101
|
Lu Y, Liu H, Yang D, Zhong L, Xin Y, Zhao S, Wang MW, Zhou Q, Shui W. Affinity Mass Spectrometry-Based Fragment Screening Identified a New Negative Allosteric Modulator of the Adenosine A 2A Receptor Targeting the Sodium Ion Pocket. ACS Chem Biol 2021; 16:991-1002. [PMID: 34048655 DOI: 10.1021/acschembio.0c00899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Allosteric ligands provide new opportunities to modulate G protein-coupled receptor (GPCR) function and present therapeutic benefits over orthosteric molecules. Negative allosteric modulators (NAMs) can inhibit the activation of a receptor and downstream signal transduction. Screening NAMs for a GPCR target is particularly challenging because of the difficulty in distinguishing NAMs from antagonists bound to the orthosteric site as they both show inhibitory effects in receptor signaling assays. Here we report an affinity mass spectrometry (MS)-based approach tailored to screening potential NAMs of a GPCR target especially from fragment libraries. Compared to regular surface plasmon resonance or NMR-based methods for fragment screening, our approach features a reduction of the protein and compound consumption by 2-4 orders of magnitude and an increase in the data acquisition speed by 2-3 orders of magnitude. Our affinity MS-based fragment screening led to the identification of a new NAM of the adenosine A2A receptor (A2AAR) bearing an unprecedented azetidine moiety predicted to occupy the allosteric sodium binding site. Molecular dynamics simulations, ligand structure-activity relationship (SAR) studies, and in-solution NMR analyses further revealed the unique binding mode and antagonistic property of this compound that differs considerably from HMA (5-(N,N-hexamethylene)amiloride), a well-characterized NAM of A2AAR. Taken together, our work would facilitate fragment-based screening of allosteric modulators, as well as guide the design of novel NAMs acting at the sodium ion pocket of class A GPCRs.
Collapse
Affiliation(s)
- Yan Lu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyue Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dehua Yang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Zhong
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ye Xin
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ming-Wei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qingtong Zhou
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
102
|
Perez JJ. Exploiting Knowledge on Structure-Activity Relationships for Designing Peptidomimetics of Endogenous Peptides. Biomedicines 2021; 9:651. [PMID: 34200402 PMCID: PMC8229937 DOI: 10.3390/biomedicines9060651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/01/2022] Open
Abstract
Endogenous peptides are important mediators in cell communication, being consequently involved in many physiological processes. Their use as therapeutic agents is limited due to their poor pharmacokinetic profile. To circumvent this drawback, alternative diverse molecules based on the stereochemical features that confer their activity can be synthesized, using them as guidance; from peptide surrogates provided with a better pharmacokinetic profile, to small molecule peptidomimetics, through cyclic peptides. The design process requires a competent use of the structure-activity results available on individual peptides. Specifically, it requires synthesis and analysis of the activity of diverse analogs, biophysical information and computational work. In the present work, we show a general framework of the process and show its application to two specific examples: the design of selective AT1 antagonists of angiotensin and the design of selective B2 antagonists of bradykinin.
Collapse
Affiliation(s)
- Juan J Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya, 08028 Barcelona, Spain
| |
Collapse
|
103
|
Mulry E, Ray AP, Eddy MT. Production of a Human Histamine Receptor for NMR Spectroscopy in Aqueous Solutions. Biomolecules 2021; 11:632. [PMID: 33923140 PMCID: PMC8146376 DOI: 10.3390/biom11050632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022] Open
Abstract
G protein-coupled receptors (GPCRs) bind a broad array of extracellular molecules and transmit intracellular signals that initiate physiological responses. The signal transduction functions of GPCRs are inherently related to their structural plasticity, which can be experimentally observed by spectroscopic techniques. Nuclear magnetic resonance (NMR) spectroscopy in particular is an especially advantageous method to study the dynamic behavior of GPCRs. The success of NMR studies critically relies on the production of functional GPCRs containing stable-isotope labeled probes, which remains a challenging endeavor for most human GPCRs. We report a protocol for the production of the human histamine H1 receptor (H1R) in the methylotrophic yeast Pichia pastoris for NMR experiments. Systematic evaluation of multiple expression parameters resulted in a ten-fold increase in the yield of expressed H1R over initial efforts in defined media. The expressed receptor could be purified to homogeneity and was found to respond to the addition of known H1R ligands. Two-dimensional transverse relaxation-optimized spectroscopy (TROSY) NMR spectra of stable-isotope labeled H1R show well-dispersed and resolved signals consistent with a properly folded protein, and 19F-NMR data register a response of the protein to differences in efficacies of bound ligands.
Collapse
MESH Headings
- Gene Expression
- Humans
- Ligands
- Magnetic Resonance Spectroscopy/methods
- Nuclear Magnetic Resonance, Biomolecular/methods
- Protein Binding
- Protein Conformation
- Protein Engineering/methods
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/isolation & purification
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Histamine/chemistry
- Receptors, Histamine/isolation & purification
- Receptors, Histamine/metabolism
- Receptors, Histamine H1/chemistry
- Receptors, Histamine H1/isolation & purification
- Receptors, Histamine H1/metabolism
- Saccharomycetales/metabolism
- Signal Transduction
- Structure-Activity Relationship
Collapse
Affiliation(s)
| | | | - Matthew T. Eddy
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA; (E.M.); (A.P.R.)
| |
Collapse
|
104
|
Ghislain J, Poitout V. Targeting lipid GPCRs to treat type 2 diabetes mellitus - progress and challenges. Nat Rev Endocrinol 2021; 17:162-175. [PMID: 33495605 DOI: 10.1038/s41574-020-00459-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Therapeutic approaches to the treatment of type 2 diabetes mellitus that are designed to increase insulin secretion either directly target β-cells or indirectly target gastrointestinal enteroendocrine cells (EECs), which release hormones that modulate insulin secretion (for example, incretins). Given that β-cells and EECs both express a large array of G protein-coupled receptors (GPCRs) that modulate insulin secretion, considerable research and development efforts have been undertaken to design therapeutic drugs targeting these GPCRs. Among them are GPCRs specific for free fatty acid ligands (lipid GPCRs), including free fatty acid receptor 1 (FFA1, otherwise known as GPR40), FFA2 (GPR43), FFA3 (GPR41) and FFA4 (GPR120), as well as the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). These lipid GPCRs have demonstrated important roles in the control of islet and gut hormone secretion. Advances in lipid GPCR pharmacology have led to the identification of a number of synthetic agonists that exert beneficial effects on glucose homeostasis in preclinical studies. Yet, translation of these promising results to the clinic has so far been disappointing. In this Review, we present the physiological roles, pharmacology and clinical studies of these lipid receptors and discuss the challenges associated with their clinical development for the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Julien Ghislain
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.
- Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
105
|
Zhang M, Gui M, Wang ZF, Gorgulla C, Yu JJ, Wu H, Sun ZYJ, Klenk C, Merklinger L, Morstein L, Hagn F, Plückthun A, Brown A, Nasr ML, Wagner G. Cryo-EM structure of an activated GPCR-G protein complex in lipid nanodiscs. Nat Struct Mol Biol 2021; 28:258-267. [PMID: 33633398 PMCID: PMC8176890 DOI: 10.1038/s41594-020-00554-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane proteins and the targets of over 30% of currently marketed pharmaceuticals. Although several structures have been solved for GPCR-G protein complexes, few are in a lipid membrane environment. Here, we report cryo-EM structures of complexes of neurotensin, neurotensin receptor 1 and Gαi1β1γ1 in two conformational states, resolved to resolutions of 4.1 and 4.2 Å. The structures, determined in a lipid bilayer without any stabilizing antibodies or nanobodies, reveal an extended network of protein-protein interactions at the GPCR-G protein interface as compared to structures obtained in detergent micelles. The findings show that the lipid membrane modulates the structure and dynamics of complex formation and provide a molecular explanation for the stronger interaction between GPCRs and G proteins in lipid bilayers. We propose an allosteric mechanism for GDP release, providing new insights into the activation of G proteins for downstream signaling.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Zi-Fu Wang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James J Yu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Zhen-Yu J Sun
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Christoph Klenk
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Lisa Merklinger
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Lena Morstein
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Franz Hagn
- Bavarian NMR Center at the Department of Chemistry, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Mahmoud L Nasr
- Department of Medicine, Division of Renal Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
106
|
Goulas A, Changeux JP, Wagstyl K, Amunts K, Palomero-Gallagher N, Hilgetag CC. The natural axis of transmitter receptor distribution in the human cerebral cortex. Proc Natl Acad Sci U S A 2021; 118:e2020574118. [PMID: 33452137 PMCID: PMC7826352 DOI: 10.1073/pnas.2020574118] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Transmitter receptors constitute a key component of the molecular machinery for intercellular communication in the brain. Recent efforts have mapped the density of diverse transmitter receptors across the human cerebral cortex with an unprecedented level of detail. Here, we distill these observations into key organizational principles. We demonstrate that receptor densities form a natural axis in the human cerebral cortex, reflecting decreases in differentiation at the level of laminar organization and a sensory-to-association axis at the functional level. Along this natural axis, key organizational principles are discerned: progressive molecular diversity (increase of the diversity of receptor density); excitation/inhibition (increase of the ratio of excitatory-to-inhibitory receptor density); and mirrored, orderly changes of the density of ionotropic and metabotropic receptors. The uncovered natural axis formed by the distribution of receptors aligns with the axis that is formed by other dimensions of cortical organization, such as the myelo- and cytoarchitectonic levels. Therefore, the uncovered natural axis constitutes a unifying organizational feature linking multiple dimensions of the cerebral cortex, thus bringing order to the heterogeneity of cortical organization.
