101
|
Liang Y, Ma Y, Zhang Y, Chen Z, Wang Z, Li X, Cui L, Xu L, Liu S, Li H. Single-Cell Analysis of the In Vivo Dynamics of Host Circulating Immune Cells Highlights the Importance of Myeloid Cells in Avian Flaviviral Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:2878-2891. [PMID: 34697228 DOI: 10.4049/jimmunol.2100116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/24/2021] [Indexed: 01/26/2023]
Abstract
Ducks are an economically important waterfowl but a natural reservoir for some zoonotic pathogens, such as influenza virus and flaviviruses. Our understanding of the duck immune system and its interaction with viruses remains incomplete. In this study, we constructed the transcriptomic landscape of duck circulating immune cells, the first line of defense in the arthropod-borne transmission of arboviruses, using high-throughput single-cell transcriptome sequencing, which defined 14 populations of peripheral blood leukocytes (PBLks) based on distinct molecular signatures and revealed differences in the clustering of PBLks between ducks and humans. Taking advantage of in vivo sex differences in the susceptibility of duck PBLks to avian tembusu virus (TMUV) infection, a mosquito-borne flavivirus newly emerged from ducks with a broad host range from mosquitos to mammals, a comprehensive comparison of the in vivo dynamics of duck PBLks upon TMUV infection between sexes was performed at the single-cell level. Using this in vivo model, we discovered that TMUV infection reprogrammed duck PBLks differently between sexes, driving the expansion of granulocytes and priming granulocytes and monocytes for antiviral immune activation in males but decreasing the antiviral immune activity of granulocytes and monocytes by restricting their dynamic transitions from steady states to antiviral states with a decrease in the abundance of circulating monocytes in females. This study provides insights into the initial immune responses of ducks to arthropod-borne flaviviral infection and provides a framework for studying duck antiviral immunity.
Collapse
Affiliation(s)
- Yumeng Liang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China; and
| | - Yong Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Yanhui Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China; and
| | - Zhijie Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China; and
| | - Zhitao Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China; and
| | - Xuefeng Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China; and
| | - Lu Cui
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China; and
| | - Li Xu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China; and
| | - Shengwang Liu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China; and
| | - Hai Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China; and
| |
Collapse
|
102
|
Zhang H, Wang R, Wang G, Zhang B, Wang C, Li D, Ding C, Wei Q, Fan Z, Tang H, Ji F. Single-Cell RNA Sequencing Reveals B Cells Are Important Regulators in Fracture Healing. Front Endocrinol (Lausanne) 2021; 12:666140. [PMID: 34819916 PMCID: PMC8606664 DOI: 10.3389/fendo.2021.666140] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
The bone marrow microenvironment is composed primarily of immune and stromal cells that play important roles in fracture healing. Although immune cells have been identified in mouse bone marrow, variations in their numbers and type during the fracture healing process remain poorly defined. In this study, single-cell RNA sequencing was used to identify immune cells in fracture tissues, including neutrophils, monocytes, T cells, B cells, and plasma cells. The number of B cells decreased significantly in the early stage of fracture healing. Furthermore, B cells in mice fracture models decreased significantly during the epiphyseal phase and then gradually returned to normal during the epiphyseal transformation phase of fracture healing. The B-cell pattern was opposite to that of bone formation and resorption activities. Notably, B-cell-derived exosomes inhibited bone homeostasis in fracture healing. In humans, a decrease in the number of B cells during the epiphyseal phase stimulated fracture healing. Then, as the numbers of osteoblasts increased during the callus reconstruction stage, the number of B cells gradually recovered, which reduced additional bone regeneration. Thus, B cells are key regulators of fracture healing and inhibit excessive bone regeneration by producing multiple osteoblast inhibitors.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Renkai Wang
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of People's Liberation Army (PLA), Hospital of Orthopedics, General Hospital of Southern Theater Command of People's Liberation Army, Guangzhou, China
| | - Guangchao Wang
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Bo Zhang
- Department of Bioinformatics, Novel Bioinformatics Ltd., Co., Shanghai, China
| | - Chao Wang
- Department of Bioinformatics, Novel Bioinformatics Ltd., Co., Shanghai, China
| | - Di Li
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Chen Ding
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Qiang Wei
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Zhenyu Fan
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Hao Tang
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Fang Ji
- Department of Orthopedics, Changhai Hospital, Secondary Military Medical University, Shanghai, China
- Department of Orthopedics, The Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
103
|
Jamaly S, Rakaee M, Abdi R, Tsokos GC, Fenton KA. Interplay of immune and kidney resident cells in the formation of tertiary lymphoid structures in lupus nephritis. Autoimmun Rev 2021; 20:102980. [PMID: 34718163 DOI: 10.1016/j.autrev.2021.102980] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023]
Abstract
Kidney involvement confers significant morbidity and mortality in patients with systemic lupus erythematosus (SLE). The pathogenesis of lupus nephritis (LN) involves diverse mechanisms instigated by elements of the autoimmune response which alter the biology of kidney resident cells. Processes in the glomeruli and in the interstitium may proceed independently albeit crosstalk between the two is inevitable. Podocytes, mesangial cells, tubular epithelial cells, kidney resident macrophages and stromal cells with input from cytokines and autoantibodies present in the circulation alter the expression of enzymes, produce cytokines and chemokines which lead to their injury and damage of the kidney. Several of these molecules can be targeted independently to prevent and reverse kidney failure. Tertiary lymphoid structures with true germinal centers are present in the kidneys of patients with lupus nephritis and have been increasingly recognized to associate with poorer renal outcomes. Stromal cells, tubular epithelial cells, high endothelial vessel and lymphatic venule cells produce chemokines which enable the formation of structures composed of a T-cell-rich zone with mature dendritic cells next to a B-cell follicle with the characteristics of a germinal center surrounded by plasma cells. Following an overview on the interaction of the immune cells with kidney resident cells, we discuss the cellular and molecular events which lead to the formation of tertiary lymphoid structures in the interstitium of the kidneys of mice and patients with lupus nephritis. In parallel, molecules and processes that can be targeted therapeutically are presented.
Collapse
Affiliation(s)
- Simin Jamaly
- Department of Medical Biology, Faculty of Health Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Mehrdad Rakaee
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kristin Andreassen Fenton
- Department of Medical Biology, Faculty of Health Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
104
|
Simpson RJ, Boßlau TK, Weyh C, Niemiro GM, Batatinha H, Smith KA, Krüger K. Exercise and adrenergic regulation of immunity. Brain Behav Immun 2021; 97:303-318. [PMID: 34302965 DOI: 10.1016/j.bbi.2021.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Exercise training has a profound impact on immunity, exerting a multitude of positive effects in indications such as immunosenescence, cancer, viral infections and inflammatory diseases. The immune, endocrine and central nervous systems work in a highly synergistic manner and it has become apparent that catecholamine signaling through leukocyte β-adrenergic receptors (β-ARs) is a key mechanism by which exercise mediates improvements in immune function to help mitigate numerous disease conditions. Central to this is the preferential mobilization and redistribution of effector lymphocytes with potent anti-viral and anti-tumor activity, their interaction with muscle-derived cytokines, and the effects of catecholamine signaling on mitochondrial biogenesis, immunometabolism and the resulting inflammatory response. Here, we review the impact of acute and chronic exercise on adrenergic regulation of immunity in the context of aging, cancer, viral infections and inflammatory disease. We also put forth our contention that exercise interventions designed to improve immunity, prevent disease and reduce inflammation should consider the catecholamine-AR signaling axis as a therapeutic target and ask whether or not the adrenergic signaling machinery can be 'trained' to improve immune responses to stress, disease or during the normal physiological process of aging. Finally, we discuss potential strategies to augment leukocyte catecholamine signaling to boost the effects of exercise on immunity in individuals with desensitized β-ARs or limited exercise tolerance.
