAi strain than the wild-type strain of P. plecoglossicida, while the immune genes were regulated by miRNA and lncRNA by a complex mode.
Collapse
Affiliation(s)
- Yujia Sun
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Gang Luo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
111
|
Matsuhisa A, Okui A, Horiuchi Y. [Viewing sepsis and autoimmune disease in relation with infection and NETs-formation]. Nihon Saikingaku Zasshi 2018; 73:171-191. [PMID: 29863035 DOI: 10.3412/jsb.73.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neutrophil has been widely recognized as body's first line of defence against pathogens. NETosis was first reported in 2004 as a programmed cell death of neutrophil and distinguished from apoptosis and necrosis. This phenomenon has been already observed in both basic and clinical research. NETosis is induced by various stimulants such as PMA, IL-8, DAMPs/PAMPs, bacteria, and antigen-antibody complex including self-antibody such as ANCA. It is known that there are two types of NETosis following bacterial infections. Although both of them have the ability to capture and kill bacteria, they also damage the host tissues. The inhibition of the NETs-related enzymes prevents the NETs formation at that time. The production of O2- from respiratory burst of neutrophils triggers NETs formation. In the first type of NETosis, neutrophils are completely collapsed, while in the second type, they maintain the morphology and the ability of phagocytosis. However, bacteria can escape from NETs by degrading NETs with their secreting nucleases. Thus the animal models of infection, using these bacteria, oftentimes suffer from severe infectious diseases. Human CGD (Chronic Granulomatosis Disease) patients who do not have Nox2 are immunocompromised, and highly susceptible to infection due to the defect of NETs formation. On the other hand, SLE patients are unable to break down the NETs as their serum inhibits the DNase1 activity, which results in autoantibody generation against NETs as well as self-DNA. It is getting clear that there is a relationship between inflammatory diseases, including infectious diseases, Sepsis and autoimmune diseases, and NETs. Therefore, it is important to re-evaluate the inflammatory disorders from NETs' perspective, and to incorporate the emerging concepts for better understanding the mechanisms involved.
Collapse
Affiliation(s)
- Akio Matsuhisa
- Medical Device & Deagnostic Dept., Fuso Pharmaceutical Industries, Ltd
| | - Akira Okui
- Research & Development Center, Fuso Pharmaceutical Industries, Ltd
| | | |
Collapse
|
112
|
Hernandez C, Huebener P, Pradere JP, Antoine DJ, Friedman RA, Schwabe RF. HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J Clin Invest 2018; 128:2436-2451. [PMID: 29558367 DOI: 10.1172/jci91786] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/13/2018] [Indexed: 12/15/2022] Open
Abstract
Cell death is a key driver of disease progression and carcinogenesis in chronic liver disease (CLD), highlighted by the well-established clinical correlation between hepatocellular death and risk for the development of cirrhosis and hepatocellular carcinoma (HCC). Moreover, hepatocellular death is sufficient to trigger fibrosis and HCC in mice. However, the pathways through which cell death drives CLD progression remain elusive. Here, we tested the hypothesis that high-mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) with key roles in acute liver injury, may link cell death to injury responses and hepatocarcinogenesis in CLD. While liver-specific HMGB1 deficiency did not significantly affect chronic injury responses such as fibrosis, regeneration, and inflammation, it inhibited ductular/progenitor cell expansion and hepatocyte metaplasia. HMGB1 promoted ductular expansion independently of active secretion in a nonautonomous fashion, consistent with its role as a DAMP. Liver-specific HMGB1 deficiency reduced HCC development in 3 mouse models of chronic injury but not in a model lacking chronic liver injury. As with CLD, HMGB1 ablation reduced the expression of progenitor and oncofetal markers, a key determinant of HCC aggressiveness, in tumors. In summary, HMGB1 links hepatocyte death to ductular reaction, progenitor signature, and hepatocarcinogenesis in CLD.
Collapse
Affiliation(s)
- Celine Hernandez
- Department of Medicine, Columbia University, New York, New York, USA
| | - Peter Huebener
- Department of Medicine, Columbia University, New York, New York, USA.,Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Philippe Pradere
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
| | - Daniel J Antoine
- MRC Centre for Inflammation Research, University of Edinburgh, United Kingdom
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
113
|
Janciauskiene S, Wrenger S, Immenschuh S, Olejnicka B, Greulich T, Welte T, Chorostowska-Wynimko J. The Multifaceted Effects of Alpha1-Antitrypsin on Neutrophil Functions. Front Pharmacol 2018; 9:341. [PMID: 29719508 PMCID: PMC5914301 DOI: 10.3389/fphar.2018.00341] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/23/2018] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are the predominant immune cells in human blood possessing heterogeneity, plasticity and functional diversity. The activation and recruitment of neutrophils into inflamed tissue in response to stimuli are tightly regulated processes. Alpha1-Antitrypsin (AAT), an acute phase protein, is one of the potent regulators of neutrophil activation via both -protease inhibitory and non-inhibitory functions. This review summarizes our current understanding of the effects of AAT on neutrophils, illustrating the interplay between AAT and the key effector functions of neutrophils.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Sabine Wrenger
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Beata Olejnicka
- Department of Medicine, Trelleborg Hospital, Trelleborg, Sweden
| | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL), University Hospital of Giessen and Marburg, University of Marburg, Marburg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
114
|
Extended cleavage specificity of human neutrophil cathepsin G: A low activity protease with dual chymase and tryptase-type specificities. PLoS One 2018; 13:e0195077. [PMID: 29652924 PMCID: PMC5898719 DOI: 10.1371/journal.pone.0195077] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 02/22/2018] [Indexed: 01/08/2023] Open
Abstract
Human neutrophils express at least four active serine proteases, cathepsin G, N-elastase, proteinase 3 and neutrophil serine protease 4 (NSP4). They have all been extensively studied due to their importance in neutrophil biology and immunity. However, their extended cleavage specificities have never been determined in detail. Here we present a detailed cleavage specificity analysis of human cathepsin G (hCG). The specificity was determined by phage display analysis and the importance of individual amino acids in and around the cleavage site was then validated using novel recombinant substrates. To provide a broader context to this serine protease, a comparison was made to the related mast cell protease, human chymase (HC). hCG showed similar characteristics to HC including both the primary and extended specificities. As expected, Phe, Tyr, Trp and Leu were preferred in the P1 position. In addition, both proteases showed a preference for negatively charged amino acids in the P2´ position of substrates and a preference for aliphatic amino acids both upstream and downstream of the cleavage site. However, overall the catalytic activity of hCG was ~10-fold lower than HC. hCG has previously been reported to have a dual specificity consisting of chymase and tryptase-type activities. In our analysis, tryptase activity against substrates with Lys in P1 cleavage position was indeed only 2-fold less efficient as compared to optimal chymase substrates supporting strong dual-type specificity. We hope the information presented here on extended cleavage specificities of hCG and HC will assist in the search for novel in vivo substrates for these proteases as well as aid in the efforts to better understand the role of hCG in immunity and bacterial defence.
Collapse
|
115
|
Dunlea DM, Fee LT, McEnery T, McElvaney NG, Reeves EP. The impact of alpha-1 antitrypsin augmentation therapy on neutrophil-driven respiratory disease in deficient individuals. J Inflamm Res 2018; 11:123-134. [PMID: 29618937 PMCID: PMC5875399 DOI: 10.2147/jir.s156405] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alpha-1 antitrypsin (AAT) is the most abundant serine protease inhibitor circulating in the blood. AAT deficiency (AATD) is an autosomal codominant condition affecting an estimated 3.4 million individuals worldwide. The clinical disease associated with AATD can present in a number of ways including COPD, liver disease, panniculitis and antineutrophil cytoplasmic antibody vasculitis. AATD is the only proven genetic risk factor for the development of COPD, and deficient individuals who smoke are disposed to more aggressive disease. Principally, AAT is a serine protease inhibitor; however, over the past number of years, the assessment of AAT as simply an antiprotease has evolved, and it is now recognized that AAT has significant anti-inflammatory properties affecting a wide range of cells, including the circulating neutrophil.
