101
|
Cheung C, Kernan KF, Berg RA, Zuppa AF, Notterman DA, Pollack MM, Wessel D, Meert KL, Hall MW, Newth C, Lin JC, Doctor A, Shanley T, Cornell T, Harrison RE, Banks RK, Reeder RW, Holubkov R, Carcillo JA, Fink EL. Acute Disorders of Consciousness in Pediatric Severe Sepsis and Organ Failure: Secondary Analysis of the Multicenter Phenotyping Sepsis-Induced Multiple Organ Failure Study. Pediatr Crit Care Med 2023; 24:840-848. [PMID: 37314247 PMCID: PMC10719421 DOI: 10.1097/pcc.0000000000003300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Acute disorders of consciousness (DoC) in pediatric severe sepsis are associated with increased risk of morbidity and mortality. We sought to examine the frequency of and factors associated with DoC in children with sepsis-induced organ failure. DESIGN Secondary analysis of the multicenter Phenotyping Sepsis-Induced Multiple Organ Failure Study (PHENOMS). SETTING Nine tertiary care PICUs in the United States. PATIENTS Children less than 18 years old admitted to a PICU with severe sepsis and at least one organ failure during a PICU stay. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The primary outcome was frequency of DoC, defined as Glasgow Coma Scale (GCS) less than 12 in the absence of sedatives during an ICU stay, among children with severe sepsis and the following: single organ failure, nonphenotypeable multiple organ failure (MOF), MOF with one of the PHENOMS phenotypes (immunoparalysis-associated MOF [IPMOF], sequential liver failure-associated MOF, thrombocytopenia-associated MOF), or MOF with multiple phenotypes. A multivariable logistic regression analysis was performed to evaluate the association between clinical variables and organ failure groups with DoC. Of 401 children studied, 71 (18%) presented with DoC. Children presenting with DoC were older (median 8 vs 5 yr; p = 0.023), had increased hospital mortality (21% vs 10%; p = 0.011), and more frequently presented with both any MOF (93% vs 71%; p < 0.001) and macrophage activation syndrome (14% vs 4%; p = 0.004). Among children with any MOF, those presenting with DoC most frequently had nonphenotypeable MOF and IPMOF (52% and 34%, respectively). In the multivariable analysis, older age (odds ratio, 1.07; 95% CI, 1.01-1.12) and any MOF (3.22 [1.19-8.70]) were associated with DoC. CONCLUSIONS One of every five children with severe sepsis and organ failure experienced acute DoC during their PICU stay. Preliminary findings suggest the need for prospective evaluation of DoC in children with sepsis and MOF.
Collapse
Affiliation(s)
| | - Kate F. Kernan
- Division of Pediatric Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Robert A. Berg
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Athena F. Zuppa
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Murray M. Pollack
- Department of Pediatrics, Children’s National Hospital, Washington, DC, USA
| | - David Wessel
- Department of Pediatrics, Children’s National Hospital, Washington, DC, USA
| | - Kathleen L. Meert
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
| | - Mark W. Hall
- Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Christopher Newth
- Division of Pediatric Critical Care Medicine, Department of Anesthesiology and Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - John C. Lin
- Division of Critical Care Medicine, Department of Pediatrics, St. Louis Children’s Hospital, St. Louis, MO, USA
| | - Allan Doctor
- Division of Critical Care Medicine, Department of Pediatrics, St. Louis Children’s Hospital, St. Louis, MO, USA
| | - Tom Shanley
- Division of Critical Care Medicine, Department of Pediatrics, C. S. Mott Children’s Hospital, Ann Arbor, MI, USA
| | - Tim Cornell
- Division of Critical Care Medicine, Department of Pediatrics, C. S. Mott Children’s Hospital, Ann Arbor, MI, USA
| | - Rick E. Harrison
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | - Joseph A. Carcillo
- Division of Pediatric Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Ericka L. Fink
- Division of Pediatric Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
102
|
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, with extremely high mortality. Notably, sepsis is a heterogeneous syndrome characterized by a vast, multidimensional array of clinical and biologic features, which has hindered advances in the therapeutic field beyond the current standards. DATA SOURCES We used PubMed to search the subject-related medical literature by searching for the following single and/or combination keywords: sepsis, heterogeneity, personalized treatment, host response, infection, epidemiology, mortality, incidence, age, children, sex, comorbidities, gene susceptibility, infection sites, bacteria, fungi, virus, host response, organ dysfunction and management. RESULTS We found that host factors (age, biological sex, comorbidities, and genetics), infection etiology, host response dysregulation and multiple organ dysfunctions can all result in different disease manifestations, progression, and response to treatment, which make it difficult to effectively treat and manage sepsis patients. CONCLUSIONS Herein, we have summarized contributing factors to sepsis heterogeneity, including host factors, infection etiology, host response dysregulation, and multiple organ dysfunctions, from the key elements of pathogenesis of sepsis. An in-depth understanding of the factors that contribute to the heterogeneity of sepsis will help clinicians understand the complexity of sepsis and enable researchers to conduct more personalized clinical studies for homogenous patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, ShengJing Hospital of China Medical University, No. 36, SanHao Street, Shenyang City, Liaoning Province, 110004, China
| | - Chun-Feng Liu
- Department of Pediatrics, ShengJing Hospital of China Medical University, No. 36, SanHao Street, Shenyang City, Liaoning Province, 110004, China.
| |
Collapse
|
103
|
Feng S, Cui N, Zhao W, Zhao H, Wang C, Zheng J, Zhu T, Chen J, Jiang H, Su Q. Prognostic biomarkers for sepsis mortality based on the literature and LC-MS-based metabolomics of sepsis patients. Am J Transl Res 2023; 15:5757-5768. [PMID: 37854200 PMCID: PMC10579003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/29/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES The management of sepsis, a potentially lethal overreaction to infection, is limited by the lack of prognostic tools to guide its treatment. Our aim is to identify a novel metabolic biomarker panel for predicting sepsis mortality based on a literature review and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. METHODS In the literature, we found metabolomics biomarkers reported to predict sepsis mortality. We determined the classifications, reported frequency, and KEGG pathway enrichment of these markers. Using serum samples from 20 sepsis survivors and 20 non-survivors within 28 days after admission to the intensive care unit (ICU), we performed LC-MS-based metabolomics. Based on the literature review and metabolomics, a prognostic biomarker panel for sepsis was identified and its area under the curve (AUC) values was assessed. RESULTS Kynurenate, caffeine, and lysoPC 22:4 were selected as a prognostic biomarker panel for sepsis. The panel had an area under the curve (AUC) of 0.885 (95% CI, 0.694-1) evaluated by linear support vector machine (SVM) and 0.849 (0.699-1) by random forest (RF), which was higher than that of the Sequential Organ Failure Assessment (SOFA). A combination of kynurenate, caffeine, and lysoPC 22:4 and SOFA provided the best discriminating performance, with AUCs of 0.961 (0.878-1) for SVM and 0.916 (0.774-1) for RF. CONCLUSIONS The prognostic biomarker panel consisting of kynurenate, caffeine, and lysoPC 22:4 may aid in the identification of sepsis patients at a high risk of death, leading to personalized therapy in clinical practice that will improve sepsis survival.
Collapse
Affiliation(s)
- Shi Feng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Key Laboratory of Nephropathy, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Institute of Nephropathy, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Nannan Cui
- Department of ICU, The First Affiliated Hospital, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Wenjun Zhao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Key Laboratory of Nephropathy, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Institute of Nephropathy, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Haige Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Key Laboratory of Nephropathy, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Institute of Nephropathy, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Junnan Zheng
- Department of ICU, The First Affiliated Hospital, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Tingting Zhu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Key Laboratory of Nephropathy, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Institute of Nephropathy, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Key Laboratory of Nephropathy, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Institute of Nephropathy, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Key Laboratory of Nephropathy, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Institute of Nephropathy, Zhejiang UniversityHangzhou 310003, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Qun Su
- Department of ICU, The First Affiliated Hospital, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| |
Collapse
|
104
|
Peng Y, Wu Q, Ding X, Wang L, Gong H, Feng C, Liu T, Zhu H. A hypoxia- and lactate metabolism-related gene signature to predict prognosis of sepsis: discovery and validation in independent cohorts. Eur J Med Res 2023; 28:320. [PMID: 37661250 PMCID: PMC10476321 DOI: 10.1186/s40001-023-01307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND High throughput gene expression profiling is a valuable tool in providing insight into the molecular mechanism of human diseases. Hypoxia- and lactate metabolism-related genes (HLMRGs) are fundamentally dysregulated in sepsis and have great predictive potential. Therefore, we attempted to build an HLMRG signature to predict the prognosis of patients with sepsis. METHODS Three publicly available transcriptomic profiles of peripheral blood mononuclear cells from patients with sepsis (GSE65682, E-MTAB-4421 and E-MTAB-4451, total n = 850) were included in this study. An HLMRG signature was created by employing Cox regression and least absolute shrinkage and selection operator estimation. The CIBERSORT method was used to analyze the abundances of 22 immune cell subtypes based on transcriptomic data. Metascape was used to investigate pathways related to the HLMRG signature. RESULTS We developed a prognostic signature based on five HLMRGs (ERO1L, SIAH2, TGFA, TGFBI, and THBS1). This classifier successfully discriminated patients with disparate 28-day mortality in the discovery cohort (GSE65682, n = 479), and consistent results were observed in the validation cohort (E-MTAB-4421 plus E-MTAB-4451, n = 371). Estimation of immune infiltration revealed significant associations between the risk score and a subset of immune cells. Enrichment analysis revealed that pathways related to antimicrobial immune responses, leukocyte activation, and cell adhesion and migration were significantly associated with the HLMRG signature. CONCLUSIONS Identification of a prognostic signature suggests the critical role of hypoxia and lactate metabolism in the pathophysiology of sepsis. The HLMRG signature can be used as an efficient tool for the risk stratification of patients with sepsis.
Collapse
Affiliation(s)
- Yaojun Peng
- Medical School of Chinese PLA General Hospital, Beijing, China
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Beijing, China
| | - Qiyan Wu
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xinhuan Ding
- Medical School of Chinese PLA General Hospital, Beijing, China
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Beijing, China
| | - Lingxiong Wang
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hanpu Gong
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Beijing, China
| | - Cong Feng
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Beijing, China
| | - Tianyi Liu
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Haiyan Zhu
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Beijing, China.
| |
Collapse
|
105
|
Atreya MR, Cvijanovich NZ, Fitzgerald JC, Weiss SL, Bigham MT, Jain PN, Schwarz AJ, Lutfi R, Nowak J, Thomas NJ, Quasney M, Haileselassie B, Baines TD, Zingarelli B, Genomics of Pediatric Septic Shock Investigators. SERUM SOLUBLE ENDOGLIN IN PEDIATRIC SEPTIC SHOCK-ASSOCIATED MULTIPLE ORGAN DYSFUNCTION SYNDROME. Shock 2023; 60:379-384. [PMID: 37493567 PMCID: PMC10529838 DOI: 10.1097/shk.0000000000002183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
ABSTRACT Background: Endothelial activation is a key driver of multiple organ dysfunction syndrome (MODS). Soluble endoglin (sENG) is expressed by mature and progenitor endothelial cells and thought to have angiogenic properties. We sought to determine the association between sENG and pediatric sepsis-associated MODS. Methods: Prospective observational study of pediatric septic shock. Primary outcome of interest was complicated course-a composite of death by (or) MODS on day 7 of illness. Secondary outcomes included individual organ dysfunctions. Endothelial biomarkers including sENG were measured using multiplex Luminex assays among patients with existing data on the Pediatric Sepsis Biomarker Risk Model (PERSEVERE-II) data. Multivariable regression was used to test the independent association between sENG and clinical outcomes. Serum sENG concentrations across PERSEVERE-II mortality risk strata and correlations with established markers of endothelial dysfunction were determined. Results: Three hundred six critically ill children with septic shock were included. Serum sENG concentrations were higher among those with primary and secondary outcomes of interest, with the exception of acute neurological dysfunction. Soluble endoglin was independently associated with increased odds of complicated course (adjusted odds ratio, 1.53; 95% confidence interval, 1.02-2.27; P = 0.038) and acute renal dysfunction (adjusted odds ratio, 1.84; 95% confidence interval, 1.18-2.876; P = 0.006). Soluble endoglin demonstrated graded responses across PERSEVERE-II risk strata and was positively correlated with endothelial biomarkers, except angiopoietin-1. Conclusions: Serum sENG is independently associated with complicated course and acute renal dysfunction in pediatric septic shock. Future studies are required to validate our observational data, and mechanistic studies are necessary to elucidate whether endoglin plays an organ-specific role in the development or resolution of acute renal dysfunction in sepsis.
