101
|
Fernández-Jiménez N, Pradillo M. The role of the nuclear envelope in the regulation of chromatin dynamics during cell division. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5148-5159. [PMID: 32589712 DOI: 10.1093/jxb/eraa299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The nuclear envelope delineates the eukaryotic cell nucleus. The membrane system of the nuclear envelope consists of an outer nuclear membrane and an inner nuclear membrane separated by a perinuclear space. It serves as more than just a static barrier, since it regulates the communication between the nucleoplasm and the cytoplasm and provides the anchoring points where chromatin is attached. Fewer nuclear envelope proteins have been identified in plants in comparison with animals and yeasts. Here, we review the current state of knowledge of the nuclear envelope in plants, focusing on its role as a chromatin organizer and regulator of gene expression, as well as on the modifications that it undergoes to be efficiently disassembled and reassembled with each cell division. Advances in knowledge concerning the mitotic role of some nuclear envelope constituents are also presented. In addition, we summarize recent progress on the contribution of the nuclear envelope elements to telomere tethering and chromosome dynamics during the meiotic division in different plant species.
Collapse
Affiliation(s)
- Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
102
|
Abstract
During viral replication, herpesviruses utilize a unique strategy, termed nuclear egress, to translocate capsids from the nucleus into the cytoplasm. This initial budding step transfers a newly formed capsid from within the nucleus, too large to fit through nuclear pores, through the inner nuclear membrane to the perinuclear space. The perinuclear enveloped virion must then fuse with the outer nuclear membrane to be released into the cytoplasm for further maturation, undergoing budding once again at the trans-Golgi network or early endosomes, and ultimately exit the cell non-lytically to spread infection. This first budding process is mediated by two conserved viral proteins, UL31 and UL34, that form a heterodimer called the nuclear egress complex (NEC). This review focuses on what we know about how the NEC mediates capsid transport to the perinuclear space, including steps prior to and after this budding event. Additionally, we discuss the involvement of other viral proteins in this process and how NEC-mediated budding may be regulated during infection.
Collapse
Affiliation(s)
- Elizabeth B Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Michael K Thorsen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
103
|
Cuijpers SAG, Willemstein E, Ruppert JG, van Elsland DM, Earnshaw WC, Vertegaal ACO. Chromokinesin KIF4A teams up with stathmin 1 to regulate abscission in a SUMO-dependent manner. J Cell Sci 2020; 133:jcs248591. [PMID: 32591481 PMCID: PMC7390632 DOI: 10.1242/jcs.248591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cell division ends when two daughter cells physically separate via abscission, the cleavage of the intercellular bridge. It is not clear how the anti-parallel microtubule bundles bridging daughter cells are severed. Here, we present a novel abscission mechanism. We identified chromokinesin KIF4A, which is adjacent to the midbody during cytokinesis, as being required for efficient abscission. KIF4A is regulated by post-translational modifications. We evaluated modification of KIF4A by the ubiquitin-like protein SUMO. We mapped lysine 460 in KIF4A as the SUMO acceptor site and employed CRISPR-Cas9-mediated genome editing to block SUMO conjugation of endogenous KIF4A. Failure to SUMOylate this site in KIF4A delayed cytokinesis. SUMOylation of KIF4A enhanced the affinity for the microtubule destabilizer stathmin 1 (STMN1). We here present a new level of abscission regulation through the dynamic interactions between KIF4A and STMN1 as controlled by SUMO modification of KIF4A.
Collapse
Affiliation(s)
- Sabine A G Cuijpers
- Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Edwin Willemstein
- Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jan G Ruppert
- Wellcome Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, Scotland, UK
| | - Daphne M van Elsland
- Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, Scotland, UK
| | - Alfred C O Vertegaal
- Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
104
|
Abstract
Neutrophils are critical to innate immunity, including host defense against bacterial and fungal infections. They achieve their host defense role by phagocytosing pathogens, secreting their granules full of cytotoxic enzymes, or expelling neutrophil extracellular traps (NETs) during the process of NETosis. NETs are weblike DNA structures decorated with histones and antimicrobial proteins released by activated neutrophils. Initially described as a means for neutrophils to neutralize pathogens, NET release also occurs in sterile inflammation, promotes thrombosis, and can mediate tissue damage. To effectively manipulate this double-edged sword to fight a particular disease, researchers must work toward understanding the mechanisms driving NETosis. Such understanding would allow the generation of new drugs to promote or prevent NETosis as needed. While knowledge regarding the (patho)physiological roles of NETosis is accumulating, little is known about the cellular and biophysical bases of this process. In this review, we describe and discuss our current knowledge of the molecular, cellular, and biophysical mechanisms mediating NET release as well as open questions in the field.
Collapse
Affiliation(s)
- Hawa Racine Thiam
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Siu Ling Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
105
|
Verboon JM, Nakamura M, Davidson KA, Decker JR, Nandakumar V, Parkhurst SM. Drosophila Wash and the Wash regulatory complex function in nuclear envelope budding. J Cell Sci 2020; 133:jcs243576. [PMID: 32503943 PMCID: PMC7358131 DOI: 10.1242/jcs.243576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Nuclear envelope (NE) budding is a recently described phenomenon wherein large macromolecular complexes are packaged inside the nucleus and extruded through the nuclear membranes. Although a general outline of the cellular events occurring during NE budding is now in place, little is yet known about the molecular machinery and mechanisms underlying the physical aspects of NE bud formation. Using a multidisciplinary approach, we identify Wash, its regulatory complex (SHRC), capping protein and Arp2/3 as new molecular components involved in the physical aspects of NE bud formation in a Drosophila model system. Interestingly, Wash affects NE budding in two ways: indirectly through general nuclear lamina disruption via an SHRC-independent interaction with Lamin B leading to inefficient NE bud formation, and directly by blocking NE bud formation along with its SHRC, capping protein and Arp2/3. In addition to NE budding emerging as an important cellular process, it shares many similarities with herpesvirus nuclear egress mechanisms, suggesting new avenues for exploration in both normal and disease biology.
Collapse
Affiliation(s)
- Jeffrey M Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kerri A Davidson
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob R Decker
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Vivek Nandakumar
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
106
|
Hirano Y, Kinugasa Y, Osakada H, Shindo T, Kubota Y, Shibata S, Haraguchi T, Hiraoka Y. Lem2 and Lnp1 maintain the membrane boundary between the nuclear envelope and endoplasmic reticulum. Commun Biol 2020; 3:276. [PMID: 32483293 PMCID: PMC7264229 DOI: 10.1038/s42003-020-0999-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 05/11/2020] [Indexed: 01/09/2023] Open
Abstract
The nuclear envelope (NE) continues to the endoplasmic reticulum (ER). Proper partitioning of NE and ER is crucial for cellular activity, but the key factors maintaining the boundary between NE and ER remain to be elucidated. Here we show that the conserved membrane proteins Lem2 and Lnp1 cooperatively play a crucial role in maintaining the NE-ER membrane boundary in fission yeast Schizosaccharomyces pombe. Cells lacking both Lem2 and Lnp1 caused severe growth defects associated with aberrant expansion of the NE/ER membranes, abnormal leakage of nuclear proteins, and abnormal formation of vacuolar-like structures in the nucleus. Overexpression of the ER membrane protein Apq12 rescued the growth defect associated with membrane disorder caused by the loss of Lem2 and Lnp1. Genetic analysis showed that Apq12 had overlapping functions with Lnp1. We propose that a membrane protein network with Lem2 and Lnp1 acts as a critical factor to maintain the NE-ER boundary.
Collapse
Affiliation(s)
- Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.
| | - Yasuha Kinugasa
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshino Kubota
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan.
| |
Collapse
|
107
|
Muscle cell differentiation and development pathway defects in Emery-Dreifuss muscular dystrophy. Neuromuscul Disord 2020; 30:443-456. [DOI: 10.1016/j.nmd.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/20/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
|
108
|
Nava MM, Miroshnikova YA, Biggs LC, Whitefield DB, Metge F, Boucas J, Vihinen H, Jokitalo E, Li X, García Arcos JM, Hoffmann B, Merkel R, Niessen CM, Dahl KN, Wickström SA. Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell 2020; 181:800-817.e22. [PMID: 32302590 PMCID: PMC7237863 DOI: 10.1016/j.cell.2020.03.052] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/02/2020] [Accepted: 03/20/2020] [Indexed: 01/06/2023]
Abstract
Tissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, which cells initially counteract via a calcium-dependent nuclear softening driven by loss of H3K9me3-marked heterochromatin. The resulting changes in chromatin rheology and architecture are required to insulate genetic material from mechanical force. Failure to mount this nuclear mechanoresponse results in DNA damage. Persistent, high-amplitude stretch induces supracellular alignment of tissue to redistribute mechanical energy before it reaches the nucleus. This tissue-scale mechanoadaptation functions through a separate pathway mediated by cell-cell contacts and allows cells/tissues to switch off nuclear mechanotransduction to restore initial chromatin state. Our work identifies an unconventional role of chromatin in altering its own mechanical state to maintain genome integrity in response to deformation.
