101
|
Metaxakis A, Petratou D, Tavernarakis N. Multimodal sensory processing in Caenorhabditis elegans. Open Biol 2018; 8:180049. [PMID: 29925633 PMCID: PMC6030117 DOI: 10.1098/rsob.180049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022] Open
Abstract
Multisensory integration is a mechanism that allows organisms to simultaneously sense and understand external stimuli from different modalities. These distinct signals are transduced into neuronal signals that converge into decision-making neuronal entities. Such decision-making centres receive information through neuromodulators regarding the organism's physiological state and accordingly trigger behavioural responses. Despite the importance of multisensory integration for efficient functioning of the nervous system, and also the implication of dysfunctional multisensory integration in the aetiology of neuropsychiatric disease, little is known about the relative molecular mechanisms. Caenorhabditis elegans is an appropriate model system to study such mechanisms and elucidate the molecular ways through which organisms understand external environments in an accurate and coherent fashion.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - Dionysia Petratou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 71110, Crete, Greece
| |
Collapse
|
102
|
Kuksenok O, Singh A, Balazs AC. Designing polymer gels and composites that undergo bio-inspired phototactic reconfiguration and motion. BIOINSPIRATION & BIOMIMETICS 2018; 13:035004. [PMID: 29405128 DOI: 10.1088/1748-3190/aaad1c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inspired by the adaptive behavior of photo-responsive biological organisms, we develop analytical and computational models to design polymer gels and composites that can be dynamically reconfigured and driven to move with the application of light. We focus on gels formed from poly(N-isopropylacrylamide) and functionalized with spirobenzopyran (SP) chromophores, which become hydrophobic under blue light in acidic aqueous solution. Using our modeling approaches, we irradiate the gels through photomasks and demonstrate that the shapes of the samples can be reversibly and remotely 'remolded' by varying the apertures in the masks. By simulating the effect of repeatedly moving the light across the sample, we also show that the gel can undergo directed motion. We then examine gels that contain both SP chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky reaction. These dual-functionalized gels undergo spontaneous, self-sustained motion even when the lights are held stationary. We also simulate the behavior of composites formed from SP-functionalized fibers embedded in the poly(N-isopropylacrylamide) gel. With the SP-functionalization confined to the fibers, light and heat act as orthogonal stimuli and thus the composites display distinctly different modes of movement when the different cues are applied to the samples. Overall, our findings provide guidelines for using light to controllably reconfigure the shape and drive the movement of gel-based materials and thus, tailor the material to display different functionalities.
Collapse
Affiliation(s)
- Olga Kuksenok
- Materials Science and Engineering Department, Clemson University, Clemson, SC 29634, United States of America
| | | | | |
Collapse
|
103
|
Dong L, Cornaglia M, Krishnamani G, Zhang J, Mouchiroud L, Lehnert T, Auwerx J, Gijs MAM. Reversible and long-term immobilization in a hydrogel-microbead matrix for high-resolution imaging of Caenorhabditis elegans and other small organisms. PLoS One 2018; 13:e0193989. [PMID: 29509812 PMCID: PMC5839568 DOI: 10.1371/journal.pone.0193989] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/22/2018] [Indexed: 11/18/2022] Open
Abstract
The nematode Caenorhabditis elegans is an important model organism for biomedical research and genetic studies relevant to human biology and disease. Such studies are often based on high-resolution imaging of dynamic biological processes in the worm body tissues, requiring well-immobilized and physiologically active animals in order to avoid movement-related artifacts and to obtain meaningful biological information. However, existing immobilization methods employ the application of either anesthetics or servere physical constraints, by using glue or specific microfluidic on-chip mechanical structures, which in some cases may strongly affect physiological processes of the animals. Here, we immobilize C. elegans nematodes by taking advantage of a biocompatible and temperature-responsive hydrogel-microbead matrix. Our gel-based immobilization technique does not require a specific chip design and enables fast and reversible immobilization, thereby allowing successive imaging of the same single worm or of small worm populations at all development stages for several days. We successfully demonstrated the applicability of this method in challenging worm imaging contexts, in particular by applying it for high-resolution confocal imaging of the mitochondrial morphology in worm body wall muscle cells and for the long-term quantification of number and size of specific protein aggregates in different C. elegans neurodegenerative disease models. Our approach was also suitable for immobilizing other small organisms, such as the larvae of the fruit fly Drosophila melanogaster and the unicellular parasite Trypanosoma brucei. We anticipate that this versatile technique will significantly simplify biological assay-based longitudinal studies and long-term observation of small model organisms.
Collapse
Affiliation(s)
- Li Dong
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matteo Cornaglia
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gopalan Krishnamani
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jingwei Zhang
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurent Mouchiroud
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thomas Lehnert
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
104
|
De Magalhaes Filho CD, Henriquez B, Seah NE, Evans RM, Lapierre LR, Dillin A. Visible light reduces C. elegans longevity. Nat Commun 2018; 9:927. [PMID: 29500338 PMCID: PMC5834526 DOI: 10.1038/s41467-018-02934-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
The transparent nematode Caenorhabditis elegans can sense UV and blue-violet light to alter behavior. Because high-dose UV and blue-violet light are not a common feature outside of the laboratory setting, we asked what role, if any, could low-intensity visible light play in C. elegans physiology and longevity. Here, we show that C. elegans lifespan is inversely correlated to the time worms were exposed to visible light. While circadian control, lite-1 and tax-2 do not contribute to the lifespan reduction, we demonstrate that visible light creates photooxidative stress along with a general unfolded-protein response that decreases the lifespan. Finally, we find that long-lived mutants are more resistant to light stress, as well as wild-type worms supplemented pharmacologically with antioxidants. This study reveals that transparent nematodes are sensitive to visible light radiation and highlights the need to standardize methods for controlling the unrecognized biased effect of light during lifespan studies in laboratory conditions.
Collapse
Affiliation(s)
- C Daniel De Magalhaes Filho
- The Howard Hughes Medical Institute, Molecular and Cell Biology Department, Li Ka Shing Center, University of California Berkeley, Berkeley, CA, 94720, USA
- The Salk Institute for Biological Studies, Gene expression laboratory, The Howard Hughes Medical Institute, 10010 N.Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Brian Henriquez
- The Salk Institute for Biological Studies, Gene expression laboratory, The Howard Hughes Medical Institute, 10010 N.Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nicole E Seah
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Ronald M Evans
- The Salk Institute for Biological Studies, Gene expression laboratory, The Howard Hughes Medical Institute, 10010 N.Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Andrew Dillin
- The Howard Hughes Medical Institute, Molecular and Cell Biology Department, Li Ka Shing Center, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
105
|
Xia Z, Bai L, Sheng B, Zhang X, Schütz S, Yu H, Hu J. Phototactic behaviour and the role of light in host transmission of Bursaphelenchus xylophilus. NEMATOLOGY 2018. [DOI: 10.1163/15685411-00003186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
The pine wood nematode (PWN) Bursaphelenchus xylophilus is the causal agent of pine wilt disease (PWD). To understand the light influence on PWN, we investigated its phototactic behaviour. Our data indicated the mixed population of propagative PWN had a positive response to red, orange, yellow, green, blue and white lights, but a weak negative response to violet. For age-synchronised propagative nematodes, however, phototactic behavioural features changed with development. Interestingly, the dispersal fourth-stage juveniles (JIV) showed negative response to all tested lights, which was almost completely the reverse of the propagative fourth-stage juveniles (J4). Further bioassays proved that green, blue and white lights suppressed the host transmission of dispersal JIV from vector beetle to healthy pine branches. Our results revealed that night could be the peak of host transmission. With the results of previous studies, we speculate volatiles from the host tree and light may play pull-and-push roles to accelerate the host transmission of B. xylophilus.
Collapse
Affiliation(s)
- Zhitao Xia
- 1Department of Forest Protection, Zhejiang Agricultural & Forestry University, Hangzhou, P.R. China
| | - Liqun Bai
- 1Department of Forest Protection, Zhejiang Agricultural & Forestry University, Hangzhou, P.R. China
| | - Bicheng Sheng
- 1Department of Forest Protection, Zhejiang Agricultural & Forestry University, Hangzhou, P.R. China
| | - Xingyao Zhang
- 2Institute of Forest Protection, Chinese Academy of Forestry, Beijing, P.R. China
| | - Stefan Schütz
- 3Department of Forest Zoology and Forest Conservation, Georg-August University, Göttingen, 37077, Germany
| | - Hongshi Yu
- 1Department of Forest Protection, Zhejiang Agricultural & Forestry University, Hangzhou, P.R. China
| | - Jiafu Hu
- 1Department of Forest Protection, Zhejiang Agricultural & Forestry University, Hangzhou, P.R. China
- 3Department of Forest Zoology and Forest Conservation, Georg-August University, Göttingen, 37077, Germany
| |
Collapse
|
106
|
Miniaturized Sensors and Actuators for Biological Studies on Small Model Organisms of Disease. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7751-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
107
|
Mujika A, Leškovský P, Álvarez R, Otaduy MA, Epelde G. Modeling Behavioral Experiment Interaction and Environmental Stimuli for a Synthetic C. elegans. Front Neuroinform 2017; 11:71. [PMID: 29276485 PMCID: PMC5727351 DOI: 10.3389/fninf.2017.00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/24/2017] [Indexed: 11/13/2022] Open
Abstract
This paper focusses on the simulation of the neural network of the Caenorhabditis elegans living organism, and more specifically in the modeling of the stimuli applied within behavioral experiments and the stimuli that is generated in the interaction of the C. elegans with the environment. To the best of our knowledge, all efforts regarding stimuli modeling for the C. elegansare focused on a single type of stimulus, which is usually tested with a limited subnetwork of the C. elegansneural system. In this paper, we follow a different approach where we model a wide-range of different stimuli, with more flexible neural network configurations and simulations in mind. Moreover, we focus on the stimuli sensation by different types of sensory organs or various sensory principles of the neurons. As part of this work, most common stimuli involved in behavioral assays have been modeled. It includes models for mechanical, thermal, chemical, electrical and light stimuli, and for proprioception-related self-sensed information exchange with the neural network. The developed models have been implemented and tested with the hardware-based Si elegans simulation platform.