Collapse
MESH Headings
- Autoradiography
- Brain/diagnostic imaging
- Brain/metabolism
- Brain/ultrastructure
- Brain Mapping
- Cell Communication/genetics
- Cerebral Cortex/diagnostic imaging
- Cerebral Cortex/metabolism
- Cerebral Cortex/ultrastructure
- Humans
- Receptors, AMPA/genetics
- Receptors, AMPA/isolation & purification
- Receptors, GABA-A/genetics
- Receptors, GABA-A/isolation & purification
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/isolation & purification
- Receptors, Neurotransmitter/chemistry
- Receptors, Neurotransmitter/classification
- Receptors, Neurotransmitter/genetics
- Receptors, Neurotransmitter/ultrastructure
Collapse
Affiliation(s)
- Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Jean-Pierre Changeux
- Communications Cellulaires, Collège de France, 75005 Paris, France;
- CNRS UMR 3571, Institut Pasteur, 75724 Paris, France
| | - Konrad Wagstyl
- McGill Centre for Integrative Neuroscience, Montréal Neurological Institute, Montréal, Canada QC H3A 2B4
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, United Kingdom
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
- C. and O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
- C. and O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany
- Jülich Aachen Research Alliance (JARA)-Translational Brain Medicine, Aachen, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, MA 02215
| |
Collapse
|
107
|
Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J, Liu Q, Zhao S, Shui W, Jiang Y, Wang MW. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct Target Ther 2021; 6:7. [PMID: 33414387 PMCID: PMC7790836 DOI: 10.1038/s41392-020-00435-w] [Citation(s) in RCA: 318] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 02/08/2023] Open
Abstract
As one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure-function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery.
Collapse
Affiliation(s)
- Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Qingtong Zhou
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Viktorija Labroska
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shanshan Qin
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Sanaz Darbalaei
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Elita Yuliantie
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linshan Xie
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Qing Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China. .,School of Pharmacy, Fudan University, 201203, Shanghai, China.
| |
Collapse
|
108
|
Hu Y, Chen M, Wang M, Li X. Flow-mediated vasodilation through mechanosensitive G protein-coupled receptors in endothelial cells. Trends Cardiovasc Med 2021; 32:61-70. [PMID: 33406458 DOI: 10.1016/j.tcm.2020.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022]
Abstract
Currently, endothelium-dependent vasodilatation involves three main mechanisms: production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS), synthesis of prostanoids by cyclooxygenase, and/or opening of calcium-sensitive potassium channels. Researchers have proposed multiple mechanosensors that may be involved in flow-mediated vasodilation (FMD), including G protein-coupled receptors (GPCRs), ion channels, and intercellular junction proteins, among others. However, GPCRs are considered the major mechanosensors that play a pivotal role in shear stress signal transduction. Among mechanosensitive GPCRs, G protein-coupled receptor 68, histamine H1 receptors, sphingosine-1-phosphate receptor 1, and bradykinin B2 receptors have been identified as endothelial sensors of flow shear stress regulating flow-mediated vasodilation. Thus, this review aims to expound on the mechanism whereby flow shear stress promotes vasodilation through the proposed mechanosensitive GPCRs in ECs.
Collapse
Affiliation(s)
- Yong Hu
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No.247, Beiyuan Street, Jinan, Shandong Province, 250031, China.
| | - Miao Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun, Jilin Province, 130021, China.
| | - Meili Wang
- Department of Obstetrics, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, NO.238, Jingshi East Road, Jinan, Shandong, 250012, China.
| | - Xiucun Li
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No.247, Beiyuan Street, Jinan, Shandong Province, 250031, China; Department of Anatomy and Histoembryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, NO.44, Wenhua West Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
109
|
Wang H, Hu W, Liu D, Wüthrich K. Design and preparation of the class B G protein-coupled receptors GLP-1R and GCGR for 19 F-NMR studies in solution. FEBS J 2020; 288:4053-4063. [PMID: 33369025 DOI: 10.1111/febs.15686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022]
Abstract
The human glucagon-like peptide-1 receptor (GLP-1R) and the glucagon receptor (GCGR) are class B G protein-coupled receptors (GPCRs) that are activated by interactions with, respectively, the glucagon-like peptide-1 (GLP-1) and glucagon (GCG). These polypeptide hormones are involved in the regulation of lipid and cholic acid metabolism, and thus play an important role in the pathogenesis of glucose metabolism and diabetes mellitus, which attracts keen interest of these GPCRs as drug targets. GLP-1R and GCGR have therefore been extensively investigated by X-ray crystallography and cryo-electron microscopy (cryo-EM), so that their structures are well known. Here, we present the groundwork for using nuclear magnetic resonance (NMR) spectroscopy in solution to complement the molecular architectures with information on intramolecular dynamics and on the thermodynamics and kinetics of interactions with physiological ligands and extrinsic drug candidates. This includes the generation of novel, near-wild-type constructs of GLP-1R and GCGR, optimization of the solution conditions for NMR studies in detergent micelles and in nanodiscs, post-translational chemical introduction of fluorine-19 NMR probes, and sequence-specific assignments of the 19 F-labels attached to indigenous cysteines. Addition of the negative allosteric modulator (NAM) NNC0640 was critically important for obtaining the long-time stability needed for our NMR experiments, and we report on novel insights into the allosteric effects arising from binding of NNC0640 to the transmembrane domain of GLP-1R (GLP-1R[TMD]).
Collapse
Affiliation(s)
- Huixia Wang
- iHuman Institute, ShanghaiTech University, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China
| | - Wanhui Hu
- iHuman Institute, ShanghaiTech University, China
| | | | - Kurt Wüthrich
- iHuman Institute, ShanghaiTech University, China.,Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
110
|
Renault P, Giraldo J. Dynamical Correlations Reveal Allosteric Sites in G Protein-Coupled Receptors. Int J Mol Sci 2020; 22:ijms22010187. [PMID: 33375427 PMCID: PMC7795036 DOI: 10.3390/ijms22010187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled Receptors (GPCRs) play a central role in many physiological processes and, consequently, constitute important drug targets. In particular, the search for allosteric drugs has recently drawn attention, since they could be more selective and lead to fewer side effects. Accordingly, computational tools have been used to estimate the druggability of allosteric sites in these receptors. In spite of many successful results, the problem is still challenging, particularly the prediction of hydrophobic sites in the interface between the protein and the membrane. In this work, we propose a complementary approach, based on dynamical correlations. Our basic hypothesis was that allosteric sites are strongly coupled to regions of the receptor that undergo important conformational changes upon activation. Therefore, using ensembles of experimental structures, normal mode analysis and molecular dynamics simulations we calculated correlations between internal fluctuations of different sites and a collective variable describing the activation state of the receptor. Then, we ranked the sites based on the strength of their coupling to the collective dynamics. In the β2 adrenergic (β2AR), glucagon (GCGR) and M2 muscarinic receptors, this procedure allowed us to correctly identify known allosteric sites, suggesting it has predictive value. Our results indicate that this dynamics-based approach can be a complementary tool to the existing toolbox to characterize allosteric sites in GPCRs.
Collapse
Affiliation(s)
- Pedro Renault
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 08193 Bellaterra, Spain
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 08193 Bellaterra, Spain
- Correspondence:
| |
Collapse
|
111
|
Krug U, Gloge A, Schmidt P, Becker‐Baldus J, Bernhard F, Kaiser A, Montag C, Gauglitz M, Vishnivetskiy SA, Gurevich VV, Beck‐Sickinger AG, Glaubitz C, Huster D. The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes. Angew Chem Int Ed Engl 2020; 59:23854-23861. [PMID: 32790043 PMCID: PMC7736470 DOI: 10.1002/anie.202006075] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Indexed: 12/23/2022]
Abstract
Dynamic structural transitions within the seven-transmembrane bundle represent the mechanism by which G-protein-coupled receptors convert an extracellular chemical signal into an intracellular biological function. Here, the conformational dynamics of the neuropeptide Y receptor type 2 (Y2R) during activation was investigated. The apo, full agonist-, and arrestin-bound states of Y2R were prepared by cell-free expression, functional refolding, and reconstitution into lipid membranes. To study conformational transitions between these states, all six tryptophans of Y2R were 13 C-labeled. NMR-signal assignment was achieved by dynamic-nuclear-polarization enhancement and the individual functional states of the receptor were characterized by monitoring 13 C NMR chemical shifts. Activation of Y2R is mediated by molecular switches involving the toggle switch residue Trp2816.48 of the highly conserved SWLP motif and Trp3277.55 adjacent to the NPxxY motif. Furthermore, a conformationally preserved "cysteine lock"-Trp11623.50 was identified.