Collapse
Affiliation(s)
- Mihir R. Atreya
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Research Foundation, Cincinnati, 45229, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | - Scott L. Weiss
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Parag N. Jain
- Texas Children’s Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Riad Lutfi
- Riley Hospital for Children, Indianapolis, IN 46202, USA
| | - Jeffrey Nowak
- Children’s Hospital and Clinics of Minnesota, Minneapolis, MN 55404, USA
| | - Neal J. Thomas
- Penn State Hershey Children’s Hospital, Hershey, PA 17033, USA
| | - Michael Quasney
- CS Mott Children’s Hospital at the University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Torrey D. Baines
- University of Florida Health Shands Children’s Hospital, Gainesville, FL 32610, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Research Foundation, Cincinnati, 45229, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | |
Collapse
|
106
|
Yang JO, Zinter MS, Pellegrini M, Wong MY, Gala K, Markovic D, Nadel B, Peng K, Do N, Mangul S, Nadkarni VM, Karlsberg A, Deshpande D, Butte MJ, Asaro L, Agus M, Sapru A. Whole Blood Transcriptomics Identifies Subclasses of Pediatric Septic Shock. RESEARCH SQUARE 2023:rs.3.rs-3267057. [PMID: 37693502 PMCID: PMC10491329 DOI: 10.21203/rs.3.rs-3267057/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Sepsis is a highly heterogeneous syndrome, that has hindered the development of effective therapies. This has prompted investigators to develop a precision medicine approach aimed at identifying biologically homogenous subgroups of patients with septic shock and critical illnesses. Transcriptomic analysis can identify subclasses derived from differences in underlying pathophysiological processes that may provide the basis for new targeted therapies. The goal of this study was to elucidate pathophysiological pathways and identify pediatric septic shock subclasses based on whole blood RNA expression profiles. Methods The subjects were critically ill children with cardiopulmonary failure who were a part of a prospective randomized insulin titration trial to treat hyperglycemia. Genome-wide expression profiling was conducted using RNA-sequencing from whole blood samples obtained from 46 children with septic shock and 52 mechanically ventilated noninfected controls without shock. Patients with septic shock were allocated to subclasses based on hierarchical clustering of gene expression profiles, and we then compared clinical characteristics, plasma inflammatory markers, cell compositions using GEDIT, and immune repertoires using Imrep between the two subclasses. Results Patients with septic shock depicted alterations in innate and adaptive immune pathways. Among patients with septic shock, we identified two subtypes based on gene expression patterns. Compared with Subclass 2, Subclass 1 was characterized by upregulation of innate immunity pathways and downregulation of adaptive immunity pathways. Subclass 1 had significantly worse clinical outcomes despite the two classes having similar illness severity on initial clinical presentation. Subclass 1 had elevated levels of plasma inflammatory cytokines and endothelial injury biomarkers and demonstrated decreased percentages of CD4 T cells and B cells, and less diverse T-Cell receptor repertoires. Conclusions Two subclasses of pediatric septic shock patients were discovered through genome-wide expression profiling based on whole blood RNA sequencing with major biological and clinical differences. Trial Registration This is a secondary analysis of data generated as part of the observational CAF PINT ancillary of the HALF PINT study (NCT01565941). Registered 29 March 2012.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nguyen Do
- University of California, Los Angeles
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Schertz AR, Eisner AE, Smith SA, Lenoir KM, Thomas KW. Clinical Phenotypes of Sepsis in a Cohort of Hospitalized Patients According to Infection Site. Crit Care Explor 2023; 5:e0955. [PMID: 37614801 PMCID: PMC10443761 DOI: 10.1097/cce.0000000000000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVES Clinical sepsis phenotypes may be defined by a wide range of characteristics such as site of infection, organ dysfunction patterns, laboratory values, and demographics. There is a paucity of literature regarding the impact of site of infection on the timing and pattern of clinical sepsis markers. This study hypothesizes that important phenotypic variation in clinical markers and outcomes of sepsis exists when stratified by infection site. DESIGN Retrospective cohort study. SETTING Five hospitals within the Wake Forest Health System from June 2019 to December 2019. PATIENTS Six thousand seven hundred fifty-three hospitalized adults with a discharge International Classification of Diseases, 10th Revision code for acute infection who met systemic inflammatory response syndrome (SIRS), quick Sepsis-related Organ Failure Assessment (qSOFA), or Sequential Organ Failure Assessment (SOFA) criteria during the index hospitalization. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The primary outcome of interest was a composite of 30-day mortality or shock. Infection site was determined by a two-reviewer process. Significant demographic, vital sign, and laboratory result differences were seen across all infection sites. For the composite outcome of shock or 30-day mortality, unknown or unspecified infections had the highest proportion (21.34%) and CNS infections had the lowest proportion (8.11%). Respiratory, vascular, and unknown or unspecified infection sites showed a significantly increased adjusted and unadjusted odds of the composite outcome as compared with the other infection sites except CNS. Hospital time prior to SIRS positivity was shortest in unknown or unspecified infections at a median of 0.88 hours (interquartile range [IQR], 0.22-5.05 hr), and hospital time prior to qSOFA and SOFA positivity was shortest in respiratory infections at a median of 54.83 hours (IQR, 9.55-104.67 hr) and 1.88 hours (IQR, 0.47-17.40 hr), respectively. CONCLUSIONS Phenotypic variation in illness severity and mortality exists when stratified by infection site. There is a significantly higher adjusted and unadjusted odds of the composite outcome of 30-day mortality or shock in respiratory, vascular, and unknown or unspecified infections as compared with other sites.
Collapse
Affiliation(s)
- Adam R Schertz
- Department of Internal Medicine, Section of Pulmonology, Critical Care, Allergy & Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Ashley E Eisner
- Department of Internal Medicine, Section of Pulmonology, Critical Care, Allergy & Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Sydney A Smith
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Kristin M Lenoir
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Karl W Thomas
- Department of Internal Medicine, Section of Pulmonology, Critical Care, Allergy & Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
108
|
de Miranda AC, De Stefani FDC, Dal Vesco BC, Junior HC, Morello LG, Assreuy J, de Menezes IAC. Peripheral ischemic reserve in sepsis and septic shock as a new bedside prognostic enrichment tool: A Brazilian cohort study. PLoS One 2023; 18:e0288249. [PMID: 37406024 DOI: 10.1371/journal.pone.0288249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Microvascular dysfunctions are associated with poor prognosis in sepsis. However, the potential role of clinical assessment of peripheral ischemic microvascular reserve (PIMR), a parameter that characterizes the variation of peripheral perfusion index (PPI) after brief ischemia of the upper arm, as a tool to detect sepsis-induced microvascular dysfunction and for prognostic enrichment has not been established. To address this gap, this study investigated the association of high PIMR with mortality over time in patients with sepsis and its subgroups (with and without shock) and peripheral perfusion (capillary-refill time). This observational cohort study enrolled consecutive septic patients in four Intensive-care units. After fluid resuscitation, PIMR was evaluated using the oximetry-derived PPI and post-occlusive reactive hyperemia for two consecutive days in septic patients. Two hundred and twenty-six patients were included-117 (52%) in the low PIMR group and 109 (48%) in the high PIMR group. The study revealed differences in mortality between groups on the first day, which was higher in the high PIMR group (RR 1.25; 95% CI 1.00-1.55; p = 0.04) and maintained its prognostic significance after multivariate adjustment. Subsequently, this analysis was made for sepsis subgroups and showed significant differences in mortality only for the septic-shock subgroup, with was higher in the high PIMR group (RR 2.14; 95% CI 1.49-3.08; p = 0.01). The temporal ΔPPI peak values (%) analyses did not demonstrate maintenance of the predictive value over the first 48 h in either group (p > 0.05). A moderate positive correlation (r = 0.41) between ΔPPI peak (%) and capillary-refill time (s) was found within the first 24 hours of diagnosis (p < 0.001). In conclusion, detecting a high PIMR within 24 h appears to be a prognostic marker for mortality in sepsis. Furthermore, its potential as a prognostic enrichment tool seems to occur mainly in septic shock.
Collapse
Affiliation(s)
- Ana Carolina de Miranda
- Department of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Bruna Cassia Dal Vesco
- Intensive Care Unit, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Hipólito Carraro Junior
- Intensive Care Unit, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Jamil Assreuy
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | |
Collapse
|
109
|
Atreya MR, Cvijanovich NZ, Fitzgerald JC, Weiss SL, Bigham MT, Jain PN, Schwarz AJ, Lutfi R, Nowak J, Allen GL, Thomas NJ, Grunwell JR, Baines T, Quasney M, Haileselassie B, Alder MN, Goldstein SL, Stanski NL. Prognostic and predictive value of endothelial dysfunction biomarkers in sepsis-associated acute kidney injury: risk-stratified analysis from a prospective observational cohort of pediatric septic shock. Crit Care 2023; 27:260. [PMID: 37400882 PMCID: PMC10318688 DOI: 10.1186/s13054-023-04554-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Sepsis-associated acute kidney injury (SA-AKI) is associated with high morbidity, with no current therapies available beyond continuous renal replacement therapy (CRRT). Systemic inflammation and endothelial dysfunction are key drivers of SA-AKI. We sought to measure differences between endothelial dysfunction markers among children with and without SA-AKI, test whether this association varied across inflammatory biomarker-based risk strata, and develop prediction models to identify those at highest risk of SA-AKI. METHODS Secondary analyses of prospective observational cohort of pediatric septic shock. Primary outcome of interest was the presence of ≥ Stage II KDIGO SA-AKI on day 3 based on serum creatinine (D3 SA-AKI SCr). Biomarkers including those prospectively validated to predict pediatric sepsis mortality (PERSEVERE-II) were measured in Day 1 (D1) serum. Multivariable regression was used to test the independent association between endothelial markers and D3 SA-AKI SCr. We conducted risk-stratified analyses and developed prediction models using Classification and Regression Tree (CART), to estimate risk of D3 SA-AKI among prespecified subgroups based on PERSEVERE-II risk. RESULTS A total of 414 patients were included in the derivation cohort. Patients with D3 SA-AKI SCr had worse clinical outcomes including 28-day mortality and need for CRRT. Serum soluble thrombomodulin (sTM), Angiopoietin-2 (Angpt-2), and Tie-2 were independently associated with D3 SA-AKI SCr. Further, Tie-2 and Angpt-2/Tie-2 ratios were influenced by the interaction between D3 SA-AKI SCr and risk strata. Logistic regression demonstrated models predictive of D3 SA-AKI risk performed optimally among patients with high- or intermediate-PERSEVERE-II risk strata. A 6 terminal node CART model restricted to this subgroup of patients had an area under the receiver operating characteristic curve (AUROC) 0.90 and 0.77 upon tenfold cross-validation in the derivation cohort to distinguish those with and without D3 SA-AKI SCr and high specificity. The newly derived model performed modestly in a unique set of patients (n = 224), 84 of whom were deemed high- or intermediate-PERSEVERE-II risk, to distinguish those patients with high versus low risk of D3 SA-AKI SCr. CONCLUSIONS Endothelial dysfunction biomarkers are independently associated with risk of severe SA-AKI. Pending validation, incorporation of endothelial biomarkers may facilitate prognostic and predictive enrichment for selection of therapeutics in future clinical trials among critically ill children.
Collapse
Affiliation(s)
- Mihir R Atreya
- Division of Critical Care Medicine, MLC2005, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | | | | | - Scott L Weiss
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | | | - Parag N Jain
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Adam J Schwarz
- Children's Hospital of Orange County, Orange, CA, 92868, USA
| | - Riad Lutfi
- Riley Hospital for Children, Indianapolis, IN, 46202, USA
| | - Jeffrey Nowak
- Children's Hospital and Clinics of Minnesota, Minneapolis, MN, 55404, USA
| | | | - Neal J Thomas
- Penn State Hershey Children's Hospital, Hershey, PA, 17033, USA
| | | | - Torrey Baines
- University of Florida Health Shands Children's Hospital, Gainesville, FL, 32610, USA
| | - Michael Quasney
- CS Mott Children's Hospital at the University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Matthew N Alder
- Division of Critical Care Medicine, MLC2005, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Stuart L Goldstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Nephrology, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Natalja L Stanski
- Division of Critical Care Medicine, MLC2005, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
110
|
Fuchita M, Pattee J, Russell DW, Driver BE, Prekker ME, Barnes CR, Brewer JM, Doerschug KC, Gaillard JP, Gandotra S, Ghamande S, Gibbs KW, Hughes CG, Janz DR, Khan A, Mitchell SH, Page DB, Rice TW, Self WH, Smith LM, Stempek SB, Trent SA, Vonderhaar DJ, West JR, Whitson MR, Williamson K, Semler MW, Casey JD, Ginde AA. Prophylactic Administration of Vasopressors Prior to Emergency Intubation in Critically Ill Patients: A Secondary Analysis of Two Multicenter Clinical Trials. Crit Care Explor 2023; 5:e0946. [PMID: 37457916 PMCID: PMC10344527 DOI: 10.1097/cce.0000000000000946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Hypotension affects approximately 40% of critically ill patients undergoing emergency intubation and is associated with an increased risk of death. The objective of this study was to examine the association between prophylactic vasopressor administration and the incidence of peri-intubation hypotension and other clinical outcomes. DESIGN A secondary analysis of two multicenter randomized clinical trials. The clinical effect of prophylactic vasopressor administration was estimated using a one-to-one propensity-matched cohort of patients with and without prophylactic vasopressors. SETTING Seven emergency departments and 17 ICUs across the United States. PATIENTS One thousand seven hundred ninety-eight critically ill patients who underwent emergency intubation at the study sites between February 1, 2019, and May 24, 2021. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The primary outcome was peri-intubation hypotension defined as a systolic blood pressure less than 90 mm Hg occurring between induction and 2 minutes after tracheal intubation. A total of 187 patients (10%) received prophylactic vasopressors prior to intubation. Compared with patients who did not receive prophylactic vasopressors, those who did were older, had higher Acute Physiology and Chronic Health Evaluation II scores, were more likely to have a diagnosis of sepsis, had lower pre-induction systolic blood pressures, and were more likely to be on continuous vasopressor infusions prior to intubation. In our propensity-matched cohort, prophylactic vasopressor administration was not associated with reduced risk of peri-intubation hypotension (41% vs 32%; p = 0.08) or change in systolic blood pressure from baseline (-12 vs -11 mm Hg; p = 0.66). CONCLUSIONS The administration of prophylactic vasopressors was not associated with a lower incidence of peri-intubation hypotension in our propensity-matched analysis. To address potential residual confounding, randomized clinical trials should examine the effect of prophylactic vasopressor administration on peri-intubation outcomes.