Collapse
Affiliation(s)
- Danielle M Dunlea
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Laura T Fee
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Thomas McEnery
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
116
|
Kambara H, Liu F, Zhang X, Liu P, Bajrami B, Teng Y, Zhao L, Zhou S, Yu H, Zhou W, Silberstein LE, Cheng T, Han M, Xu Y, Luo HR. Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death. Cell Rep 2018; 22:2924-2936. [PMID: 29539421 PMCID: PMC5878047 DOI: 10.1016/j.celrep.2018.02.067] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 01/09/2018] [Accepted: 02/15/2018] [Indexed: 01/15/2023] Open
Abstract
Gasdermin D (GSDMD) is considered a proinflammatory factor that mediates pyroptosis in macrophages to protect hosts from intracellular bacteria. Here, we reveal that GSDMD deficiency paradoxically augmented host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, which established GSDMD as a negative regulator of innate immunity. In contrast to its activation in macrophages, in which activated inflammatory caspases cleave GSDMD to produce an N-terminal fragment (GSDMD-cNT) to trigger pyroptosis, GSDMD cleavage and activation in neutrophils was caspase independent. It was mediated by a neutrophil-specific serine protease, neutrophil elastase (ELANE), released from cytoplasmic granules into the cytosol in aging neutrophils. ELANE-mediated GSDMD cleavage was upstream of the caspase cleavage site and produced a fully active ELANE-derived NT fragment (GSDMD-eNT) that induced lytic cell death as efficiently as GSDMD-cNT. Thus, GSDMD is pleiotropic, exerting both pro- and anti-inflammatory effects that make it a potential target for antibacterial and anti-inflammatory therapies.
Collapse
Affiliation(s)
- Hiroto Kambara
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02215, USA; Department of Laboratory Medicine, Children's Hospital Boston, Enders Research Building, Room 814, Boston, MA 02115, USA
| | - Fei Liu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Xiaoyu Zhang
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02215, USA; Department of Laboratory Medicine, Children's Hospital Boston, Enders Research Building, Room 814, Boston, MA 02115, USA; The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Peng Liu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Besnik Bajrami
- Center for Development of Therapeutics, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Yan Teng
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02215, USA; Department of Laboratory Medicine, Children's Hospital Boston, Enders Research Building, Room 814, Boston, MA 02115, USA
| | - Li Zhao
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02215, USA; Department of Laboratory Medicine, Children's Hospital Boston, Enders Research Building, Room 814, Boston, MA 02115, USA
| | - Shiyi Zhou
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02215, USA; Department of Laboratory Medicine, Children's Hospital Boston, Enders Research Building, Room 814, Boston, MA 02115, USA
| | - Hongbo Yu
- VA Boston Healthcare System, Department of Pathology and Laboratory Medicine, Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA 02132, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Leslie E Silberstein
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02215, USA; Department of Laboratory Medicine, Children's Hospital Boston, Enders Research Building, Room 814, Boston, MA 02115, USA
| | - Tao Cheng
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Mingzhe Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Yuanfu Xu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Hongbo R Luo
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02215, USA; Department of Laboratory Medicine, Children's Hospital Boston, Enders Research Building, Room 814, Boston, MA 02115, USA.
| |
Collapse
|
117
|
Wen G, An W, Chen J, Maguire EM, Chen Q, Yang F, Pearce SWA, Kyriakides M, Zhang L, Ye S, Nourshargh S, Xiao Q. Genetic and Pharmacologic Inhibition of the Neutrophil Elastase Inhibits Experimental Atherosclerosis. J Am Heart Assoc 2018; 7:JAHA.117.008187. [PMID: 29437605 PMCID: PMC5850208 DOI: 10.1161/jaha.117.008187] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background To investigate whether neutrophil elastase (NE) plays a causal role in atherosclerosis, and the molecular mechanisms involved. Methods and Results NE genetic–deficient mice (Apolipoprotein E−/−/NE−/− mice), bone marrow transplantation, and a specific NE inhibitor (GW311616A) were employed in this study to establish the causal role of NE in atherosclerosis. Aortic expression of NE mRNA and plasma NE activity was significantly increased in high‐fat diet (HFD)–fed wild‐type (WT) (Apolipoprotein E−/−) mice but, as expected, not in NE‐deficient mice. Selective NE knockout markedly reduced HFD‐induced atherosclerosis and significantly increased indicators of atherosclerotic plaque stability. While plasma lipid profiles were not affected by NE deficiency, decreased levels of circulating proinflammatory cytokines and inflammatory monocytes (Ly6Chi/CD11b+) were observed in NE‐deficient mice fed with an HFD for 12 weeks as compared with WT. Bone marrow reconstitution of WT mice with NE−/− bone marrow cells significantly reduced HFD‐induced atherosclerosis, while bone marrow reconstitution of NE−/− mice with WT bone marrow cells restored the pathological features of atherosclerotic plaques induced by HFD in NE‐deficient mice. In line with these findings, pharmacological inhibition of NE in WT mice through oral administration of NE inhibitor GW311616A also significantly reduced atherosclerosis. Mechanistically, we demonstrated that NE promotes foam cell formation by increasing ATP‐binding cassette transporter ABCA1 protein degradation and inhibiting macrophage cholesterol efflux. Conclusions We outlined a pathogenic role for NE in foam cell formation and atherosclerosis development. Consequently, inhibition of NE may represent a potential therapeutic approach to treating cardiovascular disease.
Collapse
Affiliation(s)
- Guanmei Wen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Key Laboratory of Cardiovascular Diseases, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jiangyong Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Cardiothoracic Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Qishan Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Yang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Stuart W A Pearce
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Kyriakides
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shu Ye
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom .,Key Laboratory of Cardiovascular Diseases, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
118
|
The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev 2018; 82:82/1/e00057-17. [PMID: 29436479 DOI: 10.1128/mmbr.00057-17] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comprising the majority of leukocytes in humans, neutrophils are the first immune cells to respond to inflammatory or infectious etiologies and are crucial participants in the proper functioning of both innate and adaptive immune responses. From their initial appearance in the liver, thymus, and spleen at around the eighth week of human gestation to their generation in large numbers in the bone marrow at the end of term gestation, the differentiation of the pluripotent hematopoietic stem cell into a mature, segmented neutrophil is a highly controlled process where the transcriptional regulators C/EBP-α and C/EBP-ε play a vital role. Recent advances in neutrophil biology have clarified the life cycle of these cells and revealed striking differences between neonatal and adult neutrophils based on fetal maturation and environmental factors. Here we detail neutrophil ontogeny, granulopoiesis, and neutrophil homeostasis and highlight important differences between neonatal and adult neutrophil populations.
Collapse
|
119
|
Wen LL, Zhao ML, Chi H, Sun L. Histones and chymotrypsin-like elastases play significant roles in the antimicrobial activity of tongue sole neutrophil extracellular traps. FISH & SHELLFISH IMMUNOLOGY 2018; 72:470-476. [PMID: 29117594 DOI: 10.1016/j.fsi.2017.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/27/2017] [Accepted: 11/03/2017] [Indexed: 05/22/2023]
Abstract
Neutrophil extracellular traps (NETs) are a form of extracellular antimicrobial structure of neutrophils observed in higher and lower vertebrates, the latter including the teleost fish tongue sole Cynoglossus semilaevis. However, the antimicrobial mechanism of fish NETs is unknown. In the present study, we examined the potential contribution of histones and elastases to the antibacterial effect of tongue sole NETs. For this purpose, two histones (CsH2B and CsH4) and two elastases (CsEla1 and CsEla2) of tongue sole were investigated. The histones and elastases possess the conserved domain structures characteristic of that of histones H2B/H4 and trypsin-like serine protease, respectively. Recombinant CsH2B, CsH4, CsEla1, and CsEla2 bound a wide range of Gram-negative and Gram-positive bacteria, and some of the bound bacteria were inhibited in growth by the bound histones/elastases. CsH2B, CsH4, CsEla1, and CsEla2 were all localized in NETs induced by various stimuli including bacterial pathogen. Treatment of NETs with antibodies targeting CsH2B, CsH4, CsEla1, and CsEla2 significantly reduced the antimicrobial effect of NETs. These results indicate that histones and chymotrypsin-like elastases are fundamental components of teleost NETs that play important roles in the antimicrobial activity of NETs.