Collapse
Affiliation(s)
- Ulrike Krug
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
| | - Anika Gloge
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
| | - Peter Schmidt
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
| | - Johanna Becker‐Baldus
- Institute of Biophysical ChemistryGoethe University FrankfurtGermany
- Center for Biomolecular Magnetic ResonanceGoethe University FrankfurtGermany
| | - Frank Bernhard
- Institute of Biophysical ChemistryGoethe University FrankfurtGermany
- Center for Biomolecular Magnetic ResonanceGoethe University FrankfurtGermany
| | - Anette Kaiser
- Institute of BiochemistryUniversity of LeipzigLeipzigGermany
| | - Cindy Montag
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
| | - Marcel Gauglitz
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
- Berlin Joint Electron Paramagnetic Resonance LaboratoryFree University BerlinGermany
| | | | | | | | - Clemens Glaubitz
- Institute of Biophysical ChemistryGoethe University FrankfurtGermany
- Center for Biomolecular Magnetic ResonanceGoethe University FrankfurtGermany
| | - Daniel Huster
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
| |
Collapse
|
112
|
Krug U, Gloge A, Schmidt P, Becker‐Baldus J, Bernhard F, Kaiser A, Montag C, Gauglitz M, Vishnivetskiy SA, Gurevich VV, Beck‐Sickinger AG, Glaubitz C, Huster D. Das Konformationsgleichgewicht des Neuropeptid‐Y2‐Rezeptors in Lipidmembranen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ulrike Krug
- Institut für Medizinische Physik und Biophysik Universität Leipzig Härtelstr. 16–18 04107 Leipzig Deutschland
| | - Anika Gloge
- Institut für Medizinische Physik und Biophysik Universität Leipzig Härtelstr. 16–18 04107 Leipzig Deutschland
| | - Peter Schmidt
- Institut für Medizinische Physik und Biophysik Universität Leipzig Härtelstr. 16–18 04107 Leipzig Deutschland
| | - Johanna Becker‐Baldus
- Institut für Biophysikalische Chemie Goethe-Universität Frankfurt am Main Deutschland
- Zentrum für Biomolekulare Magnetresonanz Goethe-Universität Frankfurt am Main Deutschland
| | - Frank Bernhard
- Institut für Biophysikalische Chemie Goethe-Universität Frankfurt am Main Deutschland
- Zentrum für Biomolekulare Magnetresonanz Goethe-Universität Frankfurt am Main Deutschland
| | - Anette Kaiser
- Institut für Biochemie Universität Leipzig Deutschland
| | - Cindy Montag
- Institut für Medizinische Physik und Biophysik Universität Leipzig Härtelstr. 16–18 04107 Leipzig Deutschland
| | - Marcel Gauglitz
- Institut für Medizinische Physik und Biophysik Universität Leipzig Härtelstr. 16–18 04107 Leipzig Deutschland
- Berlin Joint Electron Paramagnetic Resonance Laboratory Freie Universität Berlin Deutschland
| | | | | | | | - Clemens Glaubitz
- Institut für Biophysikalische Chemie Goethe-Universität Frankfurt am Main Deutschland
- Zentrum für Biomolekulare Magnetresonanz Goethe-Universität Frankfurt am Main Deutschland
| | - Daniel Huster
- Institut für Medizinische Physik und Biophysik Universität Leipzig Härtelstr. 16–18 04107 Leipzig Deutschland
| |
Collapse
|
113
|
Dumitru AC, Deepak RNVK, Liu H, Koehler M, Zhang C, Fan H, Alsteens D. Submolecular probing of the complement C5a receptor-ligand binding reveals a cooperative two-site binding mechanism. Commun Biol 2020; 3:786. [PMID: 33339958 PMCID: PMC7749166 DOI: 10.1038/s42003-020-01518-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/20/2020] [Indexed: 01/10/2023] Open
Abstract
A current challenge to produce effective therapeutics is to accurately determine the location of the ligand-biding site and to characterize its properties. So far, the mechanisms underlying the functional activation of cell surface receptors by ligands with a complex binding mechanism remain poorly understood due to a lack of suitable nanoscopic methods to study them in their native environment. Here, we elucidated the ligand-binding mechanism of the human G protein-coupled C5a receptor (C5aR). We discovered for the first time a cooperativity between the two orthosteric binding sites. We found that the N-terminus C5aR serves as a kinetic trap, while the transmembrane domain acts as the functional site and both contributes to the overall high-affinity interaction. In particular, Asp282 plays a key role in ligand binding thermodynamics, as revealed by atomic force microscopy and steered molecular dynamics simulation. Our findings provide a new structural basis for the functional and mechanistic understanding of the GPCR family that binds large macromolecular ligands.
Collapse
Affiliation(s)
- Andra C Dumitru
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, 1348, Louvain-la-Neuve, Belgium
| | - R N V Krishna Deepak
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie Koehler
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, 1348, Louvain-la-Neuve, Belgium
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - David Alsteens
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
114
|
GPCR Activation States Induced by Nanobodies and Mini-G Proteins Compared by NMR Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25245984. [PMID: 33348734 PMCID: PMC7767065 DOI: 10.3390/molecules25245984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
In this work, we examine methyl nuclear magnetic resonance (NMR) spectra of the methionine ε-[13CH3] labelled thermostabilized β1 adrenergic receptor from turkey in association with a variety of different effectors, including mini-Gs and nanobody 60 (Nb60), which have not been previously studied in complex with β1 adrenergic receptor (β1AR) by NMR. Complexes with pindolol and Nb60 induce highly similar inactive states of the receptor, closely resembling the resting state conformational ensemble. We show that, upon binding of mini-Gs or nanobody 80 (Nb80), large allosteric changes throughout the receptor take place. The conformation of tβ1AR stabilized by the native-like mini-Gs protein is highly similar to the conformation induced by the currently used surrogate Nb80. Interestingly, in both cases residual dynamics are present, which were not observed in the resting states. Finally, we reproduce a pharmaceutically relevant situation, where an antagonist abolishes the interaction of the receptor with the mini-G protein in a competitive manner, validating the functional integrity of our preparation. The presented system is therefore well suited for reproducing the individual steps of the activation cycle of a G protein-coupled receptor (GPCR) in vitro and serves as a basis for functional and pharmacological characterizations of more native-like systems in the future.
Collapse
|
115
|
Eddy MT, Martin BT, Wüthrich K. A 2A Adenosine Receptor Partial Agonism Related to Structural Rearrangements in an Activation Microswitch. Structure 2020; 29:170-176.e3. [PMID: 33238145 DOI: 10.1016/j.str.2020.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/13/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
In drug design, G protein-coupled receptor (GPCR) partial agonists enable one to fine-tune receptor output between basal and maximal signaling levels. Here, we add to the structural basis for rationalizing and monitoring partial agonism. NMR spectroscopy of partial agonist complexes of the A2A adenosine receptor (A2AAR) revealed conformations of the P-I-F activation motif that are distinctly different from full agonist complexes. At the intracellular surface, different conformations of helix VI observed for partial and full agonist complexes manifest a correlation between the efficacy-related structural rearrangement of this activation motif and intracellular signaling to partner proteins. While comparisons of A2AAR in complexes with partial and full agonists with different methods showed close similarity of the global folds, this NMR study now reveals subtle but distinct local structural differences related to partial agonism.
Collapse
Affiliation(s)
- Matthew T Eddy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Departments of Biological Sciences and Chemistry, Bridge Institute, The University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | - Bryan T Martin
- Departments of Biological Sciences and Chemistry, Bridge Institute, The University of Southern California, Los Angeles, CA 90089, USA
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
116
|
Vogel A, Bosse M, Gauglitz M, Wistuba S, Schmidt P, Kaiser A, Gurevich VV, Beck-Sickinger AG, Hildebrand PW, Huster D. The Dynamics of the Neuropeptide Y Receptor Type 1 Investigated by Solid-State NMR and Molecular Dynamics Simulation. Molecules 2020; 25:E5489. [PMID: 33255213 PMCID: PMC7727705 DOI: 10.3390/molecules25235489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023] Open
Abstract
We report data on the structural dynamics of the neuropeptide Y (NPY) G-protein-coupled receptor (GPCR) type 1 (Y1R), a typical representative of class A peptide ligand GPCRs, using a combination of solid-state NMR and molecular dynamics (MD) simulation. First, the equilibrium dynamics of Y1R were studied using 15N-NMR and quantitative determination of 1H-13C order parameters through the measurement of dipolar couplings in separated-local-field NMR experiments. Order parameters reporting the amplitudes of the molecular motions of the C-H bond vectors of Y1R in DMPC membranes are 0.57 for the Cα sites and lower in the side chains (0.37 for the CH2 and 0.18 for the CH3 groups). Different NMR excitation schemes identify relatively rigid and also dynamic segments of the molecule. In monounsaturated membranes composed of longer lipid chains, Y1R is more rigid, attributed to a higher hydrophobic thickness of the lipid membrane. The presence of an antagonist or NPY has little influence on the amplitude of motions, whereas the addition of agonist and arrestin led to a pronounced rigidization. To investigate Y1R dynamics with site resolution, we conducted extensive all-atom MD simulations of the apo and antagonist-bound state. In each state, three replicas with a length of 20 μs (with one exception, where the trajectory length was 10 μs) were conducted. In these simulations, order parameters of each residue were determined and showed high values in the transmembrane helices, whereas the loops and termini exhibit much lower order. The extracellular helix segments undergo larger amplitude motions than their intracellular counterparts, whereas the opposite is observed for the loops, Helix 8, and termini. Only minor differences in order were observed between the apo and antagonist-bound state, whereas the time scale of the motions is shorter for the apo state. Although these relatively fast motions occurring with correlation times of ns up to a few µs have no direct relevance for receptor activation, it is believed that they represent the prerequisite for larger conformational transitions in proteins.