Collapse
Affiliation(s)
- Michele M Nava
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Yekaterina A Miroshnikova
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Leah C Biggs
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Daniel B Whitefield
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Franziska Metge
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Jorge Boucas
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Xinping Li
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Juan Manuel García Arcos
- Institut Curie, PSL Research University, CNRS, UMR 144 and Institut Pierre-Gilles de Gennes, PSL Research University, 75005 Paris, France
| | - Bernd Hoffmann
- Forschungszentrum Jülich, Institute of Biological Information Processing-2: Mechanobiology, 52428 Jülich, Germany
| | - Rudolf Merkel
- Forschungszentrum Jülich, Institute of Biological Information Processing-2: Mechanobiology, 52428 Jülich, Germany
| | - Carien M Niessen
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Department of Dermatology, Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sara A Wickström
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
109
|
The N-Terminal Domain of cGAS Determines Preferential Association with Centromeric DNA and Innate Immune Activation in the Nucleus. Cell Rep 2020; 26:2377-2393.e13. [PMID: 30811988 PMCID: PMC6391843 DOI: 10.1016/j.celrep.2019.01.105] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/07/2018] [Accepted: 01/28/2019] [Indexed: 01/07/2023] Open
Abstract
Cytosolic DNA activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS), an innate immune sensor pivotal in anti-microbial defense, senescence, auto-immunity, and cancer. cGAS is considered to be a sequence-independent DNA sensor with limited access to nuclear DNA because of compartmentalization. However, the nuclear envelope is a dynamic barrier, and cGAS is present in the nucleus. Here, we identify determinants of nuclear cGAS localization and activation. We show that nuclear-localized cGAS synthesizes cGAMP and induces innate immune activation of dendritic cells, although cGAMP levels are 200-fold lower than following transfection with exogenous DNA. Using cGAS ChIP-seq and a GFP-cGAS knockin mouse, we find nuclear cGAS enrichment on centromeric satellite DNA, confirmed by imaging, and to a lesser extent on LINE elements. The non-enzymatic N-terminal domain of cGAS determines nucleo-cytoplasmic localization, enrichment on centromeres, and activation of nuclear-localized cGAS. These results reveal a preferential functional association of nuclear cGAS with centromeres. Nuclear-localized cGAS activates a cellular innate immune response Nuclear cGAS is 200-fold less active toward self-DNA than exogenous cytosolic DNA Nuclear cGAS is enriched on centromeric satellite and LINE DNA repeats The non-enzymatic N-terminal of cGAS determines nuclear localization and activity
Collapse
|
110
|
Pieper GH, Sprenger S, Teis D, Oliferenko S. ESCRT-III/Vps4 Controls Heterochromatin-Nuclear Envelope Attachments. Dev Cell 2020; 53:27-41.e6. [PMID: 32109380 PMCID: PMC7139201 DOI: 10.1016/j.devcel.2020.01.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/05/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
Eukaryotic genomes are organized within the nucleus through interactions with inner nuclear membrane (INM) proteins. How chromatin tethering to the INM is controlled in interphase and how this process contributes to subsequent mitotic nuclear envelope (NE) remodeling remains unclear. We have probed these fundamental questions using the fission yeast Schizosaccharomyces japonicus, which breaks and reforms the NE during mitosis. We show that attachments between heterochromatin and the transmembrane Lem2-Nur1 complex at the INM are remodeled in interphase by the ESCRT-III/Vps4 machinery. Failure of ESCRT-III/Vps4 to release Lem2-Nur1 from heterochromatin leads to persistent association of chromosomes with the INM throughout mitosis. At mitotic exit, such trapping of Lem2-Nur1 on heterochromatin prevents it from re-establishing nucleocytoplasmic compartmentalization. Our work identifies the Lem2-Nur1 complex as a substrate for the nuclear ESCRT machinery and explains how the dynamic tethering of chromosomes to the INM is linked to the establishment of nuclear compartmentalization.
Collapse
Affiliation(s)
- Gerard H Pieper
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Simon Sprenger
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - David Teis
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK.
| |
Collapse
|
111
|
"The nuclear envelope, a meiotic jack-of-all-trades". Curr Opin Cell Biol 2020; 64:34-42. [PMID: 32109733 DOI: 10.1016/j.ceb.2019.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
The nucleus is one of the membrane-bound organelles that are a distinguishing feature between eukaryotes and prokaryotes. During meiosis, the nuclear envelope takes on functions beyond separating the nucleoplasm from the cytoplasm. These include associations with meiotic chromosomes to mediate pairing, being a sensor for recombination progression, and supportive of enormous nuclear growth during oocyte formation. In this review, we highlight recent results that have contributed to our understanding of meiotic nuclear envelope function and dynamics.
Collapse
|
112
|
Pandey R, Abel S, Boucher M, Wall RJ, Zeeshan M, Rea E, Freville A, Lu XM, Brady D, Daniel E, Stanway RR, Wheatley S, Batugedara G, Hollin T, Bottrill AR, Gupta D, Holder AA, Le Roch KG, Tewari R. Plasmodium Condensin Core Subunits SMC2/SMC4 Mediate Atypical Mitosis and Are Essential for Parasite Proliferation and Transmission. Cell Rep 2020; 30:1883-1897.e6. [PMID: 32049018 PMCID: PMC7016506 DOI: 10.1016/j.celrep.2020.01.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/12/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Condensin is a multi-subunit protein complex regulating chromosome condensation and segregation during cell division. In Plasmodium spp., the causative agent of malaria, cell division is atypical and the role of condensin is unclear. Here we examine the role of SMC2 and SMC4, the core subunits of condensin, during endomitosis in schizogony and endoreduplication in male gametogenesis. During early schizogony, SMC2/SMC4 localize to a distinct focus, identified as the centromeres by NDC80 fluorescence and chromatin immunoprecipitation sequencing (ChIP-seq) analyses, but do not form condensin I or II complexes. In mature schizonts and during male gametogenesis, there is a diffuse SMC2/SMC4 distribution on chromosomes and in the nucleus, and both condensin I and condensin II complexes form at these stages. Knockdown of smc2 and smc4 gene expression reveals essential roles in parasite proliferation and transmission. The condensin core subunits (SMC2/SMC4) form different complexes and may have distinct functions at various stages of the parasite life cycle.
Collapse
Affiliation(s)
- Rajan Pandey
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Matthew Boucher
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard J Wall
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Edward Rea
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Aline Freville
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Xueqing Maggie Lu
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Emilie Daniel
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Sally Wheatley
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Gayani Batugedara
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Andrew R Bottrill
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA.
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
113
|
Carlton JG, Jones H, Eggert US. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol 2020; 21:151-166. [DOI: 10.1038/s41580-019-0208-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/31/2022]
|
114
|
Odle RI, Walker SA, Oxley D, Kidger AM, Balmanno K, Gilley R, Okkenhaug H, Florey O, Ktistakis NT, Cook SJ. An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis. Mol Cell 2020; 77:228-240.e7. [PMID: 31733992 PMCID: PMC6964153 DOI: 10.1016/j.molcel.2019.10.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/19/2019] [Accepted: 10/10/2019] [Indexed: 01/09/2023]
Abstract
Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis.
Collapse
Affiliation(s)
- Richard I Odle
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Simon A Walker
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - David Oxley
- Proteomics Facility, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Andrew M Kidger
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kathryn Balmanno
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Rebecca Gilley
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Hanneke Okkenhaug
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Oliver Florey
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Nicholas T Ktistakis
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
115
|
Epithelial-Mesenchymal Plasticity in Circulating Tumor Cells, the Precursors of Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:11-34. [PMID: 32304077 DOI: 10.1007/978-3-030-35805-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells offer an unprecedented window into the metastatic cascade, and to some extent can be considered as intermediates in the process of metastasis. They exhibit dynamic oscillations in epithelial to mesenchymal plasticity and provide important opportunities for prognosis, therapy response monitoring, and targeting of metastatic disease. In this manuscript, we review the involvement of epithelial-mesenchymal plasticity in the early steps of metastasis and what we have learned about its contribution to genomic instability and genetic diversity, tumor progression and therapeutic responses using cell culture, mouse models and circulating tumor cells enriched from patients.