Collapse
Affiliation(s)
- Li-Lian Wen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Li Zhao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Heng Chi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
120
|
The podoplanin-CLEC-2 axis inhibits inflammation in sepsis. Nat Commun 2017; 8:2239. [PMID: 29269852 PMCID: PMC5740111 DOI: 10.1038/s41467-017-02402-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/28/2017] [Indexed: 12/26/2022] Open
Abstract
Platelets play a critical role in vascular inflammation through the podoplanin and collagen/fibrin receptors, C-type-lectin-like-2 (CLEC-2) and glycoprotein VI (GPVI), respectively. Both receptors regulate endothelial permeability and prevent peri-vascular bleeding in inflammation. Here we show that platelet-specific deletion of CLEC-2 but not GPVI leads to enhanced systemic inflammation and accelerated organ injury in two mouse models of sepsis-intra-peritoneal lipopolysaccharide and cecal ligation and puncture. CLEC-2 deficiency is associated with reduced numbers of podoplanin-expressing macrophages despite increased cytokine and chemokine levels in the infected peritoneum. Pharmacological inhibition of the interaction between CLEC-2 and podoplanin regulates immune cell infiltration and the inflammatory reaction during sepsis, suggesting that activation of podoplanin underlies the anti-inflammatory action of platelet CLEC-2. We suggest podoplanin-CLEC-2 as a novel anti-inflammatory axis regulating immune cell recruitment and activation in sepsis.
Collapse
|
121
|
Corey SJ, Oyarbide U. New monogenic disorders identify more pathways to neutropenia: from the clinic to next-generation sequencing. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:172-180. [PMID: 29222253 PMCID: PMC5912212 DOI: 10.1182/asheducation-2017.1.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neutrophils are the most common type of leukocyte in human circulating blood and constitute one of the chief mediators for innate immunity. Defined as a reduction from a normal distribution of values, neutropenia results from a number of congenital and acquired conditions. Neutropenia may be insignificant, temporary, or associated with a chronic condition with or without a vulnerability to life-threatening infections. As an inherited bone marrow failure syndrome, neutropenia may be associated with transformation to myeloid malignancy. Recognition of an inherited bone marrow failure syndrome may be delayed into adulthood. The list of monogenic neutropenia disorders is growing, heterogeneous, and bewildering. Furthermore, greater knowledge of immune-mediated and drug-related causes makes the diagnosis and management of neutropenia challenging. Recognition of syndromic presentations and especially the introduction of next-generation sequencing are improving the accuracy and expediency of diagnosis as well as their clinical management. Furthermore, identification of monogenic neutropenia disorders is shedding light on the molecular mechanisms of granulopoiesis and myeloid malignancies.
Collapse
Affiliation(s)
- Seth J Corey
- Department of Pediatrics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - Usua Oyarbide
- Department of Pediatrics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
122
|
Soualmia F, El Amri C. Serine protease inhibitors to treat inflammation: a patent review (2011-2016). Expert Opin Ther Pat 2017; 28:93-110. [PMID: 29171765 DOI: 10.1080/13543776.2018.1406478] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Inflammation is a physiological part of the complex biological response of tissues to counteract various harmful signals. This process involves diverse actors such as immune cells, blood vessels, and nerves as sources of mediators for inflammation control. Among them serine proteases are key elements in both physiological and pathological inflammation. AREAS COVERED Serine protease inhibitors to treat inflammatory diseases are being actively investigated by various industrial and academic institutions. The present review covers patent literature on serine protease inhibitors for the therapy of inflammatory diseases patented between 2011 and 2016. EXPERT OPINION Serine proteases regulating inflammation are versatile enzymes, usually involved in proinflammatory cytokine production and activation of immune cells. Their dysregulation during inflammation can have devastating consequences, promoting various diseases including skin and lung inflammation, neuroinflammation, and inflammatory arthritis. Several serine proteases were selected for their contribution to inflammatory diseases and significant efforts that are spread to develop inhibitors. Strategies developed for inhibitor identification consist on either peptide-based inhibitor derived from endogenous protein inhibitors or small-organic molecules. It is also worth noting that among the recent patents on serine protease inhibitors related to inflammation a significant number are related to retinal vascular dysfunction and skin diseases.
Collapse
Affiliation(s)
- Feryel Soualmia
- a B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology , Sorbonne Universités , UPMC Univ Paris 06, UMR 8256 , Paris , France
| | - Chahrazade El Amri
- a B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology , Sorbonne Universités , UPMC Univ Paris 06, UMR 8256 , Paris , France
| |
Collapse
|
123
|
Arranz-Trullén J, Lu L, Pulido D, Bhakta S, Boix E. Host Antimicrobial Peptides: The Promise of New Treatment Strategies against Tuberculosis. Front Immunol 2017; 8:1499. [PMID: 29163551 PMCID: PMC5681943 DOI: 10.3389/fimmu.2017.01499] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) continues to be a devastating infectious disease and remerges as a global health emergency due to an alarming rise of antimicrobial resistance to its treatment. Despite of the serious effort that has been applied to develop effective antitubercular chemotherapies, the potential of antimicrobial peptides (AMPs) remains underexploited. A large amount of literature is now accessible on the AMP mechanisms of action against a diversity of pathogens; nevertheless, research on their activity on mycobacteria is still scarce. In particular, there is an urgent need to integrate all available interdisciplinary strategies to eradicate extensively drug-resistant Mycobacterium tuberculosis strains. In this context, we should not underestimate our endogenous antimicrobial proteins and peptides as ancient players of the human host defense system. We are confident that novel antibiotics based on human AMPs displaying a rapid and multifaceted mechanism, with reduced toxicity, should significantly contribute to reverse the tide of antimycobacterial drug resistance. In this review, we have provided an up to date perspective of the current research on AMPs to be applied in the fight against TB. A better understanding on the mechanisms of action of human endogenous peptides should ensure the basis for the best guided design of novel antitubercular chemotherapeutics.
Collapse
Affiliation(s)
- Javier Arranz-Trullén
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, United Kingdom
| | - Lu Lu
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Pulido
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, United Kingdom
| | - Ester Boix
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
124
|
Lee IR, Sng E, Lee KO, Molton JS, Chan M, Kalimuddin S, Izharuddin E, Lye DC, Archuleta S, Gan YH. Comparison of Diabetic and Non-diabetic Human Leukocytic Responses to Different Capsule Types of Klebsiella pneumoniae Responsible for Causing Pyogenic Liver Abscess. Front Cell Infect Microbiol 2017; 7:401. [PMID: 28936426 PMCID: PMC5594087 DOI: 10.3389/fcimb.2017.00401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022] Open
Abstract
The major risk factor for Klebsiella liver abscess (KLA) is type 2 diabetes mellitus (DM), but the immunological mechanisms involved in the increased susceptibility are poorly defined. We investigated the responses of neutrophils and peripheral blood mononuclear cells (PBMCs) to hypervirulent Klebsiella pneumoniae (hvKP), the causative agent of KLA. DNA and myeloperoxidase levels were elevated in the plasma of KLA patients compared to uninfected individuals indicating neutrophil activation, but diabetic status had no effect on these neutrophil extracellular trap (NET) biomarkers in both subject groups. Clinical hvKP isolates universally stimulated KLA patient neutrophils to produce NETs ex vivo, regardless of host diabetic status. Ability of representative capsule types (K1, K2, and non-K1/K2 strains) to survive intra- and extra-cellular killing by type 2 DM and healthy neutrophils was subsequently examined. Key findings were: (1) type 2 DM and healthy neutrophils exhibited comparable total, phagocytic, and NETs killing against hvKP, (2) phagocytic and NETs killing were equally effective against hvKP, and (3) hypermucoviscous K1 and K2 strains were more resistant to total, phagocytic, and NETs killing compared to the non-mucoviscous, non-K1/K2 strain. The cytokine response and intracellular killing ability of type 2 DM as well as healthy PBMCs upon encounter with the different capsule types was also examined. Notably, the IL-12–IFNγ axis and its downstream chemokines MIG, IP-10, and RANTES were produced at slightly lower levels by type 2 DM PBMCs than healthy PBMCs in response to representative K1 and non-K1/K2 strains. Furthermore, type 2 DM PBMCs have a mild defect in its ability to control hvKP replication relative to healthy PBMCs. In summary, our work demonstrates that type 2 DM does not overtly impact neutrophil intra- and extra-cellular killing of hvKP, but may influence cytokine/chemokine production and intracellular killing by PBMCs.