Collapse
Affiliation(s)
- Alexander Vogel
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Mathias Bosse
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Marcel Gauglitz
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Sarah Wistuba
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Peter Schmidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Anette Kaiser
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany; (A.K.); (A.G.B.-S.)
| | - Vsevolod V. Gurevich
- Vanderbilt University Medical Center, 2200 Pierce Avenue, Nashville, TN 37232, USA;
| | - Annette G. Beck-Sickinger
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany; (A.K.); (A.G.B.-S.)
| | - Peter W. Hildebrand
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| |
Collapse
|
117
|
Van Drie JH, Tong L. Cryo-EM as a powerful tool for drug discovery. Bioorg Med Chem Lett 2020; 30:127524. [PMID: 32890683 PMCID: PMC7467112 DOI: 10.1016/j.bmcl.2020.127524] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
The recent revolution in cryo-EM has produced an explosion of structures at near-atomic or better resolution. This has allowed cryo-EM structures to provide visualization of bound small-molecule ligands in the macromolecules, and these new structures have provided unprecedented insights into the molecular mechanisms of complex biochemical processes. They have also had a profound impact on drug discovery, defining the binding modes and mechanisms of action of well-known drugs as well as driving the design and development of new compounds. This review will summarize and highlight some of these structures. Most excitingly, the latest cryo-EM technology has produced structures at 1.2 Å resolution, further solidifying cryo-EM as a powerful tool for drug discovery. Therefore, cryo-EM will play an ever-increasing role in drug discovery in the coming years.
Collapse
Affiliation(s)
- John H Van Drie
- Van Drie Research LLC, 109 Millpond, North Andover, MA 01845, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
118
|
Kraus S, Benard O, Naor Z, Seger R. C-Src is Activated by the EGF Receptor in a Pathway that Mediates JNK and ERK Activation by Gonadotropin-Releasing Hormone in COS7 Cells. Int J Mol Sci 2020; 21:ijms21228575. [PMID: 33202981 PMCID: PMC7697137 DOI: 10.3390/ijms21228575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022] Open
Abstract
The key participants in G-protein-coupled receptor (GPCR) signaling are the mitogen-activated protein kinase (MAPK) signaling cascades. The mechanisms involved in the activation of the above cascades by GPCRs are not fully elucidated. The prototypical GPCR is the receptor for gonadotropin-releasing hormone (GnRHR), which serves as a key regulator of the reproductive system. Here, we expressed GnRHR in COS7 cells and found that GnRHR transmits its signals to MAPKs mainly via Gαi and the EGF receptor, without the involvement of Hb-EGF or PKCs. The main pathway that leads to JNK activation downstream of the EGF receptor involves a sequential activation of c-Src and PI3K. ERK activation by GnRHR is mediated by the EGF receptor, which activates Ras either directly or via c-Src. Beside the main pathway, the dissociated Gβγ and β-arrestin may initiate additional (albeit minor) pathways that lead to MAPK activation in the transfected COS7 cells. The pathways detected are significantly different from those in other GnRHR-bearing cells, indicating that GnRH can utilize various signaling mechanisms for MAPK activation. The unique pathway elucidated here, in which c-Src and PI3K are sequentially activated downstream of the EGF receptor, may serve as a prototype of signaling mechanisms by GnRHR and additional GPCRs in various cell types.
Collapse
Affiliation(s)
- Sarah Kraus
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel; (S.K.); (O.B.)
| | - Outhiriaradjou Benard
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel; (S.K.); (O.B.)
| | - Zvi Naor
- Department of Biochemistry, Tel Aviv University, Ramat Aviv 69978, Israel;
| | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel; (S.K.); (O.B.)
- Correspondence: ; Tel.: +972-8-9343602
| |
Collapse
|
119
|
Yeh V, Goode A, Bonev BB. Membrane Protein Structure Determination and Characterisation by Solution and Solid-State NMR. BIOLOGY 2020; 9:E396. [PMID: 33198410 PMCID: PMC7697852 DOI: 10.3390/biology9110396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022]
Abstract
Biological membranes define the interface of life and its basic unit, the cell. Membrane proteins play key roles in membrane functions, yet their structure and mechanisms remain poorly understood. Breakthroughs in crystallography and electron microscopy have invigorated structural analysis while failing to characterise key functional interactions with lipids, small molecules and membrane modulators, as well as their conformational polymorphism and dynamics. NMR is uniquely suited to resolving atomic environments within complex molecular assemblies and reporting on membrane organisation, protein structure, lipid and polysaccharide composition, conformational variations and molecular interactions. The main challenge in membrane protein studies at the atomic level remains the need for a membrane environment to support their fold. NMR studies in membrane mimetics and membranes of increasing complexity offer close to native environments for structural and molecular studies of membrane proteins. Solution NMR inherits high resolution from small molecule analysis, providing insights from detergent solubilised proteins and small molecular assemblies. Solid-state NMR achieves high resolution in membrane samples through fast sample spinning or sample alignment. Recent developments in dynamic nuclear polarisation NMR allow signal enhancement by orders of magnitude opening new opportunities for expanding the applications of NMR to studies of native membranes and whole cells.
Collapse
Affiliation(s)
| | | | - Boyan B. Bonev
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (V.Y.); (A.G.)
| |
Collapse
|
120
|
Dubey A, Takeuchi K, Reibarkh M, Arthanari H. The role of NMR in leveraging dynamics and entropy in drug design. JOURNAL OF BIOMOLECULAR NMR 2020; 74:479-498. [PMID: 32720098 PMCID: PMC7686249 DOI: 10.1007/s10858-020-00335-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/11/2020] [Indexed: 05/03/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy has contributed to structure-based drug development (SBDD) in a unique way compared to the other biophysical methods. The potency of a ligand binding to a protein is dictated by the binding free energy, which is an intricate interplay between entropy and enthalpy. In addition to providing the atomic resolution structural information, NMR can help to identify protein-ligand interactions that potentially contribute to the enthalpic component of the free energy. NMR can also illuminate dynamic aspects of the interaction, which correspond to the entropic term of the free energy. The ability of NMR to access both terms in the free energy equation stems from the suite of experiments developed to shed light on various aspects that contribute to both entropy and enthalpy, deepening our understanding of the biological function of macromolecules and assisting to target them in physiological conditions. Here we provide a brief account of the contribution of NMR to SBDD, highlighting hallmark examples and discussing the challenges that demand further method development. In the era of integrated biology, the unique ability of NMR to directly ascertain structural and dynamical aspects of macromolecule and monitor changes in these properties upon engaging a ligand can be combined with computational and other structural and biophysical methods to provide a more complete picture of the energetics of drug engagement with the target. Such efforts can be used to engineer better drugs.
Collapse
Affiliation(s)
- Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute & Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
121
|
Pacull EM, Sendker F, Bernhard F, Scheidt HA, Schmidt P, Huster D, Krug U. Integration of Cell-Free Expression and Solid-State NMR to Investigate the Dynamic Properties of Different Sites of the Growth Hormone Secretagogue Receptor. Front Pharmacol 2020; 11:562113. [PMID: 33324203 PMCID: PMC7723455 DOI: 10.3389/fphar.2020.562113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cell-free expression represents an attractive method to produce large quantities of selectively labeled protein for NMR applications. Here, cell-free expression was used to label specific regions of the growth hormone secretagogue receptor (GHSR) with NMR-active isotopes. The GHSR is a member of the class A family of G protein-coupled receptors. A cell-free expression system was established to produce the GHSR in the precipitated form. The solubilized receptor was refolded in vitro and reconstituted into DMPC lipid membranes. Methionines, arginines, and histidines were chosen for 13C-labeling as they are representative for the transmembrane domains, the loops and flanking regions of the transmembrane α-helices, and the C-terminus of the receptor, respectively. The dynamics of the isotopically labeled residues was characterized by solid-state NMR measuring motionally averaged 1H-13C dipolar couplings, which were converted into molecular order parameters. Separated local field DIPSHIFT experiments under magic-angle spinning conditions using either varying cross polarization contact times or direct excitation provided order parameters for these residues showing that the C-terminus was the segment with the highest motional amplitude. The loop regions and helix ends as well as the transmembrane regions of the GHSR represent relatively rigid segments in the overall very flexible receptor molecule. Although no site resolution could be achieved in the experiments, the previously reported highly dynamic character of the receptor concluded from uniformly 13C labeled receptor samples could be further specified by this segmental labeling approach, leading to a more diversified understanding of the receptor dynamics under equilibrium conditions.