Collapse
|
116
|
Pradillo M, Evans D, Graumann K. The nuclear envelope in higher plant mitosis and meiosis. Nucleus 2019; 10:55-66. [PMID: 30879391 PMCID: PMC6527396 DOI: 10.1080/19491034.2019.1587277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
Mitosis and meiosis in higher plants involve significant reconfiguration of the nuclear envelope and the proteins that interact with it. The dynamic series of events involves a range of interactions, movement, breakdown, and reformation of this complex system. Recently, progress has been made in identifying and characterizing the protein and membrane interactome that performs these complex tasks, including constituents of the nuclear envelope, the cytoskeleton, nucleoskeleton, and chromatin. This review will present the current understanding of these interactions and advances in knowledge of the processes for the breakdown and reformation of the nuclear envelope during cell divisions in plants.
Collapse
Affiliation(s)
- Monica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - David Evans
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
117
|
Abstract
Cellular membranes can form two principally different involutions, which either exclude or contain cytosol. The 'classical' budding reactions, such as those occurring during endocytosis or formation of exocytic vesicles, involve proteins that assemble on the cytosol-excluding face of the bud neck. Inverse membrane involution occurs in a wide range of cellular processes, supporting cytokinesis, endosome maturation, autophagy, membrane repair and many other processes. Such inverse membrane remodelling is mediated by a heteromultimeric protein machinery known as endosomal sorting complex required for transport (ESCRT). ESCRT proteins assemble on the cytosolic (or nucleoplasmic) face of the neck of the forming involution and cooperate with the ATPase VPS4 to drive membrane scission or sealing. Here, we review similarities and differences of various ESCRT-dependent processes, with special emphasis on mechanisms of ESCRT recruitment.
Collapse
|
118
|
Abstract
Structural disorder is widespread in regulatory protein networks. Weak and transient interactions render disordered proteins particularly sensitive to fluctuations in solution conditions such as ion and crowder concentrations. How this sensitivity alters folding coupled binding reactions, however, has not been fully understood. Here, we demonstrate that salt jointly modulates polymer properties and binding affinities of 5 disordered proteins from a transcription factor network. A combination of single-molecule Förster resonance energy transfer experiments, polymer theory, and molecular simulations shows that all 5 proteins expand with increasing ionic strengths due to Debye-Hückel charge screening. Simultaneously, pairwise affinities between the proteins increase by an order of magnitude within physiological salt limits. A quantitative analysis shows that 50% of the affinity increase can be explained by changes in the disordered state. Disordered state properties therefore have a functional relevance even if these states are not directly involved in biological functions. Numerical solutions of coupled binding equilibria with our results show that networks of homologous disordered proteins can function surprisingly robustly in fluctuating cellular environments, despite the sensitivity of its individual proteins.
Collapse
|
119
|
Leung JC, Cassimeris L. Reorganization of paclitaxel-stabilized microtubule arrays at mitotic entry: roles of depolymerizing kinesins and severing proteins. Cancer Biol Ther 2019; 20:1337-1347. [PMID: 31345098 PMCID: PMC6783116 DOI: 10.1080/15384047.2019.1638678] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Paclitaxel is a widely used anti-cancer treatment that disrupts cell cycle progression by blocking cells in mitosis. The block at mitosis, with spindles assembled from short microtubules, is surprising given paclitaxel’s microtubule stabilizing activity and the need to depolymerize long interphase microtubules prior to spindle formation. Cells must antagonize paclitaxel’s microtubule stabilizing activity during a brief window of time at the transition from interphase to mitosis, allowing microtubule reorganization into a mitotic spindle, although the mechanism underlying microtubule depolymerization in the presence of paclitaxel has not been examined. Here we test the hypothesis that microtubule severing and/or depolymerizing proteins active at mitotic entry are necessary to clear the interphase array in paclitaxel-treated cells and allow subsequent formation of mitotic spindles formed of short microtubules. A549 and LLC-PK1 cells treated with 30nM paclitaxel approximately 4 h prior to mitotic entry successfully progress through the G2/M transition by clearing the interphase microtubule array from the cell interior outward to the cell periphery, a spatial pattern of reorganization that differs from that of cells possessing dynamic microtubules. Depletion of kinesin-8s, KIF18A and/or KIF18B obstructed interphase microtubule clearing at mitotic entry in paclitaxel-treated cells, with KIF18B making the larger contribution. Of the severing proteins, depletion of spastin, but not katanin, reduced microtubule loss as cells entered mitosis in the presence of paclitaxel. These results support a model in which KIF18A, KIF18B, and spastin promote interphase microtubule array disassembly at mitotic entry and can overcome paclitaxel-induced microtubule stability specifically at the G2/M transition.
Collapse
Affiliation(s)
- Jessica C Leung
- Department of Biological Sciences, 111 Research Dr. Lehigh University , Bethlehem , PA , USA
| | - Lynne Cassimeris
- Department of Biological Sciences, 111 Research Dr. Lehigh University , Bethlehem , PA , USA
| |
Collapse
|
120
|
Huguet F, Flynn S, Vagnarelli P. The Role of Phosphatases in Nuclear Envelope Disassembly and Reassembly and Their Relevance to Pathologies. Cells 2019; 8:cells8070687. [PMID: 31284660 PMCID: PMC6678589 DOI: 10.3390/cells8070687] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022] Open
Abstract
The role of kinases in the regulation of cell cycle transitions is very well established, however, over the past decade, studies have identified the ever-growing importance of phosphatases in these processes. It is well-known that an intact or otherwise non-deformed nuclear envelope (NE) is essential for maintaining healthy cells and any deviation from this can result in pathological conditions. This review aims at assessing the current understanding of how phosphatases contribute to the remodelling of the nuclear envelope during its disassembling and reformation after cell division and how errors in this process may lead to the development of diseases.
Collapse
Affiliation(s)
- Florentin Huguet
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Shane Flynn
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Paola Vagnarelli
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK.
| |
Collapse
|
121
|
Wang JH, Li Y, Deng SL, Liu YX, Lian ZX, Yu K. Recent Research Advances in Mitosis during Mammalian Gametogenesis. Cells 2019; 8:cells8060567. [PMID: 31185583 PMCID: PMC6628140 DOI: 10.3390/cells8060567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/02/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Mitosis is a highly sophisticated and well-regulated process during the development and differentiation of mammalian gametogenesis. The regulation of mitosis plays an essential role in keeping the formulation in oogenesis and gametogenesis. In the past few years, substantial research progress has been made by showing that cyclins/cyclin-dependent kinase (CDK) have roles in the regulation of meiosis. In addition, more functional signaling molecules have been discovered in mitosis. Growing evidence has also indicated that miRNAs influence cell cycling. In this review, we focus on specific genes, cyclins/Cdk, signaling pathways/molecules, and miRNAs to discuss the latest achievements in understanding their roles in mitosis during gametogenesis. Further elucidation of mitosis during gametogenesis may facilitate delineating all processes of mammalian reproduction and the development of disease treatments.
