101
|
Chen Q, Li Y, Gao W, Chen L, Xu W, Zhu X. Exosome-Mediated Crosstalk Between Tumor and Tumor-Associated Macrophages. Front Mol Biosci 2021; 8:764222. [PMID: 34722637 PMCID: PMC8549832 DOI: 10.3389/fmolb.2021.764222] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are nanosized vesicles, derived from the endolysosomal compartment of cells and can shuttle diverse biomolecules such as nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their origin cells. Delivery of these cargoes to recipient cells enables exosomes to influence diverse cellular functions. As one of the most abundant immune cells in the tumor microenvironment, tumor-associated macrophages (TAMs) are educated by the tumor milieu, which is rich in cancer cells and stroma components, to exert functions such as the promotion of tumor growth, immunosuppression, angiogenesis, and cancer cell dissemination. Herein, we focus on exosomes-mediated intercellular communication between tumor cells and TAM in the tumor microenvironment, which may provide new targets for anti-tumor treatment. In this review, we highlight the most recent studies on the effect of tumor/macrophage-derived exosomes on macrophage/tumor function in different cancer types.
Collapse
Affiliation(s)
- Qi Chen
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| | - Yuefeng Li
- Affiliated People Hospital of Jiangsu University, Zhenjiang, China
| | - Wujiang Gao
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Chen
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenlin Xu
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China.,Reproduction Medicine Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
102
|
韦 莉, 陈 光, 孙 潮, 张 涛, 管 俊, 金 齐. [Immune Modulatory Effect of Outer Membrane Vesicles Derived from Salmonella on Mouse Bone Marrow-Derived Dendritic Cells]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:948-953. [PMID: 34841760 PMCID: PMC10408817 DOI: 10.12182/20210860201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To study the effect of outer membrane vesicles (OMVs) derived from Salmonella typhimurium (ST) on the ultrastructural features and immune function of dendritic cells (DC). METHODS Mice bone marrow cells were collected aseptically, and myeloid DC were generated by the combined induction and amplification with recombinant mouse granulocyte-macrophage colony-stimulating factor (GM-CSF) and recombinant mouse interleukin-4 (rm IL-4). Cell morphology was observed under inverted phase contrast microscope and the phenotype was identified with flow cytometry. ST-OMVs were isolated through ultracentrifugation. The survival rate of DC was assessed with CCK-8 assay, and the stimulus concentration of OMVs was henceforth determined. The ultrastructural characteristics of DC loaded with OMVs were observed with transmission electron microscopy. The cytokine secretion, surface molecule expression and phagocytic capacity of DC were examined with flow cytometry. RESULTS The DC induced and amplified in vitro displayed typical DC phenotype in morphological analysis and the purity of DC exceeded 85%. Transmission electron microscopy showed that there were large numbers of protrusions on the cell surface. After stimulation with ST-OMVs, it was observed that the dendritic structures on the surface of DC were reduced and a large number of phagolysosomes were found in the cytoplasm. In addition, increased numbers of mitochondria, swelling and typical apoptosis were observed. After treatment with ST-OMVs at 5 μg/mL and 10 μg/mL, the secretion of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) of DC increased significantly ( P<0.05). Furthermore, the immature DC could differentiate into mature DCs after stimulation with ST-OMVs, which were characterized by a decrease in phagocytic capacity ( P<0.05) and an upregulation of phenotypic markers ( P<0.05). CONCLUSION ST-OMVs can stimulate DC to produce TNF-α and IL-1β and promote DC maturation and antigen presentation.
Collapse
Affiliation(s)
- 莉 韦
- 蚌埠医学院 病原生物学教研室 (蚌埠 233030)Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu 233030, China
- 感染与免疫安徽省重点实验室 (蚌埠 233030)Anhui Provincial Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu 233030, China
| | - 光璋 陈
- 蚌埠医学院 病原生物学教研室 (蚌埠 233030)Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu 233030, China
| | - 潮 孙
- 蚌埠医学院 病原生物学教研室 (蚌埠 233030)Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu 233030, China
| | - 涛 张
- 蚌埠医学院 病原生物学教研室 (蚌埠 233030)Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu 233030, China
- 感染与免疫安徽省重点实验室 (蚌埠 233030)Anhui Provincial Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu 233030, China
| | - 俊昌 管
- 蚌埠医学院 病原生物学教研室 (蚌埠 233030)Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu 233030, China
- 感染与免疫安徽省重点实验室 (蚌埠 233030)Anhui Provincial Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu 233030, China
| | - 齐力 金
- 蚌埠医学院 病原生物学教研室 (蚌埠 233030)Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu 233030, China
- 感染与免疫安徽省重点实验室 (蚌埠 233030)Anhui Provincial Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
103
|
Somiya M, Kuroda S. Reporter gene assay for membrane fusion of extracellular vesicles. J Extracell Vesicles 2021; 10:e12171. [PMID: 34807503 PMCID: PMC8607979 DOI: 10.1002/jev2.12171] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
Extracellular vesicles (EVs) secreted by living cells are expected to deliver biological cargo molecules, including RNA and proteins, to the cytoplasm of recipient cells. There is an increasing need to understand the mechanism of intercellular cargo delivery by EVs. However, the lack of a feasible bioassay has hampered our understanding of the biological processes of EV uptake, membrane fusion, and cargo delivery to recipient cells. Here, we describe a reporter gene assay that can measure the membrane fusion efficiency of EVs during cargo delivery to recipient cells. When EVs containing tetracycline transactivator (tTA)-fused tetraspanins are internalized by recipient cells and fuse with cell membranes, the tTA domain is exposed to the cytoplasm and cleaved by tobacco etch virus protease to induce tetracycline responsive element (TRE)-mediated reporter gene expression in recipient cells. This assay (designated as EV-mediated tetraspanin-tTA delivery assay, ETTD assay), enabled us to assess the cytoplasmic cargo delivery efficiency of EVs in recipient cells. With the help of a vesicular stomatitis virus-derived membrane fusion protein, the ETTD assay could detect significant enhancement of cargo delivery efficiency of EVs. Furthermore, the ETTD assay could evaluate the effect of potential cargo delivery enhancers/inhibitors. Thus, the ETTD assay may contribute to a better understanding of the underlying mechanism of the cytoplasmic cargo delivery by EVs.
Collapse
Affiliation(s)
- Masaharu Somiya
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityOsakaJapan
| | - Shun'ichi Kuroda
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityOsakaJapan
| |
Collapse
|
104
|
Zaidi Y, Corker A, Vasileva VY, Oviedo K, Graham C, Wilson K, Martino J, Troncoso M, Broughton P, Ilatovskaya DV, Lindsey ML, DeLeon-Pennell KY. Chronic Porphyromonas gingivalis lipopolysaccharide induces adverse myocardial infarction wound healing through activation of CD8 + T cells. Am J Physiol Heart Circ Physiol 2021; 321:H948-H962. [PMID: 34597184 PMCID: PMC8616607 DOI: 10.1152/ajpheart.00082.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Oral and gum health have long been associated with incidence and outcomes of cardiovascular disease. Periodontal disease increases myocardial infarction (MI) mortality by sevenfold through mechanisms that are not fully understood. The goal of this study was to evaluate whether lipopolysaccharide (LPS) from a periodontal pathogen accelerates inflammation after MI through memory T-cell activation. We compared four groups [no MI, chronic LPS, day 1 after MI, and day 1 after MI with chronic LPS (LPS + MI); n = 68 mice] using the mouse heart attack research tool 1.0 database and tissue bank coupled with new analyses and experiments. LPS + MI increased total CD8+ T cells in the left ventricle versus the other groups (P < 0.05 vs. all). Memory CD8+ T cells (CD44 + CD27+) were 10-fold greater in LPS + MI than in MI alone (P = 0.02). Interleukin (IL)-4 stimulated splenic CD8+ T cells away from an effector phenotype and toward a memory phenotype, inducing secretion of factors associated with the Wnt/β-catenin signaling that promoted monocyte migration and decreased viability. To dissect the effect of CD8+ T cells after MI, we administered a major histocompatibility complex-I-blocking antibody starting 7 days before MI, which prevented effector CD8+ T-cell activation without affecting the memory response. The reduction in effector cells diminished infarct wall thinning but had no effect on macrophage numbers or MertK expression. LPS + MI + IgG attenuated macrophages within the infarct without effecting CD8+ T cells, suggesting these two processes were independent. Overall, our data indicate that effector and memory CD8+ T cells at post-MI day 1 are amplified by chronic LPS to potentially promote infarct wall thinning.NEW & NOTEWORTHY Although there is a well-documented link between periodontal disease and heart health, the mechanisms are unclear. Our study indicates that in response to circulating periodontal endotoxins, memory CD8+ T cells are activated, resulting in an acceleration of macrophage-mediated inflammation after MI. Blocking activation of effector CD8+ T cells had no effect on the macrophage numbers or wall thinning at post-MI day 1, indicating that this response was likely due in part to memory CD8+ T cells.
Collapse
Affiliation(s)
- Yusra Zaidi
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Alexa Corker
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Valeriia Y Vasileva
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kimberly Oviedo
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Connor Graham
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Kyrie Wilson
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina
| | - John Martino
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Miguel Troncoso
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Philip Broughton
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
105
|
Takahashi T, Schleimer RP. Epithelial-Cell-Derived Extracellular Vesicles in Pathophysiology of Epithelial Injury and Repair in Chronic Rhinosinusitis: Connecting Immunology in Research Lab to Biomarkers in Clinics. Int J Mol Sci 2021; 22:11709. [PMID: 34769139 PMCID: PMC8583779 DOI: 10.3390/ijms222111709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial barrier disruption and failure of epithelial repair by aberrant epithelial-mesenchymal transition (EMT)-induced basal cells observed in nasal mucosa of chronic rhinosinusitis (CRS) are speculated to play important roles in disease pathophysiology. Microparticles (MPs) are a type of extracellular vesicle (EV) released by budding or shedding from the plasma membrane of activated or apoptotic cells. MPs are detected in nasal lavage fluids (NLFs) and are now receiving attention as potential biomarkers to evaluate the degree of activation of immune cells and injury of structural cells in nasal mucosa of subjects with sinus disease. There are three types of epithelial-cell-derived MPs, which are defined by the expression of different epithelial specific markers on their surface: EpCAM, E-cadherin, and integrin β6 (ITGB6). When these markers are on MPs that are also carrying canonical EMT/mesenchymal markers (Snail (SNAI1); Slug (SNAI2); alpha-smooth muscle actin (αSMA, ACTA2)) or pro- and anti-coagulant molecules (tissue factor (TF); tissue plasminogen activator (tPA); plasminogen activator inhibitor-1 (PAI-1)), they provide insight as to the roles of epithelial activation for EMT or regulation of coagulation in the underlying disease. In this review, we discuss the potential of epithelial MPs as research tools to evaluate status of nasal mucosae of CRS patients in the lab, as well as biomarkers for management and treatment of CRS in the clinic.
