101
|
Abstract
The epidemiology and the current burden of chronic liver disease are changing globally, with non-alcoholic fatty liver disease (NAFLD) becoming the most frequent cause of liver disease in close relationship with the global epidemics of obesity, type 2 diabetes and metabolic syndrome. The clinical phenotypes of NAFLD are very heterogeneous in relationship with multiple pathways involved in the disease progression. In the absence of a specific treatment for non-alcoholic steatohepatitis (NASH), it is important to understand the natural history of the disease, to identify and to optimize the control of factors that are involved in disease progression. In this paper we propose a critical analysis of factors that are involved in the progression of the liver damage and the occurrence of extra-hepatic complications (cardiovascular diseases, extra hepatic cancer) in patients with NAFLD. We also briefly discuss the impact of the heterogeneity of the clinical phenotype of NAFLD on the clinical practice globally and at the individual level.
Collapse
Affiliation(s)
- Raluca Pais
- Institut de Cardiométabolisme et Nutrition, Hôpital Pitié Salpetrière, Assistance Publique Hôpitaux de Paris, 75013 Paris, France;
| | | |
Collapse
|
102
|
Abstract
Gut dysbiosis in diabetes mellitus is associated with decreased short-chain fatty acids and epithelial barrier disruption. Microbial-derived toxins move across the "leaky gut" and incur systemic inflammation and insulin resistance. In children, gut dysbiosis has been associated with risk of developing type 1 diabetes mellitus. In animal models, the obesity phenotype is transferable via microbiota transplantation. Plant-based low protein diets and certain anti-diabetic drugs have been associated with positive microbiome effects. Clinical trials with prebiotics and probiotics have yielded mixed results. Further investigations are needed to evaluate the gut microbiome as a potential therapeutic target for diabetes prevention and management.
Collapse
Affiliation(s)
- Wei Ling Lau
- Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA.
| | - Tiffany Tran
- Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA
| | - Connie M Rhee
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA
| | - Nosratola D Vaziri
- Division of Nephrology, University of California, Irvine School of Medicine, Orange, CA
| |
Collapse
|
103
|
Jaworska K, Konop M, Hutsch T, Perlejewski K, Radkowski M, Grochowska M, Bielak-Zmijewska A, Mosieniak G, Sikora E, Ufnal M. Trimethylamine But Not Trimethylamine Oxide Increases With Age in Rat Plasma and Affects Smooth Muscle Cells Viability. J Gerontol A Biol Sci Med Sci 2021; 75:1276-1283. [PMID: 31411319 DOI: 10.1093/gerona/glz181] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
It has been suggested that trimethylamine oxide (TMAO), a liver oxygenation product of gut bacteria-produced trimethylamine (TMA), is a marker of cardiovascular risk. However, mechanisms of the increase and biological effects of TMAO are obscure. Furthermore, the potential role of TMAO precursor, that is TMA, has not been investigated. We evaluated the effect of age, a cardiovascular risk factor, on plasma levels of TMA and TMAO, gut bacteria composition, gut-to-blood penetration of TMA, histological and hemodynamic parameters in 3-month-old and 18-month-old, male, Sprague-Dawley and Wistar-Kyoto rats. Cytotoxicity of TMA and TMAO was studied in human vascular smooth muscle cells. Older rats showed significantly different gut bacteria composition, a significantly higher gut-to-blood TMA penetration, and morphological and hemodynamic alterations in intestines. In vitro, TMA at concentration of 500 µmol/L (2-fold higher than in portal blood) decreased human vascular smooth muscle cells viability. In contrast, TMAO at 1,000-fold higher concentration than physiological one had no effect on human vascular smooth muscle cells viability. In conclusion, older rats show higher plasma level of TMA due to a "leaky gut". TMA but not TMAO affects human vascular smooth muscle cells viability. We propose that TMA but not TMAO may be a marker and mediator of cardiovascular risk.
Collapse
Affiliation(s)
- Kinga Jaworska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marek Konop
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Hutsch
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, Warsaw, Poland
| | - Marta Grochowska
- Department of Immunopathology of Infectious and Parasitic Diseases, Warsaw Medical University, Warsaw, Poland
| | - Anna Bielak-Zmijewska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Grażyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
104
|
Correale M, Tricarico L, Fortunato M, Dattilo G, Iacoviello M, Brunetti ND. Infection, atherothrombosis and thromboembolism beyond the COVID-19 disease: what similar in physiopathology and researches. Aging Clin Exp Res 2021; 33:273-278. [PMID: 33449336 PMCID: PMC7809236 DOI: 10.1007/s40520-020-01775-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
The recent Sars-Cov-2 pandemic (COVID-19) has led to growing research on the relationship between thromboembolism and Sars-Cov-2 infection. Nowadays, endothelial dysfunction, platelet activation, coagulation, and inflammatory host immune response are the subject of extensive researches in patients with COVID-19 disease. However, studies on the link between microorganisms or infections and thrombotic or thromboembolic events met fluctuating interest in the past. We, therefore, aimed to briefly summarize previous evidence on this topic, highlighting common points between previous data and what experienced today with SARS-COV2 infections.
Collapse
Affiliation(s)
- Michele Correale
- Cardiology Unit, University Hospital Policlinico Riuniti, Viale Pinto1, 71100, Foggia, Italy.
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Martino Fortunato
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Dattilo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Massimo Iacoviello
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | |
Collapse
|
105
|
Hu EA, Coresh J, Anderson CAM, Appel LJ, Grams ME, Crews DC, Mills KT, He J, Scialla J, Rahman M, Navaneethan SD, Lash JP, Ricardo AC, Feldman HI, Weir MR, Shou H, Rebholz CM. Adherence to Healthy Dietary Patterns and Risk of CKD Progression and All-Cause Mortality: Findings From the CRIC (Chronic Renal Insufficiency Cohort) Study. Am J Kidney Dis 2021; 77:235-244. [PMID: 32768632 PMCID: PMC7855760 DOI: 10.1053/j.ajkd.2020.04.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE & OBJECTIVE Current dietary guidelines recommend that patients with chronic kidney disease (CKD) restrict individual nutrients, such as sodium, potassium, phosphorus, and protein. This approach can be difficult for patients to implement and ignores important nutrient interactions. Dietary patterns are an alternative method to intervene on diet. Our objective was to define the associations of 4 healthy dietary patterns with risk for CKD progression and all-cause mortality among people with CKD. STUDY DESIGN Prospective cohort study. SETTING & PARTICIPANTS 2,403 participants aged 21 to 74 years with estimated glomerular filtration rates of 20 to 70mL/min/1.73m2 and dietary data in the Chronic Renal Insufficiency Cohort (CRIC) Study. EXPOSURES Healthy Eating Index-2015, Alternative Healthy Eating Index-2010, alternate Mediterranean diet (aMed), and Dietary Approaches to Stop Hypertension (DASH) diet scores were calculated from food frequency questionnaires. OUTCOMES (1) CKD progression defined as≥50% estimated glomerular filtration rate decline, kidney transplantation, or dialysis and (2) all-cause mortality. ANALYTICAL APPROACH Cox proportional hazards regression models adjusted for demographic, lifestyle, and clinical covariates to estimate hazard ratios (HRs) and 95% CIs. RESULTS There were 855 cases of CKD progression and 773 deaths during a maximum of 14 years. Compared with participants with the lowest adherence, the most highly adherent tertile of Alternative Healthy Eating Index-2010, aMed, and DASH had lower adjusted risk for CKD progression, with the strongest results for aMed (HR, 0.75; 95% CI, 0.62-0.90). Compared with participants with the lowest adherence, the highest adherence tertiles for all scores had lower adjusted risk for all-cause mortality for each index (24%-31% lower risk). LIMITATIONS Self-reported dietary intake. CONCLUSIONS Greater adherence to several healthy dietary patterns is associated with lower risk for CKD progression and all-cause mortality among people with CKD. Guidance to adopt healthy dietary patterns can be considered as a strategy for managing CKD.
Collapse
Affiliation(s)
- Emily A Hu
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Josef Coresh
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Cheryl A M Anderson
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA
| | - Lawrence J Appel
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Morgan E Grams
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD; Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Deidra C Crews
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD; Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katherine T Mills
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Julia Scialla
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA; Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA
| | - Mahboob Rahman
- Division of Nephrology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | | | - James P Lash
- Department of Medicine, University of Illinois, Chicago, IL
| | - Ana C Ricardo
- Department of Medicine, University of Illinois, Chicago, IL
| | - Harold I Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Matthew R Weir
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Casey M Rebholz
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.
| |
Collapse
|
106
|
Niederseer D, Wernly B, Aigner E, Stickel F, Datz C. NAFLD and Cardiovascular Diseases: Epidemiological, Mechanistic and Therapeutic Considerations. J Clin Med 2021; 10:467. [PMID: 33530440 PMCID: PMC7865665 DOI: 10.3390/jcm10030467] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Overwhelming evidence suggests an association of cardiovascular disease (CVD) with non-alcoholic fatty liver disease (NAFLD); however, the underlying mechanisms remain largely speculative. It is, however, likely that common mechanisms contribute to the development of CVD and NAFLD, with lifestyle factors such as smoking, sedentary lifestyle with poor nutrition habits and physical inactivity being major candidates. These behavioral factors, on a predisposing genetic background, trigger changes in gut microbiota, inflammation, dyslipidemia and oxidative stress, leading to metabolic syndrome, diabetes and obesity as well as atherosclerosis. Treatment options to counteract both the progression and development of CVD and NAFLD include lifestyle interventions, optimal medical therapy of comorbid conditions and, as final possibility, bariatric surgery. As no causal pharmacotherapy of NAFLD is available, further research is urgently needed to address the unmet need of a growing population with NAFLD and CVD.
Collapse
Affiliation(s)
- David Niederseer
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Bernhard Wernly
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care Medicine, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
- Center for Public Health and Healthcare Research, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Felix Stickel
- Department of Gastroenterology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria
| |
Collapse
|
107
|
Nutrition-Based Management of Inflammaging in CKD and Renal Replacement Therapies. Nutrients 2021; 13:nu13010267. [PMID: 33477671 PMCID: PMC7831904 DOI: 10.3390/nu13010267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Access to renal transplantation guarantees a substantial improvement in the clinical condition and quality of life (QoL) for end-stage renal disease (ESRD) patients. In recent years, a greater number of older patients starting renal replacement therapies (RRT) have shown the long-term impact of conservative therapies for advanced CKD and the consequences of the uremic milieu, with a frail clinical condition that impacts not only their survival but also limits their access to transplantation. This process, referred to as “inflammaging,” might be reversible with a tailored approach, such as RRT accompanied by specific nutritional support. In this review, we summarize the evidence demonstrating the presence of several proinflammatory substances in the Western diet (WD) and the positive effect of unprocessed food consumption and increased fruit and vegetable intake, suggesting a new approach to reduce inflammaging with the improvement of ESRD clinical status. We conclude that the Mediterranean diet (MD), because of its modulative effects on microbiota and its anti-inflammaging properties, may be a cornerstone in a more precise nutritional support for patients on the waiting list for kidney transplantation.
Collapse
|
108
|
Liu Y, Lai G, Guo Y, Tang X, Shuai O, Xie Y, Wu Q, Chen D, Yuan X. Protective effect of Ganoderma lucidum spore extract in trimethylamine-N-oxide-induced cardiac dysfunction in rats. J Food Sci 2021; 86:546-562. [PMID: 33438268 DOI: 10.1111/1750-3841.15575] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022]
Abstract
Previous research has shown that the extracts from the Ganoderma lucidum spore (GS) have potentially cardioprotective effects, but there is still abundant room for development in determining its mechanism. In this study, the rat model of cardiac dysfunction was established by intraperitoneal injection of trimethylamine-N-oxide (TMAO), and the extracts of GS (oil, lipophilic components, and polysaccharides) were given intragastrically at a dose of 50 mg/kg/day to screen the pharmacological active components of GS. After 50 days of treatments, we found that the extraction from GS reduced the levels of total cholesterol, triglyceride, and low-density lipoprotein; increased the levels of high-density lipoprotein; and reduced the levels of serum TMAO when compared to the model group (P < 0.05); especially the GS polysaccharides (DT) and GS lipophilic components (XF) exhibited decreases in serum TMAO compared to TMAO-induced control. The results of 16S rRNA sequencing showed that GS could change the gut microbiota, increasing the abundance of Firmicutes and Proteobacteria in the DT-treated group and XF-treated group, while reducing the abundance of Actinobacteria and Tenericutes. Quantitative proteomics analysis showed that GS extracts (DT and XF) could regulate the expression of some related proteins, such as Ucp1 (XF-TMAO/M-TMAO ratio is 2.76), Mpz (8.52), Fasn (2.39), Nefl (1.85), Mtnd5 (0.83), Mtnd2 (0.36), S100a8 (0.69), S100a9 (0.70), and Bdh1 (0.72). The results showed that XF can maintain the metabolic balance and function of the heart by regulating the expression of some proteins related to cardiovascular disease, and DT can reduce the risk of cardiovascular diseases by targeting gut microbiota.