Collapse
Affiliation(s)
- Jia-Hao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yan Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
122
|
Ahn JH, Cho MG, Sohn S, Lee JH. Inhibition of PP2A activity by H 2O 2 during mitosis disrupts nuclear envelope reassembly and alters nuclear shape. Exp Mol Med 2019; 51:1-18. [PMID: 31164634 PMCID: PMC6548778 DOI: 10.1038/s12276-019-0260-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 01/01/2023] Open
Abstract
Many types of cancer cells exhibit abnormal nuclear shapes induced by various molecular changes. However, whether reactive oxygen species (ROS) induce nuclear deformation has not been fully addressed. Here, we show that hydrogen peroxide (H2O2) treatment induced concentration-dependent alterations in nuclear shape that were abolished by pretreatment with the antioxidant N-acetyl-L-cysteine or by catalase overexpression. Interestingly, treatment with H2O2 induced nuclear shape alterations significantly more frequently in mitotic cells than in asynchronous cells, suggesting that H2O2 mainly affects nuclear envelope disassembly and/or reassembly processes. Because protein phosphatase 2 A (PP2A) activity is reported to be involved in nuclear envelope reassembly during mitosis, we investigated the possible involvement of PP2A. Indeed, H2O2 reduced the activity of PP2A, an effect that was mimicked by the PP1 and PP2A inhibitor okadaic acid. Moreover, overexpression of PP2A but not PP1 or PP4 partially rescued H2O2-induced alterations in nuclear shape, indicating that the decrease in PP2A activity induced by H2O2 is specifically involved in the observed nuclear shape alterations. We further show that treatment of mitotic cells with H2O2 induced the mislocalization of BAF (barrier-to-autointegration factor), a substrate of PP2A, during telophase. This effect was associated with Lamin A/C mislocalization and was rescued by PP2A overexpression. Collectively, our findings suggest that H2O2 preferentially affects mitotic cells through PP2A inhibition, which induces the subsequent mislocalization of BAF and Lamin A/C during nuclear envelope reassembly, leading to the formation of an abnormal nuclear shape. A class of harmful chemical compounds produces morphological abnormalities in the nucleus that may help promote tumor growth. Reactive oxygen species (ROS) are DNA- and protein-damaging molecules that originate both from environmental contaminants and as a byproduct of cellular metabolism or stress. Jae-Ho Lee and colleagues at Ajou University, Suwon, South Korea have now identified a mechanism by which ROS can disrupt the shape and structure of the nucleus. They show that ROS exposure reduces the ativity of an enzyme called PP2A, which is required for the targeted recruitment of proteins that rebuild the membrane envelope surrounding the nucleus after cell division. Perturbations in this envelope can potentially contribute to damage to the chromosomal DNA within the nucleus, creating conditions that can trigger or accelerate the process of tumorigenesis.
Collapse
Affiliation(s)
- Ju-Hyun Ahn
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea
| | - Min-Guk Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea
| | - Seonghyang Sohn
- Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea.,Department of Microbiology, Ajou University School of Medicine, Suwon, 443-721, South Korea
| | - Jae-Ho Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea. .,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 443-721, South Korea. .,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea.
| |
Collapse
|
123
|
Ren H, Xin G, Jia M, Zhu S, Lin Q, Wang X, Jiang Q, Zhang C. Postmitotic annulate lamellae assembly contributes to nuclear envelope reconstitution in daughter cells. J Biol Chem 2019; 294:10383-10391. [PMID: 31152066 DOI: 10.1074/jbc.ac119.008171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/22/2019] [Indexed: 11/06/2022] Open
Abstract
In higher eukaryotic cells, the nuclear envelope (NE) is composed of double nuclear membranes studded with nuclear pore complexes (NPCs) and undergoes dynamic disassembly and reassembly during the cell cycle. However, how the NE and NPC reassemble remains largely unclear. Here, using HeLa, HEK293, and Drosophila cells, along with immunofluorescence microscopy and transmission EM methods, we found that postmitotic annulate lamellae (AL) assembly contributes to NE and NPC assembly. We observed that the AL are parallel membrane-pair stacks and possess regularly spaced AL pore complexes (ALPCs) that are morphologically similar to the NPCs. We found that the AL assemble in the cytoplasm during mitotic exit simultaneously with NE re-formation in daughter cells. Then, the assembled AL either bound the decondensing chromatin to directly transform into the NE or bound and fused with the outer nuclear membrane to join the assembling NE. The AL did not colocalize with sheet and tubular endoplasmic reticulum (ER) marker proteins on the ER or the lamin B receptor-localized membrane in the cytoplasm, suggesting that postmitotic AL assembly occurs independently of the chromatin and ER. Collectively, our results indicate that postmitotic AL assembly is a common cellular event and an intermediate step in NE and NPC assembly and in NE expansion in higher eukaryotic cells.
Collapse
Affiliation(s)
- He Ren
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Mingkang Jia
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shicong Zhu
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiaoyu Lin
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiangyang Wang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Jiang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
124
|
Kobayashi W, Takizawa Y, Aihara M, Negishi L, Ishii H, Kurumizaka H. Structural and biochemical analyses of the nuclear pore complex component ELYS identify residues responsible for nucleosome binding. Commun Biol 2019; 2:163. [PMID: 31069272 PMCID: PMC6499780 DOI: 10.1038/s42003-019-0385-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
The nuclear pore complex embedded within the nuclear envelope is the essential architecture for trafficking macromolecules, such as proteins and RNAs, between the cytoplasm and nucleus. The nuclear pore complex assembly occurs on chromatin in the post-mitotic phase of the cell cycle. ELYS (MEL-28/AHCTF1) binds to the nucleosome, which is the basic chromatin unit, and promotes assembly of the complex around the chromosomes in cells. Here we show that the Arg-Arg-Lys (RRK) stretch of the C-terminal ELYS region plays an essential role in the nucleosome binding. The cryo-EM structure and the crosslinking mass spectrometry reveal that the ELYS C-terminal region directly binds to the acidic patch of the nucleosome. These results provide mechanistic insight into the ELYS-nucleosome interaction, which promotes the post-mitotic nuclear pore complex formation around chromosomes in cells.
Collapse
Affiliation(s)
- Wataru Kobayashi
- 1Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
- 2Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan
| | - Yoshimasa Takizawa
- 1Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
| | - Maya Aihara
- 2Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan
| | - Lumi Negishi
- 1Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
| | - Hajime Ishii
- 2Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan
| | - Hitoshi Kurumizaka
- 1Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
- 2Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan
| |
Collapse
|
125
|
Chemudupati M, Johns M, Osmani SA. The mode of mitosis is dramatically modified by deletion of a single nuclear pore complex gene in Aspergillus nidulans. Fungal Genet Biol 2019; 130:72-81. [PMID: 31026588 DOI: 10.1016/j.fgb.2019.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023]
Abstract
Nuclear pore complex (NPC) proteins (Nups) play multiple roles during mitosis. In this study we expand these roles and reveal that in Aspergillus nidulans, compromising the core Nup84-120 subcomplex of the NPC modifies the mitotic behavior of the nuclear envelope (NE). In wildtype cells, the NE undergoes simultaneous double pinching events to separate daughter nuclei during mitotic exit, whereas in Nup84-120 complex mutants, only one restriction of the NE is observed. Investigating the basis for this modified behavior of the NE in Nup deleted cells uncovered previously unrealized roles for core Nups in mitotic exit. During wildtype anaphase, the NE surrounds the two separating daughter DNA masses which typically flank the central nucleolus, to form three distinct nuclear compartments. In contrast, deletion of core Nups frequently results in early nucleolar eviction from the mitotic nucleus, in turn causing an uncharacteristic dumbbell-shaped NE morphology of anaphase nuclei with a nuclear membrane bridge connecting the two forming G1 nuclei. Importantly, the absence of the nucleolus between the separating daughter nuclei during anaphase delays chromosome segregation and progression into G1 as nuclei remain connected by chromatin bridges. Proteins localizing to late segregating chromosome arms are observed between forming daughter nuclei, and the mitotic spindle fails to resolve in a timely manner. These chromatin bridges are occupied by the Aurora kinase until nuclei have fully separated, suggesting involvement of Aurora in monitoring mitotic spindle and nuclear membrane resolution during mitotic exit. Our findings thus reveal a novel requirement for core Nups in mediating nucleolar positioning during mitosis, which dictates the pattern of NE fissions during karyokinesis and facilitates normal chromosome segregation. The findings additionally demonstrate that the mode of mitosis can be dramatically modified by deletion of a single NPC gene and reveals surprising fluidity in mitotic mechanisms.
Collapse
Affiliation(s)
- Mahesh Chemudupati
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States
| | - Matthew Johns
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
126
|
Kumar D, Golchoubian B, Belevich I, Jokitalo E, Schlaitz AL. REEP3 and REEP4 determine the tubular morphology of the endoplasmic reticulum during mitosis. Mol Biol Cell 2019; 30:1377-1389. [PMID: 30995177 PMCID: PMC6724692 DOI: 10.1091/mbc.e18-11-0698] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is extensively remodeled during metazoan open mitosis. However, whether the ER becomes more tubular or more cisternal during mitosis is controversial, and dedicated factors governing the morphology of the mitotic ER have remained elusive. Here, we describe the ER membrane proteins REEP3 and REEP4 as major determinants of ER morphology in metaphase cells. REEP3/4 are specifically required for generating the high-curvature morphology of mitotic ER and promote ER tubulation through their reticulon homology domains (RHDs). This ER-shaping activity of REEP3/4 is distinct from their previously described function to clear ER from metaphase chromatin. We further show that related REEP proteins do not contribute to mitotic ER shaping and provide evidence that the REEP3/4 carboxyterminus mediates regulation of the proteins. These findings confirm that ER converts to higher curvature during mitosis, identify REEP3/4 as specific and crucial morphogenic factors mediating ER tubulation during mitosis, and define the first cell cycle-specific role for RHD proteins.