Collapse
Affiliation(s)
- Toru Takahashi
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
106
|
He C, Wang L, Li L, Zhu G. Extracellular vesicle-orchestrated crosstalk between cancer-associated fibroblasts and tumors. Transl Oncol 2021; 14:101231. [PMID: 34601397 PMCID: PMC8493591 DOI: 10.1016/j.tranon.2021.101231] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/04/2021] [Accepted: 09/25/2021] [Indexed: 02/08/2023] Open
Abstract
EVs mediate the interaction between tumor and stromal cells in the TME. Tumors mediate CAF-like activation of stromal cells through EVs. CAF-derived EVs promote tumor proliferation, metastasis and therapeutic resistance.
Communication networks in the tumor microenvironment (TME) play a crucial role in tumor progression. Cancer-associated fibroblasts (CAFs) are among the most abundant stromal cells in the TME. Bidirectional signal transduction between cancer cells and CAFs within the TME is important for cancer development and treatment responsiveness. Extracellular vesicles (EVs) carrying proteins, miRNAs, and other biomolecules are secreted into the extracellular matrix (ECM), which has been demonstrated to be an important communication medium between tumors and CAFs. Tumors regulate the activation of CAFs by secreting EVs. Conversely, CAFs can also affect tumor proliferation, metastasis, and therapeutic resistance through EVs. Here, we will classify EV cargoes and discuss the role of EV-mediated interactions between CAFs and tumors, reviewing current knowledge in combination with our confirmed results.
Collapse
Affiliation(s)
- Chuanshi He
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Linlin Wang
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guiquan Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
107
|
Harada Y, Ohkawa Y, Maeda K, Kizuka Y, Taniguchi N. Extracellular Vesicles and Glycosylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:137-149. [PMID: 34495533 DOI: 10.1007/978-3-030-70115-4_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Extracellular vesicles (EVs), a generic term for any vesicles or particles that are released from cells, play an important role in modulating numerous biological and pathological events, including development, differentiation, aging, thrombus formation, immune responses, neurodegenerative diseases, and tumor progression. During the biogenesis of EVs, they encapsulate biologically active macromolecules (i.e., nucleotides and proteins) and transmit signals for delivering them to neighboring or cells that are located some distance away. In contrast, there are receptor molecules on the surface of EVs that function to mediate EV-to-cell and EV-to-matrix interactions. A growing body of evidence indicates that the EV surface is heavily modified with glycans, the function of which is to regulate the biogenesis and extracellular behaviors of EVs. In this chapter, we introduce the current status of our knowledge concerning EV glycosylation and discuss how it influences EV biology, highlighting the potential roles of EV glycans in clinical applications.
Collapse
Affiliation(s)
- Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Kento Maeda
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| |
Collapse
|
108
|
Zhang DX, Vu LT, Ismail NN, Le MTN, Grimson A. Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Semin Cancer Biol 2021; 74:24-44. [PMID: 33545339 DOI: 10.1016/j.semcancer.2021.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are increasingly recognised as a pivotal player in cell-cell communication, an attribute of EVs that derives from their ability to transport bioactive cargoes between cells, resulting in complex intercellular signalling mediated by EVs, which occurs under both physiological and pathological conditions. In the context of cancer, recent studies have demonstrated the versatile and crucial roles of EVs in the tumour microenvironment (TME). Here, we revisit EV biology, and focus on EV-mediated interactions between cancer cells and stromal cells, including fibroblasts, immune cells, endothelial cells and neurons. In addition, we focus on recent reports indicating interactions between EVs and non-cell constituents within the TME, including the extracellular matrix. We also review and summarise the intricate cancer-associated network modulated by EVs, which promotes metabolic reprogramming, horizontal transfer of neoplastic traits, and therapeutic resistance in the TME. We aim to provide a comprehensive and updated landscape of EVs in the TME, focusing on oncogenesis, cancer progression and therapeutic resistance, together with our future perspectives on the field.
Collapse
Affiliation(s)
- Daniel Xin Zhang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Luyen Tien Vu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Nur Nadiah Ismail
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore.
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
109
|
Akbari B, Ghahri-Saremi N, Soltantoyeh T, Hadjati J, Ghassemi S, Mirzaei HR. Epigenetic strategies to boost CAR T cell therapy. Mol Ther 2021; 29:2640-2659. [PMID: 34365035 DOI: 10.1016/j.ymthe.2021.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has led to a paradigm shift in cancer immunotherapy, but still several obstacles limit CAR T cell efficacy in cancers. Advances in high-throughput technologies revealed new insights into the role that epigenetic reprogramming plays in T cells. Mechanistic studies as well as comprehensive epigenome maps revealed an important role for epigenetic remodeling in T cell differentiation. These modifications shape the overall immune response through alterations in T cell phenotype and function. Here, we outline how epigenetic modifications in CAR T cells can overcome barriers limiting CAR T cell effectiveness, particularly in immunosuppressive tumor microenvironments. We also offer our perspective on how selected epigenetic modifications can boost CAR T cells to ultimately improve the efficacy of CAR T cell therapy.
Collapse
Affiliation(s)
- Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran.
| |
Collapse
|
110
|
Pillalamarri N, Abdullah, Ren G, Khan L, Ullah A, Jonnakuti S, Ullah M. Exploring the utility of extracellular vesicles in ameliorating viral infection-associated inflammation, cytokine storm and tissue damage. Transl Oncol 2021; 14:101095. [PMID: 33887552 PMCID: PMC8053440 DOI: 10.1016/j.tranon.2021.101095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as potential mediators of intercellular communication. EVs are nano-sized, lipid membrane-bound vesicles that contains biological information in the form of proteins, metabolites and/or nucleic acids. EVs are key regulators of tissue repair mechanisms, such as in the context of lung injuries. Recent studies suggest that EVs have the ability to repair COVID19-associated acute lung damage. EVs hold great promise for therapeutic treatments, particularly in treating a potentially fatal autoimmune response and attenuate inflammation. They are known to boost lung immunity and are involved in the pathogenesis of various lung diseases, including viral infection. EV-based immunization technology has been proven to elicit robust immune responses in many models of infectious disease, including COVID-19. The field of EV research has tremendous potential in advancing our understanding about viral infection pathogenesis, and can be translated into anti-viral therapeutic strategies.
Collapse
Affiliation(s)
- Nagavalli Pillalamarri
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Abdullah
- Molecular Medicine Department of Medicine, Stanford University, CA, United States
| | - Gang Ren
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Luqman Khan
- School of Medicine, University of California, San Francisco, CA 94158, United States
| | - Asad Ullah
- School of Medicine, University of California, San Francisco, CA 94158, United States
| | - Sriya Jonnakuti
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States; Molecular Medicine Department of Medicine, Stanford University, CA, United States.
| |
Collapse
|
111
|
Activated T cell-derived exosomal PD-1 attenuates PD-L1-induced immune dysfunction in triple-negative breast cancer. Oncogene 2021; 40:4992-5001. [PMID: 34172932 PMCID: PMC8342306 DOI: 10.1038/s41388-021-01896-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
Programmed cell death 1 (PD-1) is widely expressed in tumor-infiltrating lymphocytes (TILs) of triple-negative breast cancer (TNBC). As a dominant inhibitory immune checkpoint (ICP) receptor, cell surface PD-1 is well-known to transduce negative signaling of effector T cell activity during cell–cell contact. However, despite its well-documented inhibitory effects, higher PD-1 expression in TILs is significantly associated with longer survival in TNBC patients. This phenomenon raises an interesting question whether PD-1 harbors positive activity to enhance anti-tumor immunity. Here, we show that PD-1 is secreted in an exosomal form by activated T cells and can remotely interact with either cell surface or exosomal programmed death-ligand 1 (PD-L1), induce PD-L1 internalization via clathrin-mediated endocytosis, and thereby prevent subsequent cellular PD-L1: PD-1 interaction, restoring tumor surveillance through attenuating PD-L1-induced suppression of tumor-specific cytotoxic T cell activity. Our results, through revealing an anti-PD-L1 function of exosomal PD-1, provide a positive role to enhance cytotoxic T cell activity and a potential therapeutic strategy of modifying the exosome surface with membrane-bound inhibitory ICP receptors to attenuate the suppressive tumor immune microenvironment.
Collapse
|
112
|
Zuo S, Song J, Zhang J, He Z, Sun B, Sun J. Nano-immunotherapy for each stage of cancer cellular immunity: which, why, and what? Theranostics 2021; 11:7471-7487. [PMID: 34158861 PMCID: PMC8210608 DOI: 10.7150/thno.59953] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy provides a new avenue for combating cancer. Current research in anticancer immunotherapy is primary based on T cell-mediated cellular immunity, which can be divided into seven steps and is named the cancer-immunity cycle. Unfortunately, clinical applications of cancer immunotherapies are restricted by inefficient drug delivery, low response rates, and unmanageable adverse reactions. In response to these challenges, the combination of nanotechnology and immunotherapy (nano-immunotherapy) has been extensively studied in recent years. Rational design of advanced nano-immunotherapies requires in-depth consideration of "which" immune step is targeted, "why" it needs to be further enhanced, and "what" nanotechnology can do for immunotherapy. However, the applications and effects of nanotechnology in the cancer-immunity cycle have not been well reviewed. Herein, we summarize the current developments in nano-immunotherapy for each stage of cancer cellular immunity, with special attention on the which, why and what. Furthermore, we summarize the advantages of nanotechnology for combination immunotherapy in two categories: enhanced efficacy and reduced toxicity. Finally, we discuss the challenges of nano-immunotherapy in detail and provide a perspective.