Collapse
Affiliation(s)
- Richard J Simpson
- University of Arizona, Department of Nutritional Sciences, Tucson, AZ, USA; University of Arizona, Department of Pediatrics, Tucson, AZ, USA; University of Arizona, Department of Immunobiology, Tucson, AZ, USA; University of Arizona Cancer Center, Tucson, AZ, USA.
| | - Tim K Boßlau
- University of Gießen, Department of Exercise Physiology and Sports Therapy, Gießen, Germany
| | - Christopher Weyh
- University of Gießen, Department of Exercise Physiology and Sports Therapy, Gießen, Germany
| | - Grace M Niemiro
- University of Arizona, Department of Pediatrics, Tucson, AZ, USA; University of Arizona Cancer Center, Tucson, AZ, USA
| | - Helena Batatinha
- University of Arizona, Department of Pediatrics, Tucson, AZ, USA
| | - Kyle A Smith
- University of Arizona, Department of Nutritional Sciences, Tucson, AZ, USA; University of Arizona, Department of Pediatrics, Tucson, AZ, USA
| | - Karsten Krüger
- University of Gießen, Department of Exercise Physiology and Sports Therapy, Gießen, Germany.
| |
Collapse
|
105
|
Voss K, Hong HS, Bader JE, Sugiura A, Lyssiotis CA, Rathmell JC. A guide to interrogating immunometabolism. Nat Rev Immunol 2021; 21:637-652. [PMID: 33859379 PMCID: PMC8478710 DOI: 10.1038/s41577-021-00529-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
The metabolic charts memorized in early biochemistry courses, and then later forgotten, have come back to haunt many immunologists with new recognition of the importance of these pathways. Metabolites and the activity of metabolic pathways drive energy production, macromolecule synthesis, intracellular signalling, post-translational modifications and cell survival. Immunologists who identify a metabolic phenotype in their system are often left wondering where to begin and what does it mean? Here, we provide a framework for navigating and selecting the appropriate biochemical techniques to explore immunometabolism. We offer recommendations for initial approaches to develop and test metabolic hypotheses and how to avoid common mistakes. We then discuss how to take things to the next level with metabolomic approaches, such as isotope tracing and genetic approaches. By proposing strategies and evaluating the strengths and weaknesses of different methodologies, we aim to provide insight, note important considerations and discuss ways to avoid common misconceptions. Furthermore, we highlight recent studies demonstrating the power of these metabolic approaches to uncover the role of metabolism in immunology. By following the framework in this Review, neophytes and seasoned investigators alike can venture into the emerging realm of cellular metabolism and immunity with confidence and rigour.
Collapse
Affiliation(s)
- Kelsey Voss
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hanna S Hong
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jackie E Bader
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ayaka Sugiura
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Costas A Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
106
|
Febbraio M, Roy CB, Levin L. Is There a Causal Link Between Periodontitis and Cardiovascular Disease? A Concise Review of Recent Findings. Int Dent J 2021; 72:37-51. [PMID: 34565546 PMCID: PMC9275186 DOI: 10.1016/j.identj.2021.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/19/2021] [Accepted: 07/23/2021] [Indexed: 01/08/2023] Open
Abstract
There is substantial evidence in support of an association between periodontitis and cardiovascular disease. The most important open question related to this association is causality. This article revisits the question of causality by reviewing intervention studies and systematic reviews and meta analyses published in the last 3 years. Where are we now in answering this question? Whilst systematic reviews and epidemiological studies continue to support an association between the diseases, intervention studies fall short in determining causality. There is a dearth of good-quality, blinded randomised control trials with cardiovascular disease outcomes. Most studies use surrogate markers/biomarkers for endpoints, and this is problematic as they may not be reflective of cardiovascular disease status. This review further highlights another issue with surrogate markers/biomarkers: the potential for collider bias. Ethical considerations surrounding nontreatment have led to calls for a well-annotated database containing in-depth dental health data. Finally, a relatively new and important risk factor for cardiovascular disease, clonal haematopoiesis of indeterminate potential, is discussed. Clonal haematopoiesis of indeterminate potential increases cardiovascular risk by more than 40%, and inflammation is a contributing factor. The impact of periodontal disease on this emerging risk factor has yet to be explored. Although the question of causality in the association between periodontal disease and cardiovascular disease remains unanswered, the importance of good oral health in maintaining good heart health is reiterated.
Collapse
Affiliation(s)
- Maria Febbraio
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | - Liran Levin
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
107
|
Couloume L, Michel L. New concepts on immunology of Multiple Sclerosis. Presse Med 2021; 50:104072. [PMID: 34547375 DOI: 10.1016/j.lpm.2021.104072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/15/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and immune-driven demyelinating disease of the central nervous system (CNS). During the past decade, major advances have been made to understand the development of MS as well as its progressive stage. Here, we discuss some emerging concepts on immunology of MS, including the growing interest in the involvement of gut microbiota and the recent pathological concepts on the progression phase. Finally, we present some immuno-tools recently available that contribute to better understand diversity and function of the immune system.
Collapse
Affiliation(s)
| | - Laure Michel
- Univ Rennes, CHU Rennes, Neurology, Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), F-35000 Rennes, France; Unité Mixte de Recherche (UMR) S1236, INSERM, University of Rennes, Etablissement Français du Sang, Rennes, France; Suivi Immunologique des Thérapeutiques Innovantes, Centre Hospitalier Universitaire de Rennes, Etablissement Français du Sang, Rennes, France.
| |
Collapse
|
108
|
Chen T, Zhou H, Xiong L. Single cell sequencing technology and its application in Hypoxic ischemic encephalopathy research. IBRAIN 2021; 7:227-234. [PMID: 37786794 PMCID: PMC10528982 DOI: 10.1002/j.2769-2795.2021.tb00086.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/28/2021] [Accepted: 09/22/2021] [Indexed: 10/04/2023]
Abstract
Hypoxic ischemic encephalopathy (HIE) is the common etiology of neonatal morbidity and mortality, which exerts a negative seriously influence for the growth and development of children, and even threatens their life. Therapeutic methods are timely not adopted, it will cause serious irreversible damage to the neonatal nervous system. As no promising therapeutic strategies exist currently, it is important to elucidate the pathological mechanism for HIE, which requires us to explore the nucleic acid molecules, protein, and cell function in HIE patients, and to understand the process of the onset and progression, then research and invent better treatment methods and therapeutic drugs. Single cell sequencing (SCS) exhibits an distinctive advantages in cells research because of the particularity of each cell. This method solves an puzzle about heterogeneit, which could not be solved with multi cell sample research, and provides a new idea and perspective for the un-elucidated and events further analyzed, such as the behaviors, mechanisms and the relationship between single cell and organism in cell population. It also plays an extremely significant role in the basic research and precision medicine. Some studies have suggested that SCS serves a vital function in the study of HIE. Therefore, this review is aim to elaborate SCS and hypoxic-ischemic brain injury, and trace the role of microglia in HIE, and prospect its unknown and undiscovered mechanism by SCS.
Collapse
Affiliation(s)
- Ting‐Bao Chen
- Laboratory Zoology DepartmentKunming Medical UniversityKunmingYunnanChina
| | - Hong‐Su Zhou
- Department of AnesthesiologyGraduate School of Zunyi Medical UniversityZunyiGuizhouChina
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Liu‐Lin Xiong
- Clinical and Health Sciences, University of South AustraliaAdelaide5000South AustraliaAustralia
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
109
|
Abstract
Single-cell RNA sequencing (scRNA-seq) is a comprehensive technical tool to analyze intracellular and intercellular interaction data by whole transcriptional profile analysis. Here, we describe the application in biomedical research, focusing on the immune system during organ transplantation and rejection. Unlike conventional transcriptome analysis, this method provides a full map of multiple cell populations in one specific tissue and presents a dynamic and transient unbiased method to explore the progression of allograft dysfunction, starting from the stress response to final graft failure. This promising sequencing technology remarkably improves individualized organ rejection treatment by identifying decisive cellular subgroups and cell-specific interactions.