Collapse
Affiliation(s)
- Darshan Kumar
- Cell and Molecular Biology Program, University of Helsinki, FI-00014 Helsinki, Finland
| | - Banafsheh Golchoubian
- Center for Molecular Biology of Heidelberg University (ZMBH), D-69120 Heidelberg, Germany
| | - Ilya Belevich
- Cell and Molecular Biology Program, University of Helsinki, FI-00014 Helsinki, Finland.,Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Eija Jokitalo
- Cell and Molecular Biology Program, University of Helsinki, FI-00014 Helsinki, Finland.,Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Anne-Lore Schlaitz
- Center for Molecular Biology of Heidelberg University (ZMBH), D-69120 Heidelberg, Germany
| |
Collapse
|
127
|
Phosphoregulation of the oncogenic protein regulator of cytokinesis 1 (PRC1) by the atypical CDK16/CCNY complex. Exp Mol Med 2019; 51:1-17. [PMID: 30992425 PMCID: PMC6467995 DOI: 10.1038/s12276-019-0242-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/11/2018] [Accepted: 01/02/2019] [Indexed: 01/03/2023] Open
Abstract
CDK16 (also known as PCTAIRE1 or PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family that forms an active complex with cyclin Y (CCNY). Although both proteins have been recently implicated in cancer pathogenesis, it is still unclear how the CDK16/CCNY complex exerts its biological activity. To understand the CDK16/CCNY network, we used complementary proteomic approaches to identify potential substrates of this complex. We identified several candidates implicating the CDK16/CCNY complex in cytoskeletal dynamics, and we focused on the microtubule-associated protein regulator of cytokinesis (PRC1), an essential protein for cell division that organizes antiparallel microtubules and whose deregulation may drive genomic instability in cancer. Using analog-sensitive (AS) CDK16 generated by CRISPR-Cas9 mutagenesis in 293T cells, we found that specific inhibition of CDK16 induces PRC1 dephosphorylation at Thr481 and delocalization to the nucleus during interphase. The observation that CDK16 inhibition and PRC1 downregulation exhibit epistatic effects on cell viability confirms that these proteins can act through a single pathway. In conclusion, we identified PRC1 as the first substrate of the CDK16/CCNY complex and demonstrated that the proliferative function of CDK16 is mediated by PRC1 phosphorylation. As CDK16 is emerging as a critical node in cancer, our study reveals novel potential therapeutic targets. Studying the activity of proteins that work together to control cell division is revealing several that might be suitable targets for new drugs to fight cancer. Researchers led by Josep Clotet and Mariana Ribeiro at the International University of Catalonia, Barcelona, Spain, investigated the activities of the complex formed between two proteins, CDK16 and CCNY. CDK16 is an enzyme that modifies other molecules by adding phosphate groups (PO4) to them. CCNY is a protein that controls the activity of CDK16 and other proteins. Previous research has suggested a role for the complex in the development of cancer, but the mechanism has been unclear. The researchers found that the CDK16/CCNY complex activates proteins that control the network of microtubules in cells known as the cytoskeleton. One of these proteins, PRC1, is essential for cell division.
Collapse
|
128
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
129
|
Pappas SS, Liang CC, Kim S, Rivera CO, Dauer WT. TorsinA dysfunction causes persistent neuronal nuclear pore defects. Hum Mol Genet 2019; 27:407-420. [PMID: 29186574 DOI: 10.1093/hmg/ddx405] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/15/2017] [Indexed: 01/09/2023] Open
Abstract
A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology.
Collapse
Affiliation(s)
| | | | - Sumin Kim
- Cellular and Molecular Biology Program
| | | | - William T Dauer
- Department of Neurology.,Cellular and Molecular Biology Program.,Department of Cell and Developmental Biology.,VA Ann Arbor Health System, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
130
|
Spits M, Janssen LJ, Voortman LM, Kooij R, Neefjes ACM, Ovaa H, Neefjes J. Homeostasis of soluble proteins and the proteasome post nuclear envelope reformation in mitosis. J Cell Sci 2019; 132:jcs.225524. [DOI: 10.1242/jcs.225524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Upon Nuclear envelope (NE) fragmentation in the prometaphase the nuclear and cytosolic proteomes blend and must be redefined to reinstate homeostasis. Using a molecular GFP ladder, we show that in early mitosis, condensed chromatin excludes cytosolic proteins. When the NE reforms tightly around condensed chromatin in late mitosis, large GFP multimers are automatically excluded from the nucleus. This can be circumvented by limiting DNA condensation with Q15, a Condensin II inhibitor. Soluble small and other NLS-targeted proteins then swiftly enter the expanding nuclear space. We then examined the proteasome, located in cytoplasm and nucleus. A significant fraction of 20S proteasomes is imported by importin IPO5 within 20 minutes following reformation of the nucleus, after which import comes to an abrupt halt. This suggests that maintaining the nuclear-cytosol distribution after mitosis requires chromatin condensation to exclude cytosolic material from the nuclear space and specialized machineries for nuclear import of large protein complexes such as the proteasome.
Collapse
Affiliation(s)
- Menno Spits
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Lennert J. Janssen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Lenard M. Voortman
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Raymond Kooij
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Anna C. M. Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| |
Collapse
|
131
|
Kishi Y, Gotoh Y. Regulation of Chromatin Structure During Neural Development. Front Neurosci 2018; 12:874. [PMID: 30618540 PMCID: PMC6297780 DOI: 10.3389/fnins.2018.00874] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/09/2018] [Indexed: 11/13/2022] Open
Abstract
The regulation of genome architecture is a key determinant of gene transcription patterns and neural development. Advances in methodologies based on chromatin conformation capture (3C) have shed light on the genome-wide organization of chromatin in developmental processes. Here, we review recent discoveries regarding the regulation of three-dimensional (3D) chromatin conformation, including promoter-enhancer looping, and the dynamics of large chromatin domains such as topologically associated domains (TADs) and A/B compartments. We conclude with perspectives on how these conformational changes govern neural development and may go awry in disease states.
Collapse
Affiliation(s)
- Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
132
|
Yao C, Wang C, Li Y, Zavortink M, Archambault V, Girton J, Johansen KM, Johansen J. Evidence for a role of spindle matrix formation in cell cycle progression by antibody perturbation. PLoS One 2018; 13:e0208022. [PMID: 30485354 PMCID: PMC6261614 DOI: 10.1371/journal.pone.0208022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/11/2018] [Indexed: 12/27/2022] Open
Abstract
In Drosophila it has recently been demonstrated that a spindle matrix in the form of a membrane-less macromolecular assembly embeds the microtubule-based spindle apparatus. In addition, two of its constituents, Megator and Chromator, were shown to function as spatial regulators of spindle checkpoint proteins. However, whether the spindle matrix plays a wider functional role in spatially regulating cell cycle progression factors was unknown. Here using a live imaging approach we provide evidence that a number of key cell cycle proteins such as Cyclin B, Polo, and Ran co-localize with the spindle matrix during mitosis. Furthermore, prevention of spindle matrix formation by injection of a function blocking antibody against the spindle matrix protein Chromator results in cell cycle arrest prior to nuclear envelope breakdown. In such embryos the spatial dynamics of Polo and Cyclin B enrichment at the nuclear rim and kinetochores is abrogated and Polo is not imported into the nucleus. This is in contrast to colchicine-arrested embryos where the wild-type dynamics of these proteins are maintained. Taken together these results suggest that spindle matrix formation may be a general requirement for the localization and proper dynamics of cell cycle factors promoting signaling events leading to cell cycle progression.