Collapse
Affiliation(s)
- Emelyne M Pacull
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Franziska Sendker
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Peter Schmidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Ulrike Krug
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
122
|
Rößler P, Mathieu D, Gossert AD. NMR‐Studien an biologischen Makromolekülen (>100 kDa) ohne Notwendigkeit der Deuterierung: Das XL‐ALSOFAST Experiment mit verzögerter Entkopplung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Philip Rößler
- Institut für Molekularbiologie und Biophysik Department Biologie und Biomolekulare NMR Spektroskopie Plattform Department Biologie ETH Zürich Otto-Stern-Weg 5 8093 Zürich Schweiz
| | - Daniel Mathieu
- Bruker BioSpin GmbH Silberstreifen 4 76287 Rheinstetten Deutschland
| | - Alvar D. Gossert
- Institut für Molekularbiologie und Biophysik Department Biologie und Biomolekulare NMR Spektroskopie Plattform Department Biologie ETH Zürich Otto-Stern-Weg 5 8093 Zürich Schweiz
| |
Collapse
|
123
|
Rößler P, Mathieu D, Gossert AD. Enabling NMR Studies of High Molecular Weight Systems Without the Need for Deuteration: The XL-ALSOFAST Experiment with Delayed Decoupling. Angew Chem Int Ed Engl 2020; 59:19329-19337. [PMID: 32743971 PMCID: PMC7589290 DOI: 10.1002/anie.202007715] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 11/30/2022]
Abstract
Current biological research increasingly focusses on large human proteins and their complexes. Such proteins are difficult to study by NMR spectroscopy because they often can only be produced in higher eukaryotic expression systems, where deuteration is hardly feasible. Here, we present the XL-ALSOFAST-[13 C,1 H]-HMQC experiment with much improved sensitivity for fully protonated high molecular weight proteins. For the tested systems ranging from 100 to 240 kDa in size, 3-fold higher sensitivity was obtained on average for fast relaxing signals compared to current state-of-the-art experiments. In the XL-ALSOFAST approach, non-observed magnetisation is optimally exploited and transverse relaxation is minimized by the newly introduced concept of delayed decoupling. The combination of high sensitivity and superior artefact suppression makes it ideal for studying inherently unstable membrane proteins or for analysing therapeutic antibodies at natural 13 C abundance. The XL-ALSOFAST and delayed decoupling will therefore expand the range of biomolecular systems accessible to NMR spectroscopy.
Collapse
Affiliation(s)
- Philip Rößler
- Institute of Molecular Biology and BiophysicsDepartment of Biology and Biomolecular NMR Spectroscopy PlatformDepartment of BiologyETH ZürichOtto-Stern-Weg 58093ZürichSwitzerland
| | - Daniel Mathieu
- Bruker BioSpin GmbHSilberstreifen 476287RheinstettenGermany
| | - Alvar D. Gossert
- Institute of Molecular Biology and BiophysicsDepartment of Biology and Biomolecular NMR Spectroscopy PlatformDepartment of BiologyETH ZürichOtto-Stern-Weg 58093ZürichSwitzerland
| |
Collapse
|
124
|
Jones AJY, Gabriel F, Tandale A, Nietlispach D. Structure and Dynamics of GPCRs in Lipid Membranes: Physical Principles and Experimental Approaches. Molecules 2020; 25:E4729. [PMID: 33076366 PMCID: PMC7587580 DOI: 10.3390/molecules25204729] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the vast amount of information generated through structural and biophysical studies of GPCRs has provided unprecedented mechanistic insight into the complex signalling behaviour of these receptors. With this recent information surge, it has also become increasingly apparent that in order to reproduce the various effects that lipids and membranes exert on the biological function for these allosteric receptors, in vitro studies of GPCRs need to be conducted under conditions that adequately approximate the native lipid bilayer environment. In the first part of this review, we assess some of the more general effects that a membrane environment exerts on lipid bilayer-embedded proteins such as GPCRs. This is then followed by the consideration of more specific effects, including stoichiometric interactions with specific lipid subtypes. In the final section, we survey a range of different membrane mimetics that are currently used for in vitro studies, with a focus on NMR applications.
Collapse
Affiliation(s)
| | | | | | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (A.J.Y.J.); (F.G.); (A.T.)
| |
Collapse
|
125
|
Capturing Peptide-GPCR Interactions and Their Dynamics. Molecules 2020; 25:molecules25204724. [PMID: 33076289 PMCID: PMC7587574 DOI: 10.3390/molecules25204724] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Many biological functions of peptides are mediated through G protein-coupled receptors (GPCRs). Upon ligand binding, GPCRs undergo conformational changes that facilitate the binding and activation of multiple effectors. GPCRs regulate nearly all physiological processes and are a favorite pharmacological target. In particular, drugs are sought after that elicit the recruitment of selected effectors only (biased ligands). Understanding how ligands bind to GPCRs and which conformational changes they induce is a fundamental step toward the development of more efficient and specific drugs. Moreover, it is emerging that the dynamic of the ligand–receptor interaction contributes to the specificity of both ligand recognition and effector recruitment, an aspect that is missing in structural snapshots from crystallography. We describe here biochemical and biophysical techniques to address ligand–receptor interactions in their structural and dynamic aspects, which include mutagenesis, crosslinking, spectroscopic techniques, and mass-spectrometry profiling. With a main focus on peptide receptors, we present methods to unveil the ligand–receptor contact interface and methods that address conformational changes both in the ligand and the GPCR. The presented studies highlight a wide structural heterogeneity among peptide receptors, reveal distinct structural changes occurring during ligand binding and a surprisingly high dynamics of the ligand–GPCR complexes.
Collapse
|
126
|
Nielsen CDT, Dhasmana D, Floresta G, Wohland T, Cilibrizzi A. Illuminating the Path to Target GPCR Structures and Functions. Biochemistry 2020; 59:3783-3795. [PMID: 32956586 DOI: 10.1021/acs.biochem.0c00606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-Protein-coupled receptors (GPCRs) are ubiquitous within eukaryotes, responsible for a wide array of physiological and pathological processes. Indeed, the fact that they are the most drugged target in the human genome is indicative of their importance. Despite the clear interest in GPCRs, most information regarding their activity has been so far obtained by analyzing the response from a "bulk medium". As such, this Perspective summarizes some of the common methods for this indirect observation. Nonetheless, by inspecting approaches applying super-resolution imaging, we argue that imaging is perfectly situated to obtain more detailed structural and spatial information, assisting in the development of new GPCR-targeted drugs and clinical strategies. The benefits of direct optical visualization of GPCRs are analyzed in the context of potential future directions in the field.
Collapse
Affiliation(s)
- Christian D-T Nielsen
- Imperial College London, White City Campus, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, U.K
| | - Divya Dhasmana
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Giuseppe Floresta
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| |
Collapse
|
127
|
Yeliseev A, van den Berg A, Zoubak L, Hines K, Stepnowski S, Williston K, Yan W, Gawrisch K, Zmuda J. Thermostability of a recombinant G protein-coupled receptor expressed at high level in mammalian cell culture. Sci Rep 2020; 10:16805. [PMID: 33033368 PMCID: PMC7546613 DOI: 10.1038/s41598-020-73813-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Rational design of pharmaceutical drugs targeting integral membrane G protein-coupled receptors (GPCR) requires thorough understanding of ligand binding and mechanism of activation through high resolution structural studies of purified proteins. Due to inherent conformational flexibility of GPCR, stabilization of these proteins solubilized from cell membranes into detergents is a challenging task. Here, we take advantage of naturally occurring post-translational modifications for stabilization of purified GPCR in detergent micelles. The recombinant cannabinoid CB2 receptor was expressed at high yield in Expi293F mammalian cell cultures, solubilized and purified in Façade detergent. We report superior stability of the mammalian cell-expressed receptor compared to its E.coli-expressed counterpart, due to contributions from glycosylation of the N terminus and palmitoylation of the C terminus of CB2. Finally, we demonstrate that the mammalian Expi293F amino acid labelling kit is suitable for preparation of multi-milligram quantities of high quality, selectively stable isotope-labeled GPCR for studies by nuclear magnetic resonance.
Collapse
Affiliation(s)
- Alexei Yeliseev
- National Institute on Alcoholism and Alcohol Abuse, NIH, Bethesda, MD, 20892, USA.
| | | | - Lioudmila Zoubak
- National Institute on Alcoholism and Alcohol Abuse, NIH, Bethesda, MD, 20892, USA
| | - Kirk Hines
- National Institute on Alcoholism and Alcohol Abuse, NIH, Bethesda, MD, 20892, USA
| | - Sam Stepnowski
- ThermoFisher Scientific, 7335 Executive Way, Frederick, MD, 21704, USA
| | - Kyle Williston
- ThermoFisher Scientific, 7335 Executive Way, Frederick, MD, 21704, USA
| | - Wanhua Yan
- ThermoFisher Scientific, 7335 Executive Way, Frederick, MD, 21704, USA
| | - Klaus Gawrisch
- National Institute on Alcoholism and Alcohol Abuse, NIH, Bethesda, MD, 20892, USA
| | - Jonathan Zmuda
- ThermoFisher Scientific, 7335 Executive Way, Frederick, MD, 21704, USA
| |
Collapse
|
128
|
Muratspahić E, Koehbach J, Gruber CW, Craik DJ. Harnessing cyclotides to design and develop novel peptide GPCR ligands. RSC Chem Biol 2020; 1:177-191. [PMID: 34458757 PMCID: PMC8341132 DOI: 10.1039/d0cb00062k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclotides are plant-derived cyclic, disulfide-rich peptides with a unique cyclic cystine knot topology that confers them with remarkable structural stability and resistance to proteolytic degradation. Recently, cyclotides have emerged as promising scaffold molecules for designing peptide-based therapeutics. Here, we provide examples of how engineering cyclotides using molecular grafting may lead to the development of novel peptide ligands of G protein-coupled receptors (GPCRs), today's most exploited drug targets. Integrating bioactive epitopes into stable cyclotide scaffolds can lead to improved pharmacokinetics and oral activity as well as selectivity and high enzymatic stability. We also discuss and highlight the importance of engineered cyclotides as novel tools to study GPCR signaling.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Austria
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Austria
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
129
|
Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: The Case of Iron–Sulfur Proteins. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study of cellular machineries responsible for the iron–sulfur (Fe–S) cluster biogenesis has led to the identification of a large number of proteins, whose importance for life is documented by an increasing number of diseases linked to them. The labile nature of Fe–S clusters and the transient protein–protein interactions, occurring during the various steps of the maturation process, make their structural characterization in solution particularly difficult. Paramagnetic nuclear magnetic resonance (NMR) has been used for decades to characterize chemical composition, magnetic coupling, and the electronic structure of Fe–S clusters in proteins; it represents, therefore, a powerful tool to study the protein–protein interaction networks of proteins involving into iron–sulfur cluster biogenesis. The optimization of the various NMR experiments with respect to the hyperfine interaction will be summarized here in the form of a protocol; recently developed experiments for measuring longitudinal and transverse nuclear relaxation rates in highly paramagnetic systems will be also reviewed. Finally, we will address the use of extrinsic paramagnetic centers covalently bound to diamagnetic proteins, which contributed over the last twenty years to promote the applications of paramagnetic NMR well beyond the structural biology of metalloproteins.