Collapse
Affiliation(s)
- I Russel Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Ethel Sng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Kok-Onn Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - James S Molton
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore.,Division of Infectious Diseases, University Medicine Cluster, National University Health SystemSingapore, Singapore
| | - Monica Chan
- Communicable Disease Center, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng HospitalSingapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingapore, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General HospitalSingapore, Singapore
| | - Ezlyn Izharuddin
- Communicable Disease Center, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng HospitalSingapore, Singapore
| | - David C Lye
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore.,Communicable Disease Center, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng HospitalSingapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingapore, Singapore
| | - Sophia Archuleta
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore.,Division of Infectious Diseases, University Medicine Cluster, National University Health SystemSingapore, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| |
Collapse
|
125
|
Pandey KC, De S, Mishra PK. Role of Proteases in Chronic Obstructive Pulmonary Disease. Front Pharmacol 2017; 8:512. [PMID: 28848433 PMCID: PMC5550664 DOI: 10.3389/fphar.2017.00512] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/21/2017] [Indexed: 02/02/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is generally associated with progressive destruction of airways and lung parenchyma. Various factors play an important role in the development and progression of COPD, like imbalance of proteases, environmental and genetic factors and oxidative stress. This review is specifically focused on the role of proteases and their imbalance in COPD. There are three classes (serine, mettalo, and cysteine) of proteases involved in COPD. In serine proteases, neutrophil elastase, cathepsin G, and proteinase-3 are involved in destruction of alveolar tissue. Matrix-mettaloproteinase-9, 12, 13, plays an influential role in severity of COPD. Among cysteine proteases, caspase-3, caspases-8 and caspase-9 play an important role in controlling apoptosis. These proteases activities can be regulated by inhibitors like α-1-antitrypsin, neutrophil elastase inhibitor, and leukocyte protease inhibitor. Studies suggest that neutrophil elastase may be a therapeutic target for COPD, and specific inhibitor against this enzyme has potential role to control the disease. Current study suggests that Dipeptidyl Peptidase IV is a potential marker for COPD. Since the expression of proteases and its inhibitors play an important role in COPD pathogenesis, therefore, it is worth investigating the role of proteases and their regulation. Understanding the biochemical basis of COPD pathogenesis using advanced tools in protease biochemistry and aiming toward translational research from bench-to-bedside will have great impact to deal with this health problem.
Collapse
Affiliation(s)
- Kailash C. Pandey
- Department of Biochemistry, National Institute for Research in Environmental Health (ICMR)Bhopal, India
| | - Sajal De
- Department of Pulmonary Medicine, National Institute for Research in Environmental Health (ICMR)Bhopal, India
| | - Pradyumna K. Mishra
- Department of Molecular Biology, National Institute for Research in Environmental Health (ICMR)Bhopal, India
| |
Collapse
|
126
|
An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 2017; 23:279-287. [PMID: 28267716 DOI: 10.1038/nm.4294] [Citation(s) in RCA: 849] [Impact Index Per Article: 106.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/25/2017] [Indexed: 12/12/2022]
Abstract
The production of neutrophil extracellular traps (NETs) is a process that enables neutrophils to help catch and kill bacteria. However, increasing evidence suggests that this process might also occur in noninfectious, sterile inflammation. In this Review, we describe the role of NETosis in autoimmunity, coagulation, acute injuries and cancer, and discuss NETs as potential therapeutic targets. Furthermore, we consider whether extracellular DNA is always detrimental in sterile inflammation and whether the source is always NETs.
Collapse
|
127
|
Vandooren J, Swinnen W, Ugarte-Berzal E, Boon L, Dorst D, Martens E, Opdenakker G. Endotoxemia shifts neutrophils with TIMP-free gelatinase B/MMP-9 from bone marrow to the periphery and induces systematic upregulation of TIMP-1. Haematologica 2017; 102:1671-1682. [PMID: 28775117 PMCID: PMC5622851 DOI: 10.3324/haematol.2017.168799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/27/2017] [Indexed: 01/02/2023] Open
Abstract
Lipopolysaccharides or endotoxins elicit an excessive host inflammatory response and lead to life-threatening conditions such as endotoxemia and septic shock. Lipopolysaccharides trigger mobilization and stimulation of leukocytes and exaggerated production of pro-inflammatory molecules including cytokines and proteolytic enzymes. Matrix metalloproteinase-9 (MMP-9) or gelatinase B, a protease stored in the tertiary granules of polymorphonuclear leukocytes, has been implicated in such inflammatory reactions. Moreover, several studies even pinpointed MMP-9 as a potential target molecule to counter excessive inflammation in endotoxemia. Whereas the early effect of lipopolysaccharide-induced inflammation in vivo on the expression of MMP-9 in various peripheral organs has been described, the effects on the bone marrow and during late stage endotoxemia remain elusive. We demonstrate that TIMP-free MMP-9 is a major factor in bone marrow physiology and pathology. By using a mouse model for late-stage endotoxemia, we show that lipopolysaccharides elicited a depletion of neutrophil MMP-9 in the bone marrow and a shift of MMP-9 and MMP-9-containing cells towards peripheral organs, a pattern which was primarily associated with a relocation of CD11bhighGr-1high cells. In contrast, analysis of the tissue inhibitors of metalloproteinases was in line with a natural, systematic upregulation of TIMP-1, the main tissue inhibitor of TIMP-free MMP-9, and a general shift toward control of matrix metalloproteinase activity by tissue inhibitors of metalloproteinases.
Collapse
Affiliation(s)
- Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium
| | - Wannes Swinnen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium
| | - Lise Boon
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium
| | - Daphne Dorst
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium.
| |
Collapse
|
128
|
Polverino E, Rosales-Mayor E, Dale GE, Dembowsky K, Torres A. The Role of Neutrophil Elastase Inhibitors in Lung Diseases. Chest 2017; 152:249-262. [DOI: 10.1016/j.chest.2017.03.056] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/17/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
|
129
|
The NADPH Oxidase and Microbial Killing by Neutrophils, With a Particular Emphasis on the Proposed Antimicrobial Role of Myeloperoxidase within the Phagocytic Vacuole. Microbiol Spectr 2017; 4. [PMID: 27726789 DOI: 10.1128/microbiolspec.mchd-0018-2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This review is devoted to a consideration of the way in which the NADPH oxidase of neutrophils, NOX2, functions to enable the efficient killing of bacteria and fungi. It includes a critical examination of the current dogma that its primary purpose is the generation of hydrogen peroxide as substrate for myeloperoxidase-catalyzed generation of hypochlorite. Instead, it is demonstrated that NADPH oxidase functions to optimize the ionic and pH conditions within the vacuole for the solubilization and optimal activity of the proteins released into this compartment from the cytoplasmic granules, which kill and digest the microbes. The general role of other NOX systems as electrochemical generators to alter the pH and ionic composition in compartments on either side of a membrane in plants and animals will also be examined.