Collapse
Affiliation(s)
- Andoni Mujika
- Intelligent Transport Systems and Engineering, Vicomtech-ik4, Donostia/San Sebastián, Spain
| | - Peter Leškovský
- Intelligent Transport Systems and Engineering, Vicomtech-ik4, Donostia/San Sebastián, Spain
| | - Roberto Álvarez
- eHealth and Biomedical Applications, Vicomtech-ik4, Donostia/San Sebastián, Spain.,IIS Biodonostia, Donostia/San Sebastián, Spain
| | - Miguel A Otaduy
- Department of Computer Science, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Gorka Epelde
- eHealth and Biomedical Applications, Vicomtech-ik4, Donostia/San Sebastián, Spain.,IIS Biodonostia, Donostia/San Sebastián, Spain
| |
Collapse
|
108
|
Wietek J, Rodriguez-Rozada S, Tutas J, Tenedini F, Grimm C, Oertner TG, Soba P, Hegemann P, Wiegert JS. Anion-conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic manipulation of behavior. Sci Rep 2017; 7:14957. [PMID: 29097684 PMCID: PMC5668261 DOI: 10.1038/s41598-017-14330-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022] Open
Abstract
Genetic engineering of natural light-gated ion channels has proven a powerful way to generate optogenetic tools for a wide variety of applications. In recent years, blue-light activated engineered anion-conducting channelrhodopsins (eACRs) have been developed, improved, and were successfully applied in vivo. We asked whether the approaches used to create eACRs can be transferred to other well-characterized cation-conducting channelrhodopsins (CCRs) to obtain eACRs with a broad spectrum of biophysical properties. We generated 22 variants using two conversion strategies applied to 11 CCRs and screened them for membrane expression, photocurrents and anion selectivity. We obtained two novel eACRs, Phobos and Aurora, with blue- and red-shifted action spectra and photocurrents similar to existing eACRs. Furthermore, step-function mutations greatly enhanced the cellular operational light sensitivity due to a slowed-down photocycle. These bi-stable eACRs can be reversibly toggled between open and closed states with brief light pulses of different wavelengths. All new eACRs reliably inhibited action potential firing in pyramidal CA1 neurons. In Drosophila larvae, eACRs conveyed robust and specific light-dependent inhibition of locomotion and nociception.
Collapse
Affiliation(s)
- Jonas Wietek
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Silvia Rodriguez-Rozada
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - Janine Tutas
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - Federico Tenedini
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - Christiane Grimm
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - Peter Soba
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - J Simon Wiegert
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany.
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany.
| |
Collapse
|
109
|
Sensorimotor computation underlying phototaxis in zebrafish. Nat Commun 2017; 8:651. [PMID: 28935857 PMCID: PMC5608914 DOI: 10.1038/s41467-017-00310-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 06/20/2017] [Indexed: 11/09/2022] Open
Abstract
Animals continuously gather sensory cues to move towards favourable environments. Efficient goal-directed navigation requires sensory perception and motor commands to be intertwined in a feedback loop, yet the neural substrate underlying this sensorimotor task in the vertebrate brain remains elusive. Here, we combine virtual-reality behavioural assays, volumetric calcium imaging, optogenetic stimulation and circuit modelling to reveal the neural mechanisms through which a zebrafish performs phototaxis, i.e. actively orients towards a light source. Key to this process is a self-oscillating hindbrain population (HBO) that acts as a pacemaker for ocular saccades and controls the orientation of successive swim-bouts. It further integrates visual stimuli in a state-dependent manner, i.e. its response to visual inputs varies with the motor context, a mechanism that manifests itself in the phase-locked entrainment of the HBO by periodic stimuli. A rate model is developed that reproduces our observations and demonstrates how this sensorimotor processing eventually biases the animal trajectory towards bright regions. Active locomotion requires closed-loop sensorimotor co ordination between perception and action. Here the authors show using behavioural, imaging and modelling approaches that gaze orientation during phototaxis behaviour in larval zebrafish is related to oscillatory dynamics of a neuronal population in the hindbrain.
Collapse
|
110
|
Ardiel EL, Yu AJ, Giles AC, Rankin CH. Habituation as an adaptive shift in response strategy mediated by neuropeptides. NPJ SCIENCE OF LEARNING 2017; 2:9. [PMID: 30631455 PMCID: PMC6161508 DOI: 10.1038/s41539-017-0011-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 06/09/2023]
Abstract
Habituation is a non-associative form of learning characterized by a decremented response to repeated stimulation. It is typically framed as a process of selective attention, allowing animals to ignore irrelevant stimuli in order to free up limited cognitive resources. However, habituation can also occur to threatening and toxic stimuli, suggesting that habituation may serve other functions. Here we took advantage of a high-throughput Caenorhabditis elegans learning assay to investigate habituation to noxious stimuli. Using real-time computer vision software for automated behavioral tracking and optogenetics for controlled activation of a polymodal nociceptor, ASH, we found that neuropeptides mediated habituation and performed an RNAi screen to identify candidate receptors. Through subsequent mutant analysis and cell-type-specific gene expression, we found that pigment-dispersing factor (PDF) neuropeptides function redundantly to promote habituation via PDFR-1-mediated cAMP signaling in both neurons and muscles. Behavioral analysis during learning acquisition suggests that response habituation and sensitization of locomotion are parts of a shifting behavioral strategy orchestrated by pigment dispersing factor signaling to promote dispersal away from repeated aversive stimuli.
Collapse
Affiliation(s)
- Evan L. Ardiel
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
| | - Alex J. Yu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
| | - Andrew C. Giles
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC Canada V6T 2B5
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC Canada V6T 1Z4
| |
Collapse
|
111
|
Shiratori C, Suzuki N, Momohara Y, Shiraishi K, Aonuma H, Nagayama T. Cyclic AMP-regulated opposing and parallel effects of serotonin and dopamine on phototaxis in the Marmorkrebs (marbled crayfish). Eur J Neurosci 2017; 46:1863-1874. [PMID: 28661085 DOI: 10.1111/ejn.13632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 02/01/2023]
Abstract
Phototactic behaviours are observed from prokaryotes to amphibians and are a basic form of orientation. We showed that the marbled crayfish displays phototaxis in which the behavioural response reversed from negative to positive depending on external light conditions. Animals reared in a 12-L/12-D light cycle showed negative phototaxis during daytime and positive phototaxis during night-time. Animals reared under constant light conditioning showed negative phototaxis during day- and night-time, while animals reared under constant dark conditioning showed positive phototaxis during day- and night-time. Injection of serotonin leads to a reversal of negative to positive phototaxis in both light/dark-reared and light/light-reared animals while injection of dopamine induced reversed negative phototaxis in dark/dark-reared animals. Four hours of dark adaptation were enough for light/dark-reared animals to reverse phototaxis from negative to positive. Injection of a serotonin 5HT1 receptor antagonist blocked the reverse phototaxis while serotonin 5HT2 receptor antagonists had no effects. Similarly, dark/dark-reared animals reversed to showing negative phototaxis after 4 h of light adaptation. Injection of a dopamine DA1 receptor antagonist blocked this reverse phototaxis, while dopamine DA2 receptor antagonists had no effects. Injection of a cAMP analogue into light/dark-reared animals blocked reverse phototaxis after dark adaptation, while adenylate cyclase inhibitor in dark/dark-reared animals blocked reverse phototaxis after light adaptation. These results strongly suggest that serotonin mediates positive phototaxis owing to decreased cAMP levels, while dopamine-mediated negative phototaxis occurs due to increased cAMP levels. Supporting this, the ratio of serotonin to dopamine in the brain was much higher in dark/dark-reared than light/dark-reared animals.
Collapse
Affiliation(s)
- Chihiro Shiratori
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Nanoka Suzuki
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Yuto Momohara
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Kyosuke Shiraishi
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, 060-0812, Sapporo, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560, Yamagata, Japan
| |
Collapse
|
112
|
Chai CM, Cronin CJ, Sternberg PW. Automated Analysis of a Nematode Population-based Chemosensory Preference Assay. J Vis Exp 2017. [PMID: 28745641 PMCID: PMC5612354 DOI: 10.3791/55963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The nematode, Caenorhabditis elegans' compact nervous system of only 302 neurons underlies a diverse repertoire of behaviors. To facilitate the dissection of the neural circuits underlying these behaviors, the development of robust and reproducible behavioral assays is necessary. Previous C. elegans behavioral studies have used variations of a "drop test", a "chemotaxis assay", and a "retention assay" to investigate the response of C. elegans to soluble compounds. The method described in this article seeks to combine the complementary strengths of the three aforementioned assays. Briefly, a small circle in the middle of each assay plate is divided into four quadrants with the control and experimental solutions alternately placed. After the addition of the worms, the assay plates are loaded into a behavior chamber where microscope cameras record the worms' encounters with the treated regions. Automated video analysis is then performed and a preference index (PI) value for each video is generated. The video acquisition and automated analysis features of this method minimizes the experimenter's involvement and any associated errors. Furthermore, minute amounts of the experimental compound are used per assay and the behavior chamber's multi-camera setup increases experimental throughput. This method is particularly useful for conducting behavioral screens of genetic mutants and novel chemical compounds. However, this method is not appropriate for studying stimulus gradient navigation due to the close proximity of the control and experimental solution regions. It should also not be used when only a small population of worms is available. While suitable for assaying responses only to soluble compounds in its current form, this method can be easily modified to accommodate multimodal sensory interaction and optogenetic studies. This method can also be adapted to assay the chemosensory responses of other nematode species.