Collapse
|
130
|
The lysophospholipase D enzyme Gdpd3 is required to maintain chronic myelogenous leukaemia stem cells. Nat Commun 2020; 11:4681. [PMID: 32943626 PMCID: PMC7499193 DOI: 10.1038/s41467-020-18491-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/26/2020] [Indexed: 02/02/2023] Open
Abstract
Although advanced lipidomics technology facilitates quantitation of intracellular lipid components, little is known about the regulation of lipid metabolism in cancer cells. Here, we show that disruption of the Gdpd3 gene encoding a lysophospholipase D enzyme significantly decreased self-renewal capacity in murine chronic myelogenous leukaemia (CML) stem cells in vivo. Sophisticated lipidomics analyses revealed that Gdpd3 deficiency reduced levels of certain lysophosphatidic acids (LPAs) and lipid mediators in CML cells. Loss of Gdpd3 also activated AKT/mTORC1 signalling and cell cycle progression while suppressing Foxo3a/β-catenin interaction within CML stem cell nuclei. Strikingly, CML stem cells carrying a hypomorphic mutation of Lgr4/Gpr48, which encodes a leucine-rich repeat (LRR)-containing G-protein coupled receptor (GPCR) acting downstream of Gdpd3, displayed inadequate disease-initiating capacity in vivo. Our data showing that lysophospholipid metabolism is required for CML stem cell maintenance in vivo establish a new, biologically significant mechanism of cancer recurrence that is independent of oncogene addiction. How lipid metabolism can affect cancer recurrence is still unclear. Here, the authors show that the lysophospholipase D Gdpd3 maintains self-renewal capacity of CML stem cells by regulating the quiescence, and AKT/mTORC1 and Foxo3a/β-catenin signalling in an oncogene-independent manner.
Collapse
|
131
|
Kögler LM, Stichel J, Beck-Sickinger AG. Structural investigations of cell-free expressed G protein-coupled receptors. Biol Chem 2020; 401:97-116. [PMID: 31539345 DOI: 10.1515/hsz-2019-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are of great pharmaceutical interest and about 35% of the commercial drugs target these proteins. Still there is huge potential left in finding molecules that target new GPCRs or that modulate GPCRs differentially. For a rational drug design, it is important to understand the structure, binding and activation of the protein of interest. Structural investigations of GPCRs remain challenging, although huge progress has been made in the last 20 years, especially in the generation of crystal structures of GPCRs. This is mostly caused by issues with the expression yield, purity or labeling. Cell-free protein synthesis (CFPS) is an efficient alternative for recombinant expression systems that can potentially address many of these problems. In this article the use of CFPS for structural investigations of GPCRs is reviewed. We compare different CFPS systems, including the cellular basis and reaction configurations, and strategies for an efficient solubilization. Next, we highlight recent advances in the structural investigation of cell-free expressed GPCRs, with special emphasis on the role of photo-crosslinking approaches to investigate ligand binding sites on GPCRs.
Collapse
Affiliation(s)
- Lisa Maria Kögler
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| |
Collapse
|
132
|
Mazzolari A, Gervasoni S, Pedretti A, Fumagalli L, Matucci R, Vistoli G. Repositioning Dequalinium as Potent Muscarinic Allosteric Ligand by Combining Virtual Screening Campaigns and Experimental Binding Assays. Int J Mol Sci 2020; 21:ijms21175961. [PMID: 32825082 PMCID: PMC7503225 DOI: 10.3390/ijms21175961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/12/2022] Open
Abstract
Structure-based virtual screening is a truly productive repurposing approach provided that reliable target structures are available. Recent progresses in the structural resolution of the G-Protein Coupled Receptors (GPCRs) render these targets amenable for structure-based repurposing studies. Hence, the present study describes structure-based virtual screening campaigns with a view to repurposing known drugs as potential allosteric (and/or orthosteric) ligands for the hM2 muscarinic subtype which was indeed resolved in complex with an allosteric modulator thus allowing a precise identification of this binding cavity. First, a docking protocol was developed and optimized based on binding space concept and enrichment factor optimization algorithm (EFO) consensus approach by using a purposely collected database including known allosteric modulators. The so-developed consensus models were then utilized to virtually screen the DrugBank database. Based on the computational results, six promising molecules were selected and experimentally tested and four of them revealed interesting affinity data; in particular, dequalinium showed a very impressive allosteric modulation for hM2. Based on these results, a second campaign was focused on bis-cationic derivatives and allowed the identification of other two relevant hM2 ligands. Overall, the study enhances the understanding of the factors governing the hM2 allosteric modulation emphasizing the key role of ligand flexibility as well as of arrangement and delocalization of the positively charged moieties.
Collapse
Affiliation(s)
- Angelica Mazzolari
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy; (A.M.); (S.G.); (A.P.); (L.F.)
| | - Silvia Gervasoni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy; (A.M.); (S.G.); (A.P.); (L.F.)
| | - Alessandro Pedretti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy; (A.M.); (S.G.); (A.P.); (L.F.)
| | - Laura Fumagalli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy; (A.M.); (S.G.); (A.P.); (L.F.)
| | - Rosanna Matucci
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Sezione di Farmacologia e Tossicologia, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy; (A.M.); (S.G.); (A.P.); (L.F.)
- Correspondence: ; Tel.: +39-02-5019349
| |
Collapse
|
133
|
Goto K, Nishitsuji H, Sugiyama M, Nishida N, Mizokami M, Shimotohno K. Orchestration of Intracellular Circuits by G Protein-Coupled Receptor 39 for Hepatitis B Virus Proliferation. Int J Mol Sci 2020; 21:ijms21165661. [PMID: 32784555 PMCID: PMC7460832 DOI: 10.3390/ijms21165661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV), a highly persistent pathogen causing hepatocellular carcinoma (HCC), takes full advantage of host machinery, presenting therapeutic targets. Here we aimed to identify novel druggable host cellular factors using the reporter HBV we have recently generated. In an RNAi screen of G protein-coupled receptors (GPCRs), GPCR39 (GPR39) appeared as the top hit to facilitate HBV proliferation. Lentiviral overexpression of active GPR39 proteins and an agonist enhanced HBV replication and transcriptional activities of viral promoters, inducing the expression of CCAAT/enhancer binding protein (CEBP)-β (CEBPB). Meanwhile, GPR39 was uncovered to activate the heat shock response, upregulating the expression of proviral heat shock proteins (HSPs). In addition, glioma-associated oncogene homologue signaling, a recently reported target of GPR39, was suggested to inhibit HBV replication and eventually suppress expression of CEBPB and HSPs. Thus, GPR39 provirally governed intracellular circuits simultaneously affecting the carcinopathogenetic gene functions. GPR39 and the regulated signaling networks would serve as antiviral targets, and strategies with selective inhibitors of GPR39 functions can develop host-targeted antiviral therapies preventing HCC.
Collapse
Affiliation(s)
- Kaku Goto
- Correspondence: ; Tel.: +81-47-372-3501; Fax: +81-47-375-4766
| | | | | | | | | | | |
Collapse
|
134
|
Structural biology of human GPCR drugs and endogenous ligands - insights from NMR spectroscopy. Methods 2020; 180:79-88. [PMID: 32911074 DOI: 10.1016/j.ymeth.2020.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest class of "druggable" proteins in the human genome. For more than a decade, crystal structures and, more recently, cryoEM structures of GPCR complexes have provided unprecedented insight into GPCR drug binding and cell signaling. Nevertheless, structure determination of receptors in complexes with weakly binding molecules or complex polypeptides remains especially challenging, including for hormones, many of which have so far eluded researchers. Nuclear magnetic resonance (NMR) spectroscopy has emerged as a promising approach to determine structures of ligands bound to their receptors and to provide insights into the dynamics of GPCR-bound drugs. The capability to investigate compounds with weak binding affinities has also been leveraged in NMR applications to identify novel lead compounds in drug screening campaigns. We review recent structural biology studies of GPCR ligands by NMR, highlighting new methodologies enabling studies of GPCRs with native sequences and in native-like membrane environments that provide insights into important drugs and endogenous ligands.