Collapse
Affiliation(s)
- Mikita Fuchita
- Department of Anesthesiology, Division of Critical Care, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jack Pattee
- Department of Biostatistics & Informatics, Center for Innovative Design & Analysis, Colorado School of Public Health, Aurora, CO
| | - Derek W Russell
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
- Pulmonary Section, Birmingham Veterans Affairs Medical Center, Birmingham, AL
| | - Brian E Driver
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, MN
| | - Matthew E Prekker
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, MN
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Hennepin County Medical Center, Minneapolis, MN
| | - Christopher R Barnes
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| | - Joseph M Brewer
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, MS
| | | | - John P Gaillard
- Department of Emergency Medicine, Wake Forest School of Medicine, Winston-Salem, NC
- Department of Anesthesiology, Section on Critical Care, Wake Forest School of Medicine, Winston-Salem, NC
| | - Sheetal Gandotra
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Shekhar Ghamande
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, Baylor Scott & White Medical Center, Temple, TX
| | - Kevin W Gibbs
- Department of Medicine, Section of Pulmonary, Critical Care, Allergy and Immunologic Disease, Wake Forest School of Medicine, Winston-Salem, NC
| | - Christopher G Hughes
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - David R Janz
- University Medical Center New Orleans, New Orleans, LA
- Department of Medicine, Section of Pulmonary/Critical Care Medicine and Allergy/Immunology, Louisiana State University School of Medicine, New Orleans, LA
| | - Akram Khan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University School of Medicine, Portland, OR
| | - Steven H Mitchell
- Department of Emergency Medicine, University of Washington, Seattle, WA
| | - David B Page
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Todd W Rice
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Wesley H Self
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN
| | - Lane M Smith
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Susan B Stempek
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Lahey Hospital and Medical Center, Burlington, MA
| | - Stacy A Trent
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Emergency Medicine, Denver Health Medical Center, Denver, CO
| | - Derek J Vonderhaar
- Department of Pulmonary and Critical Care Medicine, Ochsner Health System, New Orleans, LA
| | - Jason R West
- Department of Emergency Medicine, NYC Health + Hospitals | Lincoln, Bronx, NY
| | - Micah R Whitson
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Kayla Williamson
- Department of Biostatistics & Informatics, Center for Innovative Design & Analysis, Colorado School of Public Health, Aurora, CO
| | - Matthew W Semler
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Jonathan D Casey
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Adit A Ginde
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
111
|
Chaithanya P, Meshram RJ. Chemo Markers as Biomarkers in Septic Shock: A Comprehensive Review of Their Utility and Clinical Applications. Cureus 2023; 15:e42558. [PMID: 37637638 PMCID: PMC10460194 DOI: 10.7759/cureus.42558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Sepsis is a life-threatening condition characterized by a dysregulated host response to infection, often leading to septic shock. Early diagnosis and prompt intervention are crucial for improving patient outcomes. Chemo markers, which are measurable biological substances associated with the pathophysiology of septic shock, have emerged as potential biomarkers for the identification, risk stratification, and management of this condition. This comprehensive review aims to thoroughly evaluate the utility and clinical applications of chemo markers in septic shock. The review begins by discussing the criteria for ideal chemo markers, including specificity, sensitivity, dynamic range, stability, non-invasiveness, and prognostic value. These characteristics ensure accurate diagnosis, early detection, effective monitoring, and prediction of clinical outcomes. Furthermore, the review explores the role of chemo markers in monitoring treatment response and disease progression, highlighting their ability to serve as objective indicators for assessing the effectiveness of interventions and making timely adjustments in management strategies. Moreover, the prognostic value of chemo markers in predicting outcomes is discussed, emphasizing their association with mortality, hospital stays, and the development of complications. Integration of chemo markers into prognostic models or scoring systems enhances risk stratification and informs therapeutic decisions. The review also delves into recent advances in chemo marker research and technology, emphasizing the potential for discovering novel chemo markers with enhanced diagnostic and prognostic capabilities. It highlights the use of high-throughput proteomics, genomics, and transcriptomics in identifying specific molecular signatures associated with septic shock. This contributes to a deeper understanding of the complex immune and inflammatory responses involved. In conclusion, chemo markers have emerged as valuable biomarkers in septic shock, offering potential utility in diagnosis, risk stratification, treatment monitoring, and prediction of outcomes. Continued research, validation, and integration into clinical practice are necessary to fully realize their potential in improving patient care and outcomes in septic shock.
Collapse
Affiliation(s)
- Pulivarthi Chaithanya
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Revat J Meshram
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
112
|
Yao RQ, Zhao PY, Li ZX, Liu YY, Zheng LY, Duan Y, Wang L, Yang RL, Kang HJ, Hao JW, Li JY, Dong N, Wu Y, Du XH, Zhu F, Ren C, Wu GS, Xia ZF, Yao YM. Single-cell transcriptome profiling of sepsis identifies HLA-DR lowS100A high monocytes with immunosuppressive function. Mil Med Res 2023; 10:27. [PMID: 37337301 DOI: 10.1186/s40779-023-00462-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Sustained yet intractable immunosuppression is commonly observed in septic patients, resulting in aggravated clinical outcomes. However, due to the substantial heterogeneity within septic patients, precise indicators in deciphering clinical trajectories and immunological alterations for septic patients remain largely lacking. METHODS We adopted cross-species, single-cell RNA sequencing (scRNA-seq) analysis based on two published datasets containing circulating immune cell profile of septic patients as well as immune cell atlas of murine model of sepsis. Flow cytometry, laser scanning confocal microscopy (LSCM) imaging and Western blotting were applied to identify the presence of S100A9+ monocytes at protein level. To interrogate the immunosuppressive function of this subset, splenic monocytes isolated from septic wild-type or S100a9-/- mice were co-cultured with naïve CD4+ T cells, followed by proliferative assay. Pharmacological inhibition of S100A9 was implemented using Paquinimod via oral gavage. RESULTS ScRNA-seq analysis of human sepsis revealed substantial heterogeneity in monocyte compartments following the onset of sepsis, for which distinct monocyte subsets were enriched in disparate subclusters of septic patients. We identified a unique monocyte subset characterized by high expression of S100A family genes and low expression of human leukocyte antigen DR (HLA-DR), which were prominently enriched in septic patients and might exert immunosuppressive function. By combining single-cell transcriptomics of murine model of sepsis with in vivo experiments, we uncovered a similar subtype of monocyte significantly associated with late sepsis and immunocompromised status of septic mice, corresponding to HLA-DRlowS100Ahigh monocytes in human sepsis. Moreover, we found that S100A9+ monocytes exhibited profound immunosuppressive function on CD4+ T cell immune response and blockade of S100A9 using Paquinimod could partially reverse sepsis-induced immunosuppression. CONCLUSIONS This study identifies HLA-DRlowS100Ahigh monocytes correlated with immunosuppressive state upon septic challenge, inhibition of which can markedly mitigate sepsis-induced immune depression, thereby providing a novel therapeutic strategy for the management of sepsis.
Collapse
Affiliation(s)
- Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Peng-Yue Zhao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhi-Xuan Li
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu-Yang Liu
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Duan
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Rong-Li Yang
- Intensive Care Unit, Dalian Municipal Central Hospital Affiliated Dalian University of Technology, Dalian, 116033, Liaoning, China
| | - Hong-Jun Kang
- Department of Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Ji-Wei Hao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing-Yan Li
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiao-Hui Du
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Feng Zhu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chao Ren
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Guo-Sheng Wu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Zhao-Fan Xia
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
113
|
Baghela AS, Tam J, Blimkie TM, Dhillon BK, Hancock RE. Facilitating systems-level analyses of all-cause and Covid-mediated sepsis through SeptiSearch, a manually-curated compendium of dysregulated gene sets. Front Immunol 2023; 14:1135859. [PMID: 37304268 PMCID: PMC10250596 DOI: 10.3389/fimmu.2023.1135859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Background Sepsis is a dysfunctional host response to infection. The syndrome leads to millions of deaths annually (19.7% of all deaths in 2017) and is the cause of most deaths from severe Covid infections. High throughput sequencing or 'omics' experiments in molecular and clinical sepsis research have been widely utilized to identify new diagnostics and therapies. Transcriptomics, quantifying gene expression, has dominated these studies, due to the efficiency of measuring gene expression in tissues and the technical accuracy of technologies like RNA-Seq. Objective Most of these studies seek to uncover novel mechanistic insights into sepsis pathogenesis and diagnostic gene signatures by identifying genes differentially expressed between two or more relevant conditions. However, little effort has been made, to date, to aggregate this knowledge from such studies. In this study we sought to build a compendium of previously described gene sets that combines knowledge gained from sepsis-associated studies. This would enable the identification of genes most associated with sepsis pathogenesis, and the description of the molecular pathways commonly associated with sepsis. Methods PubMed was searched for studies using transcriptomics to characterize acute infection/sepsis and severe sepsis (i.e., sepsis combined with organ failure). Several studies were identified that used transcriptomics to identify differentially expressed (DE) genes, predictive/prognostic signatures, and underlying molecular responses and pathways. The molecules included in each gene set were collected, in addition to the relevant study metadata (e.g., patient groups used for comparison, sample collection time point, tissue type, etc.). Results After performing extensive literature curation of 74 sepsis-related publications involving transcriptomics, 103 unique gene sets (comprising 20,899 unique genes) from thousands of patients were collated together with associated metadata. Frequently described genes included in gene sets as well as the molecular mechanisms they were involved in were identified. These mechanisms included neutrophil degranulation, generation of second messenger molecules, IL-4 and -13 signaling, and IL-10 signaling among many others. The database, which we named SeptiSearch, is made available in a web application created using the Shiny framework in R, (available at https://septisearch.ca). Conclusions SeptiSearch provides members of the sepsis community the bioinformatic tools needed to leverage and explore the gene sets contained in the database. This will allow the gene sets to be further scrutinized and analyzed for their enrichment in user-submitted gene expression data and used for validation of in-house gene sets/signatures.
Collapse
|
114
|
Huo L, Liu C, Yuan Y, Liu X, Cao Q. Pharmacological inhibition of ferroptosis as a therapeutic target for sepsis-associated organ damage. Eur J Med Chem 2023; 257:115438. [PMID: 37269668 DOI: 10.1016/j.ejmech.2023.115438] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/05/2023]
Abstract
Sepsis is a complex clinical syndrome caused by dysfunctional host response to infection, which contributes to excess mortality and morbidity worldwide. The development of life-threatening sepsis-associated organ injury to the brain, heart, kidneys, lungs, and liver is a major concern for sepsis patients. However, the molecular mechanisms underlying sepsis-associated organ injury remain incompletely understood. Ferroptosis, an iron-dependent non-apoptotic form of cell death characterized by lipid peroxidation, is involved in sepsis and sepsis-related organ damage, including sepsis-associated encephalopathy, septic cardiomyopathy, sepsis-associated acute kidney injury, sepsis-associated acute lung injury, and sepsis-induced acute liver injury. Moreover, compounds that inhibit ferroptosis exert potential therapeutic effects in the context of sepsis-related organ damage. This review summarizes the mechanism by which ferroptosis contributes to sepsis and sepsis-related organ damage. We focus on the emerging types of therapeutic compounds that can inhibit ferroptosis and delineate their beneficial pharmacological effects for the treatment of sepsis-related organ damage. The present review highlights pharmacologically inhibiting ferroptosis as an attractive therapeutic strategy for sepsis-related organ damage.
Collapse
Affiliation(s)
- Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Chunfeng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yujun Yuan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qingjun Cao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
115
|
Shu Q, She H, Chen X, Zhong L, Zhu J, Fang L. Identification and experimental validation of mitochondria-related genes biomarkers associated with immune infiltration for sepsis. Front Immunol 2023; 14:1184126. [PMID: 37228596 PMCID: PMC10203506 DOI: 10.3389/fimmu.2023.1184126] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Background Sepsis remains a complex condition with incomplete understanding of its pathogenesis. Further research is needed to identify prognostic factors, risk stratification tools, and effective diagnostic and therapeutic targets. Methods Three GEO datasets (GSE54514, GSE65682, and GSE95233) were used to explore the potential role of mitochondria-related genes (MiRGs) in sepsis. WGCNA and two machine learning algorithms (RF and LASSO) were used to identify the feature of MiRGs. Consensus clustering was subsequently carried out to determine the molecular subtypes for sepsis. CIBERSORT algorithm was conducted to assess the immune cell infiltration of samples. A nomogram was also established to evaluate the diagnostic ability of feature biomarkers via "rms" package. Results Three different expressed MiRGs (DE-MiRGs) were identified as sepsis biomarkers. A significant difference in the immune microenvironment landscape was observed between healthy controls and sepsis patients. Among the DE-MiRGs, NDUFB3 was selected to be a potential therapeutic target and its significant elevated expression level was confirmed in sepsis using in vitro experiments and confocal microscopy, indicating its significant contribution to the mitochondrial quality imbalance in the LPS-simulated sepsis model. Conclusion By digging the role of these pivotal genes in immune cell infiltration, we gained a better understanding of the molecular immune mechanism in sepsis and identified potential intervention and treatment strategies.