Collapse
Affiliation(s)
- Cynthia M Chai
- Division of Biology and Bioengineering, California Institute of Technology; Howard Hughes Medical Institute, California Institute of Technology;
| | - Christopher J Cronin
- Division of Biology and Bioengineering, California Institute of Technology; Howard Hughes Medical Institute, California Institute of Technology
| | - Paul W Sternberg
- Division of Biology and Bioengineering, California Institute of Technology; Howard Hughes Medical Institute, California Institute of Technology
| |
Collapse
|
113
|
Shettigar N, Joshi A, Dalmeida R, Gopalkrishna R, Chakravarthy A, Patnaik S, Mathew M, Palakodeti D, Gulyani A. Hierarchies in light sensing and dynamic interactions between ocular and extraocular sensory networks in a flatworm. SCIENCE ADVANCES 2017; 3:e1603025. [PMID: 28782018 PMCID: PMC5533540 DOI: 10.1126/sciadv.1603025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/27/2017] [Indexed: 05/23/2023]
Abstract
Light sensing has independently evolved multiple times under diverse selective pressures but has been examined only in a handful among the millions of light-responsive organisms. Unsurprisingly, mechanistic insights into how differential light processing can cause distinct behavioral outputs are limited. We show how an organism can achieve complex light processing with a simple "eye" while also having independent but mutually interacting light sensing networks. Although planarian flatworms lack wavelength-specific eye photoreceptors, a 25 nm change in light wavelength is sufficient to completely switch their phototactic behavior. Quantitative photoassays, eye-brain confocal imaging, and RNA interference/knockdown studies reveal that flatworms are able to compare small differences in the amounts of light absorbed at the eyes through a single eye opsin and convert them into binary behavioral outputs. Because planarians can fully regenerate, eye-brain injury-regeneration studies showed that this acute light intensity sensing and processing are layered on simple light detection. Unlike intact worms, partially regenerated animals with eyes can sense light but cannot sense finer gradients. Planarians also show a "reflex-like," eye-independent (extraocular/whole-body) response to low ultraviolet A light, apart from the "processive" eye-brain-mediated (ocular) response. Competition experiments between ocular and extraocular sensory systems reveal dynamic interchanging hierarchies. In intact worms, cerebral ocular response can override the reflex-like extraocular response. However, injury-regeneration again offers a time window wherein both responses coexist, but the dominance of the ocular response is reversed. Overall, we demonstrate acute light intensity-based behavioral switching and two evolutionarily distinct but interacting light sensing networks in a regenerating organism.
Collapse
Affiliation(s)
- Nishan Shettigar
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Post, Bangalore 560065, India
- Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Tirumalaisamudram, Thanjavur 613401, India
| | - Asawari Joshi
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Post, Bangalore 560065, India
| | - Rimple Dalmeida
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Post, Bangalore 560065, India
- Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Tirumalaisamudram, Thanjavur 613401, India
| | - Rohini Gopalkrishna
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Post, Bangalore 560065, India
| | - Anirudh Chakravarthy
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Post, Bangalore 560065, India
| | - Siddharth Patnaik
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Post, Bangalore 560065, India
| | - Manoj Mathew
- National Centre for Biological Sciences, GKVK Post, Bangalore 560065, India
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Post, Bangalore 560065, India
| | - Akash Gulyani
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Post, Bangalore 560065, India
| |
Collapse
|
114
|
Churgin MA, Jung SK, Yu CC, Chen X, Raizen DM, Fang-Yen C. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLife 2017; 6. [PMID: 28537553 PMCID: PMC5484621 DOI: 10.7554/elife.26652] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/22/2017] [Indexed: 12/28/2022] Open
Abstract
The roundworm C. elegans is a mainstay of aging research due to its short lifespan and easily manipulable genetics. Current, widely used methods for long-term measurement of C. elegans are limited by low throughput and the difficulty of performing longitudinal monitoring of aging phenotypes. Here we describe the WorMotel, a microfabricated device for long-term cultivation and automated longitudinal imaging of large numbers of C. elegans confined to individual wells. Using the WorMotel, we find that short-lived and long-lived strains exhibit patterns of behavioral decline that do not temporally scale between individuals or populations, but rather resemble the shortest and longest lived individuals in a wild type population. We also find that behavioral trajectories of worms subject to oxidative stress resemble trajectories observed during aging. Our method is a powerful and scalable tool for analysis of C. elegans behavior and aging. DOI:http://dx.doi.org/10.7554/eLife.26652.001 Aging affects almost all living things, yet little is known about the biological changes that occur as we get older. Scientists often study aging in the microscopic roundworm Caenorhabditis elegans because it reproduces quickly and its lifespan is short (about 2–3 weeks on average). To date, investigations have helped to reveal genes that affect overall lifespan. However, it is not known how much these genes also affect the animal’s healthy lifespan or “healthspan”, that is to say, the length of time before advancing age begins to negatively affect health. Until now, studies with worms have often been limited because measuring health and aging required time-consuming and difficult manual experiments. This also meant that worms were studied together as groups, rather than as individuals, providing a simplified picture of what was going on. An automated system in which many single worms can be analyzed and assessed would provide a much more detailed view of the effects of aging on health. Churgin et al. have now developed a device called the WorMotel to allow simultaneous automated examination of 240 worms throughout their entire adult lifespan. The WorMotel is a rectangular slab of clear silicone rubber with small wells in it. A single worm is confined in each well with a source of bacteria for food, and a camera is used to track and monitor each worm’s behavior over time. This device confirmed that worms move more slowly as they get older, which was taken to be a measurement of the worms’ declining health. Worms that lived the longest declined over the first few days and then had a long plateau of very low activity before eventually dying. Short-lived worms became slower and died fairly promptly. Churgin et al. also showed that the worms with mutations that increase lifespan declined in a similar way to the longest-lived normal worms, and that mutants with shorter lifespans declined like the shortest-lived normal worms. Also, normal worms that had been exposed to a chemical called paraquat – which stresses the worm's cells and shortens the worm’s lifespans to a few days – slowed down in a similar manner as aging worms, suggesting that the stress is similar to the aging process. Tools like the WorMotel can improve our understanding of the links between lifespan and healthspan. The tool is designed to be versatile and can be used with standard imaging systems and automated tools, meaning it can be scaled up to deal with tens of thousands of worms at once. Churgin et al. are now using the WorMotel to find other genes that influence healthspan and understand how they contribute to deteriorating health as animals age. Aging affects us all and learning more about healthspan could lead to drugs or interventions to help more people to live healthily for longer. DOI:http://dx.doi.org/10.7554/eLife.26652.002
Collapse
Affiliation(s)
- Matthew A Churgin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, United States
| | - Sang-Kyu Jung
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, United States
| | - Chih-Chieh Yu
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, United States
| | - Xiangmei Chen
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, United States
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, United States.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
115
|
Tanimoto Y, Yamazoe-Umemoto A, Fujita K, Kawazoe Y, Miyanishi Y, Yamazaki SJ, Fei X, Busch KE, Gengyo-Ando K, Nakai J, Iino Y, Iwasaki Y, Hashimoto K, Kimura KD. Calcium dynamics regulating the timing of decision-making in C. elegans. eLife 2017; 6:e21629. [PMID: 28532547 PMCID: PMC5441874 DOI: 10.7554/elife.21629] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/23/2017] [Indexed: 12/28/2022] Open
Abstract
Brains regulate behavioral responses with distinct timings. Here we investigate the cellular and molecular mechanisms underlying the timing of decision-making during olfactory navigation in Caenorhabditis elegans. We find that, based on subtle changes in odor concentrations, the animals appear to choose the appropriate migratory direction from multiple trials as a form of behavioral decision-making. Through optophysiological, mathematical and genetic analyses of neural activity under virtual odor gradients, we further find that odor concentration information is temporally integrated for a decision by a gradual increase in intracellular calcium concentration ([Ca2+]i), which occurs via L-type voltage-gated calcium channels in a pair of olfactory neurons. In contrast, for a reflex-like behavioral response, [Ca2+]i rapidly increases via multiple types of calcium channels in a pair of nociceptive neurons. Thus, the timing of neuronal responses is determined by cell type-dependent involvement of calcium channels, which may serve as a cellular basis for decision-making.
Collapse
Affiliation(s)
- Yuki Tanimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Akiko Yamazoe-Umemoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Kosuke Fujita
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yuya Kawazoe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yosuke Miyanishi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Shuhei J Yamazaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Xianfeng Fei
- Faculty of Science and Technology, Tohoku Bunka Gakuen University, Sendai, Japan
| | - Karl Emanuel Busch
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Keiko Gengyo-Ando
- Graduate Shool of Science and Engineering, Brain and Body System Science Institute, Saitama University, Saitama, Japan
| | - Junichi Nakai
- Graduate Shool of Science and Engineering, Brain and Body System Science Institute, Saitama University, Saitama, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuishi Iwasaki
- Department of Intelligent Systems Engineering, Ibaraki University, Hitachi, Japan
| | - Koichi Hashimoto
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Koutarou D Kimura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
116
|
An Aversive Response to Osmotic Upshift in Caenorhabditis elegans. eNeuro 2017; 4:eN-NWR-0282-16. [PMID: 28451641 PMCID: PMC5399755 DOI: 10.1523/eneuro.0282-16.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Environmental osmolarity presents a common type of sensory stimulus to animals. While behavioral responses to osmotic changes are important for maintaining a stable intracellular osmolarity, the underlying mechanisms are not fully understood. In the natural habitat of Caenorhabditis elegans, changes in environmental osmolarity are commonplace. It is known that the nematode acutely avoids shocks of extremely high osmolarity. Here, we show that C. elegans also generates gradually increased aversion of mild upshifts in environmental osmolarity. Different from an acute avoidance of osmotic shocks that depends on the function of a transient receptor potential vanilloid channel, the slow aversion to osmotic upshifts requires the cGMP-gated sensory channel subunit TAX-2. TAX-2 acts in several sensory neurons that are exposed to body fluid to generate the aversive response through a motor network that underlies navigation. Osmotic upshifts activate the body cavity sensory neuron URX, which is known to induce aversion upon activation. Together, our results characterize the molecular and cellular mechanisms underlying a novel sensorimotor response to osmotic stimuli and reveal that C. elegans engages different behaviors and the underlying mechanisms to regulate responses to extracellular osmolarity.