Collapse
Affiliation(s)
- Yadi Liu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guoxiao Lai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yinrui Guo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaocui Tang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Ou Shuai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Diling Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xujiang Yuan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
109
|
Ramírez-Macías I, Orenes-Piñero E, Camelo-Castillo A, Rivera-Caravaca JM, López-García C, Marín F. Novel insights in the relationship of gut microbiota and coronary artery diseases. Crit Rev Food Sci Nutr 2021; 62:3738-3750. [PMID: 33399007 DOI: 10.1080/10408398.2020.1868397] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atherosclerosis is a chronic, progressive, inflammatory disease in the vasculature and is common in both coronary and peripheral arteries. Human beings harbor a complex and dynamic population of microorganisms defined as the microbiota. Importantly, alterations in the bacterial composition (dysbiosis) and the metabolic compounds produced by these bacteria have been associated with the pathogenesis of many inflammatory diseases and infections. There is also a close relationship between intestinal microbiota and cardiovascular diseases. The aim of this review was to analyze how changes in the gut microbiota and their metabolites might affect coronary artery diseases. The most representative groups of bacteria that make up the intestinal microbiota are altered in coronary artery disease patients, resulting in a decrease in Bacteroidetes and an increase in Firmicutes. In relation to metabolites, trimethylamine-N-oxide plays an important role in atherosclerosis and may act as a cardiovascular risk predictor. In addition, the use of probiotics, prebiotics, diet modulation, and fecal transplantation, which may represent alternative treatments for these diseases, is thoroughly discussed. Finally, the role of lipid-lowering treatments is also analyzed as they may affect and alter the gut microbiota and, conversely, gut microbiota diversity could be associated with resistance or sensitivity to these treatments.
Collapse
Affiliation(s)
- Inmaculada Ramírez-Macías
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| | - Anny Camelo-Castillo
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - José Miguel Rivera-Caravaca
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Cecilia López-García
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain
| |
Collapse
|
110
|
Zhang W, Guo X, Chen L, Chen T, Yu J, Wu C, Zheng J. Ketogenic Diets and Cardio-Metabolic Diseases. Front Endocrinol (Lausanne) 2021; 12:753039. [PMID: 34795641 PMCID: PMC8594484 DOI: 10.3389/fendo.2021.753039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
While the prevalence of cardio-metabolic diseases (CMDs) has become a worldwide epidemic, much attention is paid to managing CMDs effectively. A ketogenic diet (KD) constitutes a high-fat and low-carbohydrate diet with appropriate protein content and calories. KD has drawn the interests of clinicians and scientists regarding its application in the management of metabolic diseases and related disorders; thus, the current review aimed to examine the evidences surrounding KD and the CMDs to draw the clinical implications. Overall, KD appears to play a significant role in the therapy of various CMDs, which is manifested by the effects of KDs on cardio-metabolic outcomes. KD therapy is generally promising in obesity, heart failure, and hypertension, though different voices still exist. In diabetes and dyslipidemia, the performance of KD remains controversial. As for cardiovascular complications of metabolic diseases, current evidence suggests that KD is generally protective to obese related cardiovascular disease (CVD), while remaining contradictory to diabetes and other metabolic disorder related CVDs. Various factors might account for the controversies, including genetic background, duration of therapy, food composition, quality, and sources of KDs. Therefore, it's crucial to perform more rigorous researches to focus on clinical safety and appropriate treatment duration and plan of KDs.
Collapse
Affiliation(s)
- Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Ting Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiayu Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- *Correspondence: Juan Zheng, ; Chaodong Wu,
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
- *Correspondence: Juan Zheng, ; Chaodong Wu,
| |
Collapse
|
111
|
Abstract
The prevalence of cardiovascular and metabolic disease coupled with kidney dysfunction is increasing worldwide. This triad of disorders is associated with considerable morbidity and mortality as well as a substantial economic burden. Further understanding of the underlying pathophysiological mechanisms is important to develop novel preventive or therapeutic approaches. Among the proposed mechanisms, compromised nitric oxide (NO) bioactivity associated with oxidative stress is considered to be important. NO is a short-lived diatomic signalling molecule that exerts numerous effects on the kidneys, heart and vasculature as well as on peripheral metabolically active organs. The enzymatic L-arginine-dependent NO synthase (NOS) pathway is classically viewed as the main source of endogenous NO formation. However, the function of the NOS system is often compromised in various pathologies including kidney, cardiovascular and metabolic diseases. An alternative pathway, the nitrate-nitrite-NO pathway, enables endogenous or dietary-derived inorganic nitrate and nitrite to be recycled via serial reduction to form bioactive nitrogen species, including NO, independent of the NOS system. Signalling via these nitrogen species is linked with cGMP-dependent and independent mechanisms. Novel approaches to restoring NO homeostasis during NOS deficiency and oxidative stress have potential therapeutic applications in kidney, cardiovascular and metabolic disorders.
Collapse
|
112
|
Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K. Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health-Pathophysiology and Therapeutic Strategies. Gastroenterology 2021; 160:573-599. [PMID: 33253685 DOI: 10.1053/j.gastro.2020.10.057] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Changes in the intestinal microbiome have been associated with obesity and type 2 diabetes, in epidemiological studies and studies of the effects of fecal transfer in germ-free mice. We review the mechanisms by which alterations in the intestinal microbiome contribute to development of metabolic diseases, and recent advances, such as the effects of the microbiome on lipid metabolism. Strategies have been developed to modify the intestinal microbiome and reverse metabolic alterations, which might be used as therapies. We discuss approaches that have shown effects in mouse models of obesity and metabolic disorders, and how these might be translated to humans to improve metabolic health.
Collapse
Affiliation(s)
- Judith Aron-Wisnewsky
- Nutrition and Obesities: Systemic Approaches Research Unit (Nutriomics), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Paris, France; Nutrition Department, Assistante Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Centres de Recherche en Nutrition Humaine Ile de France, Paris, France; Department of Vascular Medicine, Amsterdam Universitair Medische Centra, location Academisch Medisch Centrum, and VUMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Moritz V Warmbrunn
- Department of Vascular Medicine, Amsterdam Universitair Medische Centra, location Academisch Medisch Centrum, and VUMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam Universitair Medische Centra, location Academisch Medisch Centrum, and VUMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches Research Unit (Nutriomics), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Paris, France; Nutrition Department, Assistante Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Centres de Recherche en Nutrition Humaine Ile de France, Paris, France.
| |
Collapse
|
113
|
Hsu CK, Su SC, Chang LC, Shao SC, Yang KJ, Chen CY, Chen YT, Wu IW. Effects of Low Protein Diet on Modulating Gut Microbiota in Patients with Chronic Kidney Disease: A Systematic Review and Meta-analysis of International Studies. Int J Med Sci 2021; 18:3839-3850. [PMID: 34790060 PMCID: PMC8579282 DOI: 10.7150/ijms.66451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Although associations between low protein diet (LPD) and changes of gut microbiota have been reported; however, systematic discernment of the effects of LPD on diet-microbiome-host interaction in patients with chronic kidney disease (CKD) is lacking. Methods: We searched PUBMED and EMBASE for articles published on changes of gut microbiota associated with implementation of LPD in CKD patients until July 2021. Independent researchers extracted data and assessed risks of bias. We conducted meta-analyses of combine p-value, mean differences and random effects for gut microbiota and related metabolites. Study heterogeneity was measured by Tau2 and I2 statistic. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results: Five articles met inclusion criteria. The meta-analyses of gut microbiota exhibited enrichments of Lactobacillaceae (meta-p= 0.010), Bacteroidaceae (meta-p= 0.048) and Streptococcus anginosus (meta-p< 0.001), but revealed depletion of Bacteroides eggerthii (p=0.017) and Roseburia faecis (meta-p=0.019) in LPD patients compared to patients undergoing normal protein diet. The serum IS levels (mean difference: 0.68 ug/mL, 95% CI: -8.38-9.68, p= 0.89) and pCS levels (mean difference: -3.85 ug/mL, 95% CI: -15.49-7.78, p < 0.52) did not change between groups. We did not find significant differences on renal function associated with change of microbiota between groups (eGFR, mean difference: -7.21 mL/min/1.73 m2, 95% CI: -33.2-18.79, p= 0.59; blood urea nitrogen, mean difference: -6.8 mg/dL, 95% CI: -46.42-32.82, p= 0.74). Other clinical (sodium, potassium, phosphate, albumin, fasting sugar, uric acid, total cholesterol, triglycerides, C-reactive protein and hemoglobin) and anthropometric estimates (body mass index, systolic blood pressure and diastolic blood pressure) did not differ between the two groups. Conclusions: This systematic review and meta-analysis suggested that the effects of LPD on the microbiota were observed predominantly at the families and species levels but minimal on microbial diversity or richness. In the absence of global compositional microbiota shifts, the species-level changes appear insufficient to alter metabolic or clinical outputs.
Collapse
Affiliation(s)
- Cheng-Kai Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Lun-Ching Chang
- Department of Mathematical Sciences, Florida Atlantic University, Florida, US
| | - Shih-Chieh Shao
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacy, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kai-Jie Yang
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chun-Yu Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yih-Ting Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - I-Wen Wu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
114
|
Lecamwasam A, Nelson TM, Rivera L, Ekinci EI, Saffery R, Dwyer KM. Gut Microbiome Composition Remains Stable in Individuals with Diabetes-Related Early to Late Stage Chronic Kidney Disease. Biomedicines 2020; 9:19. [PMID: 33383810 PMCID: PMC7824346 DOI: 10.3390/biomedicines9010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Individuals with diabetes and chronic kidney disease display gut dysbiosis when compared to healthy controls. However, it is unknown whether there is a change in dysbiosis across the stages of diabetic chronic kidney disease. We investigated a cross-sectional study of patients with early and late diabetes associated chronic kidney disease to identify possible microbial differences between these two groups and across each of the stages of diabetic chronic kidney disease. (2) Methods: This cross-sectional study recruited 95 adults. DNA extracted from collected stool samples were used for 16S rRNA sequencing to identify the bacterial community in the gut. (3) Results: The phylum Firmicutes was the most abundant and its mean relative abundance was similar in the early and late chronic kidney disease group, 45.99 ± 0.58% and 49.39 ± 0.55%, respectively. The mean relative abundance for family Bacteroidaceae, was also similar in the early and late group, 29.15 ± 2.02% and 29.16 ± 1.70%, respectively. The lower abundance of Prevotellaceae remained similar across both the early 3.87 ± 1.66% and late 3.36 ± 0.98% diabetic chronic kidney disease groups. (4) Conclusions: The data arising from our cohort of individuals with diabetes associated chronic kidney disease show a predominance of phyla Firmicutes and Bacteroidetes. The families Ruminococcaceae and Bacteroidaceae represent the highest abundance, while the beneficial Prevotellaceae family were reduced in abundance. The most interesting observation is that the relative abundance of these gut microbes does not change across the early and late stages of diabetic chronic kidney disease, suggesting that this is an early event in the development of diabetes associated chronic kidney disease. We hypothesise that the dysbiotic microbiome acquired during the early stages of diabetic chronic kidney disease remains relatively stable and is only one of many risk factors that influence progressive kidney dysfunction.