Collapse
|
110
|
Davis-Marcisak EF, Fitzgerald AA, Kessler MD, Danilova L, Jaffee EM, Zaidi N, Weiner LM, Fertig EJ. Transfer learning between preclinical models and human tumors identifies a conserved NK cell activation signature in anti-CTLA-4 responsive tumors. Genome Med 2021; 13:129. [PMID: 34376232 PMCID: PMC8356429 DOI: 10.1186/s13073-021-00944-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tumor response to therapy is affected by both the cell types and the cell states present in the tumor microenvironment. This is true for many cancer treatments, including immune checkpoint inhibitors (ICIs). While it is well-established that ICIs promote T cell activation, their broader impact on other intratumoral immune cells is unclear; this information is needed to identify new mechanisms of action and improve ICI efficacy. Many preclinical studies have begun using single-cell analysis to delineate therapeutic responses in individual immune cell types within tumors. One major limitation to this approach is that therapeutic mechanisms identified in preclinical models have failed to fully translate to human disease, restraining efforts to improve ICI efficacy in translational research. METHOD We previously developed a computational transfer learning approach called projectR to identify shared biology between independent high-throughput single-cell RNA-sequencing (scRNA-seq) datasets. In the present study, we test this algorithm's ability to identify conserved and clinically relevant transcriptional changes in complex tumor scRNA-seq data and expand its application to the comparison of scRNA-seq datasets with additional data types such as bulk RNA-seq and mass cytometry. RESULTS We found a conserved signature of NK cell activation in anti-CTLA-4 responsive mouse and human tumors. In human metastatic melanoma, we found that the NK cell activation signature associates with longer overall survival and is predictive of anti-CTLA-4 (ipilimumab) response. Additional molecular approaches to confirm the computational findings demonstrated that human NK cells express CTLA-4 and bind anti-CTLA-4 antibodies independent of the antibody binding receptor (FcR) and that similar to T cells, CTLA-4 expression by NK cells is modified by cytokine-mediated and target cell-mediated NK cell activation. CONCLUSIONS These data demonstrate a novel application of our transfer learning approach, which was able to identify cell state transitions conserved in preclinical models and human tumors. This approach can be adapted to explore many questions in cancer therapeutics, enhance translational research, and enable better understanding and treatment of disease.
Collapse
Affiliation(s)
- Emily F Davis-Marcisak
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Allison A Fitzgerald
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Michael D Kessler
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ludmila Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Louis M Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
111
|
Korin B, Chung JJ, Avraham S, Shaw AS. Preparation of single-cell suspensions of mouse glomeruli for high-throughput analysis. Nat Protoc 2021; 16:4068-4083. [PMID: 34282333 DOI: 10.1038/s41596-021-00578-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
The kidney glomerulus is essential for proper kidney function. Until recently, technical challenges associated with glomerular isolation and subsequent dissolution into single cells have limited the detailed characterization of cells in the glomerulus. Previous techniques of kidney dissociation result in low glomerular cell yield, which limits high-throughput analysis. The ability to efficiently purify glomeruli and digest the tissue into single cells is especially important for single-cell characterization methods. Here, we present a detailed and comprehensive technique for the extraction and preparation of mouse glomerular cells, with high yield and viability. The method includes direct renal perfusion of Dynabeads via the renal artery followed by kidney dissociation and isolation of glomeruli by magnet; these steps provide a high number and purity of isolated glomeruli, which are further dissociated into single cells. The balanced representation of podocytes, mesangial and endothelial cells in single-cell suspensions of mouse glomeruli, and the high cell viability observed, confirm the efficiency of our method. With some practice, the procedure can be done in <3 h (excluding equipment setup and data analysis). This protocol provides a valuable technique for advancing future single-cell-based studies of the glomerulus in health, injury and disease.
Collapse
Affiliation(s)
- Ben Korin
- Department of Research Biology, Genentech, South San Francisco, CA, USA
| | - Jun-Jae Chung
- Department of Research Biology, Genentech, South San Francisco, CA, USA
| | - Shimrit Avraham
- Department of Research Biology, Genentech, South San Francisco, CA, USA
| | - Andrey S Shaw
- Department of Research Biology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
112
|
Oh S, Gray DHD, Chong MMW. Single-Cell RNA Sequencing Approaches for Tracing T Cell Development. THE JOURNAL OF IMMUNOLOGY 2021; 207:363-370. [PMID: 34644259 DOI: 10.4049/jimmunol.2100408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 01/17/2023]
Abstract
T cell development occurs in the thymus, where uncommitted progenitors are directed into a range of sublineages with distinct functions. The goal is to generate a TCR repertoire diverse enough to recognize potential pathogens while remaining tolerant of self. Decades of intensive research have characterized the transcriptional programs controlling critical differentiation checkpoints at the population level. However, greater precision regarding how and when these programs orchestrate differentiation at the single-cell level is required. Single-cell RNA sequencing approaches are now being brought to bear on this question, to track the identity of cells and analyze their gene expression programs at a resolution not previously possible. In this review, we discuss recent advances in the application of these technologies that have the potential to yield unprecedented insight to T cell development.
Collapse
Affiliation(s)
- Seungyoul Oh
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine (St. Vincent's), The University of Melbourne, Fitzroy, Victoria, Australia
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; and.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark M W Chong
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; .,Department of Medicine (St. Vincent's), The University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
113
|
Ma F, Zhang S, Song L, Wang B, Wei L, Zhang F. Applications and analytical tools of cell communication based on ligand-receptor interactions at single cell level. Cell Biosci 2021; 11:121. [PMID: 34217372 PMCID: PMC8254218 DOI: 10.1186/s13578-021-00635-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/22/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cellular communication is an essential feature of multicellular organisms. Binding of ligands to their homologous receptors, which activate specific cell signaling pathways, is a basic type of cellular communication and intimately linked to many degeneration processes leading to diseases. MAIN BODY This study reviewed the history of ligand-receptor and presents the databases which store ligand-receptor pairs. The recently applications and research tools of ligand-receptor interactions for cell communication at single cell level by using single cell RNA sequencing have been sorted out. CONCLUSION The summary of the advantages and disadvantages of analysis tools will greatly help researchers analyze cell communication at the single cell level. Learning cell communication based on ligand-receptor interactions by single cell RNA sequencing gives way to developing new target drugs and personalizing treatment.
Collapse
Affiliation(s)
- Fen Ma
- Department of Microbiology, Harbin Medical University, Harbin, 150081 China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081 China
| | - Siwei Zhang
- Department of Microbiology, Harbin Medical University, Harbin, 150081 China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081 China
| | - Lianhao Song
- Department of Microbiology, Harbin Medical University, Harbin, 150081 China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081 China
| | - Bozhi Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081 China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081 China
| | - Lanlan Wei
- Department of Microbiology, Harbin Medical University, Harbin, 150081 China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081 China
- Shenzhen Third People‘s Hospital, Second Hospital, Affiliated to Southern University of Science and Technology, Shenzhen, 518112 China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin, 150081 China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, 150081 China
| |
Collapse
|
114
|
Zhang Q, Wang J, Yadav DK, Bai X, Liang T. Glucose Metabolism: The Metabolic Signature of Tumor Associated Macrophage. Front Immunol 2021; 12:702580. [PMID: 34267763 PMCID: PMC8276123 DOI: 10.3389/fimmu.2021.702580] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages exist in most tissues of the body, where they perform various functions at the same time equilibrating with other cells to maintain immune responses in numerous diseases including cancer. Recently, emerging investigations revealed that metabolism profiles control macrophage phenotypes and functions, and in turn, polarization can trigger metabolic shifts in macrophages. Those findings implicate a special role of metabolism in tumor-associated macrophages (TAMs) because of the sophisticated microenvironment in cancer. Glucose is the major energy source of cells, especially for TAMs. However, the complicated association between TAMs and their glucose metabolism is still unclearly illustrated. Here, we review the recent advances in macrophage and glucose metabolism within the tumor microenvironment, and the significant transformations that occur in TAMs during the tumor progression. Additionally, we have also outlined the potential implications for macrophage-based therapies in cancer targeting TAMs.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| | - Junli Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
115
|
Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R. Integrated analysis of multimodal single-cell data. Cell 2021; 184:3573-3587.e29. [PMID: 34062119 PMCID: PMC8238499 DOI: 10.1016/j.cell.2021.04.048] [Citation(s) in RCA: 7763] [Impact Index Per Article: 1940.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/03/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023]
Abstract
The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce "weighted-nearest neighbor" analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019 (COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity.