Collapse
Affiliation(s)
- Qi Shu
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xi Chen
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Like Zhong
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Junfeng Zhu
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Luo Fang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
116
|
Li P, Wu Y, Goodwin AJ, Wolf B, Halushka PV, Wang H, Zingarelli B, Fan H. Circulating extracellular vesicles are associated with the clinical outcomes of sepsis. Front Immunol 2023; 14:1150564. [PMID: 37180111 PMCID: PMC10167034 DOI: 10.3389/fimmu.2023.1150564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Sepsis is associated with endothelial cell (EC) dysfunction, increased vascular permeability and organ injury, which may lead to mortality, acute respiratory distress syndrome (ARDS) and acute renal failure (ARF). There are no reliable biomarkers to predict these sepsis complications at present. Recent evidence suggests that circulating extracellular vesicles (EVs) and their content caspase-1 and miR-126 may play a critical role in modulating vascular injury in sepsis; however, the association between circulating EVs and sepsis outcomes remains largely unknown. Methods We obtained plasma samples from septic patients (n=96) within 24 hours of hospital admission and from healthy controls (n=45). Total, monocyte- or EC-derived EVs were isolated from the plasma samples. Transendothelial electrical resistance (TEER) was used as an indicator of EC dysfunction. Caspase-1 activity in EVs was detected and their association with sepsis outcomes including mortality, ARDS and ARF was analyzed. In another set of experiments, total EVs were isolated from plasma samples of 12 septic patients and 12 non-septic critical illness controls on days 1, and 3 after hospital admission. RNAs were isolated from these EVs and Next-generation sequencing was performed. The association between miR-126 levels and sepsis outcomes such as mortality, ARDS and ARF was analyzed. Results Septic patients with circulating EVs that induced EC injury (lower transendothelial electrical resistance) were more likely to experience ARDS (p<0.05). Higher caspase-1 activity in total EVs, monocyte- or EC-derived EVs was significantly associated with the development of ARDS (p<0.05). MiR-126-3p levels in EC EVs were significantly decreased in ARDS patients compared with healthy controls (p<0.05). Moreover, a decline in miR-126-5p levels from day 1 to day 3 was associated with increased mortality, ARDS and ARF; while decline in miR-126-3p levels from day 1 to day 3 was associated with ARDS development. Conclusions Enhanced caspase-1 activity and declining miR-126 levels in circulating EVs are associated with sepsis-related organ failure and mortality. Extracellular vesicular contents may serve as novel prognostic biomarkers and/or targets for future therapeutic approaches in sepsis.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Yan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Andrew J. Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Perry V. Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC, United States
| | - Hongjun Wang
- Departments of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
117
|
Garduno A, Cusack R, Leone M, Einav S, Martin-Loeches I. Multi-Omics Endotypes in ICU Sepsis-Induced Immunosuppression. Microorganisms 2023; 11:1119. [PMID: 37317092 DOI: 10.3390/microorganisms11051119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 06/16/2023] Open
Abstract
It is evident that the admission of some patients with sepsis and septic shock to hospitals is occurring late in their illness, which has contributed to the increase in poor outcomes and high fatalities worldwide across age groups. The current diagnostic and monitoring procedure relies on an inaccurate and often delayed identification by the clinician, who then decides the treatment upon interaction with the patient. Initiation of sepsis is accompanied by immune system paralysis following "cytokine storm". The unique immunological response of each patient is important to define in terms of subtyping for therapy. The immune system becomes activated in sepsis to produce interleukins, and endothelial cells express higher levels of adhesion molecules. The proportions of circulating immune cells change, reducing regulatory cells and increasing memory cells and killer cells, having long-term effects on the phenotype of CD8 T cells, HLA-DR, and dysregulation of microRNA. The current narrative review seeks to highlight the potential application of multi-omics data integration and immunological profiling at the single-cell level to define endotypes in sepsis and septic shock. The review will consider the parallels and immunoregulatory axis between cancer and immunosuppression, sepsis-induced cardiomyopathy, and endothelial damage. Second, the added value of transcriptomic-driven endotypes will be assessed through inferring regulatory interactions in recent clinical trials and studies reporting gene modular features that inform continuous metrics measuring clinical response in ICU, which can support the use of immunomodulating agents.
Collapse
Affiliation(s)
- Alexis Garduno
- Department of Clinical Medicine, Trinity College, University of Dublin, D02 PN40 Dublin, Ireland
| | - Rachael Cusack
- Department of Intensive Care Medicine, St. James's Hospital, James's Street, D08 NHY1 Dublin, Ireland
| | - Marc Leone
- Department of Anesthesia, Intensive Care and Trauma Center, Nord University Hospital, Aix Marseille University, APHM, 13015 Marseille, France
| | - Sharon Einav
- General Intensive Care Unit, Shaare Zedek Medical Center, Jerusalem 23456, Israel
- Faculty of Medicine, Hebrew University, Jerusalem 23456, Israel
| | - Ignacio Martin-Loeches
- Department of Clinical Medicine, Trinity College, University of Dublin, D02 PN40 Dublin, Ireland
- Department of Intensive Care Medicine, St. James's Hospital, James's Street, D08 NHY1 Dublin, Ireland
| |
Collapse
|
118
|
de Miranda AC, Stefani FDCD, Vesco BCD, Carraro Júnior H, Assreuy J, Morello LG, de Menezes IAC. Relationship between peripheral ischemic microvascular reserve, persistent hyperlactatemia, and its temporal dynamics in sepsis: a post hoc study. CRITICAL CARE SCIENCE 2023; 35:177-186. [PMID: 37712807 PMCID: PMC10406409 DOI: 10.5935/2965-2774.20230348-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/25/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To measure the prognostic value of peripheral ischemic microvascular reserve in the context of persistent sepsis-induced hyperlactatemia and measure its influence on the temporal dynamics of lactate and the strength of association between these variables. METHODS This post hoc analysis of the peripheral perfusion index/postocclusive reactive hyperemia trial, an observational cohort study that enrolled patients with sepsis who persisted with lactate levels ≥ 2mmol/L after fluid resuscitation (with or without shock). Peripheral ischemic microvascular reserve was evaluated using the association of the peripheral perfusion index and postocclusive reactive hyperemia techniques. The cutoff point of ∆ peripheral perfusion index peak values (%) defined the groups with low (≤ 62%) and high peripheral ischemic microvascular reserve (> 62%). RESULTS A total of 108 consecutive patients with persistent sepsis-induced hyperlactatemia were studied. The high peripheral ischemic microvascular reserve group showed higher 28-day mortality than the low peripheral ischemic microvascular reserve group (p < 0.01). The temporal dynamics of lactate within the first 48 hours showed a rapid decrease in lactate levels in the low peripheral ischemic microvascular reserve group (p < 0.01). However, this result was not reproduced in the linear mixed effects model. A weak correlation between peripheral ischemic microvascular reserve (%) and lactate level (mmol/L) was observed within the first 24 hours (r = 0.23; p < 0.05). CONCLUSION The prognostic value of high peripheral ischemic microvascular reserve was confirmed in the context of persistent sepsis-induced hyperlactatemia. Although there was a weak positive correlation between peripheral ischemic microvascular reserve value and lactate level within the first 24 hours of sepsis diagnosis, the low peripheral ischemic microvascular reserve group appeared to have a faster decrease in lactate over the 48 hours of follow-up.
Collapse
Affiliation(s)
- Ana Carolina de Miranda
- Department of Internal Medicine, Hospital de Clínicas,
Universidade Federal do Paraná - Curitiba (PR), Brazil
| | | | - Bruna Cassia Dal Vesco
- Intensive Care Unit, Hospital de Clínicas, Universidade
Federal do Paraná - Curitiba (PR), Brazil
| | - Hipólito Carraro Júnior
- Intensive Care Unit, Hospital de Clínicas, Universidade
Federal do Paraná - Curitiba (PR), Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Universidade Federal de Santa Catarina
- Florianópolis (SC), Brazil
| | | | | |
Collapse
|
119
|
Dahmer M, Jennings A, Parker M, Sanchez-Pinto LN, Thompson A, Traube C, Zimmerman JJ. Pediatric Critical Care in the Twenty-first Century and Beyond. Crit Care Clin 2023; 39:407-425. [PMID: 36898782 DOI: 10.1016/j.ccc.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pediatric critical care addresses prevention, diagnosis, and treatment of organ dysfunction in the setting of increasingly complex patients, therapies, and environments. Soon burgeoning data science will enable all aspects of intensive care: driving facilitated diagnostics, empowering a learning health-care environment, promoting continuous advancement of care, and informing the continuum of critical care outside the intensive care unit preceding and following critical illness/injury. Although novel technology will progressively objectify personalized critical care, humanism, practiced at the bedside, defines the essence of pediatric critical care now and in the future.
Collapse
Affiliation(s)
- Mary Dahmer
- Division of Critical Care, Department of Pediatrics, University of Michigan, 1500 East Medical Center Drive, F6790/5243, Ann Arbor, MI, USA
| | - Aimee Jennings
- Division of Critical Care Medicine, Advanced Practice, FA.2.112, Seattle Children's Hospital, 4800 Sandpoint Way Northeast, Seattle, WA 98105, USA
| | - Margaret Parker
- Department of Pediatrics, Stony Brook University, 7762 Bloomfield Road, Easton, MD 21601, USA
| | - Lazaro N Sanchez-Pinto
- Department of Pediatrics, Ann and Robert H Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 East Chicago Avenue, Box 73, Chicago, IL 60611-2605, USA
| | - Ann Thompson
- Department of Critical Care Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Chani Traube
- Department of Pediatrics, Weill Cornell Medicine, 525 East 68th Street, Box 225, New York, NY 10065, USA
| | - Jerry J Zimmerman
- Department of Pediatrics, FA.2.300B Seattle Children's Hospital, 4800 Sandpoint Way Northeast, Seattle, WA 98105, USA; Pediatric Critical Care Medicine, Seattle Children's Hospital, Harborview Medical Center, University of Washington, School of Medicine, FA.2.300B, Seattle Children's Hospital, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA.
| |
Collapse
|
120
|
Lazzareschi D, Mehta RL, Dember LM, Bernholz J, Turan A, Sharma A, Kheterpal S, Parikh CR, Ali O, Schulman IH, Ryan A, Feng J, Simon N, Pirracchio R, Rossignol P, Legrand M. Overcoming barriers in the design and implementation of clinical trials for acute kidney injury: a report from the 2020 Kidney Disease Clinical Trialists meeting. Nephrol Dial Transplant 2023; 38:834-844. [PMID: 35022767 PMCID: PMC10064977 DOI: 10.1093/ndt/gfac003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) is a growing epidemic and is independently associated with increased risk of death, chronic kidney disease (CKD) and cardiovascular events. Randomized-controlled trials (RCTs) in this domain are notoriously challenging and many clinical studies in AKI have yielded inconclusive findings. Underlying this conundrum is the inherent heterogeneity of AKI in its etiology, presentation and course. AKI is best understood as a syndrome and identification of AKI subphenotypes is needed to elucidate the disease's myriad etiologies and to tailor effective prevention and treatment strategies. Conventional RCTs are logistically cumbersome and often feature highly selected patient populations that limit external generalizability and thus alternative trial designs should be considered when appropriate. In this narrative review of recent developments in AKI trials based on the Kidney Disease Clinical Trialists (KDCT) 2020 meeting, we discuss barriers to and strategies for improved design and implementation of clinical trials for AKI patients, including predictive and prognostic enrichment techniques, the use of pragmatic trials and adaptive trials.
Collapse
Affiliation(s)
- Daniel Lazzareschi
- Department of Anesthesia & Perioperative Care, Division of Critical Care Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ravindra L Mehta
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Laura M Dember
- Renal-Electrolyte and Hypertension Division, Department of Medicine, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
| | | | - Alparslan Turan
- Department of Anesthesiology, Lerner College of Medicine of Case Western University, Cleveland, OH, USA
- Department of Outcomes Research, Cleveland Clinic, Cleveland, OH, USA
| | | | - Sachin Kheterpal
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Chirag R Parikh
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Omar Ali
- Verpora Ltd, Nottingham, UK
- University of Portsmouth, UK
| | - Ivonne H Schulman
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Abigail Ryan
- Division of Chronic Care Management, Centers for Medicare & Medicaid Services, Woodlawn, MD, USA
| | - Jean Feng
- Department of Epidemiology and Biostatistics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Noah Simon
- Department of Biostatistics, University of Washington (UW), Seattle, WA, USA
| | - Romain Pirracchio
- Department of Anesthesia & Perioperative Care, Division of Critical Care Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Patrick Rossignol
- INI-CRCT Network, Nancy, France
- University of Lorraine, Inserm 1433 CIC-P CHRU de Nancy, Inserm U1116, Nancy, France
| | - Matthieu Legrand
- Department of Anesthesia & Perioperative Care, Division of Critical Care Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
- INI-CRCT Network, Nancy, France
| |
Collapse
|
121
|
Wang L, Li B, Zuo L, Pei F, Nie Y, Liu Y, Liu Z, Wu J, Guan X. Aspirin Therapy and 28-Day Mortality in ICU Patients: A Retrospective Observational Study From Two Large Databases. Clin Ther 2023; 45:316-332. [PMID: 36973090 DOI: 10.1016/j.clinthera.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Aspirin is widely used in patients in the intensive care unit (ICU); nonetheless, its effects on these patients remain controversial. This retrospective analysis of data from clinical practice investigated the effects of aspirin on 28-day mortality in ICU patients. METHODS This retrospective study included data from patients in the Medical Information Mart for Intensive Care (MIMIC)-III database and the eICU-Collaborative Research Database (CRD). Patients aged 18 to 90 years and admitted to the ICU were eligible and were assigned to one of two groups according to whether they were given aspirin during their ICU stay. Multiple imputation was used for patients with >10% missing data. Multivariate Cox models and propensity score analysis were used to estimate the association of aspirin treatment with 28-day mortality among patients admitted to the ICU. FINDINGS In total, 146,191 patients were enrolled in this study, and 27,424 (18.8%) used aspirin. Aspirin treatment in ICU patients, especially in nonseptic patients, was associated with a lower 28-day all-cause mortality on multivariate Cox analysis (eICU-CRD, hazard ratio [HR] = 0.81, [95% CI, 0.75-0.87]; MIMIC-III, HR = 0.72 [95% CI, 0.68-0.76]). Aspirin treatment was associated with lower 28-day all-cause mortality after propensity score matching (eICU-CRD, HR = 0.80 [95% CI, 0.72-0.88]; MIMIC-III, HR = 0.80 [95% CI, 0.76-0.85]). However, on subgroup analysis, aspirin therapy was not associated with a lower 28-day mortality in patients without systemic inflammatory response syndrome (SIRS) symptoms or with sepsis in either database. IMPLICATIONS Aspirin treatment during the ICU stay was associated with a significantly reduced 28-day all-cause mortality, particularly in patients with SIRS symptoms but without sepsis. In patients with sepsis and with/without SIRS symptoms, beneficial effects were not clear, or more careful patient selection is required. (Clin Ther. 2023;45:XXX-XXX) © 2023 Elsevier Inc.