Collapse
Affiliation(s)
- Ashani Lecamwasam
- Epigenetics Research, Murdoch Children’s Research Institute, VIC 3052, Australia;
- Department of Endocrinology, Austin Health, VIC 3079, Australia;
- School of Medicine, Faculty of Health, Deakin University, VIC 3220, Australia; (L.R.); (K.M.D.)
| | - Tiffanie M. Nelson
- Menzies Health Institute Queensland, Griffith University, QLD 4222, Australia;
| | - Leni Rivera
- School of Medicine, Faculty of Health, Deakin University, VIC 3220, Australia; (L.R.); (K.M.D.)
| | - Elif I. Ekinci
- Department of Endocrinology, Austin Health, VIC 3079, Australia;
- Department of Medicine, University of Melbourne, VIC 3010, Australia
| | - Richard Saffery
- Epigenetics Research, Murdoch Children’s Research Institute, VIC 3052, Australia;
- Department of Paediatrics, University of Melbourne, VIC 3010, Australia
| | - Karen M. Dwyer
- School of Medicine, Faculty of Health, Deakin University, VIC 3220, Australia; (L.R.); (K.M.D.)
| |
Collapse
|
115
|
Cainzos-Achirica M, Glassner K, Zawahir HS, Dey AK, Agrawal T, Quigley EMM, Abraham BP, Acquah I, Yahya T, Mehta NN, Nasir K. Inflammatory Bowel Disease and Atherosclerotic Cardiovascular Disease: JACC Review Topic of the Week. J Am Coll Cardiol 2020; 76:2895-2905. [PMID: 33303079 DOI: 10.1016/j.jacc.2020.10.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Chronic inflammatory diseases including human immunodeficiency virus infection, psoriasis, rheumatoid arthritis, and systemic lupus erythematosus predispose to atherosclerotic cardiovascular disease (ASCVD). Inflammatory bowel disease (IBD) is a common chronic inflammatory condition, and the United States has the highest prevalence worldwide. IBD has so far been overlooked as a contributor to the burden of ASCVD among young and middle-age adults, but meta-analyses of cohort studies suggest that IBD is an independent risk factor for ASCVD. This review discusses the epidemiological links between IBD and ASCVD and potential mechanisms underlying these associations. ASCVD risk management of patients with IBD is challenging because of their young age and the inability of current risk scores to fully capture their increased risk. The role of IBD in current primary prevention guidelines is evaluated, and strategies for enhanced ASCVD risk reduction in patients with IBD are outlined. Finally, the authors discuss knowledge gaps and future research directions in this innovative field.
Collapse
Affiliation(s)
- Miguel Cainzos-Achirica
- Division of Cardiovascular Prevention and Wellness, Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA; Center for Outcomes Research, Houston Methodist, Houston, Texas, USA. https://twitter.com/miguelcainzos23
| | - Kerri Glassner
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas, USA; Fondren IBD Program, Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas, USA
| | | | - Amit K Dey
- Section of Inflammation and Cardiometabolic Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tanushree Agrawal
- Division of Cardiovascular Prevention and Wellness, Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | - Eamonn M M Quigley
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas, USA
| | - Bincy P Abraham
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas, USA; Fondren IBD Program, Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas, USA
| | - Isaac Acquah
- Center for Outcomes Research, Houston Methodist, Houston, Texas, USA
| | - Tamer Yahya
- Center for Outcomes Research, Houston Methodist, Houston, Texas, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Khurram Nasir
- Division of Cardiovascular Prevention and Wellness, Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA; Center for Outcomes Research, Houston Methodist, Houston, Texas, USA.
| |
Collapse
|
116
|
Zhu Y, Du Q, Jiao N, Shu A, Gao Y, Chen J, Lv G, Lu J, Chen Y, Xu H. Catalpol ameliorates diabetes-induced testicular injury and modulates gut microbiota. Life Sci 2020; 267:118881. [PMID: 33310037 DOI: 10.1016/j.lfs.2020.118881] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023]
Abstract
AIMS To explore the mechanisms of diabetes mellitus (DM)-induced testicular injury caused by modulation of testicular glycolysis and gut microbiota (GM), and evaluation of the efficacy of catalpol in reversing testicular morbidity. MAIN METHODS A model of DM-induced testicular injury was established using a high-fat diet in KK-Ay mice. Microbial communities in the feces of mice in normal, model and catalpol (Cat) groups were analyzed by 16S gene sequencing. Correlations between the GM and lactate metabolism levels, lactate dehydrogenase activity, and indicators of testicular injury were analyzed. KEY FINDINGS Cat significantly reduced general indicators of diabetes in mice with DM-induced reproductive injury, mitigated damage to the testicular tissue, and increased sperm count and motility. Additionally, the levels of products of glycolysis metabolism (e.g. lactate) increased following Cat treatment compared with the Model group. Disorders in the GM were also reversed in the Cat group. SIGNIFICANCE Cat ameliorated DM-induced testicular injury in KK-Ay mice by increasing the energy available to germ cells through glycolysis, principally through modulation of the GM and a reduction in the quantities of associated pathogenic bacteria.
Collapse
Affiliation(s)
- Yihui Zhu
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Qiu Du
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Ni Jiao
- Affiliated Hospital of Nanjing University of TCM, Nanjing 210029, China
| | - Anmei Shu
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing 210023, Jiangsu, China
| | - Yuyan Gao
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing 210023, Jiangsu, China
| | - Jing Chen
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing 210023, Jiangsu, China
| | - Gaohong Lv
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Jinfu Lu
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yuping Chen
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng 224005, Jiangsu, China.
| | - Huiqin Xu
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
117
|
Argyridou S, Bernieh D, Henson J, Edwardson CL, Davies MJ, Khunti K, Suzuki T, Yates T. Associations between physical activity and trimethylamine N-oxide in those at risk of type 2 diabetes. BMJ Open Diabetes Res Care 2020; 8:8/2/e001359. [PMID: 33262105 PMCID: PMC7709505 DOI: 10.1136/bmjdrc-2020-001359] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Trimethylamine N-oxide (TMAO) has been identified as a novel gut-derived molecule that is associated with the risk of cardiometabolic diseases. However, the relationship between TMAO and physical activity is not well understood. This study prospectively investigates the association between TMAO and objectively assessed physical activity in a population at high risk of type 2 diabetes mellitus. RESEARCH DESIGN AND METHODS Baseline and 12-month follow-up data were used from the Walking Away from Type 2 Diabetes trial, which recruited adults at high risk of type 2 diabetes from primary care in 2009-2010. TMAO was analyzed using targeted mass spectrometry. Generalized estimating equation models with an exchangeable correlation structure were used to investigate the associations between accelerometer-assessed exposures (sedentary time, light physical activity, moderate to vigorous physical activity (MVPA)) and TMAO, adjusting for demographic, clinical and lifestyle factors in varying degrees. RESULTS Overall, 483 individuals had plasma samples available for the analysis of TMAO (316 (65.4%) men, 167 (34.6%) women), contributing 886 observations to the analysis. MVPA (min/day) was associated with TMAO in all models. In the fully adjusted model, each 30 min or SD difference in MVPA was associated with 0.584 μmol/L (0.070, 1.098) and 0.456 μmol/L (0.054, 0.858) lower TMAO, respectively. Sedentary time and light physical activity were not associated with TMAO in any model. CONCLUSIONS Engagement with MVPA was associated with lower TMAO levels, suggesting a possible new mechanism underlining the inverse relationship between physical activity and cardiometabolic health.
Collapse
Affiliation(s)
- Stavroula Argyridou
- Diabetes Research Centre, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Dennis Bernieh
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Joseph Henson
- Diabetes Research Centre, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Charlotte L Edwardson
- Diabetes Research Centre, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Melanie J Davies
- Diabetes Research Centre, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester, UK
- NIHR Applied Research Collaborations East Midlands, University of Leicester, Leicester, UK
| | - Toru Suzuki
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Thomas Yates
- Diabetes Research Centre, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
118
|
Ebert T, Painer J, Bergman P, Qureshi AR, Giroud S, Stalder G, Kublickiene K, Göritz F, Vetter S, Bieber C, Fröbert O, Arnemo JM, Zedrosser A, Redtenbacher I, Shiels PG, Johnson RJ, Stenvinkel P. Insights in the regulation of trimetylamine N-oxide production using a comparative biomimetic approach suggest a metabolic switch in hibernating bears. Sci Rep 2020; 10:20323. [PMID: 33230252 PMCID: PMC7684304 DOI: 10.1038/s41598-020-76346-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Experimental studies suggest involvement of trimethylamine N-oxide (TMAO) in the aetiology of cardiometabolic diseases and chronic kidney disease (CKD), in part via metabolism of ingested food. Using a comparative biomimetic approach, we have investigated circulating levels of the gut metabolites betaine, choline, and TMAO in human CKD, across animal species as well as during hibernation in two animal species. Betaine, choline, and TMAO levels were associated with renal function in humans and differed significantly across animal species. Free-ranging brown bears showed a distinct regulation pattern with an increase in betaine (422%) and choline (18%) levels during hibernation, but exhibited undetectable levels of TMAO. Free-ranging brown bears had higher betaine, lower choline, and undetectable TMAO levels compared to captive brown bears. Endogenously produced betaine may protect bears and garden dormice during the vulnerable hibernating period. Carnivorous eating habits are linked to TMAO levels in the animal kingdom. Captivity may alter the microbiota and cause a subsequent increase of TMAO production. Since free-ranging bears seems to turn on a metabolic switch that shunts choline to generate betaine instead of TMAO, characterisation and understanding of such an adaptive switch could hold clues for novel treatment options in burden of lifestyle diseases, such as CKD.
Collapse
Affiliation(s)
- Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Painer
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Frank Göritz
- Leibniz Institute for Zoo and Wildlife Ecology, Berlin, Germany
| | - Sebastian Vetter
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Koppang, Norway.,Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Andreas Zedrosser
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway.,Institute for Wildlife Biology and Game Management, University for Natural Resources and Life Sciences, Vienna, Austria
| | | | - Paul G Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Richard J Johnson
- Division of Renal Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden. .,Department of Renal Medicine M99, Karolinska University Hospital, 141 86, Stockholm, Sweden.
| |
Collapse
|
119
|
Yu EYW, Wesselius A, Mehrkanoon S, Brinkman M, van den Brandt P, White E, Weiderpass E, Le Calvez-Kelm F, Gunter M, Huybrechts I, Liedberg F, Skeie G, Tjonneland A, Riboli E, Giles GG, Milne RL, Zeegers MP. Grain and dietary fiber intake and bladder cancer risk: a pooled analysis of prospective cohort studies. Am J Clin Nutr 2020; 112:1252-1266. [PMID: 32778880 PMCID: PMC7657329 DOI: 10.1093/ajcn/nqaa215] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Higher intakes of whole grains and dietary fiber have been associated with lower risk of insulin resistance, hyperinsulinemia, and inflammation, which are known predisposing factors for cancer. OBJECTIVES Because the evidence of association with bladder cancer (BC) is limited, we aimed to assess associations with BC risk for intakes of whole grains, refined grains, and dietary fiber. METHODS We pooled individual data from 574,726 participants in 13 cohort studies, 3214 of whom developed incident BC. HRs, with corresponding 95% CIs, were estimated using Cox regression models stratified on cohort. Dose-response relations were examined using fractional polynomial regression models. RESULTS We found that higher intake of total whole grain was associated with lower risk of BC (comparing highest with lowest intake tertile: HR: 0.87; 95% CI: 0.77, 0.98; HR per 1-SD increment: 0.95; 95% CI: 0.91, 0.99; P for trend: 0.023). No association was observed for intake of total refined grain. Intake of total dietary fiber was also inversely associated with BC risk (comparing highest with lowest intake tertile: HR: 0.86; 95% CI: 0.76, 0.98; HR per 1-SD increment: 0.91; 95% CI: 0.82, 0.98; P for trend: 0.021). In addition, dose-response analyses gave estimated HRs of 0.97 (95% CI: 0.95, 0.99) for intake of total whole grain and 0.96 (95% CI: 0.94, 0.98) for intake of total dietary fiber per 5-g daily increment. When considered jointly, highest intake of whole grains with the highest intake of dietary fiber showed 28% reduced risk (95% CI: 0.54, 0.93; P for trend: 0.031) of BC compared with the lowest intakes, suggesting potential synergism. CONCLUSIONS Higher intakes of total whole grain and total dietary fiber are associated with reduced risk of BC individually and jointly. Further studies are needed to clarify the underlying mechanisms for these findings.