Collapse
|
130
|
Jimbo S, Suleman M, Maina T, Prysliak T, Mulongo M, Perez-Casal J. Effect of Mycoplasma bovis on bovine neutrophils. Vet Immunol Immunopathol 2017; 188:27-33. [DOI: 10.1016/j.vetimm.2017.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/18/2017] [Accepted: 04/29/2017] [Indexed: 12/19/2022]
|
131
|
Xu Q, Chen LX, Ran DH, Xie WY, Li Q, Zhou XD. Bombesin receptor-activated protein regulates neutrophil elastase-induced mucin5AC hypersecretion in human bronchial epithelial cells. Exp Cell Res 2017; 357:145-154. [PMID: 28476309 DOI: 10.1016/j.yexcr.2017.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 01/13/2023]
Abstract
Bombesin receptor-activated protein (BRAP) is highly expressed in human bronchial epithelial cells. Recent studies have shown that BRAP reduces oxidative stress, inhibits airway inflammation and suppresses nuclear factor kappaB (NF-κB) activity. Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases. Neutrophil elastase (NE) is a potent inducer of mucin5AC (MUC5AC), which is considered the predominant mucin secreted by human airway epithelial cells. Here, we hypothesize that BRAP may regulate NE-induced MUC5AC hypersecretion in a bronchial epithelial cell line (HBE16). We also investigated the underlying mechanism involved in the process. In this study, we found that BRAP was present in HBE16 human bronchial epithelial cells and was significantly increased by NE. Next, we found that the up-regulation of BRAP by pEGFP-N1-BRAP caused a significant decrease in the increased levels of MUC5AC expression, NF-κB activity, and the phosphorylation of extracellular signal-regulated kinases (ERK) and epidermal growth factor receptor (EGFR) induced by NE. Meanwhile, there was a significant decrease in ROS, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels when BRAP was up-regulated by pEGFP-N1-BRAP. Moreover, when cells were transfected with pEGFP-N1-BRAP and pretreated with NF-κB, ERK or EGFR inhibitors before the NE stimulation, there were further decreased in MUC5AC expression, NF-κB activity, and the phosphorylation of ERK and EGFR. These results suggest that BRAP plays an important role in airway inflammation and its overexpression may regulate NE-induced MUC5AC hypersecretion in HBE16 cells via the EGFR/ERK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qing Xu
- Division of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing 400010, China.
| | - Ling-Xiu Chen
- Division of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Dan-Hua Ran
- Department of Respiratory and Geriatrics Medicine, Chongqing Public Health Medical Center, No. 2, Huangjiaowan Road, Xiaolongkan Street, Shapingba District, Chongqing 400010, China
| | - Wen-Yue Xie
- Division of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Qi Li
- Department of Respiratory Medicine, First Affiliated Hospital, Hainan Medical University, No. 31, Longhua Road, Haikou 570102, Hainan, China
| | - Xiang-Dong Zhou
- Division of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing 400010, China; Department of Respiratory Medicine, First Affiliated Hospital, Hainan Medical University, No. 31, Longhua Road, Haikou 570102, Hainan, China.
| |
Collapse
|
132
|
Pechous RD. With Friends Like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia. Front Cell Infect Microbiol 2017; 7:160. [PMID: 28507954 PMCID: PMC5410563 DOI: 10.3389/fcimb.2017.00160] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/12/2017] [Indexed: 01/12/2023] Open
Abstract
Pneumonia is a leading cause of death from infection in the United States and across the globe. During pulmonary infection, clear resolution of host inflammatory responses occurs in the absence of appreciable lung damage. Neutrophils are the first wave of leukocytes to arrive in the lung upon infection. After activation, neutrophils traffic from the vasculature via transendothelial migration through the lung interstitium and into the alveolar space. Successful pulmonary immunity requires neutrophil-mediated killing of invading pathogens by phagocytosis and release of a myriad of antimicrobial molecules, followed by resolution of inflammation, neutrophil apoptosis, and clearing of dead or dying neutrophils by macrophages. In addition to their antimicrobial role, it is becoming clear that neutrophils are also important modulators of innate and adaptive immune responses, primarily through the release of cytokines and recruitment of additional waves of neutrophils into the airways. Though typically essential to combating severe pneumonia, neutrophil influx into the airways is a double-edged sword: Overzealous neutrophil activation can cause severe tissue damage as a result of the release of toxic agents including proteases, cationic polypeptides, cytokines, and reactive oxygen species (ROS) aimed at killing invading microbes. In extreme cases, the damage caused by neutrophils and other innate immune mediators become the primary source of morbidity and mortality. Here, we review the complex role of neutrophils during severe pneumonia by highlighting specific molecules and processes that contribute to pulmonary immunity, but can also drive progression of severe disease. Depending on the identity of the infectious agent, enhancing or suppressing neutrophil-mediated responses may be key to effectively treating severe and typically lethal pneumonia.
Collapse
Affiliation(s)
- Roger D Pechous
- Department of Microbiology and Immunology, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| |
Collapse
|
133
|
Tian Y, Li M, Wu S, Wang D, Sun B, Xie J, Wang H. Neutrophil elastase stimulates MUC5AC expression in human biliary epithelial cells: a possible pathway of PKC/Nox/ROS. Arch Med Sci 2017; 13:677-685. [PMID: 28507586 PMCID: PMC5420639 DOI: 10.5114/aoms.2017.67286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/19/2015] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Bacterial infection and bile flow retardation form a vicious cycle which promotes stone formation and recurrence, and it seems that mucin overexpression plays an important role in this process. However, the mechanism of increased mucus secretion in the biliary tract by bacterial infection and its treatment remain unclear. MATERIAL AND METHODS Human biliary epithelial cells were induced by neutrophil elastase (NE), and H2O2 production in the cell supernatants was detected by a specific kit, and then cells were pretreated with a H2O2 inhibitor, and expression of MUC5AC was detected by real-time polymerase chain reaction (PCR), Western blot, and immunohistochemistry. Moreover, selective PKC and Nox inhibitors, apocynin and bisindolylmaleimide I, were used to pretreat cells and detect H2O2, MUC5AC mRNA and protein expression. Then, we pretreated cells with selective inhibitors or NE, and detected transforming growth factor α (TGF-α) using an ELISA kit. RESULTS H2O2 production increased in an NE dose-dependent manner (p < 0.001), and NE upregulated MUC5AC expression at both mRNA and protein levels, while DMTU, could reduce this high expression (p < 0.01 at mRNA level, p < 0.001 at grey analysis for western blot and p < 0.01 at mean density for immunohistochemical staining at protein level). Moreover, apocynin and bisindolylmaleimide I could reduce the H2O2 production stimulated by NE (p < 0.05), and reduce MUC5AC high expression (p < 0.01 at mRNA level, p < 0.001 at both grey analysis for western blot and mean density for immunohistochemical staining at protein level). In addition, NE induced TGF-α production, and any of the three selective inhibitors could reduce it (p < 0.05). CONCLUSIONS NE-induced reactive oxygen species participated in the upregulation of MUC5AC production. Moreover, protein kinase C and NADPH oxidase (Nox) regulate MUC5AC production in NE-challenged human biliary epithelial cells.
Collapse
Affiliation(s)
- Yu Tian
- Department of Biliary Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Li
- Department of Biliary Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of Biliary Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Duoliang Wang
- Department of Biliary Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ben Sun
- Department of Biliary Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junqing Xie
- Department of Biliary Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Wang
- Department of Biliary Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
134
|
Leiba J, Sabra A, Bodinier R, Marchetti A, Lima WC, Melotti A, Perrin J, Burdet F, Pagni M, Soldati T, Lelong E, Cosson P. Vps13F links bacterial recognition and intracellular killing in Dictyostelium. Cell Microbiol 2017; 19. [PMID: 28076662 PMCID: PMC5484366 DOI: 10.1111/cmi.12722] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
Bacterial sensing, ingestion, and killing by phagocytic cells are essential processes to protect the human body from infectious microorganisms. The cellular mechanisms involved in intracellular killing, their relative importance, and their specificity towards different bacteria are however poorly defined. In this study, we used Dictyostelium discoideum, a phagocytic cell model amenable to genetic analysis, to identify new gene products involved in intracellular killing. A random genetic screen led us to identify the role of Vps13F in intracellular killing of Klebsiella pneumoniae. Vps13F knock‐out (KO) cells exhibited a delayed intracellular killing of K. pneumoniae, although the general organization of the phagocytic and endocytic pathway appeared largely unaffected. Transcriptomic analysis revealed that vps13F KO cells may be functionally similar to previously characterized fspA KO cells, shown to be defective in folate sensing. Indeed, vps13F KO cells showed a decreased chemokinetic response to various stimulants, suggesting a direct or indirect role of Vps13F in intracellular signaling. Overstimulation with excess folate restored efficient killing in vps13F KO cells. Finally, genetic inactivation of Far1, the folate receptor, resulted in inefficient intracellular killing of K. pneumoniae. Together, these observations show that stimulation of Dictyostelium by bacterial folate is necessary for rapid intracellular killing of K. pneumoniae.
