101
|
Gómez-Maqueo X, Figueroa-Corona L, Martínez-Villegas JA, Soriano D, Gamboa-deBuen A. The Relevance of a Physiological-Stage Approach Study of the Molecular and Environmental Factors Regulating Seed Germination in Wild Plants. PLANTS 2021; 10:plants10061084. [PMID: 34071163 PMCID: PMC8226667 DOI: 10.3390/plants10061084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Germination represents the culmination of the seed developmental program and is affected by the conditions prevailing during seed maturation in the mother plant. During maturation, the dormancy condition and tolerance to dehydration are established. These characteristics are modulated by the environment to which they are subjected, having an important impact on wild species. In this work, a review was made of the molecular bases of the maturation, the processes of dormancy imposition and loss, as well as the germination process in different wild species with different life histories, and from diverse habitats. It is also specified which of these species present a certain type of management. The impact that the domestication process has had on certain characteristics of the seed is discussed, as well as the importance of determining physiological stages based on morphological characteristics, to face the complexities of the study of these species and preserve their genetic diversity and physiological responses.
Collapse
Affiliation(s)
- Ximena Gómez-Maqueo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (X.G.-M.); (L.F.-C.); (J.A.M.-V.)
| | - Laura Figueroa-Corona
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (X.G.-M.); (L.F.-C.); (J.A.M.-V.)
| | - Jorge Arturo Martínez-Villegas
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (X.G.-M.); (L.F.-C.); (J.A.M.-V.)
| | - Diana Soriano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alicia Gamboa-deBuen
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (X.G.-M.); (L.F.-C.); (J.A.M.-V.)
- Correspondence:
| |
Collapse
|
102
|
Sano N, Marion-Poll A. ABA Metabolism and Homeostasis in Seed Dormancy and Germination. Int J Mol Sci 2021; 22:5069. [PMID: 34064729 PMCID: PMC8151144 DOI: 10.3390/ijms22105069] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
Abscisic acid (ABA) is a key hormone that promotes dormancy during seed development on the mother plant and after seed dispersal participates in the control of dormancy release and germination in response to environmental signals. The modulation of ABA endogenous levels is largely achieved by fine-tuning, in the different seed tissues, hormone synthesis by cleavage of carotenoid precursors and inactivation by 8'-hydroxylation. In this review, we provide an overview of the current knowledge on ABA metabolism in developing and germinating seeds; notably, how environmental signals such as light, temperature and nitrate control seed dormancy through the adjustment of hormone levels. A number of regulatory factors have been recently identified which functional relationships with major transcription factors, such as ABA INSENSITIVE3 (ABI3), ABI4 and ABI5, have an essential role in the control of seed ABA levels. The increasing importance of epigenetic mechanisms in the regulation of ABA metabolism gene expression is also described. In the last section, we give an overview of natural variations of ABA metabolism genes and their effects on seed germination, which could be useful both in future studies to better understand the regulation of ABA metabolism and to identify candidates as breeding materials for improving germination properties.
Collapse
Affiliation(s)
| | - Annie Marion-Poll
- IJPB Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France;
| |
Collapse
|
103
|
Zhang W, Xu W, Zhang H, Liu X, Cui X, Li S, Song L, Zhu Y, Chen X, Chen H. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1329-1341. [PMID: 33507340 DOI: 10.1007/s00122-021-03774-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE We detected a QTL qHSW-16 undergone strong selection associated with seed weight and identified a novel candidate gene controlling seed weight candidate gene for this major QTL by qRT-PCT. Soybean [Glycine max (L.) Merr.] provides more than half of the world's oilseed production. To expand its germplasm resources useful for breeding increased yield and oil quality cultivars, it is necessary to resolve the diversity and evolutionary history of this crop. In this work, we resequenced 283 soybean accessions from China and obtained a large number of high-quality SNPs for investigation of the population genetics that underpin variation in seed weight and other agronomic traits. Selective signature analysis detected 78 (~ 25.0 Mb) and 39 (~ 22.60 Mb) novel putative selective signals that were selected during soybean domestication and improvement, respectively. Genome-wide association study (GWAS) identified five loci associated with seed weight. Among these QTLs, qHSW-16, overlapped with the improvement-selective region on chromosome 16, suggesting that this QTL may be underwent strong selection during soybean improvement. Of the 18 candidate genes in qHSW-16, only SoyZH13_16G122400 showed higher expression levels in a large seed variety compared to a small seed variety during seed development. These results identify SoyZH13_16G122400 as a novel candidate gene controlling seed weight and provide foundational insights into the molecular targets for breeding improvement of seed weight and potential seed yield in soybean.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wenjing Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongmei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaoqing Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Songsong Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yuelin Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
104
|
Wang P, Grimm B. Connecting Chlorophyll Metabolism with Accumulation of the Photosynthetic Apparatus. TRENDS IN PLANT SCIENCE 2021; 26:484-495. [PMID: 33422426 DOI: 10.1016/j.tplants.2020.12.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 12/09/2020] [Indexed: 05/14/2023]
Abstract
Chlorophyll (Chl) is indispensable for photosynthesis. In association with Chl-binding proteins (CBPs), it is responsible for light absorption, excitation energy transfer, and charge separation within the photosynthetic complexes. By contrast, photoexcitation of free Chl and its metabolic intermediates generates hazardous reactive oxygen species (ROS). While antagonistic activities of Chl synthesis and catabolism have been mostly elucidated, the tight synchronization of these metabolic activities with the formation and dismantling of the photosynthetic complexes is poorly understood. Recently, a set of auxiliary factors were identified to adjust metabolic activities and provide accurate amounts of Chl for pigment-protein complexes. Here, we review current knowledge of post-translational coordination of Chl formation, breakdown, and turnover with the assembly and disassembly of various CBPs and highlight future research perspectives.
Collapse
Affiliation(s)
- Peng Wang
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 Building 12, 10115 Berlin, Germany.
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 Building 12, 10115 Berlin, Germany.
| |
Collapse
|
105
|
Wang Y, Paterson AH. Loquat (Eriobotrya japonica (Thunb.) Lindl) population genomics suggests a two-staged domestication and identifies genes showing convergence/parallel selective sweeps with apple or peach. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:942-952. [PMID: 33624402 DOI: 10.1111/tpj.15209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/26/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Crop domestication and evolution represent key fields of plant and genetics research. Here, we re-sequenced and analyzed whole genome data from 51 wild accessions and 53 representative cultivars of Eriobotrya japonica, an important semi-subtropical fruit crop. Population genomics analysis suggested that modern cultivated E. japonica experienced a two-staged domestication fitting the "marginality model," being initially domesticated in west-northern Hubei province from a mono-phylogenetic wild progenitor, then refined