Collapse
Affiliation(s)
- Evan Y W Yu
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Anke Wesselius
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Siamak Mehrkanoon
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, Netherlands
| | - Maree Brinkman
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
- Department of Clinical Studies and Nutritional Epidemiology, Nutrition Biomed Research Institute, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Piet van den Brandt
- Department of Epidemiology, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Epidemiology, School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Emily White
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - Marc Gunter
- International Agency for Research on Cancer/WHO, Lyon, France
| | - Inge Huybrechts
- International Agency for Research on Cancer/WHO, Lyon, France
| | - Fredrik Liedberg
- Department of Urology, Skåne University Hospital, Malmö, Sweden
- Institution of Translational Medicine, Lund University, Malmö, Sweden
| | - Guri Skeie
- Department of Community Medicine, UIT The Arctic University of Norway, Tromsø, Norway
| | - Anne Tjonneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Maurice P Zeegers
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
- CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, Netherlands
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
120
|
Bovolini A, Garcia J, Andrade MA, Duarte JA. Metabolic Syndrome Pathophysiology and Predisposing Factors. Int J Sports Med 2020; 42:199-214. [PMID: 33075830 DOI: 10.1055/a-1263-0898] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors with high prevalence among adult populations and elevated costs for public health systems worldwide. Despite the lack of consensus regarding the syndrome definition and diagnosis criteria, it is characterized by the coexistence of risk factors such as abdominal obesity, atherogenic dyslipidemia, elevated blood pressure, a prothrombotic and pro-inflammatory state, insulin resistance (IR), and higher glucose levels, factors indubitably linked to an increased risk of developing chronic conditions, such as type 2 diabetes (T2D) and cardiovascular disease (CVD). The syndrome has a complex and multifaceted origin not fully understood; however, it has been strongly suggested that sedentarism and unbalanced dietary patterns might play a fundamental role in its development. The purpose of this review is to provide an overview from the syndrome epidemiology, costs, and main etiological traits from its relationship with unhealthy diet patterns and sedentary lifestyles.
Collapse
Affiliation(s)
| | - Juliana Garcia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real
| | | | - José Alberto Duarte
- CIAFEL Faculty of Sport, University of Porto, Porto.,University Institute of Health Sciences (IUCS), Rua Central de Gandra, 1317 4585-116 Gandra Paredes, Portugal
| |
Collapse
|
121
|
Gu H, Wang S, Wang X, Yu X, Hu M, Huang W, Wang Y. Nanoplastics impair the intestinal health of the juvenile large yellow croaker Larimichthys crocea. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122773. [PMID: 32361245 DOI: 10.1016/j.jhazmat.2020.122773] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) have become a severe concern in marine environment worldwide. Micro-polystyrene particles have been proved to accumulate in vivo and caused disorders of digestion, antioxidant system, immunity and intestinal microflora, but little is known about the effects of nano-polystyrene (nano-PS). In order to understand response mechanism of marine fish to nano-PS, the effects of nanoplastics on the intestinal health and growth performance of the juvenile Larimichthys crocea were investigated. After 14-d exposure, the reduced digestive enzyme activities indicated that nano-PS had a negative impact on the digestion and absorption of juvenile fish. Moreover, analysis of the intestinal microbiota showed that the proportion of the three-dominant bacterial phyla (Bacteroidetes, Proteobacteria and Firmicutes) in the gut changed significantly, accompanied by a significant increase of potentially pathogenic bacteria (Parabacteroides and Alistipes). In addition, lysozyme activity and specific growth rate (SGR) were significantly reduced, and total mortality of juvenile fish was significantly increased. Overall, nano-PS exposure was harmful for the health of juvenile fish, which might threaten their population in the long term.
Collapse
Affiliation(s)
- Huaxin Gu
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Shixiu Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Xinghuo Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China
| | - Xiang Yu
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Youji Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| |
Collapse
|
122
|
Corwin EJ, Brewster G, Dunbar SB, Wells J, Hertzberg V, Holstad M, Song MK, Jones D. The Metabolomic Underpinnings of Symptom Burden in Patients With Multiple Chronic Conditions. Biol Res Nurs 2020; 23:270-279. [PMID: 32914645 DOI: 10.1177/1099800420958196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over 25% of the adult population in the United States suffers from multiple chronic conditions, with numbers continuing to rise. Those with multiple chronic conditions often experience symptoms or symptom clusters that undermine their quality of life and ability to self-manage. Importantly, symptom severity in those with even the same multiple chronic conditions varies, suggesting that the mechanisms driving symptoms in patients with multiple chronic conditions are not fixed but may differ in ways that could make them amenable to targeted interventions. In this manuscript we describe at a metabolic level, the symptom experience of persons with multiple chronic conditions, including how symptoms may synergize or cluster across multiple chronic conditions to augment one's symptom burden. To guide this discussion, we consider the metabolites and metabolic pathways known to span multiple adverse health conditions and associate with severe symptoms of fatigue, depression, and anxiety and their cluster. We also describe how severe versus mild symptoms, and their associated metabolites and metabolic pathways, may vary, depending on the presence of covariates; two of which, sex as a biological variable and the contribution of gut microbiota dysbiosis, are discussed in additional detail. Intertwining metabolomics and symptom science into nursing research, offers the unique opportunity to better understand how the metabolites and metabolic pathways affected in those with multiple chronic conditions may initiate or exacerbate symptom presence within a given individual, ultimately allowing clinicians to develop targeted interventions to improve the health quality of patients their families.
Collapse
Affiliation(s)
| | - Glenna Brewster
- 15792Nell Hodgson Woodruff School of Nursing Emory University, Atlanta, GA, USA
| | - Sandra B Dunbar
- 15792Nell Hodgson Woodruff School of Nursing Emory University, Atlanta, GA, USA
| | - Jessica Wells
- 15792Nell Hodgson Woodruff School of Nursing Emory University, Atlanta, GA, USA
| | - Vicki Hertzberg
- 15792Nell Hodgson Woodruff School of Nursing Emory University, Atlanta, GA, USA
| | - Marcia Holstad
- 15792Nell Hodgson Woodruff School of Nursing Emory University, Atlanta, GA, USA
| | - Mi-Kyung Song
- 15792Nell Hodgson Woodruff School of Nursing Emory University, Atlanta, GA, USA
| | - Dean Jones
- 12239Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
123
|
Ma X, Zhang T, Luo Z, Li X, Lin M, Li R, Du P, Yu X, Ma C, Yan P, Su J, Wang L, Li Y, Jiang J. Functional nano-vector boost anti-atherosclerosis efficacy of berberine in Apoe (-/-) mice. Acta Pharm Sin B 2020; 10:1769-1783. [PMID: 33088695 PMCID: PMC7564017 DOI: 10.1016/j.apsb.2020.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/09/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS) is the leading cause of heart attacks, stroke, and peripheral vascular disease. Berberine (BBR), a botanical medicine, has diversified anti-atherosclerotic effects but with poor absorption. The aim of this study was to develop an effective BBR-entrapped nano-system for treating AS in high-fat diet (HFD)-fed Apoe (-/-) mice, and also explore the possible underlying mechanisms involved. Three d-α-tocopherol polyethylene glycol (PEG) succinate (TPGS) analogues with different PEG chain lengths were synthesized to formulate BBR-entrapped micelles. HFD-fed Apoe (-/-) mice were administered with optimized formula (BBR, 100 mg/kg/day) orally for 5 months. The artery plaque onset and related metabolic disorders were evaluated, and the underlying mechanisms were studied. Our data showed that, BT1500M increased BBR deposition in liver and adipose by 107.6% and 172.3%, respectively. In the Apoe (-/-) mice, BT1500M ameliorated HFD-induced hyperlipidemia and lipid accumulation in liver and adipose. BT1500M also suppressed HFD-induced chronic inflammation as evidenced by the reduced liver and adipose levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β); and decreased plasma level of TNF-α, IL-6, IL-1β, interferon-γ (IFN-γ), monocyte chemotactic protein (MCP), and macrophage inflammatory factor (MIP). The mechanism study showed that BT1500M changed Ampk and Nf-κb gene expression, and interrupted a crosstalk process between adipocytes and macrophages. Further investigation proved that BT1500M decreased endothelial lesion and subsequent macrophage activation, cytokines release, as well as cholesteryl ester gathering in the aortic arch, resulting in ameliorated artery plaque build-up. Our results provide a practical strategy for treating AS using a BBR-entrapped nano-system.
Collapse
|
124
|
Al-Qysi L, Mohammad M, Al-iedani A, AbuKhader MM. Investigating the characteristics of probiotics marketed in the Middle East and pharmacists' perception of use in Muscat, Oman. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
125
|
Huang YW, Pan P, Echeveste CE, Wang HT, Oshima K, Lin CW, Yearsley M, Xiao J, Chen J, Sun C, Yu J, Wang LS. Transplanting fecal material from wild-type mice fed black raspberries alters the immune system of recipient mice. FOOD FRONTIERS 2020; 1:253-259. [PMID: 34308364 PMCID: PMC8301209 DOI: 10.1002/fft2.34] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
By constantly stimulating intestinal immunity, gut microbes play important regulatory roles, and their possible involvement in human physical and mental disorders beyond intestinal diseases suggests the importance of maintaining homeostasis in the gut microbiota. Both transplantation of fecal microbiota and dietary interventions have been shown to restore microbial homeostasis in recipients. In the current study with wild-type mice, we combined these two approaches to determine if transplanting fecal material from mice fed black raspberries (BRB, 5%) altered recipients' immune system. The donors received a control or 5% BRB diet, and fecal transplantation was performed every other day 15 times into recipients fed control diet. Afterward, we used flow cytometry to analyze populations of CD3+ T, CD4+ T, CD8+ T cells, and NK cells among bone marrow cells, splenocytes, and peripheral blood mononuclear cells (PBMCs) collected from the recipients. We found that BRB-fecal material that contained both fecal microbiota and their metabolites increased NK cell populations among bone marrow cells, splenocytes, and PBMCs, and raised levels of CD8+ T cells in splenocytes. Our findings suggest that fecal transplantation can modulate the immune system and might therefore be valuable for managing a range of physical and mental disorders.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Carla Elena Echeveste
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Hsin-Tzu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| |
Collapse
|
126
|
Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, Cajka T, Mohan ML, Li L, Wu Y, Funabashi M, Ramer-Tait AE, Naga Prasad SV, Fiehn O, Rey FE, Tang WHW, Fischbach MA, DiDonato JA, Hazen SL. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell 2020; 180:862-877.e22. [PMID: 32142679 DOI: 10.1016/j.cell.2020.02.016] [Citation(s) in RCA: 471] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/16/2019] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
Abstract
Using untargeted metabolomics (n = 1,162 subjects), the plasma metabolite (m/z = 265.1188) phenylacetylglutamine (PAGln) was discovered and then shown in an independent cohort (n = 4,000 subjects) to be associated with cardiovascular disease (CVD) and incident major adverse cardiovascular events (myocardial infarction, stroke, or death). A gut microbiota-derived metabolite, PAGln, was shown to enhance platelet activation-related phenotypes and thrombosis potential in whole blood, isolated platelets, and animal models of arterial injury. Functional and genetic engineering studies with human commensals, coupled with microbial colonization of germ-free mice, showed the microbial porA gene facilitates dietary phenylalanine conversion into phenylacetic acid, with subsequent host generation of PAGln and phenylacetylglycine (PAGly) fostering platelet responsiveness and thrombosis potential. Both gain- and loss-of-function studies employing genetic and pharmacological tools reveal PAGln mediates cellular events through G-protein coupled receptors, including α2A, α2B, and β2-adrenergic receptors. PAGln thus represents a new CVD-promoting gut microbiota-dependent metabolite that signals via adrenergic receptors.