Collapse
|
117
|
Nekimken AL, Fehlauer H, Kim AA, Manosalvas-Kjono SN, Ladpli P, Memon F, Gopisetty D, Sanchez V, Goodman MB, Pruitt BL, Krieg M. Pneumatic stimulation of C. elegans mechanoreceptor neurons in a microfluidic trap. LAB ON A CHIP 2017; 17:1116-1127. [PMID: 28207921 PMCID: PMC5360562 DOI: 10.1039/c6lc01165a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
New tools for applying force to animals, tissues, and cells are critically needed in order to advance the field of mechanobiology, as few existing tools enable simultaneous imaging of tissue and cell deformation as well as cellular activity in live animals. Here, we introduce a novel microfluidic device that enables high-resolution optical imaging of cellular deformations and activity while applying precise mechanical stimuli to the surface of the worm's cuticle with a pneumatic pressure reservoir. To evaluate device performance, we compared analytical and numerical simulations conducted during the design process to empirical measurements made with fabricated devices. Leveraging the well-characterized touch receptor neurons (TRNs) with an optogenetic calcium indicator as a model mechanoreceptor neuron, we established that individual neurons can be stimulated and that the device can effectively deliver steps as well as more complex stimulus patterns. This microfluidic device is therefore a valuable platform for investigating the mechanobiology of living animals and their mechanosensitive neurons.
Collapse
Affiliation(s)
- Adam L Nekimken
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA. and Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA.
| | - Holger Fehlauer
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA.
| | - Anna A Kim
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA. and Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Purim Ladpli
- Department of Aeronautics and Astronautics, Stanford University, Stanford, California, USA
| | - Farah Memon
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Divya Gopisetty
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA.
| | - Veronica Sanchez
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA.
| | - Miriam B Goodman
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA. and Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA.
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA. and Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA. and Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Michael Krieg
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA.
| |
Collapse
|
118
|
Wang L, Sato H, Satoh Y, Tomioka M, Kunitomo H, Iino Y. A Gustatory Neural Circuit of Caenorhabditis elegans Generates Memory-Dependent Behaviors in Na + Chemotaxis. J Neurosci 2017; 37:2097-2111. [PMID: 28126744 PMCID: PMC6705685 DOI: 10.1523/jneurosci.1774-16.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/29/2016] [Accepted: 01/13/2017] [Indexed: 01/09/2023] Open
Abstract
Animals show various behaviors in response to environmental chemicals. These behaviors are often plastic depending on previous experiences. Caenorhabditis elegans, which has highly developed chemosensory system with a limited number of sensory neurons, is an ideal model for analyzing the role of each neuron in innate and learned behaviors. Here, we report a new type of memory-dependent behavioral plasticity in Na+ chemotaxis generated by the left member of bilateral gustatory neuron pair ASE (ASEL neuron). When worms were cultivated in the presence of Na+, they showed positive chemotaxis toward Na+, but when cultivated under Na+-free conditions, they showed no preference regarding Na+ concentration. Both channelrhodopsin-2 (ChR2) activation with blue light and up-steps of Na+ concentration activated ASEL only after cultivation with Na+, as judged by increase in intracellular Ca2+ Under cultivation conditions with Na+, photoactivation of ASEL caused activation of its downstream interneurons AIY and AIA, which stimulate forward locomotion, and inhibition of its downstream interneuron AIB, which inhibits the turning/reversal behavior, and overall drove worms toward higher Na+ concentrations. We also found that the Gq signaling pathway and the neurotransmitter glutamate are both involved in the behavioral response generated by ASEL.SIGNIFICANCE STATEMENT Animals have acquired various types of behavioral plasticity during their long evolutionary history. Caenorhabditis elegans prefers odors associated with food, but plastically changes its behavioral response according to previous experience. Here, we report a new type of behavioral response generated by a single gustatory sensory neuron, the ASE-left (ASEL) neuron. ASEL did not respond to photostimulation or upsteps of Na+ concentration when worms were cultivated in Na+-free conditions; however, when worms were cultivated with Na+, ASEL responded and inhibited AIB to avoid turning and stimulated AIY and AIA to promote forward locomotion, which collectively drove worms toward higher Na+ concentrations. Glutamate and the Gq signaling pathway are essential for driving worms toward higher Na+ concentrations.
Collapse
Affiliation(s)
- Lifang Wang
- Department of Biological Sciences, Graduate School of Science, and
| | - Hirofumi Sato
- Department of Biological Sciences, Graduate School of Science, and
| | - Yohsuke Satoh
- Department of Biological Sciences, Graduate School of Science, and
| | - Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, and
| | | | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, and
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
119
|
Left Habenula Mediates Light-Preference Behavior in Zebrafish via an Asymmetrical Visual Pathway. Neuron 2017; 93:914-928.e4. [PMID: 28190643 DOI: 10.1016/j.neuron.2017.01.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/23/2016] [Accepted: 01/13/2017] [Indexed: 12/21/2022]
Abstract
Habenula (Hb) plays critical roles in emotion-related behaviors through integrating inputs mainly from the limbic system and basal ganglia. However, Hb also receives inputs from multiple sensory modalities. The function and underlying neural circuit of Hb sensory inputs remain unknown. Using larval zebrafish, we found that left dorsal Hb (dHb, a homolog of mammalian medial Hb) mediates light-preference behavior by receiving visual inputs from a specific subset of retinal ganglion cells (RGCs) through eminentia thalami (EmT). Loss- and gain-of-function manipulations showed that left, but not right, dHb activities, which encode environmental illuminance, are necessary and sufficient for light-preference behavior. At circuit level, left dHb neurons receive excitatory monosynaptic inputs from bilateral EmT, and EmT neurons are contacted mainly by sustained ON-type RGCs at the arborization field 4 of retinorecipient brain areas. Our findings discover a previously unidentified asymmetrical visual pathway to left Hb and its function in mediating light-preference behavior. VIDEO ABSTRACT.
Collapse
|
120
|
A Bitter Taste of the Sun Makes Egg-Laying Flies Run. Genetics 2017; 205:467-469. [PMID: 28154195 DOI: 10.1534/genetics.116.196352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/20/2016] [Indexed: 11/18/2022] Open
|
121
|
Gayathri Vegesna NV, Ronchi P, Durdu S, Terjung S, Pepperkok R. Targeted Ablation Using Laser Nanosurgery. Methods Mol Biol 2017; 1563:107-125. [PMID: 28324605 DOI: 10.1007/978-1-4939-6810-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Laser-mediated dissection methods have been used for many years to micro-irradiate biological samples, but recent technological progress has rendered this technique more precise, powerful, and easy to use. Today pulsed lasers can be operated with diffraction limited, sub-micrometer precision to ablate intracellular structures. Here, we discuss laser nanosurgery setups and the instrumentation in our laboratory. We describe how to use this technique to ablate cytoskeletal elements in living cells. We also show how this technique can be used in multicellular organisms, to micropuncture and/or ablate cells of interest and finally how to monitor a successful laser nanosurgery.
Collapse
Affiliation(s)
| | - Paolo Ronchi
- Cell Biology and Cell Biophysics Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Electron Microscopy Core Facility, EMBL Heidelberg, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Sevi Durdu
- Cell Biology and Cell Biophysics Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Stefan Terjung
- Advanced Light Microscopy Facility, EMBL Heidelberg, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Rainer Pepperkok
- Cell Biology and Cell Biophysics Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117, Heidelberg, Germany. .,Advanced Light Microscopy Facility, EMBL Heidelberg, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|
122
|
Abstract
Photoreceptors are found in all kingdoms of life and mediate crucial responses to environmental challenges. Nature has evolved various types of photoresponsive protein structures with different chromophores and signaling concepts for their given purpose. The abundance of these signaling proteins as found nowadays by (meta-)genomic screens enriched the palette of optogenetic tools significantly. In addition, molecular insights into signal transduction mechanisms and design principles from biophysical studies and from structural and mechanistic comparison of homologous proteins opened seemingly unlimited possibilities for customizing the naturally occurring proteins for a given optogenetic task. Here, a brief overview on the photoreceptor concepts already established as optogenetic tools in natural or engineered form, their photochemistry and their signaling/design principles is given. Finally, so far not regarded photosensitive modules and protein architectures with potential for optogenetic application are described.
Collapse
|
123
|
Goya ME, Romanowski A, Caldart CS, Bénard CY, Golombek DA. Circadian rhythms identified in Caenorhabditis elegans by in vivo long-term monitoring of a bioluminescent reporter. Proc Natl Acad Sci U S A 2016; 113:E7837-E7845. [PMID: 27849618 PMCID: PMC5137770 DOI: 10.1073/pnas.1605769113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Circadian rhythms are based on endogenous clocks that allow organisms to adjust their physiology and behavior by entrainment to the solar day and, in turn, to select the optimal times for most biological variables. Diverse model systems-including mice, flies, fungi, plants, and bacteria-have provided important insights into the mechanisms of circadian rhythmicity. However, the general principles that govern the circadian clock of Caenorhabditis elegans have remained largely elusive. Here we report robust molecular circadian rhythms in C elegans recorded with a bioluminescence assay in vivo and demonstrate the main features of the circadian system of the nematode. By constructing a luciferase-based reporter coupled to the promoter of the suppressor of activated let-60 Ras (sur-5) gene, we show in both population and single-nematode assays that C elegans expresses ∼24-h rhythms that can be entrained by light/dark and temperature cycles. We provide evidence that these rhythms are temperature-compensated and can be re-entrained after phase changes of the synchronizing agents. In addition, we demonstrate that light and temperature sensing requires the photoreceptors LITE and GUR-3, and the cyclic nucleotide-gated channel subunit TAX-2. Our results shed light on C elegans circadian biology and demonstrate evolutionarily conserved features in the circadian system of the nematode.