Collapse
Affiliation(s)
- Jade Leiba
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ayman Sabra
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Romain Bodinier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Wanessa C Lima
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Astrid Melotti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frederic Burdet
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Emmanuelle Lelong
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
135
|
Role of granule proteases in the life and death of neutrophils. Biochem Biophys Res Commun 2017; 482:473-481. [PMID: 28212734 DOI: 10.1016/j.bbrc.2016.11.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023]
Abstract
Neutrophils constitute a crucial component of the innate immune defenses against microbes. Produced in the bone marrow and patrolling in blood vessels, neutrophils are recruited to injured tissues and are immediately active to contain pathogen invasion. Neutrophils undergo programmed cell death by multiple, context-specific pathways, which have consequences on immunopathology and disease outcome. Studies in the last decade indicate additional functions for neutrophils - or a subset of neutrophils - in modulating adaptive responses and tumor progression. Neutrophil granules contain abundant amounts of various proteases, which are directly implicated in protective and pathogenic functions of neutrophils. It now emerges that neutral serine proteases such as cathepsin G and proteinase-3 also contribute to the neutrophil life cycle, but do so via different pathways than that of the aspartate protease cathepsin D and that of mutants of the serine protease elastase. The aim of this review is to appraise the present knowledge of the function of neutrophil granule proteases and their inhibitors in neutrophil cell death, and to integrate these findings in the current understandings of neutrophil life cycle and programmed cell death pathways.
Collapse
|
136
|
Thornton LM, LeSueur MC, Yost AT, Stephens DA, Oris JT, Sellin Jeffries MK. Characterization of basic immune function parameters in the fathead minnow (Pimephales promelas), a common model in environmental toxicity testing. FISH & SHELLFISH IMMUNOLOGY 2017; 61:163-172. [PMID: 28027985 DOI: 10.1016/j.fsi.2016.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
The fathead minnow (Pimephales promelas) is an environmental sentinel species, commonly used in toxicity testing. However, there is a lack of data regarding basic immune function in this species. To improve the usefulness of the fathead minnow as a model for basic immune function and immunotoxicity, this study sought to 1) compare the differential expression of immune function genes in naïve fathead minnows and 2) determine the effects of pathogen exposure on immune gene expression and spleen index. To accomplish this, kidney, spleen and liver tissue were collected three days post injection (dpi) from adult male fathead minnows from each of the following groups: 1) uninjected control 2) sham-injected (Hank's balanced salt solution) and 3) pathogen-injected (Yersinia ruckeri). Spleen tissue was also collected at seven and 14 dpi. Differential tissue expression of immune function genes was evaluated in naïve minnows and expression patterns were similar to those found in other fish species, with liver tissue generally having the highest amount of expression. Following pathogen injection, the expression of complement component 3 (c3) (4.4-fold, kidney; 2.5-fold, liver), interleukin 11 (il11) (4.8-fold, kidney; 15.2-fold, liver) and interleukin 1β (il1β) (8.2-fold, kidney; 17.2-fold, spleen; 2.6-fold, liver) were significantly upregulated. Elastase 2 (elas2) was significantly downregulated (5.8-fold) in liver tissue. A significant increase in spleen index at seven dpi was also observed in pathogen-injected minnows. This study has identified endpoints that are part of the normal response to pathogen in fathead minnows, an essential step toward the development of the fathead minnow as a model for immunotoxicity evaluations.
Collapse
Affiliation(s)
- Leah M Thornton
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States; Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Meriel C LeSueur
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Alexandra T Yost
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Dane A Stephens
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States
| | - James T Oris
- Department of Biology, Miami University, Oxford, OH 45056, United States
| | - Marlo K Sellin Jeffries
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States; Department of Biology, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
137
|
Leukocyte Kinetics and Migration in the Lungs. Respir Med 2017. [DOI: 10.1007/978-3-319-41912-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
138
|
Wagner CJ, Schultz C, Mall MA. Neutrophil elastase and matrix metalloproteinase 12 in cystic fibrosis lung disease. Mol Cell Pediatr 2016; 3:25. [PMID: 27456476 PMCID: PMC4960106 DOI: 10.1186/s40348-016-0053-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/14/2016] [Indexed: 01/08/2023] Open
Abstract
Chronic lung disease remains the major cause of morbidity and mortality in patients with cystic fibrosis (CF). Recent studies in young children with CF diagnosed by newborn screening identified neutrophil elastase (NE), a major product released from neutrophils in inflamed airways, as a key risk factor for the onset and early progression of CF lung disease. However, the understanding of how NE and potentially other proteases contribute to the complex in vivo pathogenesis of CF lung disease remains limited. In this review, we summarize recent progress in this area based on studies in βENaC-overexpressing (βENaC-Tg) mice featuring CF-like lung disease and novel protease-specific Förster resonance energy transfer (FRET) sensors for localization and quantification of protease activity in the lung. These studies demonstrated that NE is implicated in several key features of CF lung disease such as neutrophilic airway inflammation, mucus hypersecretion, and structural lung damage in vivo. Furthermore, these studies identified macrophage elastase (matrix metalloproteinase 12 (MMP12)) as an additional protease contributing to early lung damage in βENaC-Tg mice. Collectively, these results suggest that NE and MMP12 released from activated neutrophils and macrophages in mucus-obstructed airways play important pathogenetic roles and may serve as potential therapeutic targets to prevent and/or delay irreversible structural lung damage in patients with CF.
Collapse
Affiliation(s)
- Claudius J Wagner
- Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carsten Schultz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marcus A Mall
- Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
139
|
Margaroli C, Tirouvanziam R. Neutrophil plasticity enables the development of pathological microenvironments: implications for cystic fibrosis airway disease. Mol Cell Pediatr 2016; 3:38. [PMID: 27868161 PMCID: PMC5136534 DOI: 10.1186/s40348-016-0066-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The pathological course of several chronic inflammatory diseases, including cystic fibrosis, chronic obstructive pulmonary disease, and rheumatoid arthritis, features an aberrant innate immune response dominated by neutrophils. In cystic fibrosis, neutrophil burden and activity of neutrophil elastase in the extracellular fluid have been identified as strong predictors of lung disease severity. REVIEW Although neutrophils are generally considered to be rigid, pre-programmed effector leukocytes, recent studies suggest extensive plasticity in how neutrophil functions unfold upon recruitment to peripheral tissues, and how they choose their ultimate fate. Indeed, upon migration to cystic fibrosis airways, neutrophils display dysregulated lifespan, metabolic activation, and altered effector and regulatory functions, consistent with profound adaptation and phenotypic reprogramming. Licensed by signals present in cystic fibrosis airway microenvironment to survive and develop these novel functions, neutrophils orchestrate, in partnership with the epithelium and with the resident microbiota, the evolution of a pathological microenvironment. This microenvironment is defined by altered proteolytic, redox, and metabolic balance and the presence of stable luminal structures in which neutrophils and microbes coexist. CONCLUSIONS The elucidation of molecular mechanisms driving neutrophil plasticity in vivo will open new treatment opportunities designed to modulate, rather than block, the crucial adaptive functions fulfilled by neutrophils. This review aims to outline emerging mechanisms of neutrophil plasticity and their participation in the building of pathological microenvironments in the context of cystic fibrosis and other diseases with similar features.
Collapse
Affiliation(s)
- Camilla Margaroli
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
- Emory + Children's Center, 2015 Uppergate Dr NE, Rm 344, Atlanta, GA, 30322-1014, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
- Emory + Children's Center, 2015 Uppergate Dr NE, Rm 344, Atlanta, GA, 30322-1014, USA.
| |
Collapse
|
140
|
Streptococcus pneumoniae disrupts pulmonary immune defence via elastase release following pneumolysin-dependent neutrophil lysis. Sci Rep 2016; 6:38013. [PMID: 27892542 PMCID: PMC5125098 DOI: 10.1038/srep38013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/04/2016] [Indexed: 11/08/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of bacterial pneumonia and is the principal cause of morbidity and mortality worldwide. Previous studies suggested that excessive activation of neutrophils results in the release of neutrophil elastase, which contributes to lung injury in severe pneumonia. Although both pneumococcal virulence factors and neutrophil elastase contribute to the development and progression of pneumonia, there are no studies analysing relationships between these factors. Here, we showed that pneumolysin, a pneumococcal pore-forming toxin, induced cell lysis in primary isolated human neutrophils, leading to the release of neutrophil elastase. Pneumolysin exerted minimal cytotoxicity against alveolar epithelial cells and macrophages, whereas neutrophil elastase induced detachment of alveolar epithelial cells and impaired phagocytic activity in macrophages. Additionally, activation of neutrophil elastase did not exert bactericidal activity against S. pneumoniae in vitro. P2X7 receptor, which belongs to a family of purinergic receptors, was involved in pneumolysin-induced cell lysis. These findings suggested that infiltrated neutrophils are the primary target cells of pneumolysin, and that S. pneumoniae exploits neutrophil-elastase leakage to induce the disruption of pulmonary immune defences, thereby causing lung injury.