Collapse
Affiliation(s)
- Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Prasenjit Prasad Saha
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Nilaksh Gupta
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Weifei Zhu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Kymberleigh A Romano
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Sarah M Skye
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Tomas Cajka
- West Coast Metabolomics Center, University of California, Davis, Davis, CA 95616, USA
| | - Maradumane L Mohan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Lin Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Yuping Wu
- Department of Mathematics, Cleveland State University, Cleveland, OH 44115, USA
| | - Masanori Funabashi
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA 95616, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - W H Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA; Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44106, USA; Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44106, USA.
| |
Collapse
|
127
|
Wang LS, Mo YY, Huang YW, Echeveste CE, Wang HT, Chen J, Oshima K, Yearsley M, Simal-Gandaraf J, Battino M, Xiao J, Chen J, Sun C, Yu J, Bai W. Effects of Dietary Interventions on Gut Microbiota in Humans and the Possible Impacts of Foods on Patients' Responses to Cancer Immunotherapy. EFOOD 2020; 1:279-287. [PMID: 34308386 PMCID: PMC8301224 DOI: 10.2991/efood.k.200824.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota-the community of microorganisms in the gut-has been implicated in many physical and mental disorders in addition to intestinal diseases. Diets are the most studied and promising factors for altering it. Indeed, certain dietary interventions that increase fiber intake rapidly change levels of certain nutrients that can modify the composition of the microbiota, promoting richness and diversity. Recent intriguing evidence from several human clinical trials suggested that the composition and diversity of patients' gut microbiotas at baseline can influence their responses to cancer immunotherapy. If the factors that influence the gut microbiota were fully understood, it is conceivable that manipulating them could boost therapeutic responses in cancer patients. In this review, we investigate the possibility of using fruits, vegetables, or whole grains to enhance response to cancer therapies in humans, as current evidence suggests that these dietary components can manipulate and enhance diversity of the gut microbiota. Accordingly, dietary interventions with locally available fruits, vegetables, and whole grains might be an affordable and safe approach to enhancing the diversity of the gut microbiota before immunotherapy, in turn improving patients' responses to their treatments.
Collapse
Affiliation(s)
- Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yue Yang Mo
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carla Elena Echeveste
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hsin-Tzu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University, MD, USA
| | | | - Jesus Simal-Gandaraf
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Spain
| | - Maurizio Battino
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Department of Odontostomatologic and Specialized Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau, China
| | - Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, CA, USA
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| |
Collapse
|
128
|
Rosario D, Boren J, Uhlen M, Proctor G, Aarsland D, Mardinoglu A, Shoaie S. Systems Biology Approaches to Understand the Host-Microbiome Interactions in Neurodegenerative Diseases. Front Neurosci 2020; 14:716. [PMID: 32733199 PMCID: PMC7360858 DOI: 10.3389/fnins.2020.00716] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases (NDDs) comprise a broad range of progressive neurological disorders with multifactorial etiology contributing to disease pathophysiology. Evidence of the microbiome involvement in the gut-brain axis urges the interest in understanding metabolic interactions between the microbiota and host physiology in NDDs. Systems Biology offers a holistic integrative approach to study the interplay between the different biologic systems as part of a whole, and may elucidate the host–microbiome interactions in NDDs. We reviewed direct and indirect pathways through which the microbiota can modulate the bidirectional communication of the gut-brain axis, and explored the evidence of microbial dysbiosis in Alzheimer’s and Parkinson’s diseases. As the gut microbiota being strongly affected by diet, the potential approaches to targeting the human microbiota through diet for the stimulation of neuroprotective microbial-metabolites secretion were described. We explored the potential of Genome-scale metabolic models (GEMs) to infer microbe-microbe and host-microbe interactions and to identify the microbiome contribution to disease development or prevention. Finally, a systemic approach based on GEMs and ‘omics integration, that would allow the design of sustainable personalized anti-inflammatory diets in NDDs prevention, through the modulation of gut microbiota was described.
Collapse
Affiliation(s)
- Dorines Rosario
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jan Boren
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Gordon Proctor
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.,Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.,Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
129
|
Yu D, Shu XO, Howard EF, Long J, English WJ, Flynn CR. Fecal metagenomics and metabolomics reveal gut microbial changes after bariatric surgery. Surg Obes Relat Dis 2020; 16:1772-1782. [PMID: 32747219 DOI: 10.1016/j.soard.2020.06.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/06/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Evidence from longitudinal patient studies regarding gut microbial changes after bariatric surgery is limited. OBJECTIVE To examine intraindividual changes in fecal microbiome and metabolites among patients undergoing Roux-en-Y gastric bypass or vertical sleeve gastrectomy. SETTING Observational study. METHODS Twenty patients were enrolled and provided stool samples before and 1 week, 1 month, and/or 3 months after surgery. Shallow shotgun metagenomics and untargeted fecal metabolomics were performed. Zero-inflated generalized additive models and linear mixed models were applied to identify fecal microbiome and metabolites changes, with adjustment for potential confounders and correction for multiple testing. RESULTS We enrolled 16 women and 4 men, including 16 white and 4 black participants (median age = 45 years; presurgery body mass index = 47.7 kg/m2). Ten patients had Roux-en-Y gastric bypass, 10 had vertical sleeve gastrectomy, and 14 patients provided postsurgery stool samples. Of 47 samples, median sequencing depth was 6.3 million reads and 1073 metabolites were identified. Microbiome alpha-diversity increased after surgery, especially at 3 months. Significant genus-level changes included increases in Odoribacter, Streptococcus, Anaerotruncus, Alistipes, Klebsiella, and Bifidobacterium, while decreases in Bacteroides, Coprocosccus, Dorea, and Faecalibacterium. Large increases in Streptococcus, Akkermansia, and Prevotella were observed at 3 months. Beta-diversity and fecal metabolites were also changed, including reduced caffeine metabolites, indoles, and butyrate. CONCLUSIONS Despite small sample size and missing repeated samples in some participants, our pilot study showed significant postsurgery changes in fecal microbiome and metabolites among bariatric surgery patients. Future large-scale, longitudinal studies are warranted to investigate gut microbial changes and their associations with metabolic outcomes after bariatric surgery.
Collapse
Affiliation(s)
- Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric F Howard
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wayne J English
- Division of General Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Charles R Flynn
- Division of General Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
130
|
Nance CL, Deniskin R, Diaz VC, Paul M, Anvari S, Anagnostou A. The Role of the Microbiome in Food Allergy: A Review. CHILDREN-BASEL 2020; 7:children7060050. [PMID: 32466620 PMCID: PMC7346163 DOI: 10.3390/children7060050] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
Food allergies are common and estimated to affect 8% of children and 11% of adults in the United States. They pose a significant burden—physical, economic and social—to those affected. There is currently no available cure for food allergies. Emerging evidence suggests that the microbiome contributes to the development and manifestations of atopic disease. According to the hygiene hypothesis, children growing up with older siblings have a lower incidence of allergic disease compared with children from smaller families, due to their early exposure to microbes in the home. Research has also demonstrated that certain environmental exposures, such as a farming environment, during early life are associated with a diverse bacterial experience and reduced risk of allergic sensitization. Dysregulation in the homeostatic interaction between the host and the microbiome or gut dysbiosis appears to precede the development of food allergy, and the timing of such dysbiosis is critical. The microbiome affects food tolerance via the secretion of microbial metabolites (e.g., short chain fatty acids) and the expression of microbial cellular components. Understanding the biology of the microbiome and how it interacts with the host to maintain gut homeostasis is helpful in developing smarter therapeutic approaches. There are ongoing trials evaluating the benefits of probiotics and prebiotics, for the prevention and treatment of atopic diseases to correct the dysbiosis. However, the routine use of probiotics as an intervention for preventing allergic disease is not currently recommended. A new approach in microbial intervention is to attempt a more general modification of the gut microbiome, such as with fecal microbiota transplantation. Developing targeted bacterial therapies for food allergy may be promising for both the treatment and prevention of food allergy. Similarly, fecal microbiota transplantation is being explored as a potentially beneficial interventional approach. Overall, targeted bacterial therapies for food allergy may be promising for both the treatment and prevention of food allergy.
Collapse
Affiliation(s)
- Christina L. Nance
- Baylor College of Medicine, Section of Pediatric Immunology, Allergy and Retrovirology, Houston, TX 77030 USA; (C.L.N.); (R.D.); (V.C.D.); (M.P.); (S.A.)
- Texas Children’s Hospital, Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Houston, TX 77030, USA
| | - Roman Deniskin
- Baylor College of Medicine, Section of Pediatric Immunology, Allergy and Retrovirology, Houston, TX 77030 USA; (C.L.N.); (R.D.); (V.C.D.); (M.P.); (S.A.)
- Texas Children’s Hospital, Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Houston, TX 77030, USA
| | - Veronica C. Diaz
- Baylor College of Medicine, Section of Pediatric Immunology, Allergy and Retrovirology, Houston, TX 77030 USA; (C.L.N.); (R.D.); (V.C.D.); (M.P.); (S.A.)
- Texas Children’s Hospital, Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Houston, TX 77030, USA
| | - Misu Paul
- Baylor College of Medicine, Section of Pediatric Immunology, Allergy and Retrovirology, Houston, TX 77030 USA; (C.L.N.); (R.D.); (V.C.D.); (M.P.); (S.A.)
- Texas Children’s Hospital, Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Houston, TX 77030, USA
| | - Sara Anvari
- Baylor College of Medicine, Section of Pediatric Immunology, Allergy and Retrovirology, Houston, TX 77030 USA; (C.L.N.); (R.D.); (V.C.D.); (M.P.); (S.A.)
- Texas Children’s Hospital, Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Houston, TX 77030, USA
| | - Aikaterini Anagnostou
- Baylor College of Medicine, Section of Pediatric Immunology, Allergy and Retrovirology, Houston, TX 77030 USA; (C.L.N.); (R.D.); (V.C.D.); (M.P.); (S.A.)
- Texas Children’s Hospital, Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
131
|
Cooper TE, Khalid R, Craig JC, Hawley CM, Howell M, Johnson DW, Teixeira-Pinto A, Tong A, Wong G. Synbiotics, prebiotics and probiotics for people with chronic kidney disease. Hippokratia 2020. [DOI: 10.1002/14651858.cd013631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tess E Cooper
- Cochrane Kidney and Transplant, Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
- Sydney School of Public Health; The University of Sydney; Sydney Australia
| | - Rabia Khalid
- Sydney School of Public Health; The University of Sydney; Sydney Australia
- Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
- College of Medicine and Public Health; Flinders University; Adelaide Australia
| | - Carmel M Hawley
- Department of Nephrology; Princess Alexandra Hospital; Brisbane Australia
| | - Martin Howell
- Sydney School of Public Health; The University of Sydney; Sydney Australia
- Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
| | - David W Johnson
- Department of Nephrology; Princess Alexandra Hospital; Brisbane Australia
| | - Armando Teixeira-Pinto
- Sydney School of Public Health; The University of Sydney; Sydney Australia
- Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
| | - Allison Tong
- Sydney School of Public Health; The University of Sydney; Sydney Australia
- Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
| | - Germaine Wong
- Sydney School of Public Health; The University of Sydney; Sydney Australia
- Centre for Kidney Research; The Children's Hospital at Westmead; Westmead Australia
- Centre for Transplant and Renal Research; Westmead Hospital; Westmead Australia
| |
Collapse
|
132
|
Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol 2020; 17:279-297. [PMID: 32152478 DOI: 10.1038/s41575-020-0269-9] [Citation(s) in RCA: 654] [Impact Index Per Article: 130.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Gut microbiota dysbiosis has been repeatedly observed in obesity and type 2 diabetes mellitus, two metabolic diseases strongly intertwined with non-alcoholic fatty liver disease (NAFLD). Animal studies have demonstrated a potential causal role of gut microbiota in NAFLD. Human studies have started to describe microbiota alterations in NAFLD and have found a few consistent microbiome signatures discriminating healthy individuals from those with NAFLD, non-alcoholic steatohepatitis or cirrhosis. However, patients with NAFLD often present with obesity and/or insulin resistance and type 2 diabetes mellitus, and these metabolic confounding factors for dysbiosis have not always been considered. Patients with different NAFLD severity stages often present with heterogeneous lesions and variable demographic characteristics (including age, sex and ethnicity), which are known to affect the gut microbiome and have been overlooked in most studies. Finally, multiple gut microbiome sequencing tools and NAFLD diagnostic methods have been used across studies that could account for discrepant microbiome signatures. This Review provides a broad insight into microbiome signatures for human NAFLD and explores issues with disentangling these signatures from underlying metabolic disorders. More advanced metagenomics and multi-omics studies using system biology approaches are needed to improve microbiome biomarkers.