Collapse
Affiliation(s)
| | | | | | | | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
113
|
Xie Q, Ding J, Chen Y. Role of CD8 + T lymphocyte cells: Interplay with stromal cells in tumor microenvironment. Acta Pharm Sin B 2021; 11:1365-1378. [PMID: 34221857 PMCID: PMC8245853 DOI: 10.1016/j.apsb.2021.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
CD8+ T lymphocytes are pivotal cells in the host response to antitumor immunity. Tumor-driven microenvironments provide the conditions necessary for regulating infiltrating CD8+ T cells in favor of tumor survival, including weakening CD8+ T cell activation, driving tumor cells to impair immune attack, and recruiting other cells to reprogram the immune milieu. Also in tumor microenvironment, stromal cells exert immunosuppressive skills to avoid CD8+ T cell cytotoxicity. In this review, we explore the universal function and fate decision of infiltrated CD8+ T cells and highlight their antitumor response within various stromal architectures in the process of confronting neoantigen-specific tumor cells. Thus, this review provides a foundation for the development of antitumor therapy based on CD8+ T lymphocyte manipulation.
Collapse
Affiliation(s)
- Qin Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310012, China
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai HaiHe Pharmaceutical Co., Ltd., Shanghai 201203, China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
114
|
Extracellular vesicles in immunomodulation and tumor progression. Nat Immunol 2021; 22:560-570. [PMID: 33753940 PMCID: PMC9389600 DOI: 10.1038/s41590-021-00899-0] [Citation(s) in RCA: 343] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles have emerged as prominent regulators of the immune response during tumor progression. EVs contain a diverse repertoire of molecular cargo that plays a critical role in immunomodulation. Here, we identify the role of EVs as mediators of communication between cancer and immune cells. This expanded role of EVs may shed light on the mechanisms behind tumor progression and provide translational diagnostic and prognostic tools for immunologists.
Collapse
|
115
|
Tavasolian F, Hosseini AZ, Rashidi M, Soudi S, Abdollahi E, Momtazi-Borojeni AA, Sathyapalan T, Sahebkar A. The Impact of Immune Cell-derived Exosomes on Immune Response Initiation and Immune System Function. Curr Pharm Des 2021; 27:197-205. [PMID: 33290196 DOI: 10.2174/1381612826666201207221819] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
Exosomes are small extracellular vesicles that pass genetic material between various cells to modulate or alter their biological function. The role of exosomes is to communicate with the target cell for cell-to-cell communication. Their inherent characteristics of exosomes, such as adhesion molecules, allow targeting specifically to the receiving cell. Exosomes are involved in cell to cell communication in the immune system including antigen presentation, natural killer cells (NK cells) and T cell activation/polarisation, immune suppression and various anti-inflammatory processes. In this review, we have described various functions of exosomes secreted by the immune cells in initiating, activating and modulating immune responses; and highlight the distinct roles of exosomal surface proteins and exosomal cargo. Potential applications of exosomes such as distribution vehicles for immunotherapy are also discussed.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Z Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Nanotechnology Research Center, Department of Medical Biotechnology, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, United Kingdom
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
116
|
Lone SN, Bhat AA, Wani NA, Karedath T, Hashem S, Nisar S, Singh M, Bagga P, Das BC, Bedognetti D, Reddy R, Frenneaux MP, El-Rifai W, Siddiqi MA, Haris M, Macha MA. miRNAs as novel immunoregulators in cancer. Semin Cell Dev Biol 2021; 124:3-14. [PMID: 33926791 DOI: 10.1016/j.semcdb.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The immune system is a well-known vital regulator of tumor growth, and one of the main hallmarks of cancer is evading the immune system. Immune system deregulation can lead to immune surveillance evasion, sustained cancer growth, proliferation, and metastasis. Tumor-mediated disruption of the immune system is accomplished by different mechanisms that involve extensive crosstalk with the immediate microenvironment, which includes endothelial cells, immune cells, and stromal cells, to create a favorable tumor niche that facilitates the development of cancer. The essential role of non-coding RNAs such as microRNAs (miRNAs) in the mechanism of cancer cell immune evasion has been highlighted in recent studies. miRNAs are small non-coding RNAs that regulate a wide range of post-transcriptional gene expression in a cell. Recent studies have focused on the function that miRNAs play in controlling the expression of target proteins linked to immune modulation. Studies show that miRNAs modulate the immune response in cancers by regulating the expression of different immune-modulatory molecules associated with immune effector cells, such as macrophages, dendritic cells, B-cells, and natural killer cells, as well as those present in tumor cells and the tumor microenvironment. This review explores the relationship between miRNAs, their altered patterns of expression in tumors, immune modulation, and the functional control of a wide range of immune cells, thereby offering detailed insights on the crosstalk of tumor-immune cells and their use as prognostic markers or therapeutic agents.
Collapse
Affiliation(s)
- Saife N Lone
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Ajaz A Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Nissar A Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | | | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar; Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India.
| |
Collapse
|
117
|
Chen Y, Xu Y, Zhong H, Yuan H, Liang F, Liu J, Tang W. Extracellular vesicles in Inter-Kingdom communication in gastrointestinal cancer. Am J Cancer Res 2021; 11:1087-1103. [PMID: 33948347 PMCID: PMC8085842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/13/2021] [Indexed: 06/12/2023] Open
Abstract
The production and secretion of extracellular vesicles (EVs) are common features of cells (including various normal cells, neoplastic cell lines as well as bacteria) that span all domains of life. Tumor-derived exosomes are enriched with kinds of tumorigenesis mediators which are derived from the cytoplasm of cancer cells and fully reflect the tumor conditions. Indeed, the major topics and challenges on current oncological research are the identification of tumorigenic and metastatic molecules in tumor-cell-derived exosomes as well as elucidating the pathways that guarantee these components to be included in exosomes. The bacterial EVs have also been implicated in the pathogenesis of gastrointestinal (GI) tumors and chronic inflammatory diseases; however, the possible function of outer membrane vesicles (OMVs) in tumorigenesis remains largely underestimated. We suggest that EVs from both eukaryotic cells and different microbes in GI tract act as regulators of intracellular and cross-species communication, thus particularly facilitate tumor cell survival and multi-drug resistance. Therefore, our review introduces comprehensive knowledge on the promising role of EVs (mainly exosomes and OMVs) production of GI cancer development and gut microbiome, as well as its roles in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Yi Chen
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yansong Xu
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, P. R. China
| | - Huage Zhong
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hao Yuan
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Fangfang Liang
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, P. R. China
| | - Junjie Liu
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Department of Ultrasound, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
118
|
Del Vecchio F, Martinez-Rodriguez V, Schukking M, Cocks A, Broseghini E, Fabbri M. Professional killers: The role of extracellular vesicles in the reciprocal interactions between natural killer, CD8+ cytotoxic T-cells and tumour cells. J Extracell Vesicles 2021; 10:e12075. [PMID: 33815694 PMCID: PMC8015281 DOI: 10.1002/jev2.12075] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) mediate the cross‐talk between cancer cells and the cells of the surrounding Tumour Microenvironment (TME). Professional killer cells include Natural Killer (NK) cells and CD8+ Cytotoxic T‐lymphocytes (CTLs), which represent some of the most effective immune defense mechanisms against cancer cells. Recent evidence supports the role of EVs released by NK cells and CTLs in killing cancer cells, paving the road to a possible therapeutic role for such EVs. This review article provides the state‐of‐the‐art knowledge on the role of NK‐ and CTL‐derived EVs as anticancer agents, focusing on the different functions of different sub‐types of EVs. We also reviewed the current knowledge on the effects of cancer‐derived EVs on NK cells and CTLs, identifying areas for future investigation in the emerging new field of EV‐mediated immunotherapy of cancer.
Collapse
Affiliation(s)
- Filippo Del Vecchio
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA
| | - Verena Martinez-Rodriguez
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA.,Department of Cell and Molecular Biology John A. Burns School of Medicine University of Hawai'i at Manoa Honolulu Hawaii USA
| | - Monique Schukking
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA.,Department of Molecular Biosciences & Bioengineering University of Hawai'i at Manoa Honolulu Hawaii USA
| | - Alexander Cocks
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA
| | - Elisabetta Broseghini
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna Bologna Italy
| | - Muller Fabbri
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA
| |
Collapse
|
119
|
Extracellular Vesicles and Their Role in the Spatial and Temporal Expansion of Tumor-Immune Interactions. Int J Mol Sci 2021; 22:ijms22073374. [PMID: 33806053 PMCID: PMC8036938 DOI: 10.3390/ijms22073374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) serve as trafficking vehicles and intercellular communication tools. Their cargo molecules directly reflect characteristics of their parental cell. This includes information on cell identity and specific cellular conditions, ranging from normal to pathological states. In cancer, the content of EVs derived from tumor cells is altered and can induce oncogenic reprogramming of target cells. As a result, tumor-derived EVs compromise antitumor immunity and promote cancer progression and spreading. However, this pro-oncogenic phenotype is constantly being challenged by EVs derived from the local tumor microenvironment and from remote sources. Here, we summarize the role of EVs in the tumor–immune cross-talk that includes, but is not limited to, immune cells in the tumor microenvironment. We discuss the potential of remotely released EVs from the microbiome and during physical activity to shape the tumor–immune cross-talk, directly or indirectly, and confer antitumor activity. We further discuss the role of proinflammatory EVs in the temporal development of the tumor–immune interactions and their potential use for cancer diagnostics.