Collapse
Affiliation(s)
- Luhao Wang
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, People's Republic of China.
| | - Bin Li
- Clinical Trials Unit, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, People's Republic of China
| | - Lingyun Zuo
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, People's Republic of China
| | - Fei Pei
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, People's Republic of China
| | - Yao Nie
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, People's Republic of China
| | - Yongjun Liu
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, People's Republic of China
| | - Zimeng Liu
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, People's Republic of China
| | - Jianfeng Wu
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, People's Republic of China.
| | - Xiangdong Guan
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
122
|
Pelaia TM, Shojaei M, McLean AS. The Role of Transcriptomics in Redefining Critical Illness. Crit Care 2023; 27:89. [PMID: 36941625 PMCID: PMC10027592 DOI: 10.1186/s13054-023-04364-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2023. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2023 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .
Collapse
Affiliation(s)
- Tiana M Pelaia
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW, Australia.
| | - Maryam Shojaei
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW, Australia
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Anthony S McLean
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW, Australia
| |
Collapse
|
123
|
Turgman O, Schinkel M, Wiersinga WJ. Host Response Biomarkers for Sepsis in the Emergency Room. Crit Care 2023; 27:97. [PMID: 36941681 PMCID: PMC10027585 DOI: 10.1186/s13054-023-04367-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2023. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2023 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .
Collapse
Affiliation(s)
- Oren Turgman
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel Schinkel
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Department of Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Willem Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Division of Infectious Diseases, Department of Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
124
|
Jansen A, Waalders NJB, van Lier DPT, Kox M, Pickkers P. CytoSorb hemoperfusion markedly attenuates circulating cytokine concentrations during systemic inflammation in humans in vivo. Crit Care 2023; 27:117. [PMID: 36945034 PMCID: PMC10029173 DOI: 10.1186/s13054-023-04391-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The CytoSorb hemoadsorption device has been demonstrated to be capable of clearing inflammatory cytokines, but has not yet been shown to attenuate plasma cytokine concentrations. We investigated the effects of CytoSorb hemoperfusion on plasma levels of various cytokines using the repeated human experimental endotoxemia model, a highly standardized and reproducible human in vivo model of systemic inflammation and immunological tolerance induced by administration of bacterial lipopolysaccharide (LPS). METHODS Twenty-four healthy male volunteers (age 18-35) were intravenously challenged with LPS (a bolus of 1 ng/kg followed by continuous infusion of 0.5 ng/kg/hr for three hours) twice: on day 0 to quantify the initial cytokine response and on day 7 to quantify the degree of endotoxin tolerance. Subjects either received CytoSorb hemoperfusion during the first LPS challenge (CytoSorb group), or no intervention (control group). Plasma cytokine concentrations and clearance rates were determined serially. This study was registered at ClinicalTrials.gov (NCT04643639, date of registration November 24th 2020). RESULTS LPS administration led to a profound increase in plasma cytokine concentrations during both LPS challenge days. Compared to the control group, significantly lower plasma levels of tumor necrosis factor (TNF, - 58%, p < 0.0001), interleukin (IL)-6 ( - 71%, p = 0.003), IL-8 ( - 48%, p = 0.02) and IL-10 ( - 26%, p = 0.03) were observed in the CytoSorb group during the first LPS challenge. No differences in cytokine responses were observed during the second LPS challenge. CONCLUSIONS CytoSorb hemoperfusion effectively attenuates circulating cytokine concentrations during systemic inflammation in humans in vivo, whereas it does not affect long-term immune function. Therefore, CytoSorb therapy may be of benefit in conditions characterized by excessive cytokine release.
Collapse
Affiliation(s)
- Aron Jansen
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands.
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands.
| | - Nicole J B Waalders
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands
| | - Dirk P T van Lier
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands.
- Radboud University Medical Center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands.
| |
Collapse
|
125
|
Wang J, Wen D, Zeng S, Du J, Cui L, Sun J, Chen G, Zeng L, Du D, Zhang L, Deng J, Jiang J, Zhang A. Cytokine Biomarker Phenotype for Early Prediction and Triage of Sepsis in Blunt Trauma Patients. J Surg Res 2023; 283:824-832. [PMID: 36915009 DOI: 10.1016/j.jss.2022.10.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/04/2022] [Accepted: 10/16/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Altered levels of inflammatory markers secondary to severe trauma present a major problem to physicians and are prone to interfering with the clinical identification of sepsis events. This study aimed to establish the profiles of cytokines in trauma patients to characterize the nature of immune responses to sepsis, which might enable early prediction and individualized treatments to be developed for targeted intervention. METHODS A 15-plex human cytokine magnetic bead assay system was used to measure analytes in citrated plasma samples. Analysis of the kinetics of these cytokines was performed in 40 patients with severe blunt trauma admitted to our trauma center between March 2016 and February 2017, with an Injury Severity Score (ISS) greater than 20 with regard to sepsis (Sepsis-3) over a 14-d time course. RESULTS In total, the levels of six cytokines were altered in trauma patients across the 1-, 3-, 5-, 7-, and 14-d time points. Additionally, IL-6, IL-10, IL-15, macrophage derived chemokine (MDC), GRO, sCD40 L, granulocyte colony-stimulating factor (G-CSF), and fibroblast growth factor (FGF)-2 levels could be used to provide a significant discrimination between sepsis and nonsepsis patients at day 3 and afterward, with an area under the curve (AUC) of up to 0.90 through a combined analysis of the eight biomarkers (P < 0.001). Event-related analysis demonstrated 1.5- to 4-fold serum level changes for these cytokines within 72 h before clinically apparent sepsis. CONCLUSIONS Cytokine profiles demonstrate a high discriminatory ability enabling the timely identification of evolving sepsis in trauma patients. These abrupt changes enable sepsis to be detected up to 72 h before clinically overt deterioration. Defining cytokine release patterns that distinguish sepsis risk from trauma patients might enable physicians to initiate timely treatment and reduce mortality. Large prospective studies are needed to validate and operationalize the findings. TRIAL REGISTRATION Clinicaltrials, NCT01713205. Registered October 22, 2012, https://register. CLINICALTRIALS gov/NCT01713205.
Collapse
Affiliation(s)
- Jun Wang
- Wound trauma medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China; Department of Emergency Surgery, The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dalin Wen
- Wound trauma medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Shi Zeng
- Wound trauma medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Juan Du
- Wound trauma medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Cui
- Wound trauma medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianhui Sun
- Wound trauma medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Guosheng Chen
- Department of Emergency Surgery, The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ling Zeng
- Wound trauma medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Dingyuan Du
- Department of Cardiothoracic Surgery, The Affiliated Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Lianyang Zhang
- Wound trauma medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin Deng
- Department of Emergency Surgery, The Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jianxin Jiang
- Wound trauma medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China.
| | - Anqiang Zhang
- Wound trauma medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
126
|
Cummings MJ, Bakamutumaho B, Jain K, Price A, Owor N, Kayiwa J, Namulondo J, Byaruhanga T, Muwanga M, Nsereko C, Sameroff S, Ian Lipkin W, Lutwama JJ, O’Donnell MR. Development of a Novel Clinicomolecular Risk Index to Enhance Mortality Prediction and Immunological Stratification of Adults Hospitalized with Sepsis in Sub-Saharan Africa: A Pilot Study from Uganda. Am J Trop Med Hyg 2023; 108:619-626. [PMID: 36646071 PMCID: PMC9978552 DOI: 10.4269/ajtmh.22-0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023] Open
Abstract
The global burden of sepsis is concentrated in sub-Saharan Africa (SSA), where epidemic HIV and unique pathogen diversity challenge the effective management of severe infections. In this context, patient stratification based on biomarkers of a dysregulated host response may identify subgroups more likely to respond to targeted immunomodulatory therapeutics. In a prospective cohort of adults hospitalized with suspected sepsis in Uganda, we applied machine learning methods to develop a prediction model for 30-day mortality that integrates physiology-based risk scores with soluble biomarkers reflective of key domains of sepsis immunopathology. After model evaluation and internal validation, whole-blood RNA sequencing data were analyzed to compare biological pathway enrichment and inferred immune cell profiles between patients assigned differential model-based risks of mortality. Of 260 eligible adults (median age, 32 years; interquartile range, 26-43 years; 59.2% female, 53.9% living with HIV), 62 (23.8%) died by 30 days after hospital discharge. Among 14 biomarkers, soluble tumor necrosis factor receptor 1 (sTNFR1) and angiopoietin 2 (Ang-2) demonstrated the greatest importance for mortality prediction in machine learning models. A clinicomolecular model integrating sTNFR1 and Ang-2 with the Universal Vital Assessment (UVA) risk score optimized 30-day mortality prediction across multiple performance metrics. Patients assigned to the high-risk, UVA-based clinicomolecular subgroup exhibited a transcriptional profile defined by proinflammatory innate immune and necroptotic pathway activation, T-cell exhaustion, and expansion of key immune cell subsets including regulatory and gamma-delta T cells. Clinicomolecular stratification of adults with suspected sepsis in Uganda enhanced 30-day mortality prediction and identified a high-risk subgroup with a therapeutically targetable immunological profile. Further studies are needed to advance pathobiologically informed sepsis management in SSA.
Collapse
Affiliation(s)
- Matthew J. Cummings
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York
| | - Barnabas Bakamutumaho
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
- Immunizable Diseases Unit, Uganda Virus Research Institute, Entebbe, Uganda
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York
| | - Adam Price
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York
| | - Nicholas Owor
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - John Kayiwa
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Joyce Namulondo
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Timothy Byaruhanga
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Moses Muwanga
- Entebbe General Referral Hospital, Ministry of Health, Entebbe, Uganda
| | | | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Julius J. Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Max R. O’Donnell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
127
|
Affiliation(s)
- Jerry J Zimmerman
- Pediatric Critical Care Medicine, Seattle Children's Hospital, Harborview Medical Center, Department of Pediatrics, University of Washington, School of Medicine, Seattle, WA
| |
Collapse
|
128
|
Giamarellos-Bourboulis EJ, Dimopoulos G, Flohé S, Kotsaki A, van der Poll T, Skirecki T, Torres A, Netea MG. THE EUROPEAN SHOCK SOCIETY MEETS THE IMMUNOSEP CONSORTIUM FOR PERSONALIZED SEPSIS TREATMENT. Shock 2023; 59:21-25. [PMID: 36867758 DOI: 10.1097/shk.0000000000001955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
ABSTRACT The unacceptable high mortality of severe infections and sepsis led over the years to understand the need for adjunctive immunotherapy to modulate the dysregulated host response of the host. However, not all patients should receive the same type of treatment. The immune function may largely differ from one patient to the other. The principles of precision medicine require that some biomarker is used to capture the immune function of the host and guide the best candidate therapy. This is the approach of the ImmunoSep randomized clinical trial (NCT04990232) where patients are allocated to treatment with anakinra or recombinant interferon gamma tailored to immune signs of macrophage activation-like syndrome and immunoparalysis respectively. ImmunoSep is a first-in-class paradigm of precision medicine for sepsis. Other approaches need to consider classification by sepsis endotypes, targeting T cell and application of stem cells. Basic principle for any trial to be successful is the delivery of appropriate antimicrobial therapy as standard-of-care taking into consideration not just the likelihood for resistant pathogens but also the pharmacokinetic/pharmacodynamic mode of action of the administered antimicrobial.