Collapse
|
133
|
Zhu L, Hu B, Guo Y, Yang H, Zheng J, Yao X, Hu H, Liu H. Effect of Chitosan oligosaccharides on ischemic symptom and gut microbiota disbalance in mice with hindlimb ischemia. Carbohydr Polym 2020; 240:116271. [PMID: 32475560 DOI: 10.1016/j.carbpol.2020.116271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/16/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
This study was designed to explore the effect of Chitosan oligosaccharides (COS) on mouse hindlimb ischemia by femoral artery ligation. Here, we demonstrated that COS treatment statistically promoted the blood perfusion and neovascularization in ischemic hindlimb of mice, accompanied by the suppression of inflammation and oxidative stress. By 16S rDNA gene sequencing, the disbalanced gut microbiota was observed in ischemic mice, while COS treatment, at least in part, restored the abundance changes of some intestinal bacteria at either phylum or genus levels. Based on metabolomics analysis on mouse plasma by UPLC-QTOF-MS, we screened 20 metabolites with the largest responses to ischemia, several of which were markedly reversed by COS. By Spearman's correlation analysis, the changed metabolites might act as a bridge between improved intestinal bacterial structure and alleviated hindlimb ischemia of mice treated by COS. Our studies point towards a potential role of COS in treatment of peripheral ischemia diseases.
Collapse
Affiliation(s)
- Lin Zhu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Nanshan Road 34, Chongqing 400065, PR China
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Xiaowei Yao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; Chongqing Academy of Chinese Materia Medica, Nanshan Road 34, Chongqing 400065, PR China.
| |
Collapse
|
134
|
Affiliation(s)
- Peter Libby
- From the Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.L.)
| | - Karin E Bornfeldt
- Department of Medicine (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington, Seattle
- Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington, Seattle
- Department of Pathology (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington, Seattle
| |
Collapse
|
135
|
Roggensack T, Merz B, Dick N, Bub A, Krüger R. Targeted ultra-performance liquid chromatography/tandem mass spectrometric quantification of methylated amines and selected amino acids in biofluids. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8646. [PMID: 31674086 DOI: 10.1002/rcm.8646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Methylated amino compounds and basic amino acids are important analyte classes with high relevance in nutrition, physical activity and physiology. Reliable and easy quantification methods covering a variety of metabolites in body fluids are a prerequisite for efficient investigations in the field of food and nutrition. METHODS Targeted ultra-performance liquid chromatography/tandem mass spectrometric (UHPLC/MS) analysis was performed using HILIC separation and timed ESI-MRM detection, combined with a short sample preparation. Calibration in urine and blood plasma was achieved by matrix-matched standards, isotope-labelled internal standards and standard addition. The method was fully validated and the performance was evaluated using a subset from the Karlsruhe Metabolomics and Nutrition (KarMeN) study. RESULTS Within this method, a total of 30 compounds could be quantified simultaneously in a short run of 9 min in both body fluids. This covers a variety of free amino compounds which are present in very different concentrations. The method is easy, precise and robust, and has a broad working range. As a proof of principle, literature-based associations of certain metabolites with dietary intake of respective foods were clearly confirmed in the KarMeN subset. CONCLUSIONS Overall, the method turned out to be well suited for application in nutrition studies, as shown for the example of food intake biomarkers in KarMeN. Application to a variety of questions such as food-related effects or physical activity will support future studies in the context of nutrition and health.
Collapse
Affiliation(s)
- Tim Roggensack
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Benedikt Merz
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Niels Dick
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Ralf Krüger
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| |
Collapse
|
136
|
Molina NM, Sola-Leyva A, Saez-Lara MJ, Plaza-Diaz J, Tubić-Pavlović A, Romero B, Clavero A, Mozas-Moreno J, Fontes J, Altmäe S. New Opportunities for Endometrial Health by Modifying Uterine Microbial Composition: Present or Future? Biomolecules 2020; 10:593. [PMID: 32290428 PMCID: PMC7226034 DOI: 10.3390/biom10040593] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023] Open
Abstract
Current knowledge suggests that the uterus harbours its own microbiota, where the microbes could influence the uterine functions in health and disease; however, the core uterine microbial composition and the host-microbial relationships remain to be fully elucidated. Different studies are indicating, based on next-generation sequencing techniques, that microbial dysbiosis could be associated with several gynaecological disorders, such as endometriosis, chronic endometritis, dysfunctional menstrual bleeding, endometrial cancer, and infertility. Treatments using antibiotics and probiotics and/or prebiotics for endometrial microbial dysbiosis are being applied. Nevertheless there is no unified protocol for assessing the endometrial dysbiosis and no optimal treatment protocol for the established dysbiosis. With this review we outline the microbes (mostly bacteria) identified in the endometrial microbiome studies, the current treatments offered for bacterial dysbiosis in the clinical setting, and the future possibilities such as pro- and prebiotics and microbial transplants for modifying uterine microbial composition.
Collapse
Affiliation(s)
- Nerea M. Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
| | - Maria Jose Saez-Lara
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- “José Mataix Verdú” Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- “José Mataix Verdú” Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain
| | | | - Barbara Romero
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Juan Mozas-Moreno
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain
- Departament of Obstetrics and Gynecology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan Fontes
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Competence Centre on Health Technologies, 50410 Tartu, Estonia
| |
Collapse
|
137
|
Pongking T, Haonon O, Dangtakot R, Onsurathum S, Jusakul A, Intuyod K, Sangka A, Anutrakulchai S, Cha’on U, Pinlaor S, Pinlaor P. A combination of monosodium glutamate and high-fat and high-fructose diets increases the risk of kidney injury, gut dysbiosis and host-microbial co-metabolism. PLoS One 2020; 15:e0231237. [PMID: 32267892 PMCID: PMC7141667 DOI: 10.1371/journal.pone.0231237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Consumption of either monosodium glutamate (MSG) or high-fat and high-fructose (HFF) diets changes the gut microbiome and hence contributes to development of several diseases. In this study, with an emphasis on kidney injury, hamsters were divided into 4 groups as follows: (1) hamsters fed with standard diet (control); (2) hamsters fed with standard diet and MSG in drinking water (MSG); (3) hamsters fed with high-fat and high-fructose diets (HFF), and (4) animals fed MSG+HFF. After 8 months, the animals were used for the study. Despite showing normal kidney function, hamsters fed with MSG+HFF exhibited signs of kidney damage as demonstrated by the highest expression levels of high-mobility group box-1 and kidney injury molecule-1 in kidney tissues, while slight changes of histopathological features in H&E-stained sections and normal levels of creatinine were observed, indicating possible early stages of kidney injury. Sequencing of the microbial 16S rRNA gene revealed that animals fed with the MSG+HFF diet had a higher ratio of gut Firmicutes/Bacteroidetes along with marked changes in abundance and diversity of gut microbiome compared to hamsters fed with MSG or HFF alone. In addition, 1H Nuclear magnetic resonance spectroscopy showed an elevation of urine p-cresol sulfate levels in the MSG+HFF group. These results indicate that consumption of both MSG and HFF increases the risk of kidney injury, induces gut dysbiosis and an increase in the amount of p-cresol sulfate in hamsters.
Collapse
Affiliation(s)
- Thatsanapong Pongking
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in The Northeast of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ornuma Haonon
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in The Northeast of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rungtiwa Dangtakot
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in The Northeast of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sudarat Onsurathum
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in The Northeast of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Apinya Jusakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in The Northeast of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kitti Intuyod
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in The Northeast of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Arunnee Sangka
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in The Northeast of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sirirat Anutrakulchai
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in The Northeast of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ubon Cha’on
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in The Northeast of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in The Northeast of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in The Northeast of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
138
|
Oakley CI, Vallejo JA, Wang D, Gray MA, Tiede-Lewis LM, Shawgo T, Daon E, Zorn G, Stubbs JR, Wacker MJ. Trimethylamine- N-oxide acutely increases cardiac muscle contractility. Am J Physiol Heart Circ Physiol 2020; 318:H1272-H1282. [PMID: 32243768 DOI: 10.1152/ajpheart.00507.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is a major cause of morbidity and mortality among patients with chronic kidney disease (CKD). Trimethylamine-N-oxide (TMAO), a uremic metabolite that is elevated in the setting of CKD, has been implicated as a nontraditional risk factor for cardiovascular disease. While association studies have linked elevated plasma levels of TMAO to adverse cardiovascular outcomes, its direct effect on cardiac and smooth muscle function remains to be fully elucidated. We hypothesized that pathological concentrations of TMAO would acutely increase cardiac and smooth muscle contractility. These effects may ultimately contribute to cardiac dysfunction during CKD. High levels of TMAO significantly increased paced, ex vivo human cardiac muscle biopsy contractility (P < 0.05). Similarly, TMAO augmented contractility in isolated mouse hearts (P < 0.05). Reverse perfusion of TMAO through the coronary arteries via a Langendorff apparatus also enhanced cardiac contractility (P < 0.05). In contrast, the precursor molecule, trimethylamine (TMA), did not alter contractility (P > 0.05). Multiphoton microscopy, used to capture changes in intracellular calcium in paced, adult mouse hearts ex vivo, showed that TMAO significantly increased intracellular calcium fluorescence (P < 0.05). Interestingly, acute administration of TMAO did not have a statistically significant influence on isolated aortic ring contractility (P > 0.05). We conclude that TMAO directly increases the force of cardiac contractility, which corresponds with TMAO-induced increases in intracellular calcium but does not acutely affect vascular smooth muscle or endothelial function of the aorta. It remains to be determined if this acute inotropic action on cardiac muscle is ultimately beneficial or harmful in the setting of CKD.NEW & NOTEWORTHY We demonstrate for the first time that elevated concentrations of TMAO acutely augment myocardial contractile force ex vivo in both murine and human cardiac tissue. To gain mechanistic insight into the processes that led to this potentiation in cardiac contraction, we used two-photon microscopy to evaluate intracellular calcium in ex vivo whole hearts loaded with the calcium indicator dye Fluo-4. Acute treatment with TMAO resulted in increased Fluo-4 fluorescence, indicating that augmented cytosolic calcium plays a role in the effects of TMAO on force production. Lastly, TMAO did not show an effect on aortic smooth muscle contraction or relaxation properties. Our results demonstrate novel, acute, and direct actions of TMAO on cardiac function and help lay the groundwork for future translational studies investigating the complex multiorgan interplay involved in cardiovascular pathogenesis during CKD.
Collapse
Affiliation(s)
- Carlee I Oakley
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Julian A Vallejo
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri.,Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri
| | - Derek Wang
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Mark A Gray
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri
| | - Tilitha Shawgo
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Emmanuel Daon
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - George Zorn
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason R Stubbs
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael J Wacker
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| |
Collapse
|
139
|
Tong Y, Marion T, Schett G, Luo Y, Liu Y. Microbiota and metabolites in rheumatic diseases. Autoimmun Rev 2020; 19:102530. [PMID: 32240855 DOI: 10.1016/j.autrev.2020.102530] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
As a gigantic community in the human body, the microbiota exerts pleiotropic roles in human health and disease ranging from digestion and absorption of nutrients from food, defense against infection of pathogens, to regulation of immune system development and immune homeostasis. Recent advances in "omics" studies and bioinformatics analyses have broadened our insights of the microbiota composition of the inner and other surfaces of the body and their interactions with the host. Apart from the direct contact of microbes at the mucosal barrier, metabolites produced or metabolized by the gut microbes can serve as important immune regulators or initiators in a wide variety of diseases, including gastrointestinal diseases, metabolic disorders and systemic rheumatic diseases. This review focuses on the most recent understanding of how the microbiota and metabolites shape rheumatic diseases. Studies that explore the mechanistic interplay between microbes, metabolites and the host could thereby provide clues for novel methods in the diagnosis, therapy, and prevention of rheumatic diseases.