Collapse
Affiliation(s)
- Yuhan Hao
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA
| | - Stephanie Hao
- Technology Innovation Lab, New York Genome Center, New York, NY 10013, USA
| | - Erica Andersen-Nissen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Cape Town HVTN Immunology Lab, Hutchinson Cancer Research Institute of South Africa, Cape Town 8001, South Africa
| | - William M Mauck
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Shiwei Zheng
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA
| | - Andrew Butler
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA
| | - Maddie J Lee
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron J Wilk
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Charlotte Darby
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Michael Zager
- Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul Hoffman
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Marlon Stoeckius
- Technology Innovation Lab, New York Genome Center, New York, NY 10013, USA
| | - Efthymia Papalexi
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA
| | - Eleni P Mimitou
- Technology Innovation Lab, New York Genome Center, New York, NY 10013, USA
| | - Jaison Jain
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Avi Srivastava
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Tim Stuart
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Lamar M Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Angela J Rogers
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juliana M McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94063, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter Smibert
- Technology Innovation Lab, New York Genome Center, New York, NY 10013, USA.
| | - Rahul Satija
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA.
| |
Collapse
|
116
|
Gusic M, Prokisch H. Genetic basis of mitochondrial diseases. FEBS Lett 2021; 595:1132-1158. [PMID: 33655490 DOI: 10.1002/1873-3468.14068] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are monogenic disorders characterized by a defect in oxidative phosphorylation and caused by pathogenic variants in one of over 340 different genes. The implementation of whole-exome sequencing has led to a revolution in their diagnosis, duplicated the number of associated disease genes, and significantly increased the diagnosed fraction. However, the genetic etiology of a substantial fraction of patients exhibiting mitochondrial disorders remains unknown, highlighting limitations in variant detection and interpretation, which calls for improved computational and DNA sequencing methods, as well as the addition of OMICS tools. More intriguingly, this also suggests that some pathogenic variants lie outside of the protein-coding genes and that the mechanisms beyond the Mendelian inheritance and the mtDNA are of relevance. This review covers the current status of the genetic basis of mitochondrial diseases, discusses current challenges and perspectives, and explores the contribution of factors beyond the protein-coding regions and monogenic inheritance in the expansion of the genetic spectrum of disease.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany
| |
Collapse
|
117
|
Kleino I, Kekäläinen E, Lönnberg T. The Conjugation of Antibodies for the Simultaneous Detection of Surface Proteins and Transcriptome Analysis at a Single-Cell Level. Methods Mol Biol 2021; 2184:31-45. [PMID: 32808216 DOI: 10.1007/978-1-0716-0802-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transcriptome analysis at a single-cell level with single-cell RNA sequencing (scRNA-seq) is a powerful method for detailed characterization of heterogeneous cell populations. Recent developments have enabled parallel analysis of both transcript and protein levels by using antibodies conjugated to barcoded oligonucleotides. These antibodies enable protein levels to be converted into nucleotide format, allowing the sequencing-based detection of both modalities at single-cell level. Here we present a simple and reliable method for conjugation of oligonucleotides with antibodies and a protocol for their use in single-cell transcriptome sequencing.
Collapse
Affiliation(s)
- Iivari Kleino
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
118
|
Hu Y, Fang K, Wang Y, Lu N, Sun H, Zhang C. Single-cell analysis reveals the origins and intrahepatic development of liver-resident IFN-γ-producing γδ T cells. Cell Mol Immunol 2021; 18:954-968. [PMID: 33692482 PMCID: PMC8115257 DOI: 10.1038/s41423-021-00656-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/13/2021] [Indexed: 11/09/2022] Open
Abstract
γδ T cells are heterogeneous lymphocytes located in various tissues. However, a systematic and comprehensive understanding of the origins of γδ T cell heterogeneity and the extrathymic developmental pathway associated with liver γδ T cells remain largely unsolved. In this study, we performed single-cell RNA sequencing (scRNA-seq) to comprehensively catalog the heterogeneity of γδ T cells derived from murine liver and thymus samples. We revealed the developmental trajectory of γδ T cells and found that the liver contains γδ T cell precursors (pre-γδ T cells). The developmental potential of hepatic γδ T precursor cells was confirmed through in vitro coculture experiments and in vivo adoptive transfer experiments. The adoptive transfer of hematopoietic progenitor Lin-Sca-1+Mac-1+ (LSM) cells from fetal or adult liver samples to sublethally irradiated recipients resulted in the differentiation of liver LSM cells into pre-γδ T cells and interferon-gamma+ (IFN-γ+) but not interleukin-17a+ (IL-17a+) γδ T cells in the liver. Importantly, thymectomized mouse models showed that IFN-γ-producing γδ T cells could originate from liver LSM cells in a thymus-independent manner. These results suggested that liver hematopoietic progenitor LSM cells were able to differentiate into pre-γδ T cells and functionally mature γδ T cells, which implied that these cells are involved in a distinct developmental pathway independent of thymus-derived γδ T cells.
Collapse
Affiliation(s)
- Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Keke Fang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haoyu Sun
- Institute of Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
119
|
Arora L, Pal D. Remodeling of Stromal Cells and Immune Landscape in Microenvironment During Tumor Progression. Front Oncol 2021; 11:596798. [PMID: 33763348 PMCID: PMC7982455 DOI: 10.3389/fonc.2021.596798] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
The molecular understanding of carcinogenesis and tumor progression rests in intra and inter-tumoral heterogeneity. Solid tumors confined with vast diversity of genetic abnormalities, epigenetic modifications, and environmental cues that differ at each stage from tumor initiation, progression, and metastasis. Complexity within tumors studied by conventional molecular techniques fails to identify different subclasses in stromal and immune cells in individuals and that affects immunotherapies. Here we focus on diversity of stromal cell population and immune inhabitants, whose subtypes create the complexity of tumor microenvironment (TME), leading primary tumors towards advanced-stage cancers. Recent advances in single-cell sequencing (epitope profiling) approach circumscribes phenotypic markers, molecular pathways, and evolutionary trajectories of an individual cell. We discussed the current knowledge of stromal and immune cell subclasses at different stages of cancer development with the regulatory role of non-coding RNAs. Finally, we reported the current therapeutic options in immunotherapies, advances in therapies targeting heterogeneity, and possible outcomes.
Collapse
Affiliation(s)
- Leena Arora
- Tissue Engineering and Regenerative Medicine Lab, Indian Institute of Technology Ropar, Rupnagar, India
| | - Durba Pal
- Tissue Engineering and Regenerative Medicine Lab, Indian Institute of Technology Ropar, Rupnagar, India
| |
Collapse
|
120
|
Psaila AM, Vohralik EJ, Quinlan KGR. Shades of white: new insights into tissue-resident leukocyte heterogeneity. FEBS J 2021; 289:308-318. [PMID: 33513286 DOI: 10.1111/febs.15737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Populations of white blood cells (leukocytes) have been found in tissues and organs across the body, in states of both health and disease. The role leukocytes play within these tissues is often highly contested. For many leukocytes, there are studies outlining pro-inflammatory destructive functions, while other studies provide clear evidence of anti-inflammatory homeostatic activities of leukocytes within the same tissue. We discuss how this functional dissonance can be explained by leukocyte heterogeneity. Although cell morphology and surface receptor profiles are excellent methods to segregate cell types, the true degree of leukocyte heterogeneity that exists can only be appreciated by studying the variable and dynamic gene expression profile. Unbiased single-cell RNA sequencing profiling of tissue-resident leukocytes is transforming the way we understand leukocytes across health and disease. Recent investigations into adipose tissue-resident leukocytes have revealed unprecedented levels of heterogeneity among populations of macrophages. We use this example to pose emerging questions regarding tissue-resident leukocytes and review what is currently known (and unknown) about the diversity of tissue-resident leukocytes within different organs.
Collapse
Affiliation(s)
- Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| |
Collapse
|
121
|
Arlauckas S, Oh N, Li R, Weissleder R, Miller MA. Macrophage imaging and subset analysis using single-cell RNA sequencing. Nanotheranostics 2021; 5:36-56. [PMID: 33391974 PMCID: PMC7738942 DOI: 10.7150/ntno.50185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages have been associated with drug response and resistance in diverse settings, thus raising the possibility of using macrophage imaging as a companion diagnostic to inform personalized patient treatment strategies. Nanoparticle-based contrast agents are especially promising because they efficiently deliver fluorescent, magnetic, and/or radionuclide labels by leveraging the intrinsic capacity of macrophages to accumulate nanomaterials in their role as professional phagocytes. Unfortunately, current clinical imaging modalities are limited in their ability to quantify broad molecular programs that may explain (a) which particular cell subsets a given imaging agent is actually labeling, and (b) what mechanistic role those cells play in promoting drug response or resistance. Highly multiplexed single-cell approaches including single-cell RNA sequencing (scRNAseq) have emerged as resources to help answer these questions. In this review, we query recently published scRNAseq datasets to support companion macrophage imaging, with particular focus on using dextran-based nanoparticles to predict the action of anti-cancer nanotherapies and monoclonal antibodies.