Collapse
|
141
|
Paneru B, Al-Tobasei R, Palti Y, Wiens GD, Salem M. Differential expression of long non-coding RNAs in three genetic lines of rainbow trout in response to infection with Flavobacterium psychrophilum. Sci Rep 2016; 6:36032. [PMID: 27786264 PMCID: PMC5081542 DOI: 10.1038/srep36032] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022] Open
Abstract
Bacterial cold-water disease caused by Flavobacterium psychrophilum is one of the major causes of mortality of salmonids. Three genetic lines of rainbow trout designated as ARS-Fp-R (resistant), ARS-Fp-C (control) and ARS-Fp-S (susceptible) have significant differences in survival rate following F. psychrophilum infection. Previous study identified transcriptome differences of immune-relevant protein-coding genes at basal and post infection levels among these genetic lines. Using RNA-Seq approach, we quantified differentially expressed (DE) long non-coding RNAs (lncRNAs) in response to F. psychrophilum challenge in these genetic lines. Pairwise comparison between genetic lines and different infection statuses identified 556 DE lncRNAs. A positive correlation existed between the number of the differentially regulated lncRNAs and that of the protein-coding genes. Several lncRNAs showed strong positive and negative expression correlation with their overlapped, neighboring and distant immune related protein-coding genes including complement components, cytokines, chemokines and several signaling molecules involved in immunity. The correlated expressions and genome-wide co-localization suggested that some lncRNAs may be involved in regulating immune-relevant protein-coding genes. This study provides the first evidence of lncRNA-mediated regulation of the anti-bacterial immune response in a commercially important aquaculture species and will likely help developing new genetic markers for rainbow trout disease resistance.
Collapse
Affiliation(s)
- Bam Paneru
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, U.S
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, U.S
| | - Yniv Palti
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV 25430, U.S
| | - Gregory D Wiens
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV 25430, U.S
| | - Mohamed Salem
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, U.S.,Computational Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, U.S
| |
Collapse
|
142
|
Suzuki E, Maverakis E, Sarin R, Bouchareychas L, Kuchroo VK, Nestle FO, Adamopoulos IE. T Cell-Independent Mechanisms Associated with Neutrophil Extracellular Trap Formation and Selective Autophagy in IL-17A-Mediated Epidermal Hyperplasia. THE JOURNAL OF IMMUNOLOGY 2016; 197:4403-4412. [PMID: 27798153 DOI: 10.4049/jimmunol.1600383] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/30/2016] [Indexed: 12/23/2022]
Abstract
IL-17A has been strongly associated with epidermal hyperplasia in many cutaneous disorders. However, because IL-17A is mainly produced by αβ and γδT cells in response to IL-23, the role of T cells and IL-23 has overshadowed any IL-17A-independent actions. In this article, we report that IL-17A gene transfer induces epidermal hyperplasia in Il23r-/-Rag1-/-- and Tcrδ-deficient mice, which can be prevented by neutrophil depletion. Moreover, adoptive transfer of CD11b+Gr-1hi cells, after IL-17A gene transfer, was sufficient to phenocopy the disease. We further show that the IL-17A-induced pathology was prevented in transgenic mice with impaired neutrophil extracellular trap formation and/or neutrophils with conditional deletion of the master regulator of selective autophagy, Wdfy3. Our data demonstrate a novel T cell-independent mechanism that is associated with neutrophil extracellular trap formation and selective autophagy in IL-17A-mediated epidermal hyperplasia.
Collapse
Affiliation(s)
- Erika Suzuki
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, University of California at Davis, Davis, CA 95616
| | - Emanual Maverakis
- Department of Dermatology, University of California at Davis, Davis, CA 95616
| | - Ritu Sarin
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, University of California at Davis, Davis, CA 95616
| | - Laura Bouchareychas
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, University of California at Davis, Davis, CA 95616
| | - Vijay K Kuchroo
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Frank O Nestle
- Division of Genetics and Molecular Medicine, St. John's Institute of Dermatology, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, United Kingdom; and
| | - Iannis E Adamopoulos
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, University of California at Davis, Davis, CA 95616; .,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817
| |
Collapse
|
143
|
Lodge KM, Thompson AAR, Chilvers ER, Condliffe AM. Hypoxic regulation of neutrophil function and consequences for Staphylococcus aureus infection. Microbes Infect 2016; 19:166-176. [PMID: 27789256 DOI: 10.1016/j.micinf.2016.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 01/22/2023]
Abstract
Staphylococcal infection and neutrophilic inflammation can act in concert to establish a profoundly hypoxic environment. In this review we summarise how neutrophils and Staphylococcus aureus are adapted to function under hypoxic conditions, with a particular focus on the impaired ability of hypoxic neutrophils to effect Staphylococcus aureus killing.
Collapse
Affiliation(s)
- Katharine M Lodge
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK
| | - A A Roger Thompson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
144
|
Boxio R, Wartelle J, Nawrocki-Raby B, Lagrange B, Malleret L, Hirche T, Taggart C, Pacheco Y, Devouassoux G, Bentaher A. Neutrophil elastase cleaves epithelial cadherin in acutely injured lung epithelium. Respir Res 2016; 17:129. [PMID: 27751187 PMCID: PMC5067913 DOI: 10.1186/s12931-016-0449-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/10/2016] [Indexed: 01/05/2023] Open
Abstract
Background In acutely injured lungs, massively recruited polymorphonuclear neutrophils (PMNs) secrete abnormally neutrophil elastase (NE). Active NE creates a localized proteolytic environment where various host molecules are degraded leading to impairment of tissue homeostasis. Among the hallmarks of neutrophil-rich pathologies is a disrupted epithelium characterized by the loss of cell-cell adhesion and integrity. Epithelial-cadherin (E-cad) represents one of the most important intercellular junction proteins. E-cad exhibits various functions including its role in maintenance of tissue integrity. While much interest has focused on the expression and role of E-cad in different physio- and physiopathological states, proteolytic degradation of this structural molecule and ensuing potential consequences on host lung tissue injury are not completely understood. Methods NE capacity to cleave E-cad was determined in cell-free and lung epithelial cell culture systems. The impact of such cleavage on epithelial monolayer integrity was then investigated. Using mice deficient in NE in a clinically relevant experimental model of acute pneumonia, we examined whether degraded E-cad is associated with lung inflammation and injury and whether NE contributes to E-cad cleavage. Finally, we checked for the presence of both degraded E-cad and NE in bronchoalveolar lavage samples obtained from patients with exacerbated COPD, a clinical manifestation characterised by a neutrophilic inflammatory response. Results We show that NE is capable of degrading E-cad in vitro and in cultured cells. NE-mediated degradation of E-cad was accompanied with loss of epithelial monolayer integrity. Our in vivo findings provide evidence that NE contributes to E-cad cleavage that is concomitant with lung inflammation and injury. Importantly, we observed that the presence of degraded E-cad coincided with the detection of NE in diseased human lungs. Conclusions Active NE has the capacity to cleave E-cad and interfere with its cell-cell adhesion function. These data suggest a mechanism by which unchecked NE participates potentially to the pathogenesis of neutrophil-rich lung inflammatory and tissue-destructive diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0449-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachel Boxio
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | - Julien Wartelle
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | | | - Brice Lagrange
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | - Laurette Malleret
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | - Timothee Hirche
- Department of Pulmonary Medicine, German Clinic for Diagnostics (DKD), Wiesbaden, Germany
| | - Clifford Taggart
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Yves Pacheco
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | - Gilles Devouassoux
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France.,CHU Croix-Rousse, Lyon, France
| | - Abderrazzaq Bentaher
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France.
| |
Collapse
|
145
|
Qi X, Man SM, Malireddi RKS, Karki R, Lupfer C, Gurung P, Neale G, Guy CS, Lamkanfi M, Kanneganti TD. Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection. J Exp Med 2016; 213:2081-97. [PMID: 27551156 PMCID: PMC5030800 DOI: 10.1084/jem.20151938] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic, and degenerative diseases in humans. In this study, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida Genetic deletion or pharmacological inhibition of cathepsin B down-regulated mechanistic target of rapamycin activity and prevented cleavage of the lysosomal calcium channel TRPML1. These events drove transcription of lysosomal and autophagy genes via transcription factor EB, which increased lysosomal biogenesis and activation of autophagy initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome populations and basic recycling functions in the cell.