Collapse
Affiliation(s)
- Yanli Tong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tony Marion
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nurnberg, and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
140
|
Hasan RA, Koh AY, Zia A. The gut microbiome and thromboembolism. Thromb Res 2020; 189:77-87. [PMID: 32192995 DOI: 10.1016/j.thromres.2020.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/09/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
The gut microbiome plays a critical role in various inflammatory conditions, and its modulation is a potential treatment option for these conditions. The role of the gut microbiome in the pathogenesis of thromboembolism has not been fully elucidated. In this review, we summarize the evidence linking the gut microbiome to the pathogenesis of arterial and venous thrombosis. In a human host, potentially pathogenic bacteria are normal residents of the human gut microbiome, but significantly outnumbered by commensal anaerobic bacteria. Several disease states with an increased risk of venous thromboembolism (VTE) are associated with an imbalance in the gut microbiome characterized by a decrease in commensal anaerobic bacteria and an increase in the abundance of pathogenic bacteria of which the most common is the gram-negative Enterobacteriaceae (ENTERO) family. Bacterial lipopolysaccharides (LPS), the glycolipids found on the outer membrane of gram-negative bacteria, is one of the links between the microbiome and hypercoagulability. LPS binds to toll-like receptors to activate endothelial cells and platelets, leading to activation of the coagulation cascade. Bacteria in the microbiome can also metabolite compounds in the diet to produce important metabolites like trimethylamine-N-oxide (TMAO). TMAO causes platelet hyperreactivity, promotes thrombus formation and is associated with cardiovascular disease. Modulating the gut microbiome to target LPS and TMAO levels may be an innovative approach for decreasing the risk of thrombosis.
Collapse
Affiliation(s)
- Rida Abid Hasan
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Andrew Y Koh
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America; Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Ayesha Zia
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
| |
Collapse
|
141
|
Singh K, Paul SM, Kober KM, Conley YP, Wright F, Levine JD, Joseph PV, Miaskowski C. Neuropsychological Symptoms and Intrusive Thoughts Are Associated With Worse Trajectories of Chemotherapy-Induced Nausea. J Pain Symptom Manage 2020; 59:668-678. [PMID: 31689477 PMCID: PMC7024637 DOI: 10.1016/j.jpainsymman.2019.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
CONTEXT Although chemotherapy-induced vomiting is well controlled with evidence-based antiemetic regimens, chemotherapy-induced nausea (CIN) remains a significant clinical problem. OBJECTIVES Study purposes, in a sample of outpatients with breast, gastrointestinal, gynecological, or lung cancer who received two cycles of chemotherapy (CTX, n = 1251), were to evaluate for interindividual differences in the severity of CIN and to determine which demographic, clinical, symptom, and stress characteristics are associated with higher initial levels as well as with the trajectories of CIN. METHODS Patients were recruited during their first or second cycle of CTX. Patients completed self-report questionnaires a total of six times over two cycles of CTX. Hierarchical linear modeling was used to evaluate for interindividual differences in and characteristics associated with the severity of CIN. RESULTS Across the two cycles of CTX, higher levels of sleep disturbance, depression, and morning fatigue, as well as higher levels of intrusive thoughts, were associated with higher initial levels of CIN. In addition, lower functional status scores and shorter cycle lengths were associated with higher initial levels of CIN, and younger age and higher emetogenicity of the CTX regimen were associated with both higher initial levels as well as worse trajectories of CIN severity. CONCLUSION These findings suggest that common symptoms associated with cancer and its treatment are associated with increased severity of CIN. Targeted interventions for these symptoms may reduce the burden of unrelieved CIN.
Collapse
Affiliation(s)
- Komal Singh
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, USA
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, California, USA
| | - Kord M Kober
- School of Nursing, University of California, San Francisco, California, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fay Wright
- Rory Meyers College of Nursing, New York University, New York, New York, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, California, USA
| | - Paule V Joseph
- Sensory Science & Metabolism Unit, Biobehavioral Branch, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
142
|
Yang JJ, Lipworth LP, Shu XO, Blot WJ, Xiang YB, Steinwandel MD, Li H, Gao YT, Zheng W, Yu D. Associations of choline-related nutrients with cardiometabolic and all-cause mortality: results from 3 prospective cohort studies of blacks, whites, and Chinese. Am J Clin Nutr 2020; 111:644-656. [PMID: 31915809 PMCID: PMC7049525 DOI: 10.1093/ajcn/nqz318] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/02/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Choline-related nutrients are dietary precursors of a gut microbial metabolite, trimethylamine-N-oxide, which has been linked to cardiometabolic diseases and related death. However, epidemiologic evidence on dietary choline and mortality remains limited, particularly among nonwhite populations. OBJECTIVES This study aimed to investigate the associations of choline-related nutrients with cardiometabolic and all-cause mortality among black and white Americans and Chinese adults. METHODS Included were 49,858 blacks, 23,766 whites, and 134,001 Chinese, aged 40-79 y, who participated in 3 prospective cohorts and lived ≥1 y after enrollment. Cox regression models were used to estimate HRs and 95% CIs for cardiometabolic [e.g., ischemic heart disease (IHD), stroke, and diabetes] and all-cause deaths. To account for multiple testing, P values < 0.003 were considered significant. RESULTS Mean choline intake among blacks, whites, and Chinese was 404.1 mg/d, 362.0 mg/d, and 296.8 mg/d, respectively. During a median follow-up of 11.7 y, 28,673 deaths were identified, including 11,141 cardiometabolic deaths. After comprehensive adjustments, including for overall diet quality and disease history, total choline intake was associated with increased cardiometabolic mortality among blacks and Chinese (HR for highest compared with lowest quintile: 1.26; 95% CI: 1.13, 1.40 and HR: 1.23; 95% CI: 1.11, 1.38, respectively; both P-trend < 0.001); among whites, the association was weaker (HR: 1.12; 95% CI: 0.95, 1.33; P-trend = 0.02). Total choline intake was also associated with diabetes and all-cause mortality in blacks (HR: 1.66; 95% CI: 1.26, 2.19 and HR: 1.20; 95% CI: 1.12, 1.29, respectively), with diabetes mortality in Chinese (HR: 2.24; 95% CI: 1.68, 2.97), and with IHD mortality in whites (HR: 1.31; 95% CI: 1.02, 1.69) (all P-trend < 0.001). The choline-mortality association was modified by alcohol consumption and appeared stronger among individuals with existing cardiometabolic disease. Betaine intake was associated with increased cardiometabolic mortality in Chinese only (HR: 1.16; 95% CI: 1.08, 1.25; P-trend < 0.001). CONCLUSIONS High choline intake was associated with increased cardiometabolic mortality in racially diverse populations.
Collapse
Affiliation(s)
- Jae Jeong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Loren P Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- International Epidemiology Field Station, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mark D Steinwandel
- International Epidemiology Field Station, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Honglan Li
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Tang Gao
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
143
|
Yang JJ, Yu D, Xiang YB, Blot W, White E, Robien K, Sinha R, Park Y, Takata Y, Lazovich D, Gao YT, Zhang X, Lan Q, Bueno-de-Mesquita B, Johansson I, Tumino R, Riboli E, Tjønneland A, Skeie G, Quirós JR, Johansson M, Smith-Warner SA, Zheng W, Shu XO. Association of Dietary Fiber and Yogurt Consumption With Lung Cancer Risk: A Pooled Analysis. JAMA Oncol 2020; 6:e194107. [PMID: 31647500 PMCID: PMC6813596 DOI: 10.1001/jamaoncol.2019.4107] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022]
Abstract
Importance Dietary fiber (the main source of prebiotics) and yogurt (a probiotic food) confer various health benefits via modulating the gut microbiota and metabolic pathways. However, their associations with lung cancer risk have not been well investigated. Objective To evaluate the individual and joint associations of dietary fiber and yogurt consumption with lung cancer risk and to assess the potential effect modification of the associations by lifestyle and other dietary factors. Design, Setting, and Participants This pooled analysis included 10 prospective cohorts involving 1 445 850 adults from studies that were conducted in the United States, Europe, and Asia. Data analyses were performed between November 2017 and February 2019. Using harmonized individual participant data, hazard ratios and 95% confidence intervals for lung cancer risk associated with dietary fiber and yogurt intakes were estimated for each cohort by Cox regression and pooled using random-effects meta-analysis. Participants who had a history of cancer at enrollment or developed any cancer, died, or were lost to follow-up within 2 years after enrollment were excluded. Exposures Dietary fiber intake and yogurt consumption measured by validated instruments. Main Outcomes and Measures Incident lung cancer, subclassified by histologic type (eg, adenocarcinoma, squamous cell carcinoma, and small cell carcinoma). Results The analytic sample included 627 988 men, with a mean (SD) age of 57.9 (9.0) years, and 817 862 women, with a mean (SD) age of 54.8 (9.7) years. During a median follow-up of 8.6 years, 18 822 incident lung cancer cases were documented. Both fiber and yogurt intakes were inversely associated with lung cancer risk after adjustment for status and pack-years of smoking and other lung cancer risk factors: hazard ratio, 0.83 (95% CI, 0.76-0.91) for the highest vs lowest quintile of fiber intake; and hazard ratio, 0.81 (95% CI, 0.76-0.87) for high vs no yogurt consumption. The fiber or yogurt associations with lung cancer were significant in never smokers and were consistently observed across sex, race/ethnicity, and tumor histologic type. When considered jointly, high yogurt consumption with the highest quintile of fiber intake showed more than 30% reduced risk of lung cancer than nonyogurt consumption with the lowest quintile of fiber intake (hazard ratio, 0.67 [95% CI, 0.61-0.73] in total study populations; hazard ratio, 0.69 [95% CI, 0.54-0.89] in never smokers), suggesting potential synergism. Conclusions and Relevance Dietary fiber and yogurt consumption was associated with reduced risk of lung cancer after adjusting for known risk factors and among never smokers. Our findings suggest a potential protective role of prebiotics and probiotics against lung carcinogenesis.
Collapse
Affiliation(s)
- Jae Jeong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emily White
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kim Robien
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia
| | - Rashmi Sinha
- Division of Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland
| | - Yikyung Park
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Yumie Takata
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- College of Public Health and Human Sciences, Oregon State University, Corvallis
| | - DeAnn Lazovich
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis
- Masonic Cancer Center, University of Minnesota, Minneapolis
| | - Yu-Tang Gao
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Qing Lan
- Division of Epidemiology & Genetics, National Cancer Institute, Bethesda, Maryland
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands
| | | | - Rosario Tumino
- Cancer Registry and Histopathology Department, Civic-M.P. Arezzo Hospital, American Samoa, Ragusa, Italy
| | - Elio Riboli
- Faculty of Medicine, School of Public Health, Imperial College, London, United Kingdom
| | - Anne Tjønneland
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
- Denmark Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Guri Skeie
- Department of Community Medicine, UIT, The Arctic University of Norway, Tromsø, Norway
| | | | - Mattias Johansson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyons, France
| | - Stephanie A. Smith-Warner
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
144
|
Pan L, Han P, Ma S, Peng R, Wang C, Kong W, Cong L, Fu J, Zhang Z, Yu H, Wang Y, Jiang J. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta Pharm Sin B 2020; 10:249-261. [PMID: 32082971 PMCID: PMC7016297 DOI: 10.1016/j.apsb.2019.10.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
The progression of hyperuricemia disease is often accompanied by damage to renal function. However, there are few studies on hyperuricemia nephropathy, especially its association with intestinal flora. This study combines metabolomics and gut microbiota diversity analysis to explore metabolic changes using a rat model as well as the changes in intestinal flora composition. The results showed that amino acid metabolism was disturbed with serine, glutamate and glutamine being downregulated whilst glycine, hydroxyproline and alanine being upregulated. The combined glycine, serine and glutamate could predict hyperuricemia nephropathy with an area under the curve of 1.00. Imbalanced intestinal flora was also observed. Flavobacterium, Myroides, Corynebacterium, Alcaligenaceae, Oligella and other conditional pathogens increased significantly in the model group, while Blautia and Roseburia, the short-chain fatty acid producing bacteria, declined greatly. At phylum, family and genus levels, disordered nitrogen circulation in gut microbiota was detected. In the model group, the uric acid decomposition pathway was enhanced with reinforced urea liver-intestine circulation. The results implied that the intestinal flora play a vital role in the pathogenesis of hyperuricemia nephropathy. Hence, modulation of gut microbiota or targeting at metabolic enzymes, i.e., urease, could assist the treatment and prevention of this disease.