Collapse
Affiliation(s)
- Sean Arlauckas
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Nuri Oh
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
122
|
High-Dimensional Analysis of Circulating and Tissue-Derived Myeloid-Derived Suppressor Cells from Patients with Glioblastoma. Methods Mol Biol 2021; 2236:157-175. [PMID: 33237547 DOI: 10.1007/978-1-0716-1060-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We will first describe analysis of MDSC subsets from patient tumors with multicolor flow cytometry. The key components of this methodology are to obtain viable single cell suspensions and eliminate red blood cell contamination.
Collapse
|
123
|
Rahman MA, Murata K, Burt BD, Hirano N. Changing the landscape of tumor immunology: novel tools to examine T cell specificity. Curr Opin Immunol 2020; 69:1-9. [PMID: 33307272 DOI: 10.1016/j.coi.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/10/2020] [Indexed: 01/14/2023]
Abstract
Immunotherapy has established itself as a stalwart arm in patient care and with precision medicine forms the new paradigm in cancer treatment. T cells are an important group of immune cells capable of potent cancer immune surveillance and immunity. The advent of bioinformatics, particularly more recent advances incorporating algorithms employing machine learning, provide a seemingly limitless ability for T cell analysis and hypothesis generation. Such endeavors have become indispensable to research efforts accelerating and evolving to such an extent that there exists an appreciable gap between knowledge and proof of function and application. Exciting new technologies such as DNA barcoding, cytometry by time-of-flight (CyTOF), and peptide-exchangeable pHLA multimers inclusive of rare and difficult HLA alleles offer high-throughput cell-by-cell analytical capabilities. These outstanding recent contributions to T cell research will help close this gap and potentially bring practical benefit to patients.
Collapse
Affiliation(s)
- Muhammed A Rahman
- University of Queensland, Australia; Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Canada
| | - Kenji Murata
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Canada; Department of Pathology, Sapporo Medical University School of Medicine, Japan
| | - Brian D Burt
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Canada; Department of Immunology, University of Toronto, Canada.
| |
Collapse
|
124
|
Cao Y, Qiu Y, Tu G, Yang C. Single-cell RNA Sequencing in Immunology. Curr Genomics 2020; 21:564-575. [PMID: 33414678 PMCID: PMC7770633 DOI: 10.2174/1389202921999201020203249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The complex immune system is involved in multiple pathological processes. Single-cell RNA sequencing (scRNA-seq) is able to analyze complex cell mixtures correct to a single cell and single molecule, thus is qualified to analyze immune reactions in several diseases. In recent years, scRNA-seq has been applied in many researching fields and has presented many innovative results. In this review, we intend to provide an overview of single-cell RNA sequencing applications in immunology and a prospect of future directions.
Collapse
Affiliation(s)
| | | | - Guowei Tu
- Address correspondence to these authors at the Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Tel: +86-21-64041990; E-mails: ; and Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Tel: +86-21-64041990;, E-mail:
| | - Cheng Yang
- Address correspondence to these authors at the Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Tel: +86-21-64041990; E-mails: ; and Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Tel: +86-21-64041990;, E-mail:
| |
Collapse
|
125
|
Zhao M, Jiang J, Zhao M, Chang C, Wu H, Lu Q. The Application of Single-Cell RNA Sequencing in Studies of Autoimmune Diseases: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 60:68-86. [PMID: 33236283 DOI: 10.1007/s12016-020-08813-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 01/15/2023]
Abstract
Complex composition is one of the most important features of the immune system, involving many types of organs, tissues, cells, and molecules that perform immune functions. The normal function of each component of the immune system is the guarantee for maintaining the relatively stable immune function of the body. When the self-immune tolerance mechanism of the body is unregulated or destroyed, the immune system reacts to autoantigens, resulting in damage to self-tissues and organs or an immunopathological state with abnormal functions. Autoimmune diseases are diverse, and their pathogenesis is complicated. Various immune cells and their interactions play significant roles in the occurrence and development of diseases. The solution to heterogeneity of immune cells is the basic science and translational understanding of how genes and the environment interact to induce disease so that we can develop personalized medicine, a goal that has to this point eluded scientists. Single-cell RNA sequencing (scRNA-Seq) refers to a new technique allowing high-throughput sequencing analysis of the whole transcriptome to reveal the gene expression status of individual cells. It has emerged as an indispensable tool in the field of life science research, and can help identify the complex mechanism of cell heterogeneity, discover new cell subsets, and help uncover the molecular mechanisms of pathogenesis, the evolution of disorders, and drug resistance. This information can provide us with new strategies for diagnosis and prognostic evaluation, as well as monitoring treatment responses. In this review, we summarize the crucial experimental procedures used for single-cell RNA sequencing, and the current applications of this technique to study autoimmune diseases are described in detail. This technique will be widely used in more in-depth studies of autoimmune diseases and will contribute to the diagnosis and therapies of these disorders.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Dermatology, the Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, People's Republic of China.,Hunan Key Laboratory of Medical Epigenomics, 410011, Changsha, Hunan, People's Republic of China
| | - Jiao Jiang
- Department of Dermatology, the Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, People's Republic of China.,Hunan Key Laboratory of Medical Epigenomics, 410011, Changsha, Hunan, People's Republic of China
| | - Ming Zhao
- Department of Dermatology, the Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, People's Republic of China.,Hunan Key Laboratory of Medical Epigenomics, 410011, Changsha, Hunan, People's Republic of China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Haijing Wu
- Department of Dermatology, the Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, People's Republic of China. .,Hunan Key Laboratory of Medical Epigenomics, 410011, Changsha, Hunan, People's Republic of China.
| | - Qianjin Lu
- Department of Dermatology, the Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, People's Republic of China. .,Hunan Key Laboratory of Medical Epigenomics, 410011, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
126
|
Schuemann J, Bagley AF, Berbeco R, Bromma K, Butterworth KT, Byrne HL, Chithrani BD, Cho SH, Cook JR, Favaudon V, Gholami YH, Gargioni E, Hainfeld JF, Hespeels F, Heuskin AC, Ibeh UM, Kuncic Z, Kunjachan S, Lacombe S, Lucas S, Lux F, McMahon S, Nevozhay D, Ngwa W, Payne JD, Penninckx S, Porcel E, Prise KM, Rabus H, Ridwan SM, Rudek B, Sanche L, Singh B, Smilowitz HM, Sokolov KV, Sridhar S, Stanishevskiy Y, Sung W, Tillement O, Virani N, Yantasee W, Krishnan S. Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys Med Biol 2020; 65:21RM02. [PMID: 32380492 DOI: 10.1088/1361-6560/ab9159] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This roadmap outlines the potential roles of metallic nanoparticles (MNPs) in the field of radiation therapy. MNPs made up of a wide range of materials (from Titanium, Z = 22, to Bismuth, Z = 83) and a similarly wide spectrum of potential clinical applications, including diagnostic, therapeutic (radiation dose enhancers, hyperthermia inducers, drug delivery vehicles, vaccine adjuvants, photosensitizers, enhancers of immunotherapy) and theranostic (combining both diagnostic and therapeutic), are being fabricated and evaluated. This roadmap covers contributions from experts in these topics summarizing their view of the current status and challenges, as well as expected advancements in technology to address these challenges.