Collapse
|
135
|
Li Q, Kang C. A Practical Perspective on the Roles of Solution NMR Spectroscopy in Drug Discovery. Molecules 2020; 25:molecules25132974. [PMID: 32605297 PMCID: PMC7411973 DOI: 10.3390/molecules25132974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022] Open
Abstract
Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to study structures and dynamics of biomolecules under physiological conditions. As there are numerous NMR-derived methods applicable to probe protein–ligand interactions, NMR has been widely utilized in drug discovery, especially in such steps as hit identification and lead optimization. NMR is frequently used to locate ligand-binding sites on a target protein and to determine ligand binding modes. NMR spectroscopy is also a unique tool in fragment-based drug design (FBDD), as it is able to investigate target-ligand interactions with diverse binding affinities. NMR spectroscopy is able to identify fragments that bind weakly to a target, making it valuable for identifying hits targeting undruggable sites. In this review, we summarize the roles of solution NMR spectroscopy in drug discovery. We describe some methods that are used in identifying fragments, understanding the mechanism of action for a ligand, and monitoring the conformational changes of a target induced by ligand binding. A number of studies have proven that 19F-NMR is very powerful in screening fragments and detecting protein conformational changes. In-cell NMR will also play important roles in drug discovery by elucidating protein-ligand interactions in living cells.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou 510316, China
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, Singapore 138670, Singapore
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| |
Collapse
|
136
|
Zsidó BZ, Hetényi C. Molecular Structure, Binding Affinity, and Biological Activity in the Epigenome. Int J Mol Sci 2020; 21:ijms21114134. [PMID: 32531926 PMCID: PMC7311975 DOI: 10.3390/ijms21114134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Development of valid structure–activity relationships (SARs) is a key to the elucidation of pathomechanisms of epigenetic diseases and the development of efficient, new drugs. The present review is based on selected methodologies and applications supplying molecular structure, binding affinity and biological activity data for the development of new SARs. An emphasis is placed on emerging trends and permanent challenges of new discoveries of SARs in the context of proteins as epigenetic drug targets. The review gives a brief overview and classification of the molecular background of epigenetic changes, and surveys both experimental and theoretical approaches in the field. Besides the results of sophisticated, cutting edge techniques such as cryo-electron microscopy, protein crystallography, and isothermal titration calorimetry, examples of frequently used assays and fast screening techniques are also selected. The review features how different experimental methods and theoretical approaches complement each other and result in valid SARs of the epigenome.
Collapse
|
137
|
Delgado L, Franke B, Frigård T, Isogai S. Automated multistep column chromatography on ÄKTA pure system using in-line sample dilution. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
138
|
Wu FJ, Williams LM, Abdul-Ridha A, Gunatilaka A, Vaid TM, Kocan M, Whitehead AR, Griffin MDW, Bathgate RAD, Scott DJ, Gooley PR. Probing the correlation between ligand efficacy and conformational diversity at the α 1A-adrenoreceptor reveals allosteric coupling of its microswitches. J Biol Chem 2020; 295:7404-7417. [PMID: 32303636 PMCID: PMC7247315 DOI: 10.1074/jbc.ra120.012842] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) use a series of conserved microswitches to transmit signals across the cell membrane via an allosteric network encompassing the ligand-binding site and the G protein-binding site. Crystal structures of GPCRs provide snapshots of their inactive and active states, but poorly describe the conformational dynamics of the allosteric network that underlies GPCR activation. Here, we analyzed the correlation between ligand binding and receptor conformation of the α1A-adrenoreceptor, a GPCR that stimulates smooth muscle contraction in response to binding noradrenaline. NMR of [13CϵH3]methionine-labeled α1A-adrenoreceptor variants, each exhibiting differing signaling capacities, revealed how different classes of ligands modulate the conformational equilibria of this receptor. [13CϵH3]Methionine residues near the microswitches exhibited distinct states that correlated with ligand efficacies, supporting a conformational selection mechanism. We propose that allosteric coupling among the microswitches controls the conformation of the α1A-adrenoreceptor and underlies the mechanism of ligand modulation of GPCR signaling in cells.
Collapse
Affiliation(s)
- Feng-Jie Wu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3052, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Lisa M Williams
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Alaa Abdul-Ridha
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Avanka Gunatilaka
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Tasneem M Vaid
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3052, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Martina Kocan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Alice R Whitehead
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3052, VIC, Australia
| | - Ross A D Bathgate
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Daniel J Scott
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia.
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3052, VIC, Australia.
| |
Collapse
|
139
|
Grahl A, Abiko LA, Isogai S, Sharpe T, Grzesiek S. A high-resolution description of β 1-adrenergic receptor functional dynamics and allosteric coupling from backbone NMR. Nat Commun 2020; 11:2216. [PMID: 32371991 PMCID: PMC7200737 DOI: 10.1038/s41467-020-15864-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 04/01/2020] [Indexed: 12/29/2022] Open
Abstract
Signal transmission and regulation of G-protein-coupled receptors (GPCRs) by extra- and intracellular ligands occurs via modulation of complex conformational equilibria, but their exact kinetic details and underlying atomic mechanisms are unknown. Here we quantified these dynamic equilibria in the β1-adrenergic receptor in its apo form and seven ligand complexes using 1H/15N NMR spectroscopy. We observe three major exchanging conformations: an inactive conformation (Ci), a preactive conformation (Cp) and an active conformation (Ca), which becomes fully populated in a ternary complex with a G protein mimicking nanobody. The Ci ↔ Cp exchange occurs on the microsecond scale, the Cp ↔ Ca exchange is slower than ~5 ms and only occurs in the presence of two highly conserved tyrosines (Y5.58, Y7.53), which stabilize the active conformation of TM6. The Cp→Ca chemical shift changes indicate a pivoting motion of the entire TM6 that couples the effector site to the orthosteric ligand pocket. Signal transmission and regulation of G-protein-coupled receptors (GPCRs) by ligands occurs via modulation of complex conformational equilibria. Here authors quantify these equilibria and their dynamics in the β1-adrenergic receptor in its apo form and seven ligand complexes using NMR.
Collapse
Affiliation(s)
- Anne Grahl
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Shin Isogai
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Timothy Sharpe
- Biophysics Core Facility, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
140
|
Lecas L, Hartmann L, Caro L, Mohamed-Bouteben S, Raingeval C, Krimm I, Wagner R, Dugas V, Demesmay C. Miniaturized weak affinity chromatography for ligand identification of nanodiscs-embedded G-protein coupled receptors. Anal Chim Acta 2020; 1113:26-35. [DOI: 10.1016/j.aca.2020.03.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
|
141
|
Murata T, Yasuda S, Hayashi T, Kinoshita M. Theoretical identification of thermostabilizing amino acid mutations for G-protein-coupled receptors. Biophys Rev 2020; 12:323-332. [PMID: 32270446 DOI: 10.1007/s12551-020-00678-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Thermostabilization of a membrane proteins, especially G-protein-coupled receptors (GPCRs), is often necessary for biochemical applications and pharmaceutical studies involving structure-based drug design. Here we review our theoretical, physics-based method for identifying thermostabilizing amino acid mutations. Its novel aspects are the following: The entropic effect originating from the translational displacement of hydrocarbon groups within the lipid bilayer is treated as a pivotal factor; a reliable measure of thermostability is introduced and a mutation which enlarges the measure to a significant extent is chosen; and all the possible mutations can be examined with moderate computational effort. It was shown that mutating the residue at a position of NBW = 3.39 (NBW is the Ballesteros-Weinstein number) to Arg or Lys leads to the stabilization of significantly many different GPCRs of class A in the inactive state. Up to now, we have been successful in stabilizing several GPCRs and newly solving three-dimensional structures for the muscarinic acetylcholine receptor 2 (M2R), prostaglandin E receptor 4 (EP4), and serotonin 2A receptor (5-HT2AR) using X-ray crystallography. The subjects to be pursued in future studies are also discussed.
Collapse
Affiliation(s)
- Takeshi Murata
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan.,Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan
| | - Satoshi Yasuda
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan.,Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan.,Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Present address: Interdisciplinary Program of Biomedical Engineering, Assistive Technology, and Art and Sports Sciences, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
142
|
Spotlight on the Ballet of Proteins: The Structural Dynamic Properties of Proteins Illuminated by Solution NMR. Int J Mol Sci 2020; 21:ijms21051829. [PMID: 32155847 PMCID: PMC7084655 DOI: 10.3390/ijms21051829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Solution NMR spectroscopy is a unique and powerful technique that has the ability to directly connect the structural dynamics of proteins in physiological conditions to their activity and function. Here, we summarize recent studies in which solution NMR contributed to the discovery of relationships between key dynamic properties of proteins and functional mechanisms in important biological systems. The capacity of NMR to quantify the dynamics of proteins over a range of time scales and to detect lowly populated protein conformations plays a critical role in its power to unveil functional protein dynamics. This analysis of dynamics is not only important for the understanding of biological function, but also in the design of specific ligands for pharmacologically important proteins. Thus, the dynamic view of structure provided by NMR is of importance in both basic and applied biology.