Collapse
Affiliation(s)
- Changfu Yao
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Chao Wang
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Yeran Li
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Michael Zavortink
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | | | - Jack Girton
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Kristen M Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
133
|
Aurora kinase and FGFR3 inhibition results in significant apoptosis in molecular subgroups of multiple myeloma. Oncotarget 2018; 9:34582-34594. [PMID: 30349651 PMCID: PMC6195373 DOI: 10.18632/oncotarget.26180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/15/2018] [Indexed: 11/25/2022] Open
Abstract
Aberrant expression of proteins involved in cell division is a constant feature in multiple myeloma (MM), especially in high-risk disease. Increasingly, therapy of myeloma is moving towards individualization based on underlying genetic abnormalities. Aurora kinases are important mediators of cell cycle and are up regulated in MM. Functional loss of Aurora kinases results in genetic instability and dysregulated division leading to cellular aneuploidy and growth arrest. We investigated the role of Aurora kinase inhibition in MM, using a small molecule inhibitor A1014907. Low nanomolar A1014907 concentrations induced aneuploidy in MM cell lines independent of underlying cytogenetic abnormalities by inhibiting Aurora Kinases. However, A1014907 induced more pronounced and dose dependent apoptosis in cell lines with t(4;14) translocation. Translocation t(4;14) is observed in about 15% of patients with MM leading to constitutive activation of FGFR3 in two-thirds of these patients. Further investigation of the mechanism of action of A1014907 revealed potent FGFR3 pathway inhibition only in the sensitive cell lines. Thus, our results show that aurora kinase inhibition causes cell cycle arrest and aneuploidy with minimal apoptosis whereas inhibiting both aurora kinase and FGFR3 activity induced potent apoptosis in MM cells. These results support clinical evaluation of A1014907 in MM patients with t(4;14) translocation and/or FGFR3 expression.
Collapse
|
134
|
Protein oligomerization and mobility within the nuclear envelope evaluated by the time-shifted mean-segmented Q factor. Methods 2018; 157:28-41. [PMID: 30268407 DOI: 10.1016/j.ymeth.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 11/21/2022] Open
Abstract
Analysis of fluorescence fluctuation experiments by the mean-segmented Q (MSQ) method was recently used to successfully characterize the oligomeric state and mobility of proteins within the nuclear envelope (NE) of living cells. However, two significant shortcomings of MSQ were recognized. Non-ideal detector behavior due to dead-time and afterpulsing as well as the lack of error analysis currently limit the potential of MSQ. This paper presents time-shifted MSQ (tsMSQ), a new formulation of MSQ that is robust with respect to dead-time and afterpulsing. In addition, a protocol for performing error analysis on tsMSQ data is introduced to assess the quality of fit models and estimate the uncertainties of fit parameters. Together, these developments significantly simplify and improve the analysis of fluorescence fluctuation data taken within the NE. To demonstrate these new developments, tsMSQ was used to characterize the oligomeric state and mobility of the luminal domains of two inner nuclear membrane SUN proteins. The results for the luminal domain of SUN2 obtained through tsMSQ without correction for non-ideal detector effects agree with a recent study that was conducted using the original MSQ formulation. Finally, tsMSQ was applied to characterize the oligomeric state and mobility of the luminal domain of the germline-restricted SUN3.
Collapse
|
135
|
Lv Y, Zhou S, Gao S, Deng H. Remodeling of host membranes during herpesvirus assembly and egress. Protein Cell 2018; 10:315-326. [PMID: 30242641 PMCID: PMC6468031 DOI: 10.1007/s13238-018-0577-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/21/2018] [Indexed: 02/04/2023] Open
Abstract
Many viruses, enveloped or non-enveloped, remodel host membrane structures for their replication, assembly and escape from host cells. Herpesviruses are important human pathogens and cause many diseases. As large enveloped DNA viruses, herpesviruses undergo several complex steps to complete their life cycles and produce infectious progenies. Firstly, herpesvirus assembly initiates in the nucleus, producing nucleocapsids that are too large to cross through the nuclear pores. Nascent nucleocapsids instead bud at the inner nuclear membrane to form primary enveloped virions in the perinuclear space followed by fusion of the primary envelopes with the outer nuclear membrane, to translocate the nucleocapsids into the cytoplasm. Secondly, nucleocapsids obtain a series of tegument proteins in the cytoplasm and bud into vesicles derived from host organelles to acquire viral envelopes. The vesicles are then transported to and fuse with the plasma membrane to release the mature virions to the extracellular space. Therefore, at least two budding and fusion events take place at cellular membrane structures during herpesviruses assembly and egress, which induce membrane deformations. In this review, we describe and discuss how herpesviruses exploit and remodel host membrane structures to assemble and escape from the host cell.
Collapse
Affiliation(s)
- Ying Lv
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Zhou
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengyan Gao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
136
|
Abstract
Electrotransfection (ET) is a nonviral method for delivery of various types of molecules into cells both in vitro and in vivo. Close to 90 clinical trials that involve the use of ET have been performed, and approximately half of them are related to cancer treatment. Particularly, ET is an attractive technique for cancer immunogene therapy because treatment of cells with electric pulses alone can induce immune responses to solid tumors, and the responses can be further enhanced by ET of plasmid DNA (pDNA) encoding therapeutic genes. Compared to other gene delivery methods, ET has several unique advantages. It is relatively inexpensive, flexible, and safe in clinical applications, and introduces only naked pDNA into cells without the use of additional chemicals or viruses. However, the efficiency of ET is still low, partly because biological mechanisms of ET in cells remain elusive. In previous studies, it was believed that pDNA entered the cells through transient pores created by electric pulses. As a result, the technique is commonly referred to as electroporation. However, recent discoveries have suggested that endocytosis plays an important role in cellular uptake and intracellular transport of electrotransfected pDNA. This review will discuss current progresses in the study of biological mechanisms underlying ET and future directions of research in this area. Understanding the mechanisms of pDNA transport in cells is critical for the development of new strategies for improving the efficiency of gene delivery in tumors.
Collapse
Affiliation(s)
- Lisa D Cervia
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Fan Yuan
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
137
|
Genetic Analyses of Elys Mutations in Drosophila Show Maternal-Effect Lethality and Interactions with Nucleoporin Genes. G3-GENES GENOMES GENETICS 2018; 8:2421-2431. [PMID: 29773558 PMCID: PMC6027884 DOI: 10.1534/g3.118.200361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ELYS determines the subcellular localizations of Nucleoporins (Nups) during interphase and mitosis. We made loss-of-function mutations of Elys in Drosophila melanogaster and found that ELYS is dispensable for zygotic viability and male fertility but the maternal supply is necessary for embryonic development. Subsequent to fertilization, mitotic progression of the embryos produced by the mutant females is severely disrupted at the first cleavage division, accompanied by irregular behavior of mitotic centrosomes. The Nup160 introgression from D. simulans shows close resemblance to that of the Elys mutations, suggesting a common role for those proteins in the first cleavage division. Our genetic experiments indicated critical interactions between ELYS and three Nup107-160 subcomplex components; hemizygotes of either Nup37, Nup96 or Nup160 were lethal in the genetic background of the Elys mutation. Not only Nup96 and Nup160 but also Nup37 of D. simulans behave as recessive hybrid incompatibility genes with D. melanogaster An evolutionary analysis indicated positive natural selection in the ELYS-like domain of ELYS. Here we propose that genetic incompatibility between Elys and Nups may lead to reproductive isolation between D. melanogaster and D. simulans, although direct evidence is necessary.
Collapse
|
138
|
Strunov A, Boldyreva LV, Andreyeva EN, Pavlova GA, Popova JV, Razuvaeva AV, Anders AF, Renda F, Pindyurin AV, Gatti M, Kiseleva E. Ultrastructural analysis of mitotic Drosophila S2 cells identifies distinctive microtubule and intracellular membrane behaviors. BMC Biol 2018; 16:68. [PMID: 29907103 PMCID: PMC6003134 DOI: 10.1186/s12915-018-0528-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND S2 cells are one of the most widely used Drosophila melanogaster cell lines. A series of studies has shown that they are particularly suitable for RNAi-based screens aimed at the dissection of cellular pathways, including those controlling cell shape and motility, cell metabolism, and host-pathogen interactions. In addition, RNAi in S2 cells has been successfully used to identify many new mitotic genes that are conserved in the higher eukaryotes, and for the analysis of several aspects of the mitotic process. However, no detailed and complete description of S2 cell mitosis at the ultrastructural level has been done. Here, we provide a detailed characterization of all phases of S2 cell mitosis visualized by transmission electron microscopy (TEM). RESULTS We analyzed by TEM a random sample of 144 cells undergoing mitosis, focusing on intracellular membrane and microtubule (MT) behaviors. This unbiased approach provided a comprehensive ultrastructural view of the dividing cells, and allowed us to discover that S2 cells exhibit a previously uncharacterized behavior of intracellular membranes, involving the formation of a quadruple nuclear membrane in early prometaphase and its disassembly during late prometaphase. After nuclear envelope disassembly, the mitotic apparatus becomes encased by a discontinuous network of endoplasmic reticulum membranes, which associate with mitochondria, presumably to prevent their diffusion into the spindle area. We also observed a peculiar metaphase spindle organization. We found that kinetochores with attached k-fibers are almost invariably associated with lateral MT bundles that can be either interpolar bundles or k-fibers connected to a different kinetochore. This spindle organization is likely to favor chromosome alignment at metaphase and subsequent segregation during anaphase. CONCLUSIONS We discovered several previously unknown features of membrane and MT organization during S2 cell mitosis. The genetic determinants of these mitotic features can now be investigated, for instance by using an RNAi-based approach, which is particularly easy and efficient in S2 cells.