Collapse
Affiliation(s)
- María Eugenia Goya
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires B1876BXD, Argentina
| | - Andrés Romanowski
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires B1876BXD, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina
| | - Carlos S Caldart
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires B1876BXD, Argentina
| | - Claire Y Bénard
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605;
- Department of Biological Sciences University of Quebec at Montreal, Montreal, QC, Canada H2X 1Y4
| | - Diego A Golombek
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires B1876BXD, Argentina;
| |
Collapse
|
124
|
Gong J, Yuan Y, Ward A, Kang L, Zhang B, Wu Z, Peng J, Feng Z, Liu J, Xu XZS. The C. elegans Taste Receptor Homolog LITE-1 Is a Photoreceptor. Cell 2016; 167:1252-1263.e10. [PMID: 27863243 PMCID: PMC5388352 DOI: 10.1016/j.cell.2016.10.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 09/05/2016] [Accepted: 10/28/2016] [Indexed: 01/20/2023]
Abstract
Many animal tissues/cells are photosensitive, yet only two types of photoreceptors (i.e., opsins and cryptochromes) have been discovered in metazoans. The question arises as to whether unknown types of photoreceptors exist in the animal kingdom. LITE-1, a seven-transmembrane gustatory receptor (GR) homolog, mediates UV-light-induced avoidance behavior in C. elegans. However, it is not known whether LITE-1 functions as a chemoreceptor or photoreceptor. Here, we show that LITE-1 directly absorbs both UVA and UVB light with an extinction coefficient 10-100 times that of opsins and cryptochromes, indicating that LITE-1 is highly efficient in capturing photons. Unlike typical photoreceptors employing a prosthetic chromophore to capture photons, LITE-1 strictly depends on its protein conformation for photon absorption. We have further identified two tryptophan residues critical for LITE-1 function. Interestingly, unlike GPCRs, LITE-1 adopts a reversed membrane topology. Thus, LITE-1, a taste receptor homolog, represents a distinct type of photoreceptor in the animal kingdom.
Collapse
Affiliation(s)
- Jianke Gong
- College of Life Science and Technology, Collaborative Innovation Center for Brain Science, and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yiyuan Yuan
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alex Ward
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Kang
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bi Zhang
- College of Life Science and Technology, Collaborative Innovation Center for Brain Science, and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhaoyang Feng
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jianfeng Liu
- College of Life Science and Technology, Collaborative Innovation Center for Brain Science, and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
125
|
Promotion of behavior and neuronal function by reactive oxygen species in C. elegans. Nat Commun 2016; 7:13234. [PMID: 27824033 PMCID: PMC5105148 DOI: 10.1038/ncomms13234] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) are well known to elicit a plethora of detrimental effects on cellular functions by causing damages to proteins, lipids and nucleic acids. Neurons are particularly vulnerable to ROS, and nearly all forms of neurodegenerative diseases are associated with oxidative stress. Here, we report the surprising finding that exposing C. elegans to low doses of H2O2 promotes, rather than compromises, sensory behavior and the function of sensory neurons such as ASH. This beneficial effect of H2O2 is mediated by an evolutionarily conserved peroxiredoxin-p38/MAPK signaling cascade. We further show that p38/MAPK signals to AKT and the TRPV channel OSM-9, a sensory channel in ASH neurons. AKT phosphorylates OSM-9, and such phosphorylation is required for H2O2-induced potentiation of sensory behavior and ASH neuron function. Our results uncover a beneficial effect of ROS on neurons, revealing unexpected complexity of the action of oxidative stressors in the nervous system. The deleterious role of reactive oxygen species has been widely reported in the nervous system. Here the authors report that surprisingly, low doses of H2O2 in fact enhances sensory neuron function and promotes sensory behaviors in C. elegans.
Collapse
|
126
|
Ujisawa T, Ohta A, Uda-Yagi M, Kuhara A. Diverse Regulation of Temperature Sensation by Trimeric G-Protein Signaling in Caenorhabditis elegans. PLoS One 2016; 11:e0165518. [PMID: 27788246 PMCID: PMC5082853 DOI: 10.1371/journal.pone.0165518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022] Open
Abstract
Temperature sensation by the nervous system is essential for life and proliferation of animals. The molecular-physiological mechanisms underlying temperature signaling have not been fully elucidated. We show here that diverse regulatory machinery underlies temperature sensation through trimeric G-protein signaling in the nematode Caenorhabditis elegans. Molecular-genetic studies demonstrated that cold tolerance is regulated by additive functions of three Gα proteins in a temperature-sensing neuron, ASJ, which is also known to be a light-sensing neuron. Optical recording of calcium concentration in ASJ upon temperature-changes demonstrated that three Gα proteins act in different aspects of temperature signaling. Calcium concentration changes in ASJ upon temperature change were unexpectedly decreased in a mutant defective in phosphodiesterase, which is well known as a negative regulator of calcium increase. Together, these data demonstrate commonalities and differences in the molecular components concerned with light and temperature signaling in a single sensory neuron.
Collapse
Affiliation(s)
- Tomoyo Ujisawa
- Laboratory of Molecular and Cellular Regulation, Graduate school of Natural Sciencey, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
| | - Akane Ohta
- Laboratory of Molecular and Cellular Regulation, Graduate school of Natural Sciencey, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Laboratory of Molecular and Cellular Regulation, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- * E-mail: ; (AK); (AO)
| | - Misato Uda-Yagi
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
| | - Atsushi Kuhara
- Laboratory of Molecular and Cellular Regulation, Graduate school of Natural Sciencey, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Laboratory of Molecular and Cellular Regulation, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- * E-mail: ; (AK); (AO)
| |
Collapse
|
127
|
Wojtovich AP, Wei AY, Sherman TA, Foster TH, Nehrke K. Chromophore-Assisted Light Inactivation of Mitochondrial Electron Transport Chain Complex II in Caenorhabditis elegans. Sci Rep 2016; 6:29695. [PMID: 27440050 PMCID: PMC4954975 DOI: 10.1038/srep29695] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/21/2016] [Indexed: 01/20/2023] Open
Abstract
Mitochondria play critical roles in meeting cellular energy demand, in cell death, and in reactive oxygen species (ROS) and stress signaling. Most Caenorhabditis elegans loss-of-function (lf) mutants in nuclear-encoded components of the respiratory chain are non-viable, emphasizing the importance of respiratory function. Chromophore-Assisted Light Inactivation (CALI) using genetically-encoded photosensitizers provides an opportunity to determine how individual respiratory chain components contribute to physiology following acute lf. As proof-of-concept, we expressed the ‘singlet oxygen generator’ miniSOG as a fusion with the SDHC subunit of respiratory complex II, encoded by mev-1 in C. elegans, using Mos1-mediated Single Copy Insertion. The resulting mev-1::miniSOG transgene complemented mev-1 mutant phenotypes in kn1 missense and tm1081(lf) deletion mutants. Complex II activity was inactivated by blue light in mitochondria from strains expressing active miniSOG fusions, but not those from inactive fusions. Moreover, light-inducible phenotypes in vivo demonstrated that complex II activity is important under conditions of high energy demand, and that specific cell types are uniquely susceptible to loss of complex II. In conclusion, miniSOG-mediated CALI is a novel genetic platform for acute inactivation of respiratory chain components. Spatio-temporally controlled ROS generation will expand our understanding of how the respiratory chain and mitochondrial ROS influence whole organism physiology.
Collapse
Affiliation(s)
- Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology, Rochester, 14642, United States of America.,University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester, 14642, United States of America
| | - Alicia Y Wei
- University of Rochester Medical Center, Department of Anesthesiology, Rochester, 14642, United States of America
| | - Teresa A Sherman
- University of Rochester Medical Center, Department of Medicine, Rochester, 14642, United States of America
| | - Thomas H Foster
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, 14642, United States of America
| | - Keith Nehrke
- University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester, 14642, United States of America.,University of Rochester Medical Center, Department of Medicine, Rochester, 14642, United States of America
| |
Collapse
|
128
|
Jee C, Goncalves JF, LeBoeuf B, Garcia LR. CRF-like receptor SEB-3 in sex-common interneurons potentiates stress handling and reproductive drive in C. elegans. Nat Commun 2016; 7:11957. [PMID: 27321013 PMCID: PMC4915151 DOI: 10.1038/ncomms11957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/13/2016] [Indexed: 02/08/2023] Open
Abstract
Environmental conditions can modulate innate behaviours. Although male Caenorhabditis elegans copulation can be perturbed in the presence of stress, the mechanisms underlying its decision to sustain copulation are unclear. Here we describe a mating interference assay, which quantifies the persistence of male C. elegans copulation in noxious blue light. We show that between copulations, the male escapes from blue light illumination at intensities over 370 μW mm−2. This response is attenuated in mutants with constitutive activation of the corticotropin-releasing factor receptor family homologue SEB-3. We show that activation of this receptor causes sex-common glutamatergic lumbar ganglion interneurons (LUA) to potentiate downstream male-specific reproduction circuits, allowing copulatory behaviours to partially override the light-induced escape responses in the male. SEB-3 activation in LUA also potentiates copulation during mild starvation. We suggest that SEB-3 activation allows C. elegans to acclimate to the environment and thus continue to execute innate behaviours even under non-optimal conditions. Innate animal behaviours can be negatively regulated by environmental stressors. Jee et al. show that suppression of male C. elegans copulation behaviour by noxious light can be overcome by activation of SEB-3, a homologue of the stress-associated mammalian corticotropin-releasing factor receptor family.