Collapse
Affiliation(s)
- Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Wu J, Xiao Y, Sun J, Sun H, Chen H, Zhu Y, Fu H, Yu C, E W, Lai S, Ma L, Li J, Fei L, Jiang M, Wang J, Ye F, Wang R, Zhou Z, Zhang G, Zhang T, Ding Q, Wang Z, Hao S, Liu L, Zheng W, He J, Huang W, Wang Y, Xie J, Li T, Cheng T, Han X, Huang H, Guo G. A single-cell survey of cellular hierarchy in acute myeloid leukemia. J Hematol Oncol 2020; 13:128. [PMID: 32977829 PMCID: PMC7517826 DOI: 10.1186/s13045-020-00941-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a fatal hematopoietic malignancy and has a prognosis that varies with its genetic complexity. However, there has been no appropriate integrative analysis on the hierarchy of different AML subtypes. Methods Using Microwell-seq, a high-throughput single-cell mRNA sequencing platform, we analyzed the cellular hierarchy of bone marrow samples from 40 patients and 3 healthy donors. We also used single-cell single-molecule real-time (SMRT) sequencing to investigate the clonal heterogeneity of AML cells. Results From the integrative analysis of 191727 AML cells, we established a single-cell AML landscape and identified an AML progenitor cell cluster with novel AML markers. Patients with ribosomal protein high progenitor cells had a low remission rate. We deduced two types of AML with diverse clinical outcomes. We traced mitochondrial mutations in the AML landscape by combining Microwell-seq with SMRT sequencing. We propose the existence of a phenotypic “cancer attractor” that might help to define a common phenotype for AML progenitor cells. Finally, we explored the potential drug targets by making comparisons between the AML landscape and the Human Cell Landscape. Conclusions We identified a key AML progenitor cell cluster. A high ribosomal protein gene level indicates the poor prognosis. We deduced two types of AML and explored the potential drug targets. Our results suggest the existence of a cancer attractor.
Collapse
Affiliation(s)
- Junqing Wu
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yanyu Xiao
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jie Sun
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Huiyu Sun
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Haide Chen
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yuanyuan Zhu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chengxuan Yu
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Weigao E
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Shujing Lai
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lifeng Ma
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jiaqi Li
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mengmeng Jiang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jingjing Wang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fang Ye
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Renying Wang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Ziming Zhou
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Guodong Zhang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Tingyue Zhang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Ding
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Zou Wang
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Sheng Hao
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weijia Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yungui Wang
- Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jin Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Tiefeng Li
- Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Tao Cheng
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300000, China.,Alliance for Atlas of Blood Cells, Tianjin, China
| | - Xiaoping Han
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - He Huang
- Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Alliance for Atlas of Blood Cells, Tianjin, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Alliance for Atlas of Blood Cells, Tianjin, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
128
|
Nieman DC, Pence BD. Exercise immunology: Future directions. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:432-445. [PMID: 32928447 PMCID: PMC7498623 DOI: 10.1016/j.jshs.2019.12.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 05/07/2023]
Abstract
Several decades of research in the area of exercise immunology have shown that the immune system is highly responsive to acute and chronic exercise training. Moderate exercise bouts enhance immunosurveillance and when repeated over time mediate multiple health benefits. Most of the studies prior to 2010 relied on a few targeted outcomes related to immune function. During the past decade, technologic advances have created opportunities for a multi-omics and systems biology approach to exercise immunology. This article provides an overview of metabolomics, lipidomics, and proteomics as they pertain to exercise immunology, with a focus on immunometabolism. This review also summarizes how the composition and diversity of the gut microbiota can be influenced by exercise, with applications to human health and immunity. Exercise-induced improvements in immune function may play a critical role in countering immunosenescence and the development of chronic diseases, and emerging omics technologies will more clearly define the underlying mechanisms. This review summarizes what is currently known regarding a multi-omics approach to exercise immunology and provides future directions for investigators.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| | - Brandt D Pence
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
129
|
Nam AS, Chaligne R, Landau DA. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat Rev Genet 2020; 22:3-18. [PMID: 32807900 DOI: 10.1038/s41576-020-0265-5] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
Cancer represents an evolutionary process through which growing malignant populations genetically diversify, leading to tumour progression, relapse and resistance to therapy. In addition to genetic diversity, the cell-to-cell variation that fuels evolutionary selection also manifests in cellular states, epigenetic profiles, spatial distributions and interactions with the microenvironment. Therefore, the study of cancer requires the integration of multiple heritable dimensions at the resolution of the single cell - the atomic unit of somatic evolution. In this Review, we discuss emerging analytic and experimental technologies for single-cell multi-omics that enable the capture and integration of multiple data modalities to inform the study of cancer evolution. These data show that cancer results from a complex interplay between genetic and non-genetic determinants of somatic evolution.
Collapse
Affiliation(s)
- Anna S Nam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.,New York Genome Center, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ronan Chaligne
- New York Genome Center, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA. .,Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA. .,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
130
|
Jammes FC, Maerkl SJ. How single-cell immunology is benefiting from microfluidic technologies. MICROSYSTEMS & NANOENGINEERING 2020; 6:45. [PMID: 34567657 PMCID: PMC8433390 DOI: 10.1038/s41378-020-0140-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Accepted: 01/25/2020] [Indexed: 05/03/2023]
Abstract
The immune system is a complex network of specialized cells that work in concert to protect against invading pathogens and tissue damage. Imbalances in this network often result in excessive or absent immune responses leading to allergies, autoimmune diseases, and cancer. Many of the mechanisms and their regulation remain poorly understood. Immune cells are highly diverse, and an immune response is the result of a large number of molecular and cellular interactions both in time and space. Conventional bulk methods are often prone to miss important details by returning population-averaged results. There is a need in immunology to measure single cells and to study the dynamic interplay of immune cells with their environment. Advances in the fields of microsystems and microengineering gave rise to the field of microfluidics and its application to biology. Microfluidic systems enable the precise control of small volumes in the femto- to nanoliter range. By controlling device geometries, surface chemistry, and flow behavior, microfluidics can create a precisely defined microenvironment for single-cell studies with spatio-temporal control. These features are highly desirable for single-cell analysis and have made microfluidic devices useful tools for studying complex immune systems. In addition, microfluidic devices can achieve high-throughput measurements, enabling in-depth studies of complex systems. Microfluidics has been used in a large panel of biological applications, ranging from single-cell genomics, cell signaling and dynamics to cell-cell interaction and cell migration studies. In this review, we give an overview of state-of-the-art microfluidic techniques, their application to single-cell immunology, their advantages and drawbacks, and provide an outlook for the future of single-cell technologies in research and medicine.
Collapse
Affiliation(s)
- Fabien C. Jammes
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
131
|
Zhong R, Chen D, Cao S, Li J, Han B, Zhong H. Immune cell infiltration features and related marker genes in lung cancer based on single-cell RNA-seq. Clin Transl Oncol 2020; 23:405-417. [PMID: 32656582 DOI: 10.1007/s12094-020-02435-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Immune cells in the immune microenvironment of lung cancer have a great impact on the development of lung cancer. Our purpose was to analyze the immune cell infiltration features and related marker genes for lung cancer. METHODS Single cell RNA sequencing data of 11,485 lung cancer cells were retrieved from the Gene Expression Omnibus. After quality control and data normalization, cell clustering was performed using the Seurat package. Based on the marker genes of each cell type from the CellMarker database, each cell was divided into G1, G2M, and S phases. Then, differential expression and functional enrichment analyses were performed. CIBERSORT was used to reconstruct immune cell types. RESULTS Following cell filtering, highly variable genes were identified for all cells. 14 cell types were clustered. Among them, CD4 + T cell, B cell, plasma cell, natural killer cell and cancer stem cell were the top five cell types. Up-regulated genes were mainly enriched in immune-related biological processes and pathways. Using CIBERSORT, we identified the significantly higher fractions of naïve B cell, memory CD4 + T cell, T follicular helper cell, T regulatory helper cell and M1 macrophage in lung cancer tissues compared to normal tissues. Furthermore, the fractions of resting NK cell, monocyte, M0 macrophage, resting mast cell, eosinophil and neutrophil were significantly lower in tumor tissues than normal tissues. CONCLUSION Our findings dissected the immune cell infiltration features and related marker genes for lung cancer, which might provide novel insights for the immunotherapy of lung cancer.