Collapse
Affiliation(s)
| | - George Dimopoulos
- 3rd Department of Critical Care Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefanie Flohé
- Department of Trauma Surgery, University Hospital Essen, Essen, Germany
| | - Antigoni Kotsaki
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Tom van der Poll
- Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Antoni Torres
- Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
129
|
Joshi I, Carney WP, Rock EP. Utility of monocyte HLA-DR and rationale for therapeutic GM-CSF in sepsis immunoparalysis. Front Immunol 2023; 14:1130214. [PMID: 36825018 PMCID: PMC9942705 DOI: 10.3389/fimmu.2023.1130214] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Sepsis, a heterogeneous clinical syndrome, features a systemic inflammatory response to tissue injury or infection, followed by a state of reduced immune responsiveness. Measurable alterations occur in both the innate and adaptive immune systems. Immunoparalysis, an immunosuppressed state, associates with worsened outcomes, including multiple organ dysfunction syndrome, secondary infections, and increased mortality. Multiple immune markers to identify sepsis immunoparalysis have been proposed, and some might offer clinical utility. Sepsis immunoparalysis is characterized by reduced lymphocyte numbers and downregulation of class II human leukocyte antigens (HLA) on innate immune monocytes. Class II HLA proteins present peptide antigens for recognition by and activation of antigen-specific T lymphocytes. One monocyte class II protein, mHLA-DR, can be measured by flow cytometry. Downregulated mHLA-DR indicates reduced monocyte responsiveness, as measured by ex-vivo cytokine production in response to endotoxin stimulation. Our literature survey reveals low mHLA-DR expression on peripheral blood monocytes correlates with increased risks for infection and death. For mHLA-DR, 15,000 antibodies/cell appears clinically acceptable as the lower limit of immunocompetence. Values less than 15,000 antibodies/cell are correlated with sepsis severity; and values at or less than 8000 antibodies/cell are identified as severe immunoparalysis. Several experimental immunotherapies have been evaluated for reversal of sepsis immunoparalysis. In particular, sargramostim, a recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF), has demonstrated clinical benefit by reducing hospitalization duration and lowering secondary infection risk. Lowered infection risk correlates with increased mHLA-DR expression on peripheral blood monocytes in these patients. Although mHLA-DR has shown promising utility for identifying sepsis immunoparalysis, absence of a standardized, analytically validated method has thus far prevented widespread adoption. A clinically useful approach for patient inclusion and identification of clinically correlated output parameters could address the persistent high unmet medical need for effective targeted therapies in sepsis.
Collapse
Affiliation(s)
- Ila Joshi
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States,*Correspondence: Ila Joshi,
| | - Walter P. Carney
- Walt Carney Biomarkers Consulting, LLC., North Andover, MA, United States
| | - Edwin P. Rock
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States
| |
Collapse
|
130
|
Cummings MJ, Bakamutumaho B, Price A, Owor N, Kayiwa J, Namulondo J, Byaruhanga T, Jain K, Postler TS, Muwanga M, Nsereko C, Nayiga I, Kyebambe S, Che X, Sameroff S, Tokarz R, Shah SS, Larsen MH, Lipkin WI, Lutwama JJ, O’Donnell MR. HIV infection drives pro-inflammatory immunothrombotic pathway activation and organ dysfunction among adults with sepsis in Uganda. AIDS 2023; 37:233-245. [PMID: 36355913 PMCID: PMC9780191 DOI: 10.1097/qad.0000000000003410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The global burden of sepsis is concentrated in high HIV-burden settings in sub-Saharan Africa (SSA). Despite this, little is known about the immunopathology of sepsis in persons with HIV (PWH) in the region. We sought to determine the influence of HIV on host immune responses and organ dysfunction among adults hospitalized with suspected sepsis in Uganda. DESIGN Prospective cohort study. METHODS We compared organ dysfunction and 30-day outcome profiles of PWH and those without HIV. We quantified 14 soluble immune mediators, reflective of key domains of sepsis immunopathology, and performed whole-blood RNA-sequencing on samples from a subset of patients. We used propensity score methods to match PWH and those without HIV by demographics, illness duration, and clinical severity, and compared immune mediator concentrations and gene expression profiles across propensity score-matched groups. RESULTS Among 299 patients, 157 (52.5%) were PWH (clinical stage 3 or 4 in 80.3%, 67.7% with known HIV on antiretroviral therapy). PWH presented with more severe physiologic derangement and shock, and had higher 30-day mortality (34.5% vs. 10.2%; P < 0.001). Across propensity score-matched groups, PWH exhibited greater pro-inflammatory immune activation, including upregulation of interleukin (IL)-6, IL-8, IL-15, IL-17 and HMGB1 signaling, with concomitant T-cell exhaustion, prothrombotic pathway activation, and angiopoeitin-2-related endothelial dysfunction. CONCLUSIONS Sepsis-related organ dysfunction and mortality in Uganda disproportionately affect PWH, who demonstrate exaggerated activation of multiple immunothrombotic and metabolic pathways implicated in sepsis pathogenesis. Further investigations are needed to refine understanding of sepsis immunopathology in PWH, particularly mechanisms amenable to therapeutic manipulation.
Collapse
Affiliation(s)
- Matthew J. Cummings
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Barnabas Bakamutumaho
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
- Immunizable Diseases Unit, Uganda Virus Research Institute, Entebbe, Uganda
| | - Adam Price
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicholas Owor
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - John Kayiwa
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Joyce Namulondo
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Timothy Byaruhanga
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Thomas S. Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Moses Muwanga
- Entebbe General Referral Hospital, Ministry of Health, Entebbe, Uganda
| | | | - Irene Nayiga
- Entebbe General Referral Hospital, Ministry of Health, Entebbe, Uganda
| | - Stephen Kyebambe
- Entebbe General Referral Hospital, Ministry of Health, Entebbe, Uganda
| | - Xiaoyu Che
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Shivang S. Shah
- Division of Infectious Diseases, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michelle H. Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julius J. Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Max R. O’Donnell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
131
|
Integrating biology into clinical trial design. Curr Opin Crit Care 2023; 29:26-33. [PMID: 36580371 DOI: 10.1097/mcc.0000000000001007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Critical care medicine revolves around syndromes, such as acute respiratory distress syndrome (ARDS), sepsis and acute kidney injury. Few interventions have shown to be effective in large clinical trials, likely because of between-patient heterogeneity. Translational evidence suggests that more homogeneous biological subgroups can be identified and that differential treatment effects exist. Integrating biological considerations into clinical trial design is therefore an important frontier of critical care research. RECENT FINDINGS The pathophysiology of critical care syndromes involves a multiplicity of processes, which emphasizes the difficulty of integrating biology into clinical trial design. Biological assessment can be integrated into clinical trials using predictive enrichment at trial inclusion, time-dependent variation to better understand treatment effects and biological markers as surrogate outcomes. SUMMARY Integrating our knowledge on biological heterogeneity into clinical trial design, which has revolutionized other medical fields, could serve as a solution to implement personalized treatment in critical care syndromes. Changing the trial design by using predictive enrichment, incorporation of the evaluation of time-dependent changes and biological markers as surrogate outcomes may improve the likelihood of detecting a beneficial effect from targeted therapeutic interventions and the opportunity to test multiple lines of treatment per patient.
Collapse
|
132
|
Baghela A, An A, Zhang P, Acton E, Gauthier J, Brunet-Ratnasingham E, Blimkie T, Freue GC, Kaufmann D, Lee AHY, Levesque RC, Hancock REW. Predicting severity in COVID-19 disease using sepsis blood gene expression signatures. Sci Rep 2023; 13:1247. [PMID: 36690713 PMCID: PMC9868505 DOI: 10.1038/s41598-023-28259-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Severely-afflicted COVID-19 patients can exhibit disease manifestations representative of sepsis, including acute respiratory distress syndrome and multiple organ failure. We hypothesized that diagnostic tools used in managing all-cause sepsis, such as clinical criteria, biomarkers, and gene expression signatures, should extend to COVID-19 patients. Here we analyzed the whole blood transcriptome of 124 early (1-5 days post-hospital admission) and late (6-20 days post-admission) sampled patients with confirmed COVID-19 infections from hospitals in Quebec, Canada. Mechanisms associated with COVID-19 severity were identified between severity groups (ranging from mild disease to the requirement for mechanical ventilation and mortality), and established sepsis signatures were assessed for dysregulation. Specifically, gene expression signatures representing pathophysiological events, namely cellular reprogramming, organ dysfunction, and mortality, were significantly enriched and predictive of severity and lethality in COVID-19 patients. Mechanistic endotypes reflective of distinct sepsis aetiologies and therapeutic opportunities were also identified in subsets of patients, enabling prediction of potentially-effective repurposed drugs. The expression of sepsis gene expression signatures in severely-afflicted COVID-19 patients indicates that these patients should be classified as having severe sepsis. Accordingly, in severe COVID-19 patients, these signatures should be strongly considered for the mechanistic characterization, diagnosis, and guidance of treatment using repurposed drugs.
Collapse
Affiliation(s)
- Arjun Baghela
- Department of Microbiology and Immunology, University of British Columbia (UBC), Vancouver, Canada
| | - Andy An
- Department of Microbiology and Immunology, University of British Columbia (UBC), Vancouver, Canada
| | | | - Erica Acton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Jeff Gauthier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Microbiologie-Infectiologie et d'immunologie, Université Laval, Quebec, QC, Canada
| | - Elsa Brunet-Ratnasingham
- Département de Microbiologie, Infectiologie Et Immunologie, Université de Montréal, Montreal, Canada
- Centre de Recherche du CHUM, Montreal, QC, Canada
| | - Travis Blimkie
- Department of Microbiology and Immunology, University of British Columbia (UBC), Vancouver, Canada
| | | | - Daniel Kaufmann
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Médecine, Université de Montréal, Montreal, Canada
| | - Amy H Y Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Microbiologie-Infectiologie et d'immunologie, Université Laval, Quebec, QC, Canada
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia (UBC), Vancouver, Canada.
- Asep Medical, Vancouver, Canada.
| |
Collapse
|
133
|
Vintrych P, Al-Obeidallah M, Horák J, Chvojka J, Valešová L, Nalos L, Jarkovská D, Matějovič M, Štengl M. Modeling sepsis, with a special focus on large animal models of porcine peritonitis and bacteremia. Front Physiol 2023; 13:1094199. [PMID: 36703923 PMCID: PMC9871395 DOI: 10.3389/fphys.2022.1094199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Infectious diseases, which often result in deadly sepsis or septic shock, represent a major global health problem. For understanding the pathophysiology of sepsis and developing new treatment strategies, reliable and clinically relevant animal models of the disease are necessary. In this review, two large animal (porcine) models of sepsis induced by either peritonitis or bacteremia are introduced and their strong and weak points are discussed in the context of clinical relevance and other animal models of sepsis, with a special focus on cardiovascular and immune systems, experimental design, and monitoring. Especially for testing new therapeutic strategies, the large animal (porcine) models represent a more clinically relevant alternative to small animal models, and the findings obtained in small animal (transgenic) models should be verified in these clinically relevant large animal models before translation to the clinical level.
Collapse
Affiliation(s)
- Pavel Vintrych
- Department of Cardiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Mahmoud Al-Obeidallah
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Jan Horák
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Jiří Chvojka
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Lenka Valešová
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Lukáš Nalos
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Dagmar Jarkovská
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Martin Matějovič
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Milan Štengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,*Correspondence: Milan Štengl,
| |
Collapse
|
134
|
Peng Y, Wu Q, Liu H, Zhang J, Han Q, Yin F, Wang L, Chen Q, Zhang F, Feng C, Zhu H. An immune-related gene signature predicts the 28-day mortality in patients with sepsis. Front Immunol 2023; 14:1152117. [PMID: 37033939 PMCID: PMC10076848 DOI: 10.3389/fimmu.2023.1152117] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Sepsis is the leading cause of death in intensive care units and is characterized by multiple organ failure, including dysfunction of the immune system. In the present study, we performed an integrative analysis on publicly available datasets to identify immune-related genes (IRGs) that may play vital role in the pathological process of sepsis, based on which a prognostic IRG signature for 28-day mortality prediction in patients with sepsis was developed and validated. Methods Weighted gene co-expression network analysis (WGCNA), Cox regression analysis and least absolute shrinkage and selection operator (LASSO) estimation were used to identify functional IRGs and construct a model for predicting the 28-day mortality. The prognostic value of the model was validated in internal and external sepsis datasets. The correlations of the IRG signature with immunological characteristics, including immune cell infiltration and cytokine expression, were explored. We finally validated the expression of the three IRG signature genes in blood samples from 12 sepsis patients and 12 healthy controls using qPCR. Results We established a prognostic IRG signature comprising three gene members (LTB4R, HLA-DMB and IL4R). The IRG signature demonstrated good predictive performance for 28-day mortality on the internal and external validation datasets. The immune infiltration and cytokine analyses revealed that the IRG signature was significantly associated with multiple immune cells and cytokines. The molecular pathway analysis uncovered ontology enrichment in myeloid cell differentiation and iron ion homeostasis, providing clues regarding the underlying biological mechanisms of the IRG signature. Finally, qPCR detection verified the differential expression of the three IRG signature genes in blood samples from 12 sepsis patients and 12 healthy controls. Discussion This study presents an innovative IRG signature for 28-day mortality prediction in sepsis patients, which may be used to facilitate stratification of risky sepsis patients and evaluate patients' immune state.