Collapse
Affiliation(s)
- Changhoon Jee
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| | - Jimmy F Goncalves
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| | - Brigitte LeBoeuf
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| | - L Rene Garcia
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| |
Collapse
|
129
|
TMC-1 Mediates Alkaline Sensation in C. elegans through Nociceptive Neurons. Neuron 2016; 91:146-54. [PMID: 27321925 DOI: 10.1016/j.neuron.2016.05.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/03/2016] [Accepted: 05/04/2016] [Indexed: 11/22/2022]
Abstract
Noxious pH triggers pungent taste and nocifensive behavior. While the mechanisms underlying acidic pH sensation have been extensively characterized, little is known about how animals sense alkaline pH in the environment. TMC genes encode a family of evolutionarily conserved membrane proteins whose functions are largely unknown. Here, we characterize C. elegans TMC-1, which was suggested to form a Na(+)-sensitive channel mediating salt chemosensation. Interestingly, we find that TMC-1 is required for worms to avoid noxious alkaline environment. Alkaline pH evokes an inward current in nociceptive neurons, which is primarily mediated by TMC-1 and to a lesser extent by the TRP channel OSM-9. However, unlike OSM-9, which is sensitive to both acidic and alkaline pH, TMC-1 is only required for alkali-activated current, revealing a specificity for alkaline sensation. Ectopic expression of TMC-1 confers alkaline sensitivity to alkali-insensitive cells. Our results identify an unexpected role for TMCs in alkaline sensation and nociception.
Collapse
|
130
|
Novel DLK-independent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth. Proc Natl Acad Sci U S A 2016; 113:E2852-60. [PMID: 27078101 DOI: 10.1073/pnas.1600564113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During development, a neuron transitions from a state of rapid growth to a stable morphology, and neurons within the adult mammalian CNS lose their ability to effectively regenerate in response to injury. Here, we identify a novel form of neuronal regeneration, which is remarkably independent of DLK-1/DLK, KGB-1/JNK, and other MAPK signaling factors known to mediate regeneration in Caenorhabditis elegans, Drosophila, and mammals. This DLK-independent regeneration in C. elegans has direct genetic and molecular links to a well-studied form of endogenous activity-dependent ectopic axon outgrowth in the same neuron type. Both neuron outgrowth types are triggered by physical lesion of the sensory dendrite or mutations disrupting sensory activity, calcium signaling, or genes that restrict outgrowth during neuronal maturation, such as SAX-1/NDR kinase or UNC-43/CaMKII. These connections suggest that ectopic outgrowth represents a powerful platform for gene discovery in neuronal regeneration. Moreover, we note numerous similarities between C. elegans DLK-independent regeneration and lesion conditioning, a phenomenon producing robust regeneration in the mammalian CNS. Both regeneration types are triggered by lesion of a sensory neurite via reduction of neuronal activity and enhanced by disrupting L-type calcium channels or elevating cAMP. Taken as a whole, our study unites disparate forms of neuronal outgrowth to uncover fresh molecular insights into activity-dependent control of the adult nervous system's intrinsic regenerative capacity.
Collapse
|
131
|
Cheng RK, Krishnan S, Jesuthasan S. Activation and inhibition of tph2 serotonergic neurons operate in tandem to influence larval zebrafish preference for light over darkness. Sci Rep 2016; 6:20788. [PMID: 26868164 PMCID: PMC4751628 DOI: 10.1038/srep20788] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/12/2016] [Indexed: 12/29/2022] Open
Abstract
Serotonergic neurons have been implicated in a broad range of processes, but the principles underlying their effects remain a puzzle. Here, we ask how these neurons influence the tendency of larval zebrafish to swim in the light and avoid regions of darkness. Pharmacological inhibition of serotonin synthesis reduces dark avoidance, indicating an involvement of this neuromodulator. Calcium imaging of tph2-expressing cells demonstrates that a rostral subset of dorsal raphe serotonergic neurons fire continuously while the animal is in darkness, but are inhibited in the light. Optogenetic manipulation of tph2 neurons by channelrhodopsin or halorhodopsin expression modifies preference, confirming a role for these neurons. In particular, these results suggest that fish prefer swimming in conditions that elicits lower activity in tph2 serotonergic neurons in the rostral raphe.
Collapse
Affiliation(s)
- Ruey-Kuang Cheng
- Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, Singapore
| | - Seetha Krishnan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Suresh Jesuthasan
- Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, Singapore.,Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore.,Department of Physiology, National University of Singapore, Singapore
| |
Collapse
|
132
|
Highly efficient optogenetic cell ablation in C. elegans using membrane-targeted miniSOG. Sci Rep 2016; 6:21271. [PMID: 26861262 PMCID: PMC4748272 DOI: 10.1038/srep21271] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/20/2016] [Indexed: 01/21/2023] Open
Abstract
The genetically encoded photosensitizer miniSOG (mini Singlet Oxygen Generator) can be used to kill cells in C. elegans. miniSOG generates the reactive oxygen species (ROS) singlet oxygen after illumination with blue light. Illumination of neurons expressing miniSOG targeted to the outer mitochondrial membrane (mito-miniSOG) causes neuronal death. To enhance miniSOG’s efficiency as an ablation tool in multiple cell types we tested alternative targeting signals. We find that membrane targeted miniSOG allows highly efficient cell killing. When combined with a point mutation that increases miniSOG’s ROS generation, membrane targeted miniSOG can ablate neurons in less than one tenth the time of mito-miniSOG. We extend the miniSOG ablation technique to non-neuronal tissues, revealing an essential role for the epidermis in locomotion. These improvements expand the utility and throughput of optogenetic cell ablation in C. elegans.
Collapse
|
133
|
Serotonin promotes exploitation in complex environments by accelerating decision-making. BMC Biol 2016; 14:9. [PMID: 26847342 PMCID: PMC4743430 DOI: 10.1186/s12915-016-0232-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/21/2016] [Indexed: 01/22/2023] Open
Abstract
Background Fast responses can provide a competitive advantage when resources are inhomogeneously distributed. The nematode Caenorhabditis elegans was shown to modulate locomotion on a lawn of bacterial food in serotonin (5-HT)-dependent manners. However, potential roles for serotonergic signaling in responding to food discovery are poorly understood. Results We found that 5-HT signaling in C. elegans facilitates efficient exploitation in complex environments by mediating a rapid response upon encountering food. Genetic or cellular manipulations leading to deficient serotonergic signaling resulted in gradual responses and defective exploitation of a patchy foraging landscape. Physiological imaging revealed that the NSM serotonergic neurons responded acutely upon encounter with newly discovered food and were key to rapid responses. In contrast, the onset of responses of ADF serotonergic neurons preceded the physical encounter with the food. The serotonin-gated chloride channel MOD-1 and the ortholog of mammalian 5-HT1 metabotropic serotonin receptors SER-4 acted in synergy to accelerate decision-making. The relevance of responding rapidly was demonstrated in patchy environments, where the absence of 5-HT signaling was detrimental to exploitation. Conclusions Our results implicate 5-HT in a novel form of decision-making, demonstrate its fitness consequences, suggest that NSM and ADF act in concert to modulate locomotion in complex environments, and identify the synergistic action of a channel and a metabotropic receptor in accelerating C. elegans decision-making. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0232-y) contains supplementary material, which is available to authorized users.
Collapse
|
134
|
Lee KH, Aschner M. A Simple Light Stimulation of Caenorhabditis elegans. CURRENT PROTOCOLS IN TOXICOLOGY 2016; 67:11.21.1-11.21.5. [PMID: 26828328 PMCID: PMC4747329 DOI: 10.1002/0471140856.tx1121s67] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Response via noxious stimulus can be an important indicator of sensory neuron function and overall health of an organism. If the stimulation is quick and simple, and the animal can be rescued afterwards, such a method not only allows for assays pertaining to changed sensory ability after various treatments, but also increases the reliability of the statistical relationships that are established. This protocol demonstrates a stimulation assay in Caenorhabditis elegans, using blue light from common laboratory equipment: the fluorescent microscope. The nematode detects blue light using a set of amphid ciliary sensory neurons, and blue light is detrimental to its overall health after a prolonged exposure. However, under brief exposure, blue light stimulation provides a rapid and easy method for quantifying sensory functions and health without harming the animal.
Collapse
Affiliation(s)
- Kun He Lee
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
135
|
Maruyama IN. Receptor Guanylyl Cyclases in Sensory Processing. Front Endocrinol (Lausanne) 2016; 7:173. [PMID: 28123378 PMCID: PMC5225109 DOI: 10.3389/fendo.2016.00173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/28/2016] [Indexed: 11/18/2022] Open
Abstract
Invertebrate models have generated many new insights into transmembrane signaling by cell-surface receptors. This review focuses on receptor guanylyl cyclases (rGCs) and describes recent advances in understanding their roles in sensory processing in the nematode, Caenorhabditis elegans. A complete analysis of the C. elegans genome elucidated 27 rGCs, an unusually large number compared with mammalian genomes, which encode 7 rGCs. Most C. elegans rGCs are expressed in sensory neurons and play roles in sensory processing, including gustation, thermosensation, olfaction, and phototransduction, among others. Recent studies have found that by producing a second messenger, guanosine 3',5'-cyclic monophosphate, some rGCs act as direct sensor molecules for ions and temperatures, while others relay signals from G protein-coupled receptors. Interestingly, genetic and biochemical analyses of rGCs provide the first example of an obligate heterodimeric rGC. Based on recent structural studies of rGCs in mammals and other organisms, molecular mechanisms underlying activation of rGCs are also discussed in this review.