Collapse
Affiliation(s)
- Xiaopeng Qi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Si Ming Man
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Christopher Lupfer
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Mohamed Lamkanfi
- Inflammation Research Center, VIB, B-9052 Zwijnaarde-Ghent, Belgium Department of Internal Medicine, Ghent University, B-9000 Ghent, Belgium
| | | |
Collapse
|
146
|
Affiliation(s)
- Ralph Kettritz
- Experimental and Clinical Research Center; A joint cooperation between the Charité and the Max-Delbrück Center for Molecular Medicine (MDC) and Department of Nephrology and Intensive Care Medicine; Charité University Health Services; Berlin Germany
| |
Collapse
|
147
|
Ahangari G, Chavoshzadeh Z, Lari Z, Ramyar A, Farhoudi A. Novel Mutation Detection of an Inflammatory Molecule Elastase ii Gene Encoding Neutrophil Elastase in Kostmann Syndrome. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x0700500202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Severe congenital neutropenia (SCN), often referred to as Kostmann syndrome, is a rare immune deficiency syndrome diagnosed at or soon after birth, characterized by maturation arrest of myeloid cells at the promyelocyte stage of hematopoiesis. In severe congenital neutropenia due to disorder of neutrophil production, patients are predisposed to recurrent bacterial infections. Recently, there have been reports of detected mutations in neutrophil elastase II (ELA2) gene in genomic DNA of severe congenital neutropenia. In this study we attempted to determine whether there is any mutation in elastase II gene encoding. Peripheral blood was collected from five patients with severe congenital neutropenia and 20 healthy individuals. Total RNA was isolated using RNA standard techniques from fresh separated cells by Polymorphoprep. RNA was analyzed by employing PCR amplification of reverse transcribed using a total of ten specific primers. We amplified five exons of ELA2 gene separately and sequenced each exon. Mutational analysis was performed by directed capillary sequencing method. We found mutations in all severe congenital neutropenia patients and no mutation in 20 healthy individuals. The most mutations were in exon 4 and no mutation was found in exons 3 and 5.
Collapse
Affiliation(s)
| | - Z. Chavoshzadeh
- Department of Clinical Immunology, Center for Pediatric Hospital, Teheran University of Medical Sciences, Teheran
| | | | - A. Ramyar
- Department of Hematology and Oncology, Center for Pediatric Hospital, Teheran University of Medical sciences, Tehran, Iran
| | - A. Farhoudi
- Department of Clinical Immunology, Center for Pediatric Hospital, Teheran University of Medical Sciences, Teheran
| |
Collapse
|
148
|
Ahangari G, Farhoudi A, Chavoshzadeh Z, Ramyar A, Jamshidi S. RT-PCR Based Mutation Detection of the Inflammatory Molecules Elastase II Gene Encoding Neutrophil Elastase in Cyclic Neutropenia Patients by Capillary Sequencing. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x0600400105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclic neutropenia is characterized by the maturation arrest of myeloid cells at the promyelocyte stage of hematopoiesis. In cyclic neutropenia, due to the disorder of neutrophil production, patients are predisposed to recurrent bacterial infections. Detected mutations in neutrophil elastase (ELA2) gene in genomic DNA of cyclic neutropenia were recently reported. Peripheral blood was obtained from 18 patients with cyclic neutropenia and 20 healthy individuals. Total RNA was isolated using RNA standard techniques from fresh separated cells by polymorphoprep. Elastase II mRNA expression was analyzed by employing reverse transcription PCR amplification using a total of ten specific primers. We amplified five exon of ELA2 gene separately and sequenced each exon. Mutational analysis was performed by directed capillary sequencing method. We found mutations in 15 out of 18 cyclic neutropenia patients (83%) and no mutation in 20 healthy individuals. Most of the mutations were in exon 4 and fewer mutation were found in exon 1.
Collapse
Affiliation(s)
| | - A. Farhoudi
- Department of Clinical Immunology, Center for Pediatric hospital, Tehran University of Medical Sciences, Tehran
| | - Z. Chavoshzadeh
- Department of Clinical Immunology, Center for Pediatric hospital, Tehran University of Medical Sciences, Tehran
| | - A. Ramyar
- Department of Hematology and Oncology, Center for Pediatric hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
149
|
Abstract
Klebsiella pneumoniae causes a wide range of infections, including pneumonias, urinary tract infections, bacteremias, and liver abscesses. Historically, K. pneumoniae has caused serious infection primarily in immunocompromised individuals, but the recent emergence and spread of hypervirulent strains have broadened the number of people susceptible to infections to include those who are healthy and immunosufficient. Furthermore, K. pneumoniae strains have become increasingly resistant to antibiotics, rendering infection by these strains very challenging to treat. The emergence of hypervirulent and antibiotic-resistant strains has driven a number of recent studies. Work has described the worldwide spread of one drug-resistant strain and a host defense axis, interleukin-17 (IL-17), that is important for controlling infection. Four factors, capsule, lipopolysaccharide, fimbriae, and siderophores, have been well studied and are important for virulence in at least one infection model. Several other factors have been less well characterized but are also important in at least one infection model. However, there is a significant amount of heterogeneity in K. pneumoniae strains, and not every factor plays the same critical role in all virulent Klebsiella strains. Recent studies have identified additional K. pneumoniae virulence factors and led to more insights about factors important for the growth of this pathogen at a variety of tissue sites. Many of these genes encode proteins that function in metabolism and the regulation of transcription. However, much work is left to be done in characterizing these newly discovered factors, understanding how infections differ between healthy and immunocompromised patients, and identifying attractive bacterial or host targets for treating these infections.
Collapse
|
150
|
Yang R, Zhong L, Yang XQ, Jiang KL, Li L, Song H, Liu BZ. Neutrophil elastase enhances the proliferation and decreases apoptosis of leukemia cells via activation of PI3K/Akt signaling. Mol Med Rep 2016; 13:4175-82. [PMID: 27035679 PMCID: PMC4838072 DOI: 10.3892/mmr.2016.5051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 03/02/2016] [Indexed: 11/29/2022] Open
Abstract
Neutrophil elastase (NE) is a neutrophil-derived serine proteinase with specificity for a broad range of substrates. NE has been reported to be associated with the pathogenesis of several conditions, particularly that of pulmonary diseases. Previous studies have shown that NE can cleave the pro-myelocyte - retinoic acid receptor-alpha chimeric protein and is important for the development of acute pro-myelocytic leukemia. To further elucidate the role of NE in acute pro-myelocytic leukemia, the present study successfully constructed a lentiviral vector containing the NE gene (LV5-NE), which was transfected into NB4 acute pro-myelocytic leukemia cells. The effects of NE overexpression in NB4 cells were detected using a Cell-Counting Kit-8 assay, flow cytometry and western blot analysis. The results showed that NE significantly promoted the proliferation of NB4 cells, inhibited cell apoptosis and apoptotic signaling, and led the activation of Akt. In an additional experiment, a vector expressing small hairpin RNA targeting NE was constructed to assess the effects of NE knockdown in U937 cells. Western blot analysis revealed that apoptotic signaling was increased, while Akt activation was decreased following silencing of NE. The results of the present study may indicate that NE activates the phosphoinositide-3 kinase/Akt signaling pathway in leukemia cells to inhibit apoptosis and enhance cell proliferation, and may therefore represent a molecular target for the treatment of pro-myelocytic leukemia.
Collapse
Affiliation(s)
- Rong Yang
- Central Laboratory of Yong‑Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiao-Qun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kai-Ling Jiang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liu Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hao Song
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bei-Zhong Liu
- Central Laboratory of Yong‑Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| |
Collapse
|