Collapse
Affiliation(s)
- Yaojun Peng
- Department of Graduate Administration, Medical School of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Department of Emergency, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qiyan Wu
- Institute of Oncology, The Fifth Medical Centre, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hongyu Liu
- Department of Graduate Administration, Medical School of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Department of Neurosurgery, Hainan Hospital of Chinese People's Liberation Army (PLA) General Hospital, Sanya, Hainan, China
| | - Jinying Zhang
- Department of Basic Medicine, Medical School of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qingru Han
- Department of Emergency, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Fan Yin
- Department of Oncology, The Second Medical Center & National Clinical Research Center of Geriatric Disease, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lingxiong Wang
- Institute of Oncology, The Fifth Medical Centre, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qi Chen
- Department of Traditional Chinese Medicine, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Fei Zhang
- Department of Emergency, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Fei Zhang, ; Cong Feng, ; Haiyan Zhu,
| | - Cong Feng
- Department of Emergency, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Fei Zhang, ; Cong Feng, ; Haiyan Zhu,
| | - Haiyan Zhu
- Department of Emergency, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Fei Zhang, ; Cong Feng, ; Haiyan Zhu,
| |
Collapse
|
135
|
Karvunidis T, Matějovič M. Year 2022 in review - Sepsis. ANESTEZIOLOGIE A INTENZIVNÍ MEDICÍNA 2022. [DOI: 10.36290/aim.2022.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
136
|
Al Gharaibeh FN, Mohan S, Santoro MA, Slagle CL, Goldstein SL. Acute kidney injury and early fluid load in a retrospective cohort of neonatal sepsis. Pediatr Nephrol 2022; 38:1971-1977. [PMID: 36525082 DOI: 10.1007/s00467-022-05840-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sepsis and acute kidney injury (AKI) are associated with mortality in the newborn intensive care unit (NICU). There is a paucity of studies that describe AKI and fluid overload in neonatal sepsis and their association with mortality. METHODS Retrospective study of neonates with culture positive sepsis admitted to the NICU between June 2020 and June 2021 was conducted. Primary outcome was in-hospital mortality according to AKI as defined by the neonatal modified Kidney Diseases Improving Outcomes criteria. Secondary outcomes were early fluid overload and vasopressor use. RESULTS Thirty-three percent of neonates had AKI with sepsis, and 57% of cases were severe AKI. AKI was associated with mortality after adjusting for variables that were different between survivors and non-survivors (aOR 5.7 [95% CI 1.1-36], p = 0.04). Early fluid overload occurred in 27% of neonates who were at higher risk of having AKI with sepsis (OR 7.4 [95% CI 1.6-26.0], p = 0.01) and higher risk of mortality (aOR 17.8 [95% CI 2-7545], p = 0.02). CONCLUSIONS AKI and early fluid overload are associated with mortality in sepsis in our retrospective cohort. Mitigating AKI and early fluid overload in sepsis might be a fruitful strategy in reducing mortality with sepsis. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Faris N Al Gharaibeh
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA. .,College of Medicine, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | - Shruthi Mohan
- Pediatric Residency Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Cara L Slagle
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.,College of Medicine, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Stuart L Goldstein
- College of Medicine, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.,Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
137
|
Michels EHA, Butler JM, Reijnders TDY, Cremer OL, Scicluna BP, Uhel F, Peters-Sengers H, Schultz MJ, Knight JC, van Vught LA, van der Poll T, MARS consortium de BeerFriso M.BosLieuwe D. J.GlasGerie J.HoogendijkArie J.van HooijdonkRoosmarijn T. M.HornJannekeHusonMischa A.SchoutenLaura R. A.StraatMarleenWieskeLuukWiewelMaryse A.WitteveenEstherBontenMarc J. M.CremerOlaf M.OngDavid S. Y.FrenckenJos F.KlouwenbergPeter M. C. KleinKoster‐BrouwerMaria E.van de GroepKirstenVerboomDiana M., Bos LDJ, Glas GJ, Hoogendijk AJ, van Hooijdonk RTM, Horn J, Huson MA, Schouten LRA, Straat M, Wieske L, Wiewel MA, Witteveen E, Bonten MJM, Cremer OM, Ong DSY, Frencken JF, Klouwenberg PMCK, Koster‐Brouwer ME, van de Groep K, Verboom DM, MARS consortium. Association between age and the host response in critically ill patients with sepsis. Crit Care 2022; 26:385. [PMID: 36514130 PMCID: PMC9747080 DOI: 10.1186/s13054-022-04266-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The association of ageing with increased sepsis mortality is well established. Nonetheless, current investigations on the influence of age on host response aberrations are largely limited to plasma cytokine levels while neglecting other pathophysiological sepsis domains like endothelial cell activation and function, and coagulation activation. The primary objective of this study was to gain insight into the association of ageing with aberrations in key host response pathways and blood transcriptomes in sepsis. METHODS We analysed the clinical outcome (n = 1952), 16 plasma biomarkers providing insight in deregulation of specific pathophysiological domains (n = 899), and blood leukocyte transcriptomes (n = 488) of sepsis patients stratified according to age decades. Blood transcriptome results were validated in an independent sepsis cohort and compared with healthy individuals. RESULTS Older age was associated with increased mortality independent of comorbidities and disease severity. Ageing was associated with lower endothelial cell activation and dysfunction, and similar inflammation and coagulation activation, despite higher disease severity scores. Blood leukocytes of patients ≥ 70 years, compared to patients < 50 years, showed decreased expression of genes involved in cytokine signaling, and innate and adaptive immunity, and increased expression of genes involved in hemostasis and endothelial cell activation. The diminished expression of gene pathways related to innate immunity and cytokine signaling in subjects ≥ 70 years was sepsis-induced, as healthy subjects ≥ 70 years showed enhanced expression of these pathways compared to healthy individuals < 50 years. CONCLUSIONS This study provides novel evidence that older age is associated with relatively mitigated sepsis-induced endothelial cell activation and dysfunction, and a blood leukocyte transcriptome signature indicating impaired innate immune and cytokine signaling. These data suggest that age should be considered in patient selection in future sepsis trials targeting the immune system and/or the endothelial cell response.
Collapse
Affiliation(s)
- Erik H. A. Michels
- grid.7177.60000000084992262Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Joe M. Butler
- grid.7177.60000000084992262Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Tom D. Y. Reijnders
- grid.7177.60000000084992262Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Olaf L. Cremer
- grid.7692.a0000000090126352Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Brendon P. Scicluna
- grid.7177.60000000084992262Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands ,grid.4462.40000 0001 2176 9482Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, University of Malta, Msida, Malta ,grid.4462.40000 0001 2176 9482Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Fabrice Uhel
- grid.7177.60000000084992262Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Hessel Peters-Sengers
- grid.7177.60000000084992262Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Marcus J. Schultz
- grid.7177.60000000084992262Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands ,grid.10223.320000 0004 1937 0490Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand ,grid.4991.50000 0004 1936 8948Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Julian C. Knight
- grid.4991.50000 0004 1936 8948Nuffield Department of Medicine, University of Oxford, Oxford, UK ,grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lonneke A. van Vught
- grid.7177.60000000084992262Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands ,grid.7177.60000000084992262Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- grid.7177.60000000084992262Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands ,grid.7177.60000000084992262Division of Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Cusack R, Leone M, Rodriguez AH, Martin-Loeches I. Endothelial Damage and the Microcirculation in Critical Illness. Biomedicines 2022; 10:biomedicines10123150. [PMID: 36551905 PMCID: PMC9776078 DOI: 10.3390/biomedicines10123150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial integrity maintains microcirculatory flow and tissue oxygen delivery. The endothelial glycocalyx is involved in cell signalling, coagulation and inflammation. Our ability to treat critically ill and septic patients effectively is determined by understanding the underpinning biological mechanisms. Many mechanisms govern the development of sepsis and many large trials for new treatments have failed to show a benefit. Endothelial dysfunction is possibly one of these biological mechanisms. Glycocalyx damage is measured biochemically. Novel microscopy techniques now mean the glycocalyx can be indirectly visualised, using sidestream dark field imaging. How the clinical visualisation of microcirculation changes relate to biochemical laboratory measurements of glycocalyx damage is not clear. This article reviews the evidence for a relationship between clinically evaluable microcirculation and biological signal of glycocalyx disruption in various diseases in ICU. Microcirculation changes relate to biochemical evidence of glycocalyx damage in some disease states, but results are highly variable. Better understanding and larger studies of this relationship could improve phenotyping and personalised medicine in the future. Damage to the glycocalyx could underpin many critical illness pathologies and having real-time information on the glycocalyx and microcirculation in the future could improve patient stratification, diagnosis and treatment.
Collapse
Affiliation(s)
- Rachael Cusack
- Department of Intensive Care Medicine, St. James’s Hospital, James’s Street, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, College Green, D02 R590 Dublin, Ireland
| | - Marc Leone
- Department of Anaesthesiology and Intensive Care Unit, Hospital Nord, Assistance Publique Hôpitaux de Marseille, Aix Marseille University, 13015 Marseille, France
| | - Alejandro H. Rodriguez
- Intensive Care Unit, Hospital Universitario Joan XXIII, 43005 Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgil, 43007 Tarragona, Spain
- Departament Medicina I Cirurgia, Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, St. James’s Hospital, James’s Street, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, College Green, D02 R590 Dublin, Ireland
- Correspondence:
| |
Collapse
|
139
|
Abstract
Sepsis is an ill-defined syndrome yet is a leading cause of morbidity and mortality worldwide. The most recent consensus defines sepsis as life-threatening organ dysfunction caused by a dysregulated host response to infection. However, this definition belies the complexity and breadth of immune mechanisms involved in sepsis, which are characterized by simultaneous hyperinflammation and immune suppression. In this review, we describe the immunopathogenesis of sepsis and highlight some recent pathophysiological findings that have expanded our understanding of sepsis. Sepsis endotypes can be used to divide sepsis patients in different groups with distinct immune profiles and outcomes. We also summarize evidence on the role of the gut microbiome in sepsis immunity. The challenge of the coming years will be to translate our increasing knowledge about the molecular mechanisms underlying sepsis into therapies that improve relevant patient outcomes.
Collapse
|
140
|
Komorowski M, Green A, Tatham KC, Seymour C, Antcliffe D. Sepsis biomarkers and diagnostic tools with a focus on machine learning. EBioMedicine 2022; 86:104394. [PMID: 36470834 PMCID: PMC9783125 DOI: 10.1016/j.ebiom.2022.104394] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Over the last years, there have been advances in the use of data-driven techniques to improve the definition, early recognition, subtypes characterisation, prognostication and treatment personalisation of sepsis. Some of those involve the discovery or evaluation of biomarkers or digital signatures of sepsis or sepsis sub-phenotypes. It is hoped that their identification may improve timeliness and accuracy of diagnosis, suggest physiological pathways and therapeutic targets, inform targeted recruitment into clinical trials, and optimise clinical management. Given the complexities of the sepsis response, panels of biomarkers or models combining biomarkers and clinical data are necessary, as well as specific data analysis methods, which broadly fall under the scope of machine learning. This narrative review gives a brief overview of the main machine learning techniques (mainly in the realms of supervised and unsupervised methods) and published applications that have been used to create sepsis diagnostic tools and identify biomarkers.
Collapse
Affiliation(s)
- Matthieu Komorowski
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom,Corresponding author.
| | - Ashleigh Green
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kate C. Tatham
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom,Anaesthetics, Perioperative Medicine and Pain Department, Royal Marsden NHS Foundation Trust, 203 Fulham Rd, London, SW3 6JJ, United Kingdom
| | - Christopher Seymour
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Antcliffe
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
141
|
Affiliation(s)
- Fran Balamuth
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Todd A. Florin
- Feinberg School of Medicine at Northwestern University, Evanston, IL
| |
Collapse
|
142
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe acute kidney injury (AKI) phenotypes in children. RECENT FINDINGS AKI is a heterogenous disease that imposes significant morbidity and mortality on critically ill and noncritically ill patients across the age spectrum. As our understanding of AKI and its association with outcomes has improved, it is becoming increasingly apparent that there are distinct AKI subphenotypes that vary by cause or associated conditions. We have also learned that severity, duration, and repeated episodes of AKI impact outcomes, and that integration of novel urinary biomarkers of tubular injury can also reveal unique subphenotypes of AKI that may not be otherwise readily apparent. SUMMARY Studies that further delineate these unique AKI subphenotypes are needed to better understand the impact of AKI in children. Further delineation of these phenotypes has both prognostic and therapeutic implications.
Collapse
|
143
|
Timing and Spectrum of Antibiotic Treatment for Suspected Sepsis and Septic Shock: Why so Controversial? Infect Dis Clin North Am 2022; 36:719-733. [PMID: 36328632 DOI: 10.1016/j.idc.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sepsis guidelines and mandates encourage increasingly aggressive time-to-antibiotic targets for broad-spectrum antimicrobials for suspected sepsis and septic shock. This has caused considerable controversy due to weaknesses in the underlying evidence and fear that overly strict antibiotic deadlines may harm patients by perpetuating or escalating overtreatment. Indeed, a third or more of patients currently treated for sepsis and septic shock have noninfectious or nonbacterial conditions. These patients risk all the potential harms of antibiotics without their possible benefits. Updated Surviving Sepsis Campaign guidelines now emphasize the importance of tailoring antibiotics to each patient's likelihood of infection, risk for drug-resistant pathogens, and severity-of-illness.