Collapse
|
120
|
Zhou WJ, Zhang J, Xie F, Wu JN, Ye JF, Wang J, Wu K, Li MQ. CD45RO -CD8 + T cell-derived exosomes restrict estrogen-driven endometrial cancer development via the ERβ/miR-765/PLP2/Notch axis. Theranostics 2021; 11:5330-5345. [PMID: 33859750 PMCID: PMC8039953 DOI: 10.7150/thno.58337] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Rationale: Estrogen-dependent cancers (e.g., breast, endometrial, and ovarian cancers) are among the leading causes of morbidity and mortality in women worldwide. Recently, exosomes released by tumor-infiltrating CD8+ T cells have been under the spotlight in the field of cancer immunotherapy. Our study aims at elucidating the underlying mechanisms of the crosstalk between estrogen signaling and CD8+ T cells, and possible intervention values in uterine corpus endometrial cancer (UCEC). Methods: Micro RNA-seq was conducted to screen differentially expressed micro RNA in UCEC. Bioinformatic analysis was processed to predict the target of miR-765. RNA silencing or overexpressing and pharmacologic inhibitors were used to assess the functions of ERβ/miR-765/PLP2/Notch axis in UCEC cell proliferation and invasion in vivo and in vitro. In vivo imaging was performed to evaluate the metastasis of tumor in mice. Combined fluorescent in situ hybridization for miR-765 and immunofluorescent labeling for CD8 was carried out to prove the co-localization between miR-765 and CD8+ T cells. Exosomes derived from CD45RO-CD8+ T cells were isolated to detect the regulatory effects on UCEC. Results: miR-765 is characterized as the most downregulated miRNA in UCEC, and there is a negative correlation between miR-765 and Proteolipid protein 2 (PLP2) in UCEC lesion. Estrogen significantly down-regulates miR-765 level, and facilitates the development of UCEC by estrogen receptor (ER) β. Mechanistically, this process is mediated through the miRNAs (e.g., miR-3584-5p, miR-7-5p, miR-150-5p, and miR-124-3p) cluster-controlled regulation of the PLP2, which further regulates Ki-67 and multiple epithelial-mesenchymal transition (EMT)-related molecules (e.g, E-cadherin and Vimentin) in a Notch signaling pathway-dependent manner. Interestingly, the selective ER degrader Fulvestrant alleviates estrogen-mediated miR-765/PLP2 expression regulation and UCEC development in ERβ-dependent and -independent manners. Additionally, CD45RO-CD8+ T cell-derived exosomes release more miR-765 than that from CD45RO+CD8+ T cells. In therapeutic studies, these exosomes limit estrogen-driven disease development via regulation of the miR-765/PLP2 axis. Conclusions: This observation reveals novel molecular mechanisms underlying estrogen signaling and CD8+ T cell-released exosomes in UCEC development, and provides a potential therapeutic strategy for UCEC patients with aberrant ERβ/miR-765/PLP2/Notch signaling axis.
Collapse
Affiliation(s)
- Wen-Jie Zhou
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Shanghai 200080, People's Republic of China
| | - Feng Xie
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Jiang-Feng Ye
- Division of Obstetrics and Gynecology, KK Women's and Children's Hospital, 229899, Singapore
| | - Jian Wang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Ke Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Shanghai 200080, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China
| |
Collapse
|
121
|
Wang C, Wang Y, Hong T, Ye J, Chu C, Zuo L, Zhang J, Cui X. Targeting a positive regulatory loop in the tumor-macrophage interaction impairs the progression of clear cell renal cell carcinoma. Cell Death Differ 2021; 28:932-951. [PMID: 33009518 PMCID: PMC7937678 DOI: 10.1038/s41418-020-00626-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022] Open
Abstract
Although the interaction between tumors and tumor-associated macrophages (TAMs) has been reported to facilitate the targeted drug resistance and progression of clear cell renal cell carcinoma (ccRCC), the related mechanisms remain unknown. Here, we report that SOX17 serves as a novel tumor suppressor in ccRCC and a positive regulatory loop, SOX17low/YAP/TEAD1/CCL5/CCR5/STAT3, facilitates the ccRCC-TAM interaction. SOX17 expression was commonly downregulated and negatively correlated with TAM infiltration in ccRCC specimens, and the integration of SOX17 and TAMs with the existing clinical indicators TNM stage or SSIGN score achieved better accuracy for predicting the prognosis of ccRCC patients. Mechanistically, SOX17 knockdown activated YAP signaling by promoting the transcription and nuclear distribution of YAP, which recruited TEAD1 to trigger CCL5 transcription. Then, CCL5 educated macrophages toward TAMs, which reciprocally enhanced ccRCC progression through CCL5/CCR5 and activated STAT3/SOX17low/YAP. However, SOX17 overexpression in ccRCC achieved the opposite effect. Thus, a positive regulatory loop, SOX17low/YAP/TEAD1/CCL5/CCR5/STAT3, was identified in the ccRCC-TAM interaction. Furthermore, targeting tumor-TAM interactions by blocking this positive regulatory network impaired the metastasis and targeted drug resistance of ccRCC in in vivo mouse models of lung metastasis and orthotopic ccRCC. These findings provide a new mechanism underlying the tumor-TAM interplay in ccRCC progression and present a potential target for inhibiting targeted drug resistance and metastasis in advanced ccRCC.
Collapse
Affiliation(s)
- Chao Wang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai, 200135, China
- Department of Urology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Road, Changzhou, 213000, Jiangsu, China
| | - Yuning Wang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai, 200135, China
| | - Tianyu Hong
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai, 200135, China
| | - Jianqing Ye
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai, 200135, China
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), 700 North Moyu Road, Shanghai, 201805, China
| | - Chuanmin Chu
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai, 200135, China
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), 700 North Moyu Road, Shanghai, 201805, China
| | - Li Zuo
- Department of Urology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Road, Changzhou, 213000, Jiangsu, China
| | - Jing Zhang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai, 200135, China
| | - Xingang Cui
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), 219 Miaopu Road, Shanghai, 200135, China.
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), 700 North Moyu Road, Shanghai, 201805, China.
| |
Collapse
|
122
|
Nie W, Wu G, Zhong H, Xie HY. Membrane vesicles nanotheranostic systems: sources, engineering methods, and challenges. Biomed Mater 2021; 16:022009. [PMID: 33307545 DOI: 10.1088/1748-605x/abd2c8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) are cell secretory native components with long-circulation, good biocompatibility, and physiologic barriers cross ability. EVs derived from different donor cells inherit varying characteristics and functions from their original cells and are favorable to serve as vectors for diagnosing and treating various diseases. However, EVs nanotheranostics are still in their infancy because of their limited accumulation at lesion sites and compromised therapy efficiency. Hence, engineering modification of EVs is usually needed to further enhance their stability, biological activity, and lesion-targeting capacity. Herein, we overview the characteristics of EVs from different sources, as well as the latest developments of surface engineering and cargo loading methods. We also focus especially on advances in EVs-based disease theranostics. At the end of the review, we predict the obstacles and prospects of the future clinical application of EVs.
Collapse
Affiliation(s)
- Weidong Nie
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | | | | | | |
Collapse
|
123
|
Ma Y, Dong S, Li X, Kim BYS, Yang Z, Jiang W. Extracellular Vesicles: An Emerging Nanoplatform for Cancer Therapy. Front Oncol 2021; 10:606906. [PMID: 33628730 PMCID: PMC7897670 DOI: 10.3389/fonc.2020.606906] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane particles that represent an endogenous mechanism for cell-to-cell communication. Since discovering that EVs have multiple advantages over currently available delivery platforms, such as their ability to overcome natural barriers, intrinsic cell targeting properties, and circulation stability, the potential use of EVs as therapeutic nanoplatforms for cancer studies has attracted considerable interest. To fully elucidate EVs' therapeutic function for treating cancer, all current knowledge about cellular uptake and trafficking of EVs will be initially reviewed. In order to further improve EVs as anticancer therapeutics, engineering strategies for cancer therapy have been widely explored in the last decade, along with other cancer therapies. However, therapeutic applications of EVs as drug delivery systems have been limited because of immunological concerns, lack of methods to scale EV production, and efficient drug loading. We will review and discuss recent progress and remaining challenges in developing EVs as a delivery nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Shiyan Dong
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xuefeng Li
- Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Wen Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
124
|
Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv 2021; 27:585-598. [PMID: 32264719 PMCID: PMC7178886 DOI: 10.1080/10717544.2020.1748758] [Citation(s) in RCA: 371] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are nanosized membrane vesicles derived from most cell types. Carrying diverse biomolecules from their parent cells, EVs are important mediators of intercellular communication and thus play significant roles in physiological and pathological processes. Owing to their natural biogenesis process, EVs are generated with high biocompatibility, enhanced stability, and limited immunogenicity, which provide multiple advantages as drug delivery systems (DDSs) over traditional synthetic delivery vehicles. EVs have been reported to be used for the delivery of siRNAs, miRNAs, protein, small molecule drugs, nanoparticles, and CRISPR/Cas9 in the treatment of various diseases. As a natural drug delivery vectors, EVs can penetrate into the tissues and be bioengineered to enhance the targetability. Although EVs' characteristics make them ideal for drug delivery, EV-based drug delivery remains challenging, due to lack of standardized isolation and purification methods, limited drug loading efficiency, and insufficient clinical grade production. In this review, we summarized the current knowledge on the application of EVs as DDS from the perspective of different cell origin and weighted the advantages and bottlenecks of EV-based DDS.