Collapse
Affiliation(s)
- Anton Strunov
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia.
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, 630090, Russia.
| | - Lidiya V Boldyreva
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia
| | - Evgeniya N Andreyeva
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia
| | - Gera A Pavlova
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia
| | - Julia V Popova
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, 630090, Russia
| | - Alena V Razuvaeva
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alina F Anders
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Fioranna Renda
- IBPM CNR and Department of Biology and Biotechnology, Sapienza University of Rome, 00185, Rome, Italy
- Present address: Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Alexey V Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Maurizio Gatti
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia.
- IBPM CNR and Department of Biology and Biotechnology, Sapienza University of Rome, 00185, Rome, Italy.
| | - Elena Kiseleva
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, 630090, Russia
| |
Collapse
|
139
|
Link J, Paouneskou D, Velkova M, Daryabeigi A, Laos T, Labella S, Barroso C, Pacheco Piñol S, Montoya A, Kramer H, Woglar A, Baudrimont A, Markert SM, Stigloher C, Martinez-Perez E, Dammermann A, Alsheimer M, Zetka M, Jantsch V. Transient and Partial Nuclear Lamina Disruption Promotes Chromosome Movement in Early Meiotic Prophase. Dev Cell 2018; 45:212-225.e7. [PMID: 29689196 PMCID: PMC5920155 DOI: 10.1016/j.devcel.2018.03.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/13/2018] [Accepted: 03/23/2018] [Indexed: 12/03/2022]
Abstract
Meiotic chromosome movement is important for the pairwise alignment of homologous chromosomes, which is required for correct chromosome segregation. Movement is driven by cytoplasmic forces, transmitted to chromosome ends by nuclear membrane-spanning proteins. In animal cells, lamins form a prominent scaffold at the nuclear periphery, yet the role lamins play in meiotic chromosome movement is unclear. We show that chromosome movement correlates with reduced lamin association with the nuclear rim, which requires lamin phosphorylation at sites analogous to those that open lamina network crosslinks in mitosis. Failure to remodel the lamina results in delayed meiotic entry, altered chromatin organization, unpaired or interlocked chromosomes, and slowed chromosome movement. The remodeling kinases are delivered to lamins via chromosome ends coupled to the nuclear envelope, potentially enabling crosstalk between the lamina and chromosomal events. Thus, opening the lamina network plays a role in modulating contacts between chromosomes and the nuclear periphery during meiosis.
Collapse
Affiliation(s)
- Jana Link
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Dimitra Paouneskou
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Maria Velkova
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Anahita Daryabeigi
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Triin Laos
- Department of Microbiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Sara Labella
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC H2A 1B1, Canada
| | - Consuelo Barroso
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Sarai Pacheco Piñol
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alex Montoya
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Holger Kramer
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alexander Woglar
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Antoine Baudrimont
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | | | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Enrique Martinez-Perez
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alexander Dammermann
- Department of Microbiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Monique Zetka
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC H2A 1B1, Canada
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria.
| |
Collapse
|
140
|
Bateman LA, Nguyen TB, Roberts AM, Miyamoto DK, Ku WM, Huffman TR, Petri Y, Heslin MJ, Contreras CM, Skibola CF, Olzmann JA, Nomura DK. Chemoproteomics-enabled covalent ligand screen reveals a cysteine hotspot in reticulon 4 that impairs ER morphology and cancer pathogenicity. Chem Commun (Camb) 2018; 53:7234-7237. [PMID: 28352901 DOI: 10.1039/c7cc01480e] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical genetics has arisen as a powerful approach for identifying novel anti-cancer agents. However, a major bottleneck of this approach is identifying the targets of lead compounds that arise from screens. Here, we coupled the synthesis and screening of fragment-based cysteine-reactive covalent ligands with activity-based protein profiling (ABPP) chemoproteomic approaches to identify compounds that impair colorectal cancer pathogenicity and map the druggable hotspots targeted by these hits. Through this coupled approach, we discovered a cysteine-reactive acrylamide DKM 3-30 that significantly impaired colorectal cancer cell pathogenicity through targeting C1101 on reticulon 4 (RTN4). While little is known about the role of RTN4 in colorectal cancer, this protein has been established as a critical mediator of endoplasmic reticulum tubular network formation. We show here that covalent modification of C1101 on RTN4 by DKM 3-30 or genetic knockdown of RTN4 impairs endoplasmic reticulum and nuclear envelope morphology as well as colorectal cancer pathogenicity. We thus put forth RTN4 as a potential novel colorectal cancer therapeutic target and reveal a unique druggable hotspot within RTN4 that can be targeted by covalent ligands to impair colorectal cancer pathogenicity. Our results underscore the utility of coupling the screening of fragment-based covalent ligands with isoTOP-ABPP platforms for mining the proteome for novel druggable nodes that can be targeted for cancer therapy.
Collapse
Affiliation(s)
- L A Bateman
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Plasmodium APC3 mediates chromosome condensation and cytokinesis during atypical mitosis in male gametogenesis. Sci Rep 2018; 8:5610. [PMID: 29618731 PMCID: PMC5884774 DOI: 10.1038/s41598-018-23871-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
The anaphase promoting complex/cyclosome (APC/C) is a highly conserved multi-subunit E3 ubiquitin ligase that controls mitotic division in eukaryotic cells by tagging cell cycle regulators for proteolysis. APC3 is a key component that contributes to APC/C function. Plasmodium, the causative agent of malaria, undergoes atypical mitotic division during its life cycle. Only a small subset of APC/C components has been identified in Plasmodium and their involvement in atypical cell division is not well understood. Here, using reverse genetics we examined the localisation and function of APC3 in Plasmodium berghei. APC3 was observed as a single focus that co-localised with the centriolar plaque during asexual cell division in schizonts, whereas it appeared as multiple foci in male gametocytes. Functional studies using gene disruption and conditional knockdown revealed essential roles of APC3 during these mitotic stages with loss resulting in a lack of chromosome condensation, abnormal cytokinesis and absence of microgamete formation. Overall, our data suggest that Plasmodium utilises unique cell cycle machinery to coordinate various processes during endomitosis, and this warrants further investigation in future studies.
Collapse
|
142
|
Flor-Parra I, Iglesias-Romero AB, Salas-Pino S, Lucena R, Jimenez J, Daga RR. Importin α and vNEBD Control Meiotic Spindle Disassembly in Fission Yeast. Cell Rep 2018; 23:933-941. [DOI: 10.1016/j.celrep.2018.03.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/13/2018] [Accepted: 03/16/2018] [Indexed: 11/15/2022] Open
|
143
|
Abstract
Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.
Collapse
Affiliation(s)
- Elisabeth M Storck
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom;
| | - Cagakan Özbalci
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom;
| | - Ulrike S Eggert
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom; .,Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| |
Collapse
|
144
|
Enhancing Electrotransfection Efficiency through Improvement in Nuclear Entry of Plasmid DNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:263-271. [PMID: 29858061 PMCID: PMC5992438 DOI: 10.1016/j.omtn.2018.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 01/15/2023]
Abstract
The nuclear envelope is a physiological barrier to electrogene transfer. To understand different mechanisms of the nuclear entry for electrotransfected plasmid DNA (pDNA), the current study investigated how manipulation of the mechanisms could affect electrotransfection efficiency (eTE), transgene expression level (EL), and cell viability. In the investigation, cells were first synchronized at G2-M phase prior to electrotransfection so that the nuclear envelope breakdown (NEBD) occurred before pDNA entered the cells. The NEBD significantly increased the eTE and the EL while the cell viability was not compromised. In the second experiment, the cells were treated with a nuclear pore dilating agent (i.e., trans-1,2-cyclohexanediol). The treatment could increase the EL, but had only minor effects on eTE. Furthermore, the treatment was more cytotoxic, compared with the cell synchronization. In the third experiment, a nuclear targeting sequence (i.e., SV40) was incorporated into the pDNA prior to electrotransfection. The incorporation was more effective than the cell synchronization for enhancing the EL, but not the eTE, and the effectiveness was cell type dependent. Taken together, the data described above suggested that synchronization of the NEBD could be a practical approach to improving electrogene transfer in all dividing cells.