Collapse
|
144
|
Atreya MR, Cvijanovich NZ, Fitzgerald JC, Weiss SL, Bigham MT, Jain PN, Schwarz AJ, Lutfi R, Nowak J, Allen GL, Thomas NJ, Grunwell JR, Baines T, Quasney M, Haileselassie B, Lindsell CJ, Alder MN, Wong HR. Integrated PERSEVERE and endothelial biomarker risk model predicts death and persistent MODS in pediatric septic shock: a secondary analysis of a prospective observational study. Crit Care 2022; 26:210. [PMID: 35818064 PMCID: PMC9275255 DOI: 10.1186/s13054-022-04070-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022] Open
Abstract
Background Multiple organ dysfunction syndrome (MODS) is a critical driver of sepsis morbidity and mortality in children. Early identification of those at risk of death and persistent organ dysfunctions is necessary to enrich patients for future trials of sepsis therapeutics. Here, we sought to integrate endothelial and PERSEVERE biomarkers to estimate the composite risk of death or organ dysfunctions on day 7 of septic shock. Methods We measured endothelial dysfunction markers from day 1 serum among those with existing PERSEVERE data. TreeNet® classification model was derived incorporating 22 clinical and biological variables to estimate risk. Based on relative variable importance, a simplified 6-biomarker model was developed thereafter. Results Among 502 patients, 49 patients died before day 7 and 124 patients had persistence of MODS on day 7 of septic shock. Area under the receiver operator characteristic curve (AUROC) for the newly derived PERSEVEREnce model to predict death or day 7 MODS was 0.93 (0.91–0.95) with a summary AUROC of 0.80 (0.76–0.84) upon tenfold cross-validation. The simplified model, based on IL-8, HSP70, ICAM-1, Angpt2/Tie2, Angpt2/Angpt1, and Thrombomodulin, performed similarly. Interaction between variables—ICAM-1 with IL-8 and Thrombomodulin with Angpt2/Angpt1—contributed to the models’ predictive capabilities. Model performance varied when estimating risk of individual organ dysfunctions with AUROCS ranging from 0.91 to 0.97 and 0.68 to 0.89 in training and test sets, respectively. Conclusions The newly derived PERSEVEREnce biomarker model reliably estimates risk of death or persistent organ dysfunctions on day 7 of septic shock. If validated, this tool can be used for prognostic enrichment in future pediatric trials of sepsis therapeutics. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04070-5.
Collapse
|
145
|
Bhavani SV, Semler M, Qian ET, Verhoef PA, Robichaux C, Churpek MM, Coopersmith CM. Development and validation of novel sepsis subphenotypes using trajectories of vital signs. Intensive Care Med 2022; 48:1582-1592. [PMID: 36152041 PMCID: PMC9510534 DOI: 10.1007/s00134-022-06890-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Sepsis is a heterogeneous syndrome and identification of sub-phenotypes is essential. This study used trajectories of vital signs to develop and validate sub-phenotypes and investigated the interaction of sub-phenotypes with treatment using randomized controlled trial data. METHODS All patients with suspected infection admitted to four academic hospitals in Emory Healthcare between 2014-2017 (training cohort) and 2018-2019 (validation cohort) were included. Group-based trajectory modeling was applied to vital signs from the first 8 h of hospitalization to develop and validate vitals trajectory sub-phenotypes. The associations between sub-phenotypes and outcomes were evaluated in patients with sepsis. The interaction between sub-phenotype and treatment with balanced crystalloids versus saline was tested in a secondary analysis of SMART (Isotonic Solutions and Major Adverse Renal Events Trial). RESULTS There were 12,473 patients with suspected infection in training and 8256 patients in validation cohorts, and 4 vitals trajectory sub-phenotypes were found. Group A (N = 3483, 28%) were hyperthermic, tachycardic, tachypneic, and hypotensive. Group B (N = 1578, 13%) were hyperthermic, tachycardic, tachypneic (not as pronounced as Group A) and hypertensive. Groups C (N = 4044, 32%) and D (N = 3368, 27%) had lower temperatures, heart rates, and respiratory rates, with Group C normotensive and Group D hypotensive. In the 6,919 patients with sepsis, Groups A and B were younger while Groups C and D were older. Group A had the lowest prevalence of congestive heart failure, hypertension, diabetes mellitus, and chronic kidney disease, while Group B had the highest prevalence. Groups A and D had the highest vasopressor use (p < 0.001 for all analyses above). In logistic regression, 30-day mortality was significantly higher in Groups A and D (p < 0.001 and p = 0.03, respectively). In the SMART trial, sub-phenotype significantly modified treatment effect (p = 0.03). Group D had significantly lower odds of mortality with balanced crystalloids compared to saline (odds ratio (OR) 0.39, 95% confidence interval (CI) 0.23-0.67, p < 0.001). CONCLUSION Sepsis sub-phenotypes based on vital sign trajectory were consistent across cohorts, had distinct outcomes, and different responses to treatment with balanced crystalloids versus saline.
Collapse
Affiliation(s)
- Sivasubramanium V Bhavani
- Department of Medicine, Emory University, Atlanta, GA, USA.
- Emory Critical Care Center, Atlanta, GA, USA.
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, 615 Michael St., Atlanta, GA, 30322, USA.
| | - Matthew Semler
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Edward T Qian
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Philip A Verhoef
- Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
- Hawaii Permanente Medical Group, Honolulu, HI, USA
| | - Chad Robichaux
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Matthew M Churpek
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Craig M Coopersmith
- Emory Critical Care Center, Atlanta, GA, USA
- Department of Surgery, Emory University, Atlanta, GA, USA
| |
Collapse
|
146
|
Zhang W, Zhang J, Huang H. Exosomes from adipose-derived stem cells inhibit inflammation and oxidative stress in LPS-acute kidney injury. Exp Cell Res 2022; 420:113332. [PMID: 36084668 DOI: 10.1016/j.yexcr.2022.113332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
Abstract
Acute renal damage presents a significant danger to kidney health. Previous research has found that acute kidney injury shows high levels of oxidative stress and inflammation caused by sepsis. Although mesenchymal stem cells (MSCs) can repair acute kidney injury. However, involvement of MSCs exosomes generated from adipose tissue and bone marrow in lipopolysaccharide-induced acute kidney damage is not clear. LPS (7.5 mg/kg) intraperitoneal injection was used to produce AKI, and 30 min before the LPS administration, adipose-derived MSCs (ADSCs) exosomes (1 × 105 and 5 × 105) and bone marrow-derived MSCs(BMSCs) exosomes (1 × 105 and 5 × 105) were delivered individually. The function of the rat kidney was explored. Inflammation, oxidative stress, and autophagy levels were further investigated. Both adipose-derived and bone marrow-derived MSCs can enhance renal function and structural damage, such as BUN, Creatinine, and cystatin C levels, as well as tubular damage scores. These findings indicate that both adipose-derived MSCs exosomes and bone marrow-derived MSCs exosomes decrease oxidative stress and inflammation, as well as make a substantial influence on kidney tissue in autophagy levels. Furthermore, compared to bone marrow-derived MSCs exosomes, adipose-derived MSCs exosomes improved kidney function and structure more significantly. We discovered that adipose-derived MSCs exosomes protect against LPS-induced AKI by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Wen Zhang
- Department of General Practice, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Jian Zhang
- Department of Radiology the First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Hua Huang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
147
|
He H, Huang T, Guo S, Yu F, Shen H, Shao H, Chen K, Zhang L, Wu Y, Tang X, Yuan X, Liu J, Zhou Y. Identification of a novel sepsis prognosis model and analysis of possible drug application prospects: Based on scRNA-seq and RNA-seq data. Front Immunol 2022; 13:888891. [PMID: 36389695 PMCID: PMC9650379 DOI: 10.3389/fimmu.2022.888891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/11/2022] [Indexed: 08/18/2023] Open
Abstract
Sepsis is a disease with a high morbidity and mortality rate. At present, there is a lack of ideal biomarker prognostic models for sepsis and promising studies using prognostic models to predict and guide the clinical use of medications. In this study, 71 differentially expressed genes (DEGs) were obtained by analyzing single-cell RNA sequencing (scRNA-seq) and transcriptome RNA-seq data, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses were performed on these genes. Then, a prognosis model with CCL5, HBD, IFR2BP2, LTB, and WFDC1 as prognostic signatures was successfully constructed after univariate LASSO regression analysis and multivariate Cox regression analysis. Kaplan-Meier (K-M) survival analysis, receiver operating characteristic (ROC) time curve analysis, internal validation, and principal component analysis (PCA) further validated the model for its high stability and predictive power. Furthermore, based on a risk prediction model, gene set enrichment analysis (GSEA) showed that multiple cellular functions and immune function signaling pathways were significantly different between the high- and low-risk groups. In-depth analysis of the distribution of immune cells in healthy individuals and sepsis patients using scRNA-seq data revealed immunosuppression in sepsis patients and differences in the abundance of immune cells between the high- and low-risk groups. Finally, the genetic targets of immunosuppression-related drugs were used to accurately predict the potential use of clinical agents in high-risk patients with sepsis.
Collapse
Affiliation(s)
- Haihong He
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tingting Huang
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shixing Guo
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Fan Yu
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Hongwei Shen
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Haibin Shao
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Keyan Chen
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lijun Zhang
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yunfeng Wu
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xi Tang
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xinhua Yuan
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jiao Liu
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yiwen Zhou
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
148
|
Ambrożej D, Makrinioti H, Whitehouse A, Papadopoulos N, Ruszczyński M, Adamiec A, Castro-Rodriguez JA, Alansari K, Jartti T, Feleszko W. Respiratory virus type to guide predictive enrichment approaches in the management of the first episode of bronchiolitis: A systematic review. Front Immunol 2022; 13:1017325. [PMID: 36389820 PMCID: PMC9647543 DOI: 10.3389/fimmu.2022.1017325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
It has become clear that severe bronchiolitis is a heterogeneous disease; even so, current bronchiolitis management guidelines rely on the one-size-fits-all approach regarding achieving both short-term and chronic outcomes. It has been speculated that the use of molecular markers could guide more effective pharmacological management and achieve the prevention of chronic respiratory sequelae. Existing data suggest that asthma-like treatment (systemic corticosteroids and beta2-agonists) in infants with rhinovirus-induced bronchiolitis is associated with improved short-term and chronic outcomes, but robust data is still lacking. We performed a systematic search of PubMed, Embase, Web of Science, and the Cochrane’s Library to identify eligible randomized controlled trials to determine the efficacy of a personalized, virus-dependent application of systemic corticosteroids in children with severe bronchiolitis. Twelve studies with heterogeneous methodology were included. The analysis of the available results comparing the respiratory syncytial virus (RSV)-positive and RSV-negative children did not reveal significant differences in the associatons between systemic corticosteroid use in acute episode and duration of hospitalization (short-term outcome). However, this systematic review identified a trend of the positive association between the use of systematic corticosteroids and duration of hospitalization in RSV-negative infants hospitalized with the first episode of bronchiolitis (two studies). This evidence is not conclusive. Taken together, we suggest the design for future studies to assess the respiratory virus type in guiding predictive enrichment approaches in infants presenting with the first episode of bronchiolitis.
Collapse
Affiliation(s)
- Dominika Ambrożej
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Heidi Makrinioti
- Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Abigail Whitehouse
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom
| | - Nikolas Papadopoulos
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
| | - Marek Ruszczyński
- Department of Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Aleksander Adamiec
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Jose A. Castro-Rodriguez
- Department of Pediatric Pulmonology and Cardiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Khalid Alansari
- Department of Pediatric Emergency Medicine, Sidra Medicine, Doha, Qatar
- Clinical Pediatrics, Qatar University College of Medicine, Doha, Qatar
- Clinical Pediatrics, Weill Cornell Medical College- Qatar, Doha, Qatar
| | - Tuomas Jartti
- Department of Pediatrics, Turku University Hospital and University of Turku, Turku, Finland
- PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Wojciech Feleszko,
| |
Collapse
|
149
|
Identification of Molecular Subtypes and a Novel Prognostic Model of Sepsis Based on Ferroptosis-Associated Gene Signature. Biomolecules 2022; 12:biom12101479. [PMID: 36291692 PMCID: PMC9599462 DOI: 10.3390/biom12101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Ferroptosis has recently been associated with immunological changes in sepsis. However, the clinical significance of ferroptosis-associated genes (FAGs) remains unknown. In this paper, a FAG-based prognostic model was constructed for sepsis patients using an integrated machine learning approach. The prognosis model was composed of 14 FAGs that classify the patients as high or low risk. Based on immunological study, it was found that the immune status differed between the high-risk and low-risk clusters. Cox regression analysis revealed that FAGs were independent risk factors for the overall survival of sepsis patients. ROC curves and nomograms revealed that the FAG-based model was robust for prognosis prediction. Lastly, NEDD4L was identified from the 14 FAGs as a potential hub gene for sepsis prediction.
Collapse
|
150
|
Liu D, Huang SY, Sun JH, Zhang HC, Cai QL, Gao C, Li L, Cao J, Xu F, Zhou Y, Guan CX, Jin SW, Deng J, Fang XM, Jiang JX, Zeng L. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med Res 2022; 9:56. [PMID: 36209190 PMCID: PMC9547753 DOI: 10.1186/s40779-022-00422-y] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Sepsis is a common complication of combat injuries and trauma, and is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It is also one of the significant causes of death and increased health care costs in modern intensive care units. The use of antibiotics, fluid resuscitation, and organ support therapy have limited prognostic impact in patients with sepsis. Although its pathophysiology remains elusive, immunosuppression is now recognized as one of the major causes of septic death. Sepsis-induced immunosuppression is resulted from disruption of immune homeostasis. It is characterized by the release of anti-inflammatory cytokines, abnormal death of immune effector cells, hyperproliferation of immune suppressor cells, and expression of immune checkpoints. By targeting immunosuppression, especially with immune checkpoint inhibitors, preclinical studies have demonstrated the reversal of immunocyte dysfunctions and established host resistance. Here, we comprehensively discuss recent findings on the mechanisms, regulation and biomarkers of sepsis-induced immunosuppression and highlight their implications for developing effective strategies to treat patients with septic shock.
Collapse
Affiliation(s)
- Di Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Si-Yuan Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Jian-Hui Sun
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Hua-Cai Zhang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Qing-Li Cai
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Chu Gao
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ju Cao
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Fang Xu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, Wenzhou, China
| | - Jin Deng
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, 550001, Guiyang, China
| | - Xiang-Ming Fang
- Department of Anesthesiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Jian-Xin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China.
| | - Ling Zeng
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|