Collapse
Affiliation(s)
- Wanrong Meng
- Department of Stomatology, School of Medicine, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Chanshi He
- Department of Stomatology, School of Medicine, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yaying Hao
- Department of Stomatology, School of Medicine, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Linlin Wang
- Department of Stomatology, School of Medicine, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Ling Li
- Department of Stomatology, School of Medicine, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Guiquan Zhu
- Department of Stomatology, School of Medicine, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, University of Electronic Science and Technology of China, Chengdu, PR China
| |
Collapse
|
125
|
Exosomes: Cell-Derived Nanoplatforms for the Delivery of Cancer Therapeutics. Int J Mol Sci 2020; 22:ijms22010014. [PMID: 33374978 PMCID: PMC7792591 DOI: 10.3390/ijms22010014] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Exosomes are cell-secreted nanovesicles that naturally contain biomolecular cargoes such as lipids, proteins, and nucleic acids. Exosomes mediate intercellular communication, enabling the transfer biological signals from the donor cells to the recipient cells. Recently, exosomes are emerging as promising drug delivery vehicles due to their strong stability in blood circulation, high biocompatibility, low immunogenicity, and natural targeting ability. In particular, exosomes derived from specific types of cells can carry endogenous signaling molecules with therapeutic potential for cancer treatment, thus presenting a significant impact on targeted drug delivery and therapy. Furthermore, exosomes can be engineered to display targeting moieties on their surface or to load additional therapeutic agents. Therefore, a comprehensive understanding of exosome biogenesis and the development of efficient exosome engineering techniques will provide new avenues to establish convincing clinical therapeutic strategies based on exosomes. This review focuses on the therapeutic applications of exosomes derived from various cells and the exosome engineering technologies that enable the accurate delivery of various types of cargoes to target cells for cancer therapy.
Collapse
|
126
|
Yong T, Li X, Wei Z, Gan L, Yang X. Extracellular vesicles-based drug delivery systems for cancer immunotherapy. J Control Release 2020; 328:562-574. [DOI: 10.1016/j.jconrel.2020.09.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
|
127
|
Yang B, Gao J, Pei Q, Xu H, Yu H. Engineering Prodrug Nanomedicine for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002365. [PMID: 33304763 PMCID: PMC7709995 DOI: 10.1002/advs.202002365] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Immunotherapy has shifted the clinical paradigm of cancer management. However, despite promising initial progress, immunotherapeutic approaches to cancer still suffer from relatively low response rates and the possibility of severe side effects, likely due to the low inherent immunogenicity of tumor cells, the immunosuppressive tumor microenvironment, and significant inter- and intratumoral heterogeneity. Recently, nanoformulations of prodrugs have been explored as a means to enhance cancer immunotherapy by simultaneously eliciting antitumor immune responses and reversing local immunosuppression. Prodrug nanomedicines, which integrate engineering advances in chemistry, oncoimmunology, and material science, are rationally designed through chemically modifying small molecule drugs, peptides, or antibodies to yield increased bioavailability and spatiotemporal control of drug release and activation at the target sites. Such strategies can help reduce adverse effects and enable codelivery of multiple immune modulators to yield synergistic cancer immunotherapy. In this review article, recent advances and translational challenges facing prodrug nanomedicines for cancer immunotherapy are overviewed. Last, key considerations are outlined for future efforts to advance prodrug nanomedicines aimed to improve antitumor immune responses and combat immune tolerogenic microenvironments.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Qing Pei
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Huixiong Xu
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| |
Collapse
|
128
|
Xu Z, Zeng S, Gong Z, Yan Y. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer 2020; 19:160. [PMID: 33183286 PMCID: PMC7661275 DOI: 10.1186/s12943-020-01278-3] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
In the era of the rapid development of cancer immunotherapy, there is a high level of interest in the application of cell-released small vesicles that stimulate the immune system. As cell-derived nanovesicles, exosomes show great promise in cancer immunotherapy because of their immunogenicity and molecular transfer function. The cargoes carried on exosomes have been recently identified with improved technological advances and play functional roles in the regulation of immune responses. In particular, exosomes derived from tumor cells and immune cells exhibit unique composition profiles that are directly involved in anticancer immunotherapy. More importantly, exosomes can deliver their cargoes to targeted cells and thus influence the phenotype and immune-regulation functions of targeted cells. Accumulating evidence over the last decade has further revealed that exosomes can participate in multiple cellular processes contributing to cancer development and therapeutic effects, showing the dual characteristics of promoting and suppressing cancer. The potential of exosomes in the field of cancer immunotherapy is huge, and exosomes may become the most effective cancer vaccines, as well as targeted antigen/drug carriers. Understanding how exosomes can be utilized in immune therapy is important for controlling cancer progression; additionally, exosomes have implications for diagnostics and the development of novel therapeutic strategies. This review discusses the role of exosomes in immunotherapy as carriers to stimulate an anti-cancer immune response and as predictive markers for immune activation; furthermore, it summarizes the mechanism and clinical application prospects of exosome-based immunotherapy in human cancer.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
129
|
Zhu L, Sun HT, Wang S, Huang SL, Zheng Y, Wang CQ, Hu BY, Qin W, Zou TT, Fu Y, Shen XT, Zhu WW, Geng Y, Lu L, Jia HL, Qin LX, Dong QZ. Isolation and characterization of exosomes for cancer research. J Hematol Oncol 2020; 13:152. [PMID: 33168028 PMCID: PMC7652679 DOI: 10.1186/s13045-020-00987-y] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are a subset of extracellular vesicles that carry specific combinations of proteins, nucleic acids, metabolites, and lipids. Mounting evidence suggests that exosomes participate in intercellular communication and act as important molecular vehicles in the regulation of numerous physiological and pathological processes, including cancer development. Exosomes are released by various cell types under both normal and pathological conditions, and they can be found in multiple bodily fluids. Moreover, exosomes carrying a wide variety of important macromolecules provide a window into altered cellular or tissue states. Their presence in biological fluids renders them an attractive, minimally invasive approach for liquid biopsies with potential biomarkers for cancer diagnosis, prediction, and surveillance. Due to their biocompatibility and low immunogenicity and cytotoxicity, exosomes have potential clinical applications in the development of innovative therapeutic approaches. Here, we summarize recent advances in various technologies for exosome isolation for cancer research. We outline the functions of exosomes in regulating tumor metastasis, drug resistance, and immune modulation in the context of cancer development. Finally, we discuss prospects and challenges for the clinical development of exosome-based liquid biopsies and therapeutics.
Collapse
Affiliation(s)
- Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Hao-Ting Sun
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Sheng-Lin Huang
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao-Qun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wei Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Tian-Tian Zou
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Xiao-Tian Shen
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yan Geng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
130
|
Lou X, Fu J, Zhao X, Zhuansun X, Rong C, Sun M, Niu H, Wu L, Zhang Y, An L, Guo L, Wan S, Wang S. MiR-7e-5p downregulation promotes transformation of low-grade follicular lymphoma to aggressive lymphoma by modulating an immunosuppressive stroma through the upregulation of FasL in M1 macrophages. J Exp Clin Cancer Res 2020; 39:237. [PMID: 33168041 PMCID: PMC7654609 DOI: 10.1186/s13046-020-01747-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/22/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In follicular lymphoma (FL), histologic transformation to high-grade FL and diffuse large B-cell lymphoma (DLBCL) is a critical adverse step in disease progression. Activation of the oncogene c-MYC and tumor microenvironment remodeling account for FL progression. A panel of microRNA (miRNA) was downregulated in transformed FL (tFL). METHODS Differentially expressed miRNAs were systematically compared in 11 lymph nodes from patients at different stages of disease. Expression of miR-7e-5p was analyzed in 46 B-cell lymphomas, including 30 FL tissues and 16 DLBCL tissues. In FL cells, transcriptional regulation of the oncogene c-MYC on its target miR-7e-5p was revealed by Chromatin Immunoprecipitation (ChIP) assay. Exosome, carrying differentially expressed miR-7e-5p was isolated and visualized by transmission electron microscope and fluorescence tracing. The effect of miR-7e-5p on recipient macrophage was determined by target gene quantification, flow cytometry, and TUNEL method in a cocultured system with miR-7e-5p-mimics or inhibitors treatment. Expression of miR-7e-5p targets, macrophage proportions, and clinical parameters were included for correlation analysis. RESULTS We determined that downregulation of miR-7e-5p, driven by c-MYC overexpression, was associated with poorer prognosis in FL patients. The decreased expression of miR-7e-5p in lymphoma cells led to a reduced exosomal transfer to surrounding macrophages. As a result, the target gene of miR-7e-5p, Fas ligand (FasL), was upregulated and activated the caspase signaling, which led to the apoptosis of M1 macrophages in tumor stroma. Finally, in transformed FL tissues, overexpression of FasL and activation of caspase proteins was detected in tumor stromal macrophages. Downregulation of miR-7e-5p was associated with poorer clinical outcomes. CONCLUSION Downregulation of exosomal miR-7e-5p induces stromal M1 macrophage apoptosis, which leads to immunosurveillance and transformation of FL.
Collapse
Affiliation(s)
- Xiaoli Lou
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, 215123, China
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jianhong Fu
- Department of Hematology, the First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, 215006, China
| | - Xin Zhao
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xuemei Zhuansun
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou, 215123, China
| | - Chao Rong
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Maomin Sun
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou, 215123, China
| | - Hui Niu
- Department of Pathology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lei Wu
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou, 215123, China
| | - Yongsheng Zhang
- Department of Pathology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lu An
- Department of Pathology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Shan Wan
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Shouli Wang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
- Collaborative Innovation Center of Clinical Immunology between Soochow University and Sihong People's Hospital, Sihong, 223900, China.
| |
Collapse
|
131
|
Zinger A, Brozovich A, Pasto A, Sushnitha M, Martinez JO, Evangelopoulos M, Boada C, Tasciotti E, Taraballi F. Bioinspired Extracellular Vesicles: Lessons Learned From Nature for Biomedicine and Bioengineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2172. [PMID: 33143238 PMCID: PMC7693812 DOI: 10.3390/nano10112172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Efficient communication is essential in all layers of the biological chain. Cells exchange information using a variety of signaling moieties, such as small molecules, proteins, and nucleic acids. Cells carefully package these messages into lipid complexes, collectively named extracellular vesicles (EVs). In this work, we discuss the nature of these cell carriers, categorize them by their origin, explore their role in the homeostasis of healthy tissues, and examine how they regulate the pathophysiology of several diseases. This review will also address the limitations of using EVs for clinical applications and discuss novel methods to engineer nanoparticles to mimic the structure, function, and features of EVs. Using lessons learned from nature and understanding how cells use EVs to communicate across distant sites, we can develop a better understanding of how to tailor the fundamental features of drug delivery carriers to encapsulate various cargos and target specific sites for biomedicine and bioengineering.