Collapse
Affiliation(s)
- Ichiro N. Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- *Correspondence: Ichiro N. Maruyama,
| |
Collapse
|
136
|
Drosophila TRPA1 isoforms detect UV light via photochemical production of H2O2. Proc Natl Acad Sci U S A 2015; 112:E5753-61. [PMID: 26443856 DOI: 10.1073/pnas.1514862112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transient receptor potential A1 (TRPA1) channel is an evolutionarily conserved detector of temperature and irritant chemicals. Here, we show that two specific isoforms of TRPA1 in Drosophila are H2O2 sensitive and that they can detect strong UV light via sensing light-induced production of H2O2. We found that ectopic expression of these H2O2-sensitive Drosophila TRPA1 (dTRPA1) isoforms conferred UV sensitivity to light-insensitive HEK293 cells and Drosophila neurons, whereas expressing the H2O2-insensitive isoform did not. Curiously, when expressed in one specific group of motor neurons in adult flies, the H2O2-sensitive dTRPA1 isoforms were as competent as the blue light-gated channelrhodopsin-2 in triggering motor output in response to light. We found that the corpus cardiacum (CC) cells, a group of neuroendocrine cells that produce the adipokinetic hormone (AKH) in the larval ring gland endogenously express these H2O2-sensitive dTRPA1 isoforms and that they are UV sensitive. Sensitivity of CC cells required dTRPA1 and H2O2 production but not conventional phototransduction molecules. Our results suggest that specific isoforms of dTRPA1 can sense UV light via photochemical production of H2O2. We speculate that UV sensitivity conferred by these isoforms in CC cells may allow young larvae to activate stress response--a function of CC cells--when they encounter strong UV, an aversive stimulus for young larvae.
Collapse
|
137
|
Fatty acid transport proteins in disease: New insights from invertebrate models. Prog Lipid Res 2015; 60:30-40. [PMID: 26416577 DOI: 10.1016/j.plipres.2015.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/18/2015] [Indexed: 11/22/2022]
Abstract
The dysregulation of lipid metabolism has been implicated in various diseases, including diabetes, cardiopathies, dermopathies, retinal and neurodegenerative diseases. Mouse models have provided insights into lipid metabolism. However, progress in the understanding of these pathologies is hampered by the multiplicity of essential cellular processes and genes that modulate lipid metabolism. Drosophila and Caenorhabditis elegans have emerged as simple genetic models to improve our understanding of these metabolic diseases. Recent studies have characterized fatty acid transport protein (fatp) mutants in Drosophila and C. elegans, establishing new models of cardiomyopathy, retinal degeneration, fat storage disease and dermopathies. These models have generated novel insights into the physiological role of the Fatp protein family in vivo in multicellular organisms, and are likely to contribute substantially to progress in understanding the etiology of various metabolic disorders. Here, we describe and discuss the mechanisms underlying invertebrate fatp mutant models in the light of the current knowledge relating to FATPs and lipid disorders in vertebrates.
Collapse
|
138
|
Calvo P, Baluška F. Conditions for minimal intelligence across eukaryota: a cognitive science perspective. Front Psychol 2015; 6:1329. [PMID: 26388822 PMCID: PMC4558474 DOI: 10.3389/fpsyg.2015.01329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/19/2015] [Indexed: 11/29/2022] Open
Affiliation(s)
- Paco Calvo
- MINT Lab, Department of Philosophy, University of Murcia Murcia, Spain
| | | |
Collapse
|
139
|
Bhatla N, Droste R, Sando SR, Huang A, Horvitz HR. Distinct Neural Circuits Control Rhythm Inhibition and Spitting by the Myogenic Pharynx of C. elegans. Curr Biol 2015; 25:2075-89. [PMID: 26212880 PMCID: PMC4546535 DOI: 10.1016/j.cub.2015.06.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/28/2015] [Accepted: 06/19/2015] [Indexed: 02/05/2023]
Abstract
Neural circuits have long been known to modulate myogenic muscles such as the heart, yet a mechanistic understanding at the cellular and molecular levels remains limited. We studied how light inhibits pumping of the Caenorhabditis elegans pharynx, a myogenic muscular pump for feeding, and found three neural circuits that alter pumping. First, light inhibits pumping via the I2 neuron monosynaptic circuit. Our electron microscopic reconstruction of the anterior pharynx revealed evidence for synapses from I2 onto muscle that were missing from the published connectome, and we show that these "missed synapses" are likely functional. Second, light inhibits pumping through the RIP-I1-MC neuron polysynaptic circuit, in which an inhibitory signal is likely transmitted from outside the pharynx into the pharynx in a manner analogous to how the mammalian autonomic nervous system controls the heart. Third, light causes a novel pharyngeal behavior, reversal of flow or "spitting," which is induced by the M1 neuron. These three neural circuits show that neurons can control a myogenic muscle organ not only by changing the contraction rate but also by altering the functional consequences of the contraction itself, transforming swallowing into spitting. Our observations also illustrate why connectome builders and users should be cognizant that functional synaptic connections might exist despite the absence of a declared synapse in the connectome.
Collapse
Affiliation(s)
- Nikhil Bhatla
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rita Droste
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Steven R Sando
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Anne Huang
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - H Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
140
|
Turek M, Besseling J, Bringmann H. Agarose Microchambers for Long-term Calcium Imaging of Caenorhabditis elegans. J Vis Exp 2015:e52742. [PMID: 26132740 PMCID: PMC4544933 DOI: 10.3791/52742] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Behavior is controlled by the nervous system. Calcium imaging is a straightforward method in the transparent nematode Caenorhabditis elegans to measure the activity of neurons during various behaviors. To correlate neural activity with behavior, the animal should not be immobilized but should be able to move. Many behavioral changes occur during long time scales and require recording over many hours of behavior. This also makes it necessary to culture the worms in the presence of food. How can worms be cultured and their neural activity imaged over long time scales? Agarose Microchamber Imaging (AMI) was previously developed to culture and observe small larvae and has now been adapted to study all life stages from early L1 until the adult stage of C. elegans. AMI can be performed on various life stages of C. elegans. Long-term calcium imaging is achieved without immobilizing the animals by using short externally triggered exposures combined with an electron multiplying charge-coupled device (EMCCD) camera recording. Zooming out or scanning can scale up this method to image up to 40 worms in parallel. Thus, a method is described to image behavior and neural activity over long time scales in all life stages of C. elegans.
Collapse
|
141
|
Thermosensation and longevity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:857-67. [PMID: 26101089 DOI: 10.1007/s00359-015-1021-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 12/25/2022]
Abstract
Temperature has profound effects on behavior and aging in both poikilotherms and homeotherms. To thrive under the ever fluctuating environmental temperatures, animals have evolved sophisticated mechanisms to sense and adapt to temperature changes. Animals sense temperature through various molecular thermosensors, such as thermosensitive transient receptor potential (TRP) channels expressed in neurons, keratinocytes, and intestine. These evolutionarily conserved thermosensitive TRP channels feature distinct activation thresholds, thereby covering a wide spectrum of ambient temperature. Temperature changes trigger complex thermosensory behaviors. Due to the simplicity of the nervous system in model organisms such as Caenorhabditis elegans and Drosophila, the mechanisms of thermosensory behaviors in these species have been extensively studied at the circuit and molecular levels. While much is known about temperature regulation of behavior, it remains largely unclear how temperature affects aging. Recent studies in C. elegans demonstrate that temperature modulation of longevity is not simply a passive thermodynamic phenomenon as suggested by the rate-of-living theory, but rather a process that is actively regulated by genes, including those encoding thermosensitive TRP channels. In this review, we discuss our current understanding of thermosensation and its role in aging.
Collapse
|
142
|
González-Barrios M, Fierro-González JC, Krpelanova E, Mora-Lorca JA, Pedrajas JR, Peñate X, Chavez S, Swoboda P, Jansen G, Miranda-Vizuete A. Cis- and trans-regulatory mechanisms of gene expression in the ASJ sensory neuron of Caenorhabditis elegans. Genetics 2015; 200:123-34. [PMID: 25769980 PMCID: PMC4423358 DOI: 10.1534/genetics.115.176172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/11/2015] [Indexed: 01/25/2023] Open
Abstract
The identity of a given cell type is determined by the expression of a set of genes sharing common cis-regulatory motifs and being regulated by shared transcription factors. Here, we identify cis and trans regulatory elements that drive gene expression in the bilateral sensory neuron ASJ, located in the head of the nematode Caenorhabditis elegans. For this purpose, we have dissected the promoters of the only two genes so far reported to be exclusively expressed in ASJ, trx-1 and ssu-1. We hereby identify the ASJ motif, a functional cis-regulatory bipartite promoter region composed of two individual 6 bp elements separated by a 3 bp linker. The first element is a 6 bp CG-rich sequence that presumably binds the Sp family member zinc-finger transcription factor SPTF-1. Interestingly, within the C. elegans nervous system SPTF-1 is also found to be expressed only in ASJ neurons where it regulates expression of other genes in these neurons and ASJ cell fate. The second element of the bipartite motif is a 6 bp AT-rich sequence that is predicted to potentially bind a transcription factor of the homeobox family. Together, our findings identify a specific promoter signature and SPTF-1 as a transcription factor that functions as a terminal selector gene to regulate gene expression in C. elegans ASJ sensory neurons.
Collapse
Affiliation(s)
- María González-Barrios
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, E-41013 Sevilla, Spain
| | | | - Eva Krpelanova
- Department of Cell Biology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - José Antonio Mora-Lorca
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, E-41013 Sevilla, Spain Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - José Rafael Pedrajas
- Grupo de Bioquímica y Señalización Celular, Departamento de Biología Experimental, Universidad de Jaén, E-23071 Jaén, Spain
| | - Xenia Peñate
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, E-41013 Sevilla, Spain Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Sebastián Chavez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, E-41013 Sevilla, Spain Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Gert Jansen
- Department of Cell Biology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, E-41013 Sevilla, Spain
| |
Collapse
|
143
|
Li Z, Liu J, Zheng M, Xu XZS. Encoding of both analog- and digital-like behavioral outputs by one C. elegans interneuron. Cell 2015; 159:751-65. [PMID: 25417153 DOI: 10.1016/j.cell.2014.09.056] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/12/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
Model organisms usually possess a small nervous system but nevertheless execute a large array of complex behaviors, suggesting that some neurons are likely multifunctional and may encode multiple behavioral outputs. Here, we show that the C. elegans interneuron AIY regulates two distinct behavioral outputs: locomotion speed and direction-switch by recruiting two different circuits. The "speed" circuit is excitatory with a wide dynamic range, which is well suited to encode speed, an analog-like output. The "direction-switch" circuit is inhibitory with a narrow dynamic range, which is ideal for encoding direction-switch, a digital-like output. Both circuits employ the neurotransmitter ACh but utilize distinct postsynaptic ACh receptors, whose distinct biophysical properties contribute to the distinct dynamic ranges of the two circuits. This mechanism enables graded C. elegans synapses to encode both analog- and digital-like outputs. Our studies illustrate how an interneuron in a simple organism encodes multiple behavioral outputs at the circuit, synaptic, and molecular levels.