Collapse
|
145
|
Karyopherins in cancer. Curr Opin Cell Biol 2018; 52:30-42. [PMID: 29414591 DOI: 10.1016/j.ceb.2018.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/08/2018] [Accepted: 01/14/2018] [Indexed: 12/16/2022]
Abstract
Malfunction of nuclear-cytoplasmic transport contributes to many diseases including cancer. Defective nuclear transport leads to changes in both the physiological levels and temporal-spatial location of tumor suppressors, proto-oncogenes and other macromolecules that in turn affect the tumorigenesis process and drug sensitivity of cancer cells. In addition to their nuclear transport functions in interphase, Karyopherin nuclear transport receptors also have important roles in mitosis and chromosomal integrity. Therefore, alterations in the expressions or regular functions of Karyopherins may have substantial effects on the course and outcome of diseases.
Collapse
|
146
|
Maraldi NM. The lamin code. Biosystems 2018; 164:68-75. [DOI: 10.1016/j.biosystems.2017.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
|
147
|
Davis CM, Gruebele M, Sukenik S. How does solvation in the cell affect protein folding and binding? Curr Opin Struct Biol 2018; 48:23-29. [PMID: 29035742 DOI: 10.1016/j.sbi.2017.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022]
Abstract
The cellular environment is highly diverse and capable of rapid changes in solute composition and concentrations. Decades of protein studies have highlighted their sensitivity to solute environment, yet these studies were rarely performed in situ. Recently, new techniques capable of monitoring proteins in their natural context within a live cell have emerged. A recurring theme of these investigations is the importance of the often-neglected cellular solvation environment to protein function. An emerging consensus is that protein processes in the cell are affected by a combination of steric and non-steric interactions with this solution. Here we explain how protein surface area and volume changes control these two interaction types, and give recent examples that highlight how even mild environmental changes can alter cellular processes.
Collapse
Affiliation(s)
- Caitlin M Davis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Shahar Sukenik
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
148
|
Sierra A, de Castro F, Del Río-Hortega J, Rafael Iglesias-Rozas J, Garrosa M, Kettenmann H. The "Big-Bang" for modern glial biology: Translation and comments on Pío del Río-Hortega 1919 series of papers on microglia. Glia 2018; 64:1801-40. [PMID: 27634048 DOI: 10.1002/glia.23046] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
The word "glia" was coined in the mid-19th century and defined as "the nerve glue". For decades, it was assumed to be a uniform matrix, until cell theorists raised the "neuron doctrine" which stipulated that nervous tissue was composed of individual cells. The term "astrocytes" was introduced in the late 19th century as a synonym for glial cells, but it was Santiago Ramón y Cajal who defined a "third element" distinct from glial cells (astrocytes) and neurons. It was not until 1919 when Pío del Río-Hortega, an alumnus of the Cajal School, introduced the modern terms we use today, and thoroughly described both "oligodendrocytes" and "microglia" to clearly distinguish them from astrocytes. In a series of four papers published that year in Spanish, Río-Hortega described the distribution and morphological phenotype of microglia. He also noted that these cells were the origin of the rod cells described earlier in pathologic tissue, and recognized that resting microglia transformed into an ameboid phenotype in different types of brain diseases and pathologies. He also noted the mesodermal origin of these cells and recognized their phagocytic capacity. We here provide the first English translation of these landmark series of papers, which paved the way for modern glial research. To heighten the value and accessibility of these classic papers and their original figures, an introduction to this critical period of neuroscience is provided, along with unpublished photographs. By adding comments to the translated text, we provide sufficient context so that contemporary scientists may fully appreciate it. GLIA 2016;64:1801-1840.
Collapse
Affiliation(s)
- Amanda Sierra
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Zamudio, Bizkaia, Spain. .,Ikerbasque Foundation, Bilbao, Bizkaia, Spain. .,Department of Neuroscience, Faculty of Medicine, University of the Basque Country EHU/UPV, Leioa, Bizkaia, Spain.
| | | | - Juan Del Río-Hortega
- Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, Spain
| | | | | | - Helmut Kettenmann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
149
|
Freifeld L, Odstrcil I, Förster D, Ramirez A, Gagnon JA, Randlett O, Costa EK, Asano S, Celiker OT, Gao R, Martin-Alarcon DA, Reginato P, Dick C, Chen L, Schoppik D, Engert F, Baier H, Boyden ES. Expansion microscopy of zebrafish for neuroscience and developmental biology studies. Proc Natl Acad Sci U S A 2017; 114:E10799-E10808. [PMID: 29162696 PMCID: PMC5740639 DOI: 10.1073/pnas.1706281114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and development. Regarding neuroscience, we found that ExM enabled the tracing of fine processes of radial glia, which are not resolvable with diffraction-limited microscopy. ExM further resolved putative synaptic connections, as well as molecular differences between densely packed synapses. Finally, ExM could resolve subsynaptic protein organization, such as ring-like structures composed of glycine receptors. Regarding development, we used ExM to characterize the shapes of nuclear invaginations and channels, and to visualize cytoskeletal proteins nearby. We detected nuclear invagination channels at late prophase and telophase, potentially suggesting roles for such channels in cell division. Thus, ExM of the larval and embryonic zebrafish may enable systematic studies of how molecular components are configured in multiple contexts of interest to neuroscience and developmental biology.
Collapse
Affiliation(s)
- Limor Freifeld
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139
| | - Iris Odstrcil
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Dominique Förster
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Martinsried 82152, Germany
| | - Alyson Ramirez
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - James A Gagnon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Owen Randlett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Emma K Costa
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139
| | - Shoh Asano
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139
| | - Orhan T Celiker
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139
| | - Ruixuan Gao
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139
| | | | - Paul Reginato
- Department of Biological Engineering, MIT, Cambridge, MA 02139
- Department of Genetics, Harvard Medical School, Cambridge, MA 02138
| | - Cortni Dick
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139
| | - Linlin Chen
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139
- Neuroscience Program, Wellesley College, Wellesley, MA 02481
| | - David Schoppik
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016
- Neuroscience Institute, New York University School of Medicine, New York NY 10016
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Herwig Baier
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Martinsried 82152, Germany
| | - Edward S Boyden
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139;
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139
- Center for Neurobiological Engineering, MIT, Cambridge, MA 02139
| |
Collapse
|
150
|
Snyers L, Erhart R, Laffer S, Pusch O, Weipoltshammer K, Schöfer C. LEM4/ANKLE-2 deficiency impairs post-mitotic re-localization of BAF, LAP2α and LaminA to the nucleus, causes nuclear envelope instability in telophase and leads to hyperploidy in HeLa cells. Eur J Cell Biol 2017; 97:63-74. [PMID: 29254732 DOI: 10.1016/j.ejcb.2017.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/01/2023] Open
Abstract
The human LEM-domain protein family is involved in fundamental aspects of nuclear biology. The LEM-domain interacts with the barrier-to-autointegration factor (BAF), which itself binds DNA. LEM-domain proteins LAP2, emerin and MAN1 are proteins of the inner nuclear membrane; they have important functions: maintaining the integrity of the nuclear lamina and regulating gene expression at the nuclear periphery. LEM4/ANKLE-2 has been proposed to participate in nuclear envelope reassembly after mitosis and to mediate dephosphorylation of BAF through binding to phosphatase PP2A. Here, we used CRISPR/Cas9 to create several cell lines deficient in LEM4/ANKLE-2. By using time-lapse video microscopy, we show that absence of this protein severely compromises the post mitotic re-association of the nuclear proteins BAF, LAP2α and LaminA to chromosomes. These defects give rise to a strong mechanical instability of the nuclear envelope in telophase and to a chromosomal instability leading to increased number of hyperploid cells. Reintroducing LEM4/ANKLE-2 in the cells by transfection could efficiently restore the telophase association of BAF and LAP2α to the chromosomes. This rescue phenotype was abolished for N- or C-terminally truncated mutants that had lost the capacity to bind PP2A. We demonstrate also that, in addition to binding to PP2A, LEM4/ANKLE-2 binds BAF through its LEM-domain, providing further evidence for a generic function of this domain as a principal interactor of BAF.
Collapse
Affiliation(s)
- Luc Snyers
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria.
| | - Renate Erhart
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria
| | - Sylvia Laffer
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria
| | - Oliver Pusch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria
| | - Klara Weipoltshammer
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria
| | - Christian Schöfer
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria
| |
Collapse
|