Collapse
Affiliation(s)
- Assaf Zinger
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ava Brozovich
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Texas A&M College of Medicine, Bryan, TX 77807, USA
| | - Anna Pasto
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Italy
| | - Manuela Sushnitha
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Jonathan O. Martinez
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Michael Evangelopoulos
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Christian Boada
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ennio Tasciotti
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Biotechnology Program, San Raffaele University, Via di Val Cannuta, 247, 00166 Roma RM, Italy
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
132
|
Słomka A, Mocan T, Wang B, Nenu I, Urban SK, Gonzalez-Carmona MA, Schmidt-Wolf IGH, Lukacs-Kornek V, Strassburg CP, Spârchez Z, Kornek M. EVs as Potential New Therapeutic Tool/Target in Gastrointestinal Cancer and HCC. Cancers (Basel) 2020; 12:3019. [PMID: 33080904 PMCID: PMC7603109 DOI: 10.3390/cancers12103019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
For more than a decade, extracellular vesicles (EVs) have been in focus of science. Once thought to be an efficient way to eliminate undesirable cell content, EVs are now well-accepted as being an important alternative to cytokines and chemokines in cell-to-cell communication route. With their cargos, mainly consisting of functional proteins, lipids and nucleic acids, they can activate signalling cascades and thus change the phenotype of recipient cells at local and systemic levels. Their substantial role as modulators of various physiological and pathological processes is acknowledged. Importantly, more and more evidence arises that EVs play a pivotal role in many stages of carcinogenesis. Via EV-mediated communication, tumour cells can manipulate cells from host immune system or from the tumour microenvironment, and, ultimately, they promote tumour progression and modulate host immunity towards tumour's favour. Additionally, the role of EVs in modulating resistance to pharmacological and radiological therapy of many cancer types has become evident lately. Our understanding of EV biology and their role in cancer promotion and drug resistance has evolved considerably in recent years. In this review, we specifically discuss the current knowledge on the association between EVs and gastrointestinal (GI) and liver cancers, including their potential for diagnosis and treatment.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-067 Bydgoszcz, Poland;
| | - Tudor Mocan
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.M.); (I.N.); (Z.S.)
| | - Bingduo Wang
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Iuliana Nenu
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.M.); (I.N.); (Z.S.)
| | - Sabine K. Urban
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Maria A. Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany;
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany;
| | - Christian P. Strassburg
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Zeno Spârchez
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.M.); (I.N.); (Z.S.)
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| |
Collapse
|
133
|
Yoon JH, Ashktorab H, Smoot DT, Nam SW, Hur H, Park WS. Uptake and tumor-suppressive pathways of exosome-associated GKN1 protein in gastric epithelial cells. Gastric Cancer 2020; 23:848-862. [PMID: 32291710 DOI: 10.1007/s10120-020-01068-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastrokine 1 (GKN1) is a stomach-specific tumor suppressor that is secreted into extracellular space as an exosomal cargo protein. The objective of this study was to investigate the uptake and tumor-suppressive pathways of exosome-associated GKN1 protein in gastric epithelial cells. METHODS Immunofluorescent and Western blot analysis were used to investigate gastric-specific uptake of HFE-145-derived exosomes. Binding affinity of HFE-145 derived exosomes with integrin proteins was examined using protein microarray chip. Tumor suppressor activities of exosome-carrying GKN1 protein were analyzed using transwell co-culture, MTT assay, BrdU incorporation, immunoprecipitation, and Western blot analysis. RESULTS HFE-145-derived exosomes were internalized only into HFE-145 gastric epithelial cells and gastric cancer cells. Gastric-specific uptake of stomach-derived exosomes required integrin α6 and αX proteins. Clathrin and macropinocytosis increased the uptake of exosomes into gastric epithelial cells, whereas caveolin inhibited the uptake of exosomes. Transwell co-culture of AGS cells with HFE-145 cells markedly inhibited viability and proliferation of AGS cells. Following uptake of HFE-145-derived exosomes in recipient cells, GKN1 protein bound to HRas and inhibited the binding of HRas to b-Raf and c-Raf which subsequently downregulated HRas/Raf/MEK/ERK signaling pathways in AGS, MKN1 cells, and MKN1-derived xenograft tumor tissues. In addition, exosomal GKN1 protein suppressed both migration and invasion of gastric cancer cells by inhibiting epithelial-mesenchymal transition. CONCLUSIONS Gastric-specific uptake of exosomes derived from gastric epithelial cells requires integrin α6 and αX proteins in both gastric epithelial cells and exosomes. Exosomal GKN1 protein inhibits gastric carcinogenesis by downregulating HRas/Raf/MEK/ERK signaling pathways.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Hassan Ashktorab
- Department of Medicine, Howard University, District of Columbia, Washington, 20060, USA
| | - Duane T Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN, 37208, USA
| | - Suk Woo Nam
- Department of Pathology, Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Hoon Hur
- Department of Surgery, Brain Korea 21 Plus Research Center for Biomedical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Won Sang Park
- Department of Pathology, Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
134
|
Shao S, Fang H, Li Q, Wang G. Extracellular vesicles in Inflammatory Skin Disorders: from Pathophysiology to Treatment. Am J Cancer Res 2020; 10:9937-9955. [PMID: 32929326 PMCID: PMC7481415 DOI: 10.7150/thno.45488] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs), naturally secreted by almost all known cell types into extracellular space, can transfer their bioactive cargos of nucleic acids and proteins to recipient cells, mediating cell-cell communication. Thus, they participate in many pathogenic processes including immune regulation, cell proliferation and differentiation, cell death, angiogenesis, among others. Cumulative evidence has shown the important regulatory effects of EVs on the initiation and progression of inflammation, autoimmunity, and cancer. In dermatology, recent studies indicate that EVs play key immunomodulatory roles in inflammatory skin disorders, including psoriasis, atopic dermatitis, lichen planus, bullous pemphigoid, systemic lupus erythematosus, and wound healing. Importantly, EVs can be used as biomarkers of pathophysiological states and/or therapeutic agents, both as carriers of drugs or even as a drug by themselves. In this review, we will summarize current research advances of EVs from different cells and their implications in inflammatory skin disorders, and further discuss their future applications, updated techniques, and challenges in clinical translational medicine.
Collapse
|
135
|
MicroRNAs and Their Targetomes in Tumor-Immune Communication. Cancers (Basel) 2020; 12:cancers12082025. [PMID: 32722019 PMCID: PMC7465095 DOI: 10.3390/cancers12082025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 01/14/2023] Open
Abstract
The development of cancer is a complex and dynamically regulated multiple-step process that involves many changes in gene expression. Over the last decade, microRNAs (miRNAs), a class of short regulatory non-coding RNAs, have emerged as key molecular effectors and regulators of tumorigenesis. While aberrant expression of miRNAs or dysregulated miRNA-mediated gene regulation in tumor cells have been shown to be capable of directly promoting or inhibiting tumorigenesis, considering the well-reported role of the immune system in cancer, tumor-derived miRNAs could also impact tumor growth through regulating anti-tumor immune responses. Here, we discuss howmiRNAs can function as central mediators that influence the crosstalk between cancer and the immune system. Moreover, we also review the current progress in the development of novel experimental approaches for miRNA target identification that will facilitate our understanding of miRNA-mediated gene regulation in not only human malignancies, but also in other genetic disorders.
Collapse
|
136
|
Li C, Donninger H, Eaton J, Yaddanapudi K. Regulatory Role of Immune Cell-Derived Extracellular Vesicles in Cancer: The Message Is in the Envelope. Front Immunol 2020; 11:1525. [PMID: 32765528 PMCID: PMC7378739 DOI: 10.3389/fimmu.2020.01525] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of membrane-surrounded structures. Besides serving as a harbor for the unwanted material exocytosed by cells, EVs play a critical role in conveying intact protein, genetic, and lipid contents that are important for intercellular communication. EVs, broadly comprised of microvesicles and exosomes, are released to the extracellular environment from nearly all cells either via shedding from the plasma membrane or by originating from the endosomal system. Exosomes are 40–150 nm, endosome-derived small EVs (sEVs) that are released by cells into the extracellular environment. This review focuses on the biological properties of immune cell-derived sEVs, including composition and cellular targeting and mechanisms by which these immune cell-derived sEVs influence tumor immunity either by suppressing or promoting tumor growth, are discussed. The final section of this review discusses how the biological properties of immune cell-derived sEVs can be manipulated to improve their immunogenicity.
Collapse
Affiliation(s)
- Chi Li
- Experimental Therapeutics Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Howard Donninger
- Experimental Therapeutics Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Medicine, University of Louisville, Louisville, KY, United States
| | - John Eaton
- Department of Medicine, University of Louisville, Louisville, KY, United States.,Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Kavitha Yaddanapudi
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, United States.,Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
137
|
Kariri YA, Aleskandarany MA, Joseph C, Kurozumi S, Mohammed OJ, Toss MS, Green AR, Rakha EA. Molecular Complexity of Lymphovascular Invasion: The Role of Cell Migration in Breast Cancer as a Prototype. Pathobiology 2020; 87:218-231. [PMID: 32645698 DOI: 10.1159/000508337] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
Lymphovascular invasion (LVI) is associated with poor outcome in breast cancer (BC); however, its underlying mechanisms remain ill-defined. LVI in BC develops through complex molecular pathways involving not only the interplay with the surrounding microenvironment along with endothelial cells lining the lymphovascular spaces but also changes in the malignant epithelial cells with the acquisition of more invasive and migration abilities. In this review, we focus on the key features that enable tumour cell detachment from the primary niche, their migration and interaction with the surrounding microenvironment as well as the crosstalk with the vascular endothelial cells, which eventually lead to intravasation of tumour cells and LVI. Intravascular tumour cell survival and migration, their distant site extravasation, stromal invasion and growth are part of the metastatic cascade. Cancer cell migration commences with loss of tumour cells' cohesion initiating the invasion and migration processes which are usually accompanied by the accumulation of specific cellular and molecular changes that enable tumour cells to overcome the blockades of the extracellular matrix, spread into surrounding tissues and interact with stromal cells and immune cells. Thereafter, tumour cells migrate further via interacting with lymphovascular endothelial cells to penetrate the vessel wall leading ultimately to intravasation of cancer cells. Exploring the potential factors influencing cell migration in LVI can help in understanding the underlying mechanisms of LVI to identify targeted therapy in BC.