Collapse
Affiliation(s)
- Zhaoyu Li
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Liu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maohua Zheng
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
144
|
Bhatla N, Horvitz HR. Light and hydrogen peroxide inhibit C. elegans Feeding through gustatory receptor orthologs and pharyngeal neurons. Neuron 2015; 85:804-18. [PMID: 25640076 DOI: 10.1016/j.neuron.2014.12.061] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/11/2014] [Accepted: 12/22/2014] [Indexed: 11/29/2022]
Abstract
While gustatory sensing of the five primary flavors (sweet, salty, sour, bitter, and savory) has been extensively studied, pathways that detect non-canonical taste stimuli remain relatively unexplored. In particular, while reactive oxygen species cause generalized damage to biological systems, no gustatory mechanism to prevent ingestion of such material has been identified in any organism. We observed that light inhibits C. elegans feeding and used light as a tool to uncover molecular and neural mechanisms for gustation. Light can generate hydrogen peroxide, and we discovered that hydrogen peroxide similarly inhibits feeding. The gustatory receptor family members LITE-1 and GUR-3 are required for the inhibition of feeding by light and hydrogen peroxide. The I2 pharyngeal neurons increase calcium in response to light and hydrogen peroxide, and these responses require GUR-3 and a conserved antioxidant enzyme peroxiredoxin PRDX-2. Our results demonstrate a gustatory mechanism that mediates the detection and blocks ingestion of a non-canonical taste stimulus, hydrogen peroxide.
Collapse
Affiliation(s)
- Nikhil Bhatla
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - H Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
145
|
Haug MF, Gesemann M, Lazović V, Neuhauss SCF. Eumetazoan cryptochrome phylogeny and evolution. Genome Biol Evol 2015; 7:601-19. [PMID: 25601102 PMCID: PMC4350181 DOI: 10.1093/gbe/evv010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cryptochromes (Crys) are light sensing receptors that are present in all eukaryotes. They mainly absorb light in the UV/blue spectrum. The extant Crys consist of two subfamilies, which are descendants of photolyases but are now involved in the regulation of circadian rhythms. So far, knowledge about the evolution, phylogeny, and expression of cry genes is still scarce. The inclusion of cry sequences from a wide range of bilaterian species allowed us to analyze their phylogeny in detail, identifying six major Cry subgroups. Selective gene inactivations and stabilizations in multiple chordate as well as arthropod lineages suggest several sub- and/or neofunctionalization events. An expression study performed in zebrafish, the model organism harboring the largest amount of crys, showed indeed only partially overlapping expression of paralogous mRNA, supporting gene sub- and/or neofunctionalization. Moreover, the daily cry expression in the adult zebrafish retina indicated varying oscillation patterns in different cell types. Our extensive phylogenetic analysis provides for the first time an overview of cry evolutionary history. Although several, especially parasitic or blind species, have lost all cry genes, crustaceans have retained up to three crys, teleosts possess up to seven, and tetrapods up to four crys. The broad and cyclic expression pattern of all cry transcripts in zebrafish retinal layers implies an involvement in retinal circadian processes and supports the hypothesis of several autonomous circadian clocks present in the vertebrate retina.
Collapse
Affiliation(s)
- Marion F Haug
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Matthias Gesemann
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Viktor Lazović
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Switzerland
| |
Collapse
|
146
|
Guo M, Wu TH, Song YX, Ge MH, Su CM, Niu WP, Li LL, Xu ZJ, Ge CL, Al-Mhanawi MTH, Wu SP, Wu ZX. Reciprocal inhibition between sensory ASH and ASI neurons modulates nociception and avoidance in Caenorhabditis elegans. Nat Commun 2015; 6:5655. [PMID: 25585042 DOI: 10.1038/ncomms6655] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/24/2014] [Indexed: 02/02/2023] Open
Abstract
Sensory modulation is essential for animal sensations, behaviours and survival. Peripheral modulations of nociceptive sensations and aversive behaviours are poorly understood. Here we identify a biased cross-inhibitory neural circuit between ASH and ASI sensory neurons. This inhibition is essential to drive normal adaptive avoidance of a CuSO4 (Cu(2+)) challenge in Caenorhabditis elegans. In the circuit, ASHs respond to Cu(2+) robustly and suppress ASIs via electro-synaptically exciting octopaminergic RIC interneurons, which release octopamine (OA), and neuroendocrinally inhibit ASI by acting on the SER-3 receptor. In addition, ASIs sense Cu(2+) and permit a rapid onset of Cu(2+)-evoked responses in Cu(2+)-sensitive ADF neurons via neuropeptides possibly, to inhibit ASHs. ADFs function as interneurons to mediate ASI inhibition of ASHs by releasing serotonin (5-HT) that binds with the SER-5 receptor on ASHs. This elaborate modulation among sensory neurons via reciprocal inhibition fine-tunes the nociception and avoidance behaviour.
Collapse
Affiliation(s)
- Min Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Tai-Hong Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yan-Xue Song
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Chun-Ming Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Wei-Pin Niu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Lan-Lan Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zi-Jing Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Chang-Li Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Maha T H Al-Mhanawi
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Shi-Ping Wu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
147
|
Hierarchical sparse coding in the sensory system of Caenorhabditis elegans. Proc Natl Acad Sci U S A 2015; 112:1185-9. [PMID: 25583501 DOI: 10.1073/pnas.1423656112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Animals with compact sensory systems face an encoding problem where a small number of sensory neurons are required to encode information about its surrounding complex environment. Using Caenorhabditis elegans worms as a model, we ask how chemical stimuli are encoded by a small and highly connected sensory system. We first generated a comprehensive library of transgenic worms where each animal expresses a genetically encoded calcium indicator in individual sensory neurons. This library includes the vast majority of the sensory system in C. elegans. Imaging from individual sensory neurons while subjecting the worms to various stimuli allowed us to compile a comprehensive functional map of the sensory system at single neuron resolution. The functional map reveals that despite the dense wiring, chemosensory neurons represent the environment using sparse codes. Moreover, although anatomically closely connected, chemo- and mechano-sensory neurons are functionally segregated. In addition, the code is hierarchical, where few neurons participate in encoding multiple cues, whereas other sensory neurons are stimulus specific. This encoding strategy may have evolved to mitigate the constraints of a compact sensory system.
Collapse
|
148
|
Qiu Z, Tu L, Huang L, Zhu T, Nock V, Yu E, Liu X, Wang W. An integrated platform enabling optogenetic illumination of Caenorhabditis elegans neurons and muscular force measurement in microstructured environments. BIOMICROFLUIDICS 2015; 9:014123. [PMID: 25759756 PMCID: PMC4336256 DOI: 10.1063/1.4908595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/06/2015] [Indexed: 06/01/2023]
Abstract
Optogenetics has been recently applied to manipulate the neural circuits of Caenorhabditis elegans (C. elegans) to investigate its mechanosensation and locomotive behavior, which is a fundamental topic in model biology. In most neuron-related research, free C. elegans moves on an open area such as agar surface. However, this simple environment is different from the soil, in which C. elegans naturally dwells. To bridge up the gap, this paper presents integration of optogenetic illumination of C. elegans neural circuits and muscular force measurement in a structured microfluidic chip mimicking the C. elegans soil habitat. The microfluidic chip is essentially a ∼1 × 1 cm(2) elastomeric polydimethylsiloxane micro-pillar array, configured in either form of lattice (LC) or honeycomb (HC) to mimic the environment in which the worm dwells. The integrated system has four key modules for illumination pattern generation, pattern projection, automatic tracking of the worm, and force measurement. Specifically, two optical pathways co-exist in an inverted microscope, including built-in bright-field illumination for worm tracking and pattern generation, and added-in optogenetic illumination for pattern projection onto the worm body segment. The behavior of a freely moving worm in the chip under optogenetic manipulation can be recorded for off-line force measurements. Using wild-type N2 C. elegans, we demonstrated optical illumination of C. elegans neurons by projecting light onto its head/tail segment at 14 Hz refresh frequency. We also measured the force and observed three representative locomotion patterns of forward movement, reversal, and omega turn for LC and HC configurations. Being capable of stimulating or inhibiting worm neurons and simultaneously measuring the thrust force, this enabling platform would offer new insights into the correlation between neurons and locomotive behaviors of the nematode under a complex environment.
Collapse
Affiliation(s)
- Zhichang Qiu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Long Tu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Taoyuanmin Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Volker Nock
- Department of Electrical and Computer Engineering, University of Canterbury , Christchurch, New Zealand
| | - Enchao Yu
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Xiao Liu
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| |
Collapse
|
149
|
Yadlapalli S, Wani KA, Xu XZS. Past experience resets behavior: CaMK takes the heat. Neuron 2014; 84:883-5. [PMID: 25475181 PMCID: PMC4301849 DOI: 10.1016/j.neuron.2014.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
How past experiences reshape behavior is not well understood. In this issue, two studies (Schild et al., 2014; Yu et al., 2014) dissected the molecular mechanisms underlying experience-dependent plasticity in thermosensory behavior. They show that Ca(2+)/calmodulin-dependent kinase I (CaMKI) regulates thermal preferences according to past experience.
Collapse
Affiliation(s)
- Swathi Yadlapalli
- Life Sciences Institute and Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Khursheed A Wani
- Life Sciences Institute and Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
150
|
Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches. PLoS One 2014; 9:e112871. [PMID: 25396739 PMCID: PMC4232591 DOI: 10.1371/journal.pone.0112871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.
Collapse
|