Collapse
Affiliation(s)
- Libin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Shurong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Ran Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Can Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Weijia Kong
- Insitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Lin Cong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zhengwei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
- Corresponding authors. Tel.: +86 10 63165238, Fax: +86 10 63165238; Tel.: +86 10 83160005, Fax: +86 10 63017757.
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
- Corresponding authors. Tel.: +86 10 63165238, Fax: +86 10 63165238; Tel.: +86 10 83160005, Fax: +86 10 63017757.
| |
Collapse
|
145
|
Warmbrunn MV, Herrema H, Aron-Wisnewsky J, Soeters MR, Van Raalte DH, Nieuwdorp M. Gut microbiota: a promising target against cardiometabolic diseases. Expert Rev Endocrinol Metab 2020; 15:13-27. [PMID: 32066294 DOI: 10.1080/17446651.2020.1720511] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Introduction: Cardiometabolic diseases (CMD) are a group of interrelated disorders such as metabolic syndrome, type 2 diabetes mellitus and cardiovascular diseases (CVD). As the prevalence of these diseases increases globally, efficient new strategies are necessary to target CMD and modifiable risk factors. In the past decade, evidence has accumulated regarding the influence of gut microbiota (GM) on CMD, providing new targets for therapeutic interventions.Areas covered: This narrative review discusses the pathophysiologic link between CMD, GM, and potential microbiota-based targets against atherosclerosis and modifiable risk factors for atherosclerosis. Low-grade inflammation can be induced through GM and its derived metabolites. CMD are influenced by GM and microbiota-derived metabolites such as short-chain fatty acids (SCFA), secondary bile acids, trimethylamine N-oxide (TMAO), and the composition of GM can modulate host metabolism. All of the above can lead to promising therapeutic targets.Expert opinion: Most data are derived from animal models or human association studies; therefore, more translational and interventional research in humans is necessary to validate these promising findings. Reproduced findings such as aberrant microbiota patterns or circulating biomarkers could be targeted depending on individual metabolic profiles, moving toward personalized medicine in CMD.
Collapse
Affiliation(s)
- Moritz V Warmbrunn
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Judith Aron-Wisnewsky
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (Nutriomics), Paris, France
- Assistance Publique Hôpitaux De Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel H Van Raalte
- Department of Internal Medicine, Diabetes Center, Amsterdam UMC, Location VUMC at Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, ICar at Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Internal Medicine, Diabetes Center, Amsterdam UMC, Location VUMC at Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, ICar at Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
146
|
Zhang X, Browman G, Siu W, Basen-Engquist KM, Hanash SM, Hoffman KL, Okhuysen PC, Scheet P, Petrosino JF, Kopetz S, Daniel CR. The BE GONE trial study protocol: a randomized crossover dietary intervention of dry beans targeting the gut microbiome of overweight and obese patients with a history of colorectal polyps or cancer. BMC Cancer 2019; 19:1233. [PMID: 31852462 PMCID: PMC6921460 DOI: 10.1186/s12885-019-6400-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mouse and human studies support the promise of dry beans to improve metabolic health and to lower cancer risk. In overweight/obese patients with a history of colorectal polyps or cancer, the Beans to Enrich the Gut microbiome vs. Obesity's Negative Effects (BE GONE) trial will test whether and how an increase in the consumption of pre-cooked, canned dry beans within the context of usual diet and lifestyle can enhance the gut landscape to improve metabolic health and reduce cancer risk. METHODS/DESIGN This randomized crossover trial is designed to characterize changes in (1) host markers spanning lipid metabolism, inflammation, and obesity-related cancer risk; (2) compositional and functional profiles of the fecal microbiome; and (3) host and microbial metabolites. With each subject serving as their own control, the trial will compare the participant's usual diet with (intervention) and without (control) dry beans. Canned, pre-cooked dry beans are provided to participants and the usual diet continually assessed and monitored. Following a 4-week run-in and equilibration period, each participant provides a total of 5 fasting blood and 6 stool samples over a total period of 16 weeks. The intervention consists of a 2-week ramp-up of dry bean intake to 1 cup/d, which is then continued for an additional 6 weeks. Intra- and inter-individual outcomes are assessed across each crossover period with consideration of the joint or modifying effects of the usual diet and baseline microbiome. DISCUSSION The BE GONE trial is evaluating a scalable dietary prevention strategy targeting the gut microbiome of high-risk patients to mitigate the metabolic and inflammatory effects of adiposity that influence colorectal cancer risk, recurrence, and survival. The overarching scientific goal is to further elucidate interactions between diet, the gut microbiome, and host metabolism. Improved understanding of the diet-microbiota interplay and effective means to target these relationships will be key to the future of clinical and public health approaches to cancer and other major diet- and obesity-related diseases. TRIAL REGISTRATION This protocol is registered with the U.S. National Institutes of Health trial registry, ClinicalTrials.gov, under the identifier NCT02843425. First posted July 25, 2016; last verified January 25, 2019.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
- Department of Medicine, Epidemiology and Population Science, Baylor College of Medicine, Houston, TX, USA
| | - Gladys Browman
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
| | - Wesley Siu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen M Basen-Engquist
- Department of Behavioral Science, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Pablo C Okhuysen
- Department of Infectious Diseases, Infection Control, and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carrie R Daniel
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA.
| |
Collapse
|
147
|
Li Q, Zhang M, Wu T, Liu R. Potential correlation between carbohydrate-active enzyme family 48 expressed by gut microbiota and the expression of intestinal epithelial AMP-activated protein kinase β. J Food Biochem 2019; 44:e13123. [PMID: 31837163 DOI: 10.1111/jfbc.13123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022]
Abstract
The expression of the carbohydrate-active enzyme family and related genes is known to be influenced by the response of intestinal microbiota to dietary changes. However, it is uncertain whether this is caused by variation in the intestinal microecology. In this study, metabolite analysis, 16S rDNA sequencing, metagenomics, and Western blotting were employed to investigate the effects of dietary intervention on the composition of gut microbiota and microbiota-mediated changes. The results showed that compared with the low fiber-fed group, the fiber diet-fed mice displayed a shift in gut microbiota composition to contain more members of phylum Bacteroidetes, accompanied by higher proportions of Akkermansia and typical probiotic Bifidobacterium. Moreover, correlations were found between microbial genes coding for carbohydrate-binding module family 48 (CBM48) and intestinal epithelial expression levels of AMPK β. This finding provides new insight for elucidating the contribution of dietary intervention through AMPK regulation linked to the microbial carbohydrate-binding family. PRACTICAL APPLICATIONS: The relationship suggested by these data will provide theoretical and applied foundations for the development of potential intervention targeting the interaction between gut microbiota and host health, particularly the use of dietary fiber as a medically relevant food. Additionally, a better understanding of the interactions between gut microbiota and intestinal epithelial will inform the development of gut microbiota intervention as a health-promoting procedure.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Science and Technology, Tianjin, P.R. China
| | - Min Zhang
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Science and Technology, Tianjin, P.R. China.,School of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, P.R. China
| | - Tao Wu
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Science and Technology, Tianjin, P.R. China.,Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin, P.R. China
| | - Rui Liu
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Science and Technology, Tianjin, P.R. China
| |
Collapse
|
148
|
Altmäe S, Franasiak JM, Mändar R. The seminal microbiome in health and disease. Nat Rev Urol 2019; 16:703-721. [PMID: 31732723 DOI: 10.1038/s41585-019-0250-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Owing to the fact that there are more microbial than human cells in our body and that humans contain more microbial than human genes, the microbiome has huge potential to influence human physiology, both in health and in disease. The use of next-generation sequencing technologies has helped to elucidate functional, quantitative and mechanistic aspects of the complex microorganism-host interactions that underlie human physiology and pathophysiology. The microbiome of semen is a field of increasing scientific interest, although this microbial niche is currently understudied compared with other areas of microbiome research. However, emerging evidence is beginning to indicate that the seminal microbiome has important implications for the reproductive health of men, the health of the couple and even the health of offspring, owing to transfer of microorganisms to the partner and offspring. As this field expands, further carefully designed and well-powered studies are required to unravel the true nature and role of the seminal microbiome.
Collapse
Affiliation(s)
- Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain. .,Competence Centre on Health Technologies, Tartu, Estonia. .,Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain.
| | | | - Reet Mändar
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
149
|
Aron-Wisnewsky J, Clément K. A place for vitamin supplementation and functional food in bariatric surgery? Curr Opin Clin Nutr Metab Care 2019; 22:442-448. [PMID: 31589176 DOI: 10.1097/mco.0000000000000602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This article summarizes recent literature concerning vitamin deficiency and required supplementation post-bariatric surgery, focusing on vitamin D (and associated clinical adverse effect on bone loss) and on the potential implication of the gut microbiota. RECENT FINDINGS Bariatric surgery induces weight loss and metabolic improvements yet with major inter-individual variability. If it is efficient in most patients, some display poor response (i.e. patients with the lowest weight loss at 1 year or weight regain afterwards, or patients without metabolic disease remission). Despite systematic vitamin supplementation, some patients develop vitamin deficiencies leading to poor clinical outcomes, among which vitamin D deficiency associated with observed bone mass loss and fractures. Recent mechanistic studies led to understand better the involved physiopathology. Furthermore, different intervention studies tested on top of bariatric surgery (using vitamin, diet, or nutrients acting as functional food) have evaluated whether nutritional adverse outcomes could be improved. Importantly, gut microbiota involved in food digestion and metabolization and vitamin synthesis is largely perturbed during severe obesity and is partially restored post-surgery, yet again with large interindividual variability. Whether differential gut microbiota modification could be associated with vitamin deficiencies is an open question. SUMMARY Future clinical research studies will need to evaluate whether add-on intervention to bariatric surgery using vitamin, diet, or specific food items could help prevent nutritional deficiencies and improve clinical response observed post-surgery. Importantly, personalizing the add-on intervention post-surgery upon gut microbiota composition should be tested in predicted poor-responders to surgery as already performed during diet intervention to further improve metabolic health.
Collapse
Affiliation(s)
- Judith Aron-Wisnewsky
- Sorbonne Université, INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics)
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics)
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| |
Collapse
|
150
|
Plata C, Cruz C, Cervantes LG, Ramírez V. The gut microbiota and its relationship with chronic kidney disease. Int Urol Nephrol 2019; 51:2209-2226. [PMID: 31576489 DOI: 10.1007/s11255-019-02291-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
Abstract
Chronic kidney disease (CKD) is a worldwide health problem, because it is one of the most common complications of metabolic diseases including obesity and type 2 diabetes. Patients with CKD also develop other comorbidities, such as hypertension, hyperlipidemias, liver and cardiovascular diseases, gastrointestinal problems, and cognitive deterioration, which worsens their health. Therapy includes reducing comorbidities or using replacement therapy, such as peritoneal dialysis, hemodialysis, and organ transplant. Health care systems are searching for alternative treatments for CKD patients to mitigate or retard their progression. One new topic is the study of uremic toxins (UT), which are excessively produced during CKD as products of food metabolism or as a result of the loss of renal function that have a negative impact on the kidneys and other organs. High urea concentrations significantly modify the microbiota in the gut also, cause a decrease in bacterial strains that produce anti-inflammatory and fuel molecules and an increase in bacterial strains that can metabolize urea, but also produce UT, including indoxyl sulfate and p-cresol sulfate. UT activates several cellular processes that induce oxidative environments, inflammation, proliferation, fibrosis development, and apoptosis; these processes mainly occur in the gut, heart, and kidney. The study of the microbiota during CKD allowed for the implementation of therapy schemes to try to reduce the circulating concentrations of UT and reduce the damage. The objective of this review is to show an overview to know the main UT produced in end-stage renal disease patients, and how prebiotics and probiotics intervention acts as a helpful tool in CKD treatment.
Collapse
Affiliation(s)
- Consuelo Plata
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Nutrición Salvador Zubirán, Vasco de Quiroga No. 15. Tlalpan, 14080, Mexico City, Mexico
| | - Cristino Cruz
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Nutrición Salvador Zubirán, Vasco de Quiroga No. 15. Tlalpan, 14080, Mexico City, Mexico
| | - Luz G Cervantes
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Tlalpan, 14080, Mexico City, Mexico
| | - Victoria Ramírez
- Departamento de Cirugía Experimental, Instituto Nacional de Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan, 14080, Mexico City, Mexico.
| |
Collapse
|