Collapse
Affiliation(s)
- R Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - D Chen
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - S Cao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - J Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - B Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - H Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China.
| |
Collapse
|
132
|
Brochu HN, Tseng E, Smith E, Thomas MJ, Jones AM, Diveley KR, Law L, Hansen SG, Picker LJ, Gale M, Peng X. Systematic Profiling of Full-Length Ig and TCR Repertoire Diversity in Rhesus Macaque through Long Read Transcriptome Sequencing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:3434-3444. [PMID: 32376650 PMCID: PMC7276939 DOI: 10.4049/jimmunol.1901256] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
Abstract
The diversity of Ig and TCR repertoires is a focal point of immunological studies. Rhesus macaques (Macaca mulatta) are key for modeling human immune responses, placing critical importance on the accurate annotation and quantification of their Ig and TCR repertoires. However, because of incomplete reference resources, the coverage and accuracy of the traditional targeted amplification strategies for profiling rhesus Ig and TCR repertoires are largely unknown. In this study, using long read sequencing, we sequenced four Indian-origin rhesus macaque tissues and obtained high-quality, full-length sequences for over 6000 unique Ig and TCR transcripts, without the need for sequence assembly. We constructed, to our knowledge, the first complete reference set for the constant regions of all known isotypes and chain types of rhesus Ig and TCR repertoires. We show that sequence diversity exists across the entire variable regions of rhesus Ig and TCR transcripts. Consequently, existing strategies using targeted amplification of rearranged variable regions comprised of V(D)J gene segments miss a significant fraction (27-53% and 42-49%) of rhesus Ig/TCR diversity. To overcome these limitations, we designed new rhesus-specific assays that remove the need for primers conventionally targeting variable regions and allow single cell level Ig and TCR repertoire analysis. Our improved approach will enable future studies to fully capture rhesus Ig and TCR repertoire diversity and is applicable for improving annotations in any model organism.
Collapse
Affiliation(s)
- Hayden N Brochu
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695
| | | | - Elise Smith
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Matthew J Thomas
- Department of Immunology, University of Washington, Seattle, WA 98109
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA 98109
| | - Aiden M Jones
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607
- Genetics Graduate Program, North Carolina State University, Raleigh, NC 27695
| | - Kayleigh R Diveley
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607
- Genetics Graduate Program, North Carolina State University, Raleigh, NC 27695
| | - Lynn Law
- Department of Immunology, University of Washington, Seattle, WA 98109
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA 98109
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA 98109
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA 98109
- Washington National Primate Research Center, University of Washington, Seattle, WA 98121; and
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607;
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
133
|
Yamagishi M, Ohara O, Shirasaki Y. Microfluidic Immunoassays for Time-Resolved Measurement of Protein Secretion from Single Cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:67-84. [PMID: 32031877 DOI: 10.1146/annurev-anchem-091619-101212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Measurement of humoral factors secreted from cells has served as an indispensable method to monitor the states of a cell ensemble because humoral factors play crucial roles in cell-cell interaction and aptly reflect the states of individual cells. Although a cell ensemble consisting of a large number of cells has conventionally been the object of such measurements, recent advances in microfluidic technology together with highly sensitive immunoassays have enabled us to quantify secreted humoral factors even from individual cells in either a population or a temporal context. Many groups have reported various miniaturized platforms for immunoassays of proteins secreted from single cells. This review focuses on the current status of time-resolved assay platforms for protein secretion with single-cell resolution. We also discuss future perspectives of time-resolved immunoassays from the viewpoint of systems biology.
Collapse
Affiliation(s)
- Mai Yamagishi
- Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
- The Futuristic Medical Care Education and Research Organization, Chiba University, Chiba 260-8670, Japan
| | - Yoshitaka Shirasaki
- Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
134
|
Ko EJ, Seo JW, Kim KW, Kim BM, Cho JH, Kim CD, Seok J, Yang CW, Lee SH, Chung BH. Phenotype and molecular signature of CD8+ T cell subsets in T cell- mediated rejections after kidney transplantation. PLoS One 2020; 15:e0234323. [PMID: 32530943 PMCID: PMC7292394 DOI: 10.1371/journal.pone.0234323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/24/2020] [Indexed: 01/08/2023] Open
Abstract
We investigated the phenotype and molecular signatures of CD8+ T cell subsets in kidney-transplant recipients (KTRs) with biopsy-proven T cell-mediated rejection (TCMR). We included 121 KTRs and divided them into three groups according to the pathologic or clinical diagnosis: Normal biopsy control (NC)(n = 32), TCMR (n = 50), and long-term graft survival (LTGS)(n = 39). We used flowcytometry and microarray to analyze the phenotype and molecular signatures of CD8+ T cell subsets using peripheral blood from those patients and analyzed significant gene expressions according to CD8+ T cell subsets. We investigated whether the analysis of CD8+ T cell subsets is useful for predicting the development of TCMR. CCR7+CD8+ T cells significantly decreased, but CD28nullCD57+CD8+ T cells and CCR7-CD45RA+CD8+ T cells showed an increase in the TCMR group compared to other groups (p<0.05 for each); hence CCR7+CD8+ T cells showed significant negative correlations to both effector CD8+ T cells. We identified genes significantly associated with the change of CCR7+CD8+ T, CCR7-CD45RA+CD8+ T, and CD28nullCD57+CD8+ T cells in an ex vivo study and found that most of them were included in the significant genes on in vitro CCR7+CD8+ T cells. Finally, the decrease of CCR7+CD8+ T cells relative to CD28nullCD57+ T or CCR7-CD45RA+CD8+ T cells can predict TCMR significantly in the whole clinical cohort. In conclusion, phenotype and molecular signature of CD8+ T subsets showed a significant relationship to the development of TCMR; hence monitoring of CD8+ T cell subsets may be a useful for predicting TCMR in KTRs.
Collapse
Affiliation(s)
- Eun Jeong Ko
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Woo Seo
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Kyoung Woon Kim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bo-Mi Kim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Chan-Duck Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Junhee Seok
- School of Electrical Engineering, Korea University, Seoul, South Korea
| | - Chul Woo Yang
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang-Ho Lee
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Byung Ha Chung
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
135
|
Zhu Y, Huang Y, Tan Y, Zhao W, Tian Q. Single-Cell RNA Sequencing in Hematological Diseases. Proteomics 2020; 20:e1900228. [PMID: 32181578 DOI: 10.1002/pmic.201900228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/13/2020] [Indexed: 01/13/2023]
Abstract
Hematological diseases, including leukemia, lymphoma, and multiple myeloma, are characterized by high heterogeneity with diverse cellular subpopulations. Single-cell RNA sequencing (scRNA-seq), a transformational technology, provides deep insights into cell-to-cell variation in tumor and microenvironment, allows high-resolution dissection of the pathogenic mechanisms of diseases, and affords potential clinical utilities. Recent developments in single-cell transcriptomics and associated technologies and their applications in hematological disorders for unraveling cellular subpopulations, disease pathogenesis, patient stratification, and therapeutic responses are summarized.
Collapse
Affiliation(s)
- Yue Zhu
- Shanghai Jiao Tong University School of Medicine, Affiliated Ruijin Hospital, 197 Rui Jin Er Road, Shanghai, 200025, China.,Shanghai Institute of Hematology, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Yaohui Huang
- Shanghai Jiao Tong University School of Medicine, Affiliated Ruijin Hospital, 197 Rui Jin Er Road, Shanghai, 200025, China.,Shanghai Institute of Hematology, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Yun Tan
- Shanghai Jiao Tong University School of Medicine, Affiliated Ruijin Hospital, 197 Rui Jin Er Road, Shanghai, 200025, China.,National Research Center for Translational, Medicine (Shanghai), 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Weili Zhao
- Shanghai Jiao Tong University School of Medicine, Affiliated Ruijin Hospital, 197 Rui Jin Er Road, Shanghai, 200025, China.,Shanghai Institute of Hematology, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Qiang Tian
- Shanghai Jiao Tong University School of Medicine, Affiliated Ruijin Hospital, 197 Rui Jin Er Road, Shanghai, 200025, China.,National Research Center for Translational, Medicine (Shanghai), 197 Rui Jin Er Road, Shanghai, 200025, China
| |
Collapse
|
136
|
Jariani A, Vermeersch L, Cerulus B, Perez-Samper G, Voordeckers K, Van Brussel T, Thienpont B, Lambrechts D, Verstrepen KJ. A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast. eLife 2020; 9:e55320. [PMID: 32420869 PMCID: PMC7259953 DOI: 10.7554/elife.55320] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Current methods for single-cell RNA sequencing (scRNA-seq) of yeast cells do not match the throughput and relative simplicity of the state-of-the-art techniques that are available for mammalian cells. In this study, we report how 10x Genomics' droplet-based single-cell RNA sequencing technology can be modified to allow analysis of yeast cells. The protocol, which is based on in-droplet spheroplasting of the cells, yields an order-of-magnitude higher throughput in comparison to existing methods. After extensive validation of the method, we demonstrate its use by studying the dynamics of the response of isogenic yeast populations to a shift in carbon source, revealing the heterogeneity and underlying molecular processes during this shift. The method we describe opens new avenues for studies focusing on yeast cells, as well as other cells with a degradable cell wall.