Collapse
Affiliation(s)
- Yousif A Kariri
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Faculty of Applied Medical Science, Shaqra University, Riyadh, Saudi Arabia.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Chitra Joseph
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Sasagu Kurozumi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom,
| |
Collapse
|
138
|
Barnes BJ, Somerville CC. Modulating Cytokine Production via Select Packaging and Secretion From Extracellular Vesicles. Front Immunol 2020; 11:1040. [PMID: 32547552 PMCID: PMC7272603 DOI: 10.3389/fimmu.2020.01040] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cytokines are soluble factors that play vital roles in systemic function due to their ability to initiate and mediate cell-to-cell communication. Another important mechanism of intercellular communication that has gained significant attention in the past 10 years is the release of extracellular vesicles (EVs). EVs are released by all cells during normal physiology, in states of resting and activation, as well as during disease. Accumulating evidence indicates that cytokines may be packaged into EVs, and the packaging of cytokines into EVs, along with their ultimate secretion, may also be regulated by cytokines. Importantly, the repertoire of biomolecules packaged into EVs is shaped by the biological state of the cell (resting vs. activated and healthy vs. disease) and the EV biogenesis pathway involved, thus providing mechanisms by which EV packaging and secretion may be modulated. Given the critical role of cytokines in driving acute and chronic inflammatory and autoimmune diseases, as well as their role in establishing the tumor immune microenvironment, in this review, we will focus on these disease settings and summarize recent progress and mechanisms by which cytokines may be packaged within and modulated by EVs, as a therapeutic option for regulating innate and adaptive immunity.
Collapse
Affiliation(s)
- Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | - Carter C Somerville
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
139
|
Pretti MAM, Bernardes SS, da Cruz JGV, Boroni M, Possik PA. Extracellular vesicle-mediated crosstalk between melanoma and the immune system: Impact on tumor progression and therapy response. J Leukoc Biol 2020; 108:1101-1115. [PMID: 32450618 DOI: 10.1002/jlb.3mr0320-644r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/31/2020] [Accepted: 04/26/2020] [Indexed: 12/21/2022] Open
Abstract
Melanoma is a very lethal tumor type that easily spreads and colonizes regional and distant tissues. Crucial phenotypic changes that favor melanoma metastasis are interposed by the tumor microenvironment (TME), representing a complex network in which malignant cells communicate not only with each other but also with stromal and immune cells. This cell-cell communication can be mediated by extracellular vesicles (EVs), which are lipid bilayer-delimited particles capable of carrying a wide variety of bioactive compounds. Both melanoma-derived or TME-derived EVs deliver important pro- and antitumor signals implicated in various stages of tumor progression, such as proliferation, metastasis, and treatment response. In this review, we highlight the recent advances in EV-mediated crosstalk between melanoma and immune cells and other important cells of the TME, and address different aspects of this bidirectional interaction as well as how this may hinder or trigger the development and progression of melanoma. We also discuss the potential of using EVs as biomarkers and therapeutic strategies for melanoma.
Collapse
Affiliation(s)
- Marco Antônio Marques Pretti
- Bioinformatics and Computational Biology Laboratory, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil.,Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Sara Santos Bernardes
- Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil.,Tissue Microenvironment Laboratory, Department of General Pathology, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Jéssica Gonçalves Vieira da Cruz
- Bioinformatics and Computational Biology Laboratory, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Mariana Boroni
- Bioinformatics and Computational Biology Laboratory, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Patrícia A Possik
- Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| |
Collapse
|
140
|
Xie M, Xiong W, She Z, Wen Z, Abdirahman AS, Wan W, Wen C. Immunoregulatory Effects of Stem Cell-Derived Extracellular Vesicles on Immune Cells. Front Immunol 2020; 11:13. [PMID: 32117221 PMCID: PMC7026133 DOI: 10.3389/fimmu.2020.00013] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Recent investigations on the regulatory action of extracellular vesicles (EVs) on immune cells in vitro and in vivo have sparked interest on the subject. As commonly known, EVs are subcellular components secreted by a paracellular mechanism and are essentially a group of nanoparticles containing exosomes, microvesicles, and apoptotic bodies. They are double-layer membrane-bound vesicles enriched with proteins, nucleic acids, and other active compounds. EVs are recognized as a novel apparatus for intercellular communication that acts through delivery of signal molecules. EVs are secreted by almost all cell types, including stem/progenitor cells. The EVs derived from stem/progenitor cells are analogous to the parental cells and inhibit or enhance immune response. This review aims to provide its readers a comprehensive overview of the possible mechanisms underlying the immunomodulatory effects exerted by stem/progenitor cell-derived EVs upon natural killer (NK) cells, dendritic cells (DCs), monocytes/macrophages, microglia, T cells, and B cells.
Collapse
Affiliation(s)
- Min Xie
- Division of Hematology and Tumor, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhou She
- Division of Hematology and Tumor, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zaichi Wen
- Division of Hematology and Tumor, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Amin Sheikh Abdirahman
- Division of Hematology and Tumor, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wuqing Wan
- Division of Hematology and Tumor, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Wen
- Division of Hematology and Tumor, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
141
|
Jurj A, Zanoaga O, Braicu C, Lazar V, Tomuleasa C, Irimie A, Berindan-Neagoe I. A Comprehensive Picture of Extracellular Vesicles and Their Contents. Molecular Transfer to Cancer Cells. Cancers (Basel) 2020; 12:cancers12020298. [PMID: 32012717 PMCID: PMC7072213 DOI: 10.3390/cancers12020298] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Critical processes such as growth, invasion, and metastasis of cancer cells are sustained via bidirectional cell-to-cell communication in tissue complex environments. Such communication involves the secretion of soluble factors by stromal cells and/or cancer cells within the tumor microenvironment (TME). Both stromal and cancer cells have been shown to export bilayer nanoparticles: encapsulated regulatory molecules that contribute to cell-to-cell communication. These nanoparticles are known as extracellular vesicles (EVs) being classified into exosomes, microvesicles, and apoptotic bodies. EVs carry a vast repertoire of molecules such as oncoproteins and oncopeptides, DNA fragments from parental to target cells, RNA species (mRNAs, microRNAs, and long non-coding RNA), and lipids, initiating phenotypic changes in TME. According to their specific cargo, EVs have crucial roles in several early and late processes associated with tumor development and metastasis. Emerging evidence suggests that EVs are being investigated for their implication in early cancer detection, monitoring cancer progression and chemotherapeutic response, and more relevant, the development of novel targeted therapeutics. In this study, we provide a comprehensive understanding of the biophysical properties and physiological functions of EVs, their implications in TME, and highlight the applicability of EVs for the development of cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
| | - Vladimir Lazar
- Worldwide Innovative Network for Personalized Cancer Therapy, 94800 Villejuif, France;
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
- Department of Hematology, The Oncology Institute Prof. Dr. Ion Chiricuta, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
- Department of Surgery, The Oncology Institute Prof. Dr. Ion Chiricuta, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Correspondence: (A.I.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
- MEDFUTURE—Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuta, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Correspondence: (A.I.); (I.B.-N.)
| |
Collapse
|
142
|
Hu Y, Zhang R, Chen G. Exosome and Secretion: Action On? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:455-483. [PMID: 32185722 DOI: 10.1007/978-981-15-3266-5_19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Originally treated as part of a cellular waste, extracellular vesicles (EVs) are being shown to possess a vast variety of functions, of which exosome is the most studied one. Most cells, such as tumor cells, immunocytes, and fibroblasts can secrete exosomes, especially under certain stresses the amount is much higher, and the contents of exosome represent the status of the donor cells and the tumor microenvironment. As crucial transporters for cells' content exchange, much attention has been raised in the utilities of exosomes to suppress immune response, and to modify a microenvironment favorable for cancer progression. Exosomal immune checkpoints, such as programmed cell death ligand 1 (PD-L1), contribute to immunosuppression and are associated with anti-PD-1 response. Many forms of soluble immune checkpoint receptors have also been shown to influence efficacy mediated by their therapeutic antibodies. Therefore, targeting pro-tumorous exosomes may achieve antitumor effect supplementary to existing therapies. Exosome, itself natural liposome-like structure, allows it to be a potential drug delivery tool.
Collapse
Affiliation(s)
- Ye Hu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China.
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Rui Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| |
Collapse
|
143
|
Nie W, Wu G, Zhang J, Huang L, Ding J, Jiang A, Zhang Y, Liu Y, Li J, Pu K, Xie H. Responsive Exosome Nano‐bioconjugates for Synergistic Cancer Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912524] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Weidong Nie
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Guanghao Wu
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Jinfeng Zhang
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Li‐Li Huang
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Jingjing Ding
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Anqi Jiang
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yahui Zhang
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yanhong Liu
- Technical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Jingchao Li
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Hai‐Yan Xie
- School of Life ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
144
|
Nie W, Wu G, Zhang J, Huang LL, Ding J, Jiang A, Zhang Y, Liu Y, Li J, Pu K, Xie HY. Responsive Exosome Nano-bioconjugates for Synergistic Cancer Therapy. Angew Chem Int Ed Engl 2019; 59:2018-2022. [PMID: 31746532 DOI: 10.1002/anie.201912524] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Indexed: 12/28/2022]
Abstract
Exosomes hold great potential in therapeutic development. However, native exosomes usually induce insufficient effects in vivo and simply act as drug delivery vehicles. Herein, we synthesize responsive exosome nano-bioconjugates for cancer therapy. Azide-modified exosomes derived from M1 macrophages are conjugated with dibenzocyclooctyne-modified antibodies of CD47 and SIRPα (aCD47 and aSIRPα) through pH-sensitive linkers. After systemic administration, the nano-bioconjugates can actively target tumors through the specific recognition between aCD47 and CD47 on the tumor cell surface. In the acidic tumor microenvironment, the benzoic-imine bonds of the nano-bioconjugates are cleaved to release aSIRPα and aCD47 that can, respectively, block SIRPα on macrophages and CD47, leading to abolished "don't eat me" signaling and improved phagocytosis of macrophages. Meanwhile, the native M1 exosomes effectively reprogram the macrophages from pro-tumoral M2 to anti-tumoral M1.