Collapse
|
143
|
Mizumura T, Kondo K, Kurita M, Kofuku Y, Natsume M, Imai S, Shiraishi Y, Ueda T, Shimada I. Activation of adenosine A 2A receptor by lipids from docosahexaenoic acid revealed by NMR. SCIENCE ADVANCES 2020; 6:eaay8544. [PMID: 32206717 PMCID: PMC7080496 DOI: 10.1126/sciadv.aay8544] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/18/2019] [Indexed: 05/05/2023]
Abstract
The lipid composition of the plasma membrane is a key parameter in controlling signal transduction through G protein-coupled receptors (GPCRs). Adenosine A2A receptor (A2AAR) is located in the lipid bilayers of cells, containing acyl chains derived from docosahexaenoic acid (DHA). For the NMR studies, we prepared A2AAR in lipid bilayers of nanodiscs, containing DHA chains and other acyl chains. The DHA chains in nanodiscs enhanced the activation of G proteins by A2AAR. Our NMR studies revealed that the DHA chains redistribute the multiple conformations of A2AAR toward those preferable for G protein binding. In these conformations, the rotational angle of transmembrane helix 6 is similar to that in the A2AAR-G protein complex, suggesting that the population shift of the equilibrium causes the enhanced activation of G protein by A2AAR. These findings provide insights into the control of neurotransmissions by A2AAR and the effects of lipids on various GPCR functions.
Collapse
Affiliation(s)
- Takuya Mizumura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Keita Kondo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masatoshi Kurita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaka Kofuku
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mei Natsume
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Yutaro Shiraishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takumi Ueda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Corresponding author.
| |
Collapse
|
144
|
Routledge SJ, Jamshad M, Little HA, Lin YP, Simms J, Thakker A, Spickett CM, Bill RM, Dafforn TR, Poyner DR, Wheatley M. Ligand-induced conformational changes in a SMALP-encapsulated GPCR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183235. [PMID: 32126232 PMCID: PMC7156913 DOI: 10.1016/j.bbamem.2020.183235] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/27/2022]
Abstract
The adenosine 2A receptor (A2AR), a G-protein-coupled receptor (GPCR), was solubilised and purified encapsulated in styrene maleic acid lipid particles (SMALPs). The purified A2AR-SMALP was associated with phospholipids characteristic of the plasma membrane of Pichia pastoris, the host used for its expression, confirming that the A2AR-SMALP encapsulated native lipids. The fluorescence spectrum of the A2AR-SMALP showed a characteristic broad emission peak at 330 nm, produced by endogenous Trp residues. The inverse agonist ZM241385 caused 30% increase in fluorescence emission, unusually accompanied by a red-shift in the emission wavelength. The emission spectrum also showed sub-peaks at 321 nm, 335 nm and 350 nm, indicating that individual Trp inhabited different environments following ZM241385 addition. There was no effect of the agonist NECA on the A2AR-SMALP fluorescence spectrum. Substitution of two Trp residues by Tyr suggested that ZM241385 affected the environment and mobility of Trp2466.48 in TM6 and Trp2687.33 at the extracellular face of TM7, causing transition to a more hydrophobic environment. The fluorescent moiety IAEDANS was site-specifically introduced at the intracellular end of TM6 (residue 2316.33) to report on the dynamic cytoplasmic face of the A2AR. The inverse agonist ZM241385 caused a concentration-dependent increase in fluorescence emission as the IAEDANS moved to a more hydrophobic environment, consistent with closing the G-protein binding crevice. NECA generated only 30% of the effect of ZM241385. This study provides insight into the SMALP environment; encapsulation supported constitutive activity of the A2AR and ZM241385-induced conformational transitions but the agonist NECA generated only small effects. Conformational changes in the A2AR monitored in a nano-scale membrane disc (SMALP). Profile of phospholipids in A2AR-SMALP similar to the plasma membrane. A partially-active conformation of A2AR is supported in a SMALP. Inverse agonist induced dose-dependent conformational transitions in A2AR-SMALP. In contrast to inverse agonist, agonist induced only small conformational changes.
Collapse
Affiliation(s)
| | - Mohammed Jamshad
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Haydn A Little
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yu-Pin Lin
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - John Simms
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Alpesh Thakker
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Roslyn M Bill
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Tim R Dafforn
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - David R Poyner
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | - Mark Wheatley
- Centre for Sport, Exercise and Life Sciences, Alison Gingell Building, Faculty of Health and Life Sciences, Coventry University, Coventry CV1 2DS, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
145
|
Giusti F, Casiraghi M, Point E, Damian M, Rieger J, Bon CL, Pozza A, Moncoq K, Banères JL, Catoire LJ. Structure of the agonist 12-HHT in its BLT2 receptor-bound state. Sci Rep 2020; 10:2630. [PMID: 32060341 PMCID: PMC7021728 DOI: 10.1038/s41598-020-59571-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/28/2020] [Indexed: 12/25/2022] Open
Abstract
G Protein-Coupled receptors represent the main communicating pathway for signals from the outside to the inside of most of eukaryotic cells. They define the largest family of integral membrane receptors at the surface of the cells and constitute the main target of the current drugs on the market. The low affinity leukotriene receptor BLT2 is a receptor involved in pro- and anti-inflammatory pathways and can be activated by various unsaturated fatty acid compounds. We present here the NMR structure of the agonist 12-HHT in its BLT2-bound state and a model of interaction of the ligand with the receptor based on a conformational homology modeling associated with docking simulations. Put into perspective with the data obtained with leukotriene B4, our results illuminate the ligand selectivity of BLT2 and may help define new molecules to modulate the activity of this receptor.
Collapse
Affiliation(s)
- Fabrice Giusti
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Chimie Séparative de Marcoule, ICSM UMR 5257, Site de Marcoule, Bâtiment 426, BP 17171, F-30207, Bagnols sur Cèze Cedex, France
| | - Marina Casiraghi
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, 94305, Stanford California, USA
| | - Elodie Point
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université Montpellier, ENSCM, , 15 av. Charles Flahault, 34093, Montpellier, France
| | - Jutta Rieger
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR 8232, Equipe Chimie des Polymères, 4 place Jussieu, 75252, Paris Cedex, 05, France
| | - Christel Le Bon
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Alexandre Pozza
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Karine Moncoq
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université Montpellier, ENSCM, , 15 av. Charles Flahault, 34093, Montpellier, France
| | - Laurent J Catoire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005, Paris, France.
| |
Collapse
|
146
|
Conformational plasticity of ligand-bound and ternary GPCR complexes studied by 19F NMR of the β 1-adrenergic receptor. Nat Commun 2020; 11:669. [PMID: 32015348 PMCID: PMC6997182 DOI: 10.1038/s41467-020-14526-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 01/14/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are allosteric signaling proteins that transmit an extracellular stimulus across the cell membrane. Using 19F NMR and site-specific labelling, we investigate the response of the cytoplasmic region of transmembrane helices 6 and 7 of the β1-adrenergic receptor to agonist stimulation and coupling to a Gs-protein-mimetic nanobody. Agonist binding shows the receptor in equilibrium between two inactive states and a pre-active form, increasingly populated with higher ligand efficacy. Nanobody coupling leads to a fully active ternary receptor complex present in amounts correlating directly with agonist efficacy, consistent with partial agonism. While for different agonists the helix 6 environment in the active-state ternary complexes resides in a well-defined conformation, showing little conformational mobility, the environment of the highly conserved NPxxY motif on helix 7 remains dynamic adopting diverse, agonist-specific conformations, implying a further role of this region in receptor function. An inactive nanobody-coupled ternary receptor form is also observed.
Collapse
|
147
|
Boutin JA, Legros C. The five dimensions of receptor pharmacology exemplified by melatonin receptors: An opinion. Pharmacol Res Perspect 2020; 8:e00556. [PMID: 31893125 PMCID: PMC6935684 DOI: 10.1002/prp2.556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Receptology has been complicated with enhancements in our knowledge of G-protein-coupled-receptor (GPCR) biochemistry. This complexity is exemplified by the pharmacology of melatonin receptors. Here, we describe the complexity of GPCR biochemistry in five dimensions: (a) receptor expression, particularly in organs/tissues that are only partially understood; (b) ligands and receptor-associated proteins (interactome); (c) receptor function, which might be more complex than the known G-protein-coupled systems; (d) ligand bias, which favors a particular pathway; and (e) receptor dimerization, which might concern all receptors coexpressed in the same cell. Thus, receptor signaling might be modified or modulated, depending on the nature of the receptor complex. Fundamental studies are needed to clarify these points and find new ways to tackle receptor functionality. This opinion article emphasizes the global questions attached to new descriptions of GPCRs and aims to raise our awareness of the tremendous complexity of modern receptology.
Collapse
Affiliation(s)
- Jean A. Boutin
- Institut de Recherches Internationales ServierSuresnesFrance
| | - Céline Legros
- Institut de Recherches ServierCroissy‐sur‐SeineFrance
| |
Collapse
|
148
|
Ganapathy S, Opdam L, Hontani Y, Frehan S, Chen Q, Hellingwerf KJ, de Groot HJ, Kennis JT, de Grip WJ. Membrane matters: The impact of a nanodisc-bilayer or a detergent microenvironment on the properties of two eubacterial rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183113. [DOI: 10.1016/j.bbamem.2019.183113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
|
149
|
Structural equilibrium underlying ligand-dependent activation of β2-adrenoreceptor. Nat Chem Biol 2020; 16:430-439. [DOI: 10.1038/s41589-019-0457-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 11/08/2022]
|
150
|
Guillien M, le Maire A, Mouhand A, Bernadó P, Bourguet W, Banères JL, Sibille N. IDPs and their complexes in GPCR and nuclear receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:105-155. [DOI: 10.1016/bs.pmbts.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|