Collapse
Affiliation(s)
- Abbas Jariani
- Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory of Genetics and Genomics, CMPG, Department M2S, KU LeuvenLeuvenBelgium
| | - Lieselotte Vermeersch
- Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory of Genetics and Genomics, CMPG, Department M2S, KU LeuvenLeuvenBelgium
| | - Bram Cerulus
- Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory of Genetics and Genomics, CMPG, Department M2S, KU LeuvenLeuvenBelgium
| | - Gemma Perez-Samper
- Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory of Genetics and Genomics, CMPG, Department M2S, KU LeuvenLeuvenBelgium
| | - Karin Voordeckers
- Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory of Genetics and Genomics, CMPG, Department M2S, KU LeuvenLeuvenBelgium
| | - Thomas Van Brussel
- Laboratory for Translational Genetics, Department of Human Genetics, KU LeuvenLeuvenBelgium
- VIB Center for Cancer Biology, VIBLeuvenBelgium
| | - Bernard Thienpont
- Laboratory for Translational Genetics, Department of Human Genetics, KU LeuvenLeuvenBelgium
- VIB Center for Cancer Biology, VIBLeuvenBelgium
- Laboratory for Functional Epigenetics, Department of Genetics, KU LeuvenLeuvenBelgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU LeuvenLeuvenBelgium
- VIB Center for Cancer Biology, VIBLeuvenBelgium
| | - Kevin J Verstrepen
- Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory of Genetics and Genomics, CMPG, Department M2S, KU LeuvenLeuvenBelgium
| |
Collapse
|
137
|
Chi W, Deng M. Sparsity-Penalized Stacked Denoising Autoencoders for Imputing Single-Cell RNA-Seq Data. Genes (Basel) 2020; 11:E532. [PMID: 32403260 PMCID: PMC7291078 DOI: 10.3390/genes11050532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
Single-cell RNA-seq (scRNA-seq) is quite prevalent in studying transcriptomes, but it suffers from excessive zeros, some of which are true, but others are false. False zeros, which can be seen as missing data, obstruct the downstream analysis of single-cell RNA-seq data. How to distinguish true zeros from false ones is the key point of this problem. Here, we propose sparsity-penalized stacked denoising autoencoders (scSDAEs) to impute scRNA-seq data. scSDAEs adopt stacked denoising autoencoders with a sparsity penalty, as well as a layer-wise pretraining procedure to improve model fitting. scSDAEs can capture nonlinear relationships among the data and incorporate information about the observed zeros. We tested the imputation efficiency of scSDAEs on recovering the true values of gene expression and helping downstream analysis. First, we show that scSDAE can recover the true values and the sample-sample correlations of bulk sequencing data with simulated noise. Next, we demonstrate that scSDAEs accurately impute RNA mixture dataset with different dilutions, spike-in RNA concentrations affected by technical zeros, and improves the consistency of RNA and protein levels in CITE-seq data. Finally, we show that scSDAEs can help downstream clustering analysis. In this study, we develop a deep learning-based method, scSDAE, to impute single-cell RNA-seq affected by technical zeros. Furthermore, we show that scSDAEs can recover the true values, to some extent, and help downstream analysis.
Collapse
Affiliation(s)
- Weilai Chi
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
| | - Minghua Deng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
- School of Mathematical Sciences, Peking University, Beijing 100871, China
- Center for Statistical Science, Peking University, Beijing 100871, China
| |
Collapse
|
138
|
Bykov Y, Kim SH, Zamarin D. Preparation of single cells from tumors for single-cell RNA sequencing. Methods Enzymol 2020; 632:295-308. [DOI: 10.1016/bs.mie.2019.05.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
139
|
Elmentaite R, Teichmann S, Madissoon E. Studying immune to non-immune cell cross-talk using single-cell technologies. CURRENT OPINION IN SYSTEMS BIOLOGY 2019; 18:87-94. [PMID: 32984660 PMCID: PMC7493433 DOI: 10.1016/j.coisb.2019.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Single-cell RNA-sequencing has uncovered immune heterogeneity, including novel cell types, states and lineages that have expanded our understanding of the immune system as a whole. More recently, studies involving both immune and non-immune cells have demonstrated the importance of immune microenvironment in development, homeostasis and disease. This review focuses on the single-cell studies mapping cell-cell interactions for variety of tissues in development, health and disease. In addition, we address the need to generate a comprehensive interaction map to answer fundamental questions in immunology as well as experimental and computational strategies required for this purpose.
Collapse
Affiliation(s)
- R. Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - S.A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, United Kingdom
| | - E. Madissoon
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, United Kingdom
| |
Collapse
|
140
|
Oh SJ, Lee JK, Shin OS. Aging and the Immune System: the Impact of Immunosenescence on Viral Infection, Immunity and Vaccine Immunogenicity. Immune Netw 2019; 19:e37. [PMID: 31921467 PMCID: PMC6943173 DOI: 10.4110/in.2019.19.e37] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
Immunosenescence is characterized by a progressive deterioration of the immune system associated with aging. Multiple components of both innate and adaptive immune systems experience aging-related changes, such as alterations in the number of circulating monocytic and dendritic cells, reduced phagocytic activities of neutrophils, limited diversity in B/T cell repertoire, T cell exhaustion or inflation, and chronic production of inflammatory cytokines known as inflammaging. The elderly are less likely to benefit from vaccinations as preventative measures against infectious diseases due to the inability of the immune system to mount a successful defense. Therefore, aging is thought to decrease the efficacy and effectiveness of vaccines, suggesting aging-associated decline in the immunogenicity induced by vaccination. In this review, we discuss aging-associated changes in the innate and adaptive immunity and the impact of immunosenescence on viral infection and immunity. We further explore recent advances in strategies to enhance the immunogenicity of vaccines in the elderly. Better understanding of the molecular mechanisms underlying immunosenescence-related immune dysfunction will provide a crucial insight into the development of effective elderly-targeted vaccines and immunotherapies.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Department of Biomedical Sciences, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| | - Jae Kyung Lee
- Department of Biomedical Sciences, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| |
Collapse
|
141
|
Rungelrath V, Kobayashi SD, DeLeo FR. Neutrophils in innate immunity and systems biology-level approaches. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1458. [PMID: 31218817 DOI: 10.1002/wsbm.1458] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
The innate immune system is the first line of host defense against invading microorganisms. Polymorphonuclear leukocytes (PMNs or neutrophils) are the most abundant leukocyte in humans and essential to the innate immune response against invading pathogens. Compared to the acquired immune response, which requires time to develop and is dependent on previous interaction with specific microbes, the ability of neutrophils to kill microorganisms is immediate, nonspecific, and not dependent on previous exposure to microorganisms. Historically, studies of PMN-pathogen interaction focused on the events leading to killing of microorganisms, such as recruitment/chemotaxis, transmigration, phagocytosis, and activation, whereas postphagocytosis sequelae were infrequently considered. In addition, it was widely accepted that human neutrophils possessed limited capacity for new gene transcription and thus, relatively little biosynthetic capacity. This notion has changed dramatically within the past 20 years. Further, there is now more effort directed to understand the events occurring in PMNs after killing of microbes. Herein, we give an updated review of the systems biology-level approaches that have been used to gain an enhanced view of the role of neutrophils during host-pathogen interaction and neutrophil-mediated diseases. We anticipate that these and future systems-level studies will continue to provide information important for understanding, treatment, and control of diseases caused by pathogenic microorganisms. This article is categorized under: Physiology > Organismal Responses to Environment Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Fates.
Collapse
Affiliation(s)
- Viktoria Rungelrath
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
142
|
|