Collapse
Affiliation(s)
- Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guanghao Wu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jinfeng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li-Li Huang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jingjing Ding
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Anqi Jiang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yahui Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yanhong Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
145
|
Xie F, Zhou X, Fang M, Li H, Su P, Tu Y, Zhang L, Zhou F. Extracellular Vesicles in Cancer Immune Microenvironment and Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901779. [PMID: 31871860 PMCID: PMC6918121 DOI: 10.1002/advs.201901779] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/26/2019] [Indexed: 05/10/2023]
Abstract
Extracellular vesicles (EVs) are secreted by almost all cells. They contain proteins, lipids, and nucleic acids which are delivered from the parent cells to the recipient cells. Thereby, they function as mediators of intercellular communication and molecular transfer. Recent evidences suggest that exosomes, a small subset of EVs, are involved in numerous physiological and pathological processes and play essential roles in remodeling the tumor immune microenvironment even before the occurrence and metastasis of cancer. Exosomes derived from tumor cells and host cells mediate their mutual regulation locally or remotely, thereby determining the responsiveness of cancer therapies. As such, tumor-derived circulating exosomes are considered as noninvasive biomarkers for early detection and diagnosis of tumor. Exosome-based therapies are also emerging as cutting-edge and promising strategies that could be applied to suppress tumor progression or enhance anti-tumor immunity. Herein, the current understanding of exosomes and their key roles in modulating immune responses, as well as their potential therapeutic applications are outlined. The limitations of current studies are also presented and directions for future research are described.
Collapse
Affiliation(s)
- Feng Xie
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Xiaoxue Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Head & Neck CancerTranslational Research of Zhejiang ProvinceZhejiang Cancer HospitalHangzhou310058P. R. China
| | - Meiyu Fang
- Key Laboratory of Head & Neck CancerTranslational Research of Zhejiang ProvinceZhejiang Cancer HospitalHangzhou310058P. R. China
| | - Heyu Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Peng Su
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yifei Tu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Fangfang Zhou
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
146
|
Yang Z, Ma Y, Zhao H, Yuan Y, Kim BYS. Nanotechnology platforms for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1590. [PMID: 31696664 DOI: 10.1002/wnan.1590] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Abstract
Various cancer therapies have advanced remarkably over the past decade. Unlike the direct therapeutic targeting of tumor cells, cancer immunotherapy is a new strategy that boosts the host's immune system to detect specific cancer cells for efficient elimination. Nanoparticles incorporating immunomodulatory agents can activate immune cells and modulate the tumor microenvironment to enhance antitumor immunity. Such nanoparticle-based cancer immunotherapies have received considerable attention and have been extensively studied in recent years. This review thus focuses on nanoparticle-based platforms (especially naturally derived nanoparticles and synthetic nanoparticles) utilized in recent advances; summarizes delivery systems that incorporate various immune-modulating agents, including peptides and nucleic acids, immune checkpoint inhibitors, and other small immunostimulating agents; and introduces combinational cancer immunotherapy with nanoparticles, especially nanoparticle-based photo-immunotherapy and nanoparticle-based chemo-immunotherapy. Undoubtedly, the recent studies introduced in this review prove that nanoparticle-incorporated cancer immunotherapy is a highly promising treatment modality for patients with cancer. Nonetheless further research is needed to solve safety concerns and improve efficacy of nanoplatform-based cancer immunotherapy for future clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Zhaogang Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Hai Zhao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuan Yuan
- Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
147
|
Elliot A, Näsman A, Westman M, Marklund L, Stjärne P, Hammarstedt-Nordenvall L. Human papillomavirus and infiltration of CD8- and Foxp3-positive immune cells in sinonasal inverted papillomas. Acta Otolaryngol 2019; 139:1019-1023. [PMID: 31486701 DOI: 10.1080/00016489.2019.1654616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Sinonasal inverted papilloma (IP) is a benign tumor with a high risk of local recurrence and a potential to malignify and Human papillomavirus (HPV) has been suggested an etiological factor. p16INK4a (p16) overexpression is considered a surrogate marker for HPV, but whether p16 and HPV correlate to IP is uncertain. Besides, a prognostic role of tumor infiltrating lymphocytes (TILs) are observed in many tumors, however their role in IP is sparsely studied. Aims/objectives: We hence analyzed IPs for the presence and the prognostic role of HPV and p16 overexpression together with CD8+ and FoxP3+ TILs in a population-based study. Material and methods: 98 IP patients diagnosed 2001-2010 were identified from the Swedish Cancer Registry and analyzed for HPV by PCR and p16, CD8 and FoxP3 was by immunohistochemistry. Results: In total, 12.2% of the IPs were HPV-positive (nine HPV-11, two HPV-6 and one HPV-45). Patients with HPV-positive lesions were younger (p = .003) and tended to present with more dysplasia. No correlation was observed between TILs and prognosis. Conclusions and significance: Our data suggests that patients with HPV-positive IPs present with different clinical characteristics, suggesting possibly different disease entities. Moreover, recurrences may occur >5 years, which should be considered in the follow-up.
Collapse
Affiliation(s)
- Alexandra Elliot
- Department of Oto-Rhino-Laryngology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Anders Näsman
- Department of Oncology-Pathology, Department of Clinical Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Marit Westman
- Department of Oto-Rhino-Laryngology, Karolinska Institute, Stockholm, Sweden
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institute, Stockholm
| | - Linda Marklund
- Department of Oto-Rhino-Laryngology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Pär Stjärne
- Department of Oto-Rhino-Laryngology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Lalle Hammarstedt-Nordenvall
- Department of Oto-Rhino-Laryngology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
148
|
Wu Z, Zhang Z, Xia W, Cai J, Li Y, Wu S. Extracellular vesicles in urologic malignancies-Implementations for future cancer care. Cell Prolif 2019; 52:e12659. [PMID: 31469460 PMCID: PMC6869217 DOI: 10.1111/cpr.12659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs), a heterogeneous group of vesicles differing in size and shape, cargo content and function, are membrane-bound and nano-sized vesicles that could be released by nearly all variations of cells. EVs have gained considerable attention in the past decades for their functions in modulating intercellular signalling and roles as potential pools for the novel diagnostic and prognostic biomarkers, as well as therapeutic targets in several cancers including urological neoplasms. In general, human and animal cells both can release distinct types of EVs, including exosomes, microvesicles, oncosomes and large oncosomes, and apoptotic bodies, while the content of EVs can be divided into proteins, lipids and nucleic acids. However, the lack of standard methods for isolation and detection platforms rein the widespread usage in clinical applications warranted furthermore investigations in the development of reliable, specific and sensitive isolation techniques. Whether and how the EVs work has become pertinent issues. With the aid of high-throughput proteomics or genomics methods, a fully understanding of contents contained in EVs from urogenital tumours, beyond all doubt, will improve our ability to identify the complex genomic alterations in the process of cancer and, in turn, contribute to detect potential therapeutic target and then provide personalization strategy for patient.
Collapse
Affiliation(s)
- Zhangsong Wu
- Medical CollegeShenzhen UniversityShenzhenChina
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
| | - Zhiqiang Zhang
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
| | - Wuchao Xia
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Medical CollegeAnhui University of Science and TechnologyHuainanChina
| | - Jiajia Cai
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Medical CollegeAnhui University of Science and TechnologyHuainanChina
| | - Yuqing Li
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
| | - Song Wu
- Medical CollegeShenzhen UniversityShenzhenChina
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Medical CollegeAnhui University of Science and TechnologyHuainanChina
- Department of Urological Surgery, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
149
|
Xie F, Xu M, Lu J, Mao L, Wang S. The role of exosomal PD-L1 in tumor progression and immunotherapy. Mol Cancer 2019; 18:146. [PMID: 31647023 PMCID: PMC6813045 DOI: 10.1186/s12943-019-1074-3] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023] Open
Abstract
Programmed death ligand 1 (PD-L1), a type I transmembrane protein, binds to its receptor PD-1 to suppress the activation of T cells, thereby maintaining immunological homeostasis. In contrast, tumor cells highly express PD-L1, which binds to receptor PD-1 expressed on activated T cells, leading to immune escape. Anti-PD-1/PD-L1 immune checkpoint therapy blocks the binding of PD-1/PD-L1 to reinvigorate the exhausted T cells, thereby inhibiting tumor growth. Exosomes are biologically active lipid-bilayer nanovesicles secreted by various cell types that mediate intercellular signal communication. Numerous studies have shown that tumor cells are able to promote tumor epithelial-mesenchymal transition, angiogenesis, and immune escape by releasing exosomes. Recent studies imply that tumor-derived exosomes could carry PD-L1 in the same membrane topology as the cell surface, thereby resisting immune checkpoint therapy. In this review, we mainly discuss the role of exosomes in the regulation of tumor progression and the potential resistance mechanism to immunotherapy via exosomal PD-L1. In addition, we propose that exosomal PD-L1 may have the potential to be a target to overcome resistance to anti-PD-1/PD-L1 antibody therapy.
Collapse
Affiliation(s)
- Feiting Xie
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Mengxue Xu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jian Lu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China. .,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
150
|
Song C, Li F, Wang S, Wang J, Wei W, Ma G. Recent Advances in Particulate Adjuvants for Cancer Vaccination. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cui Song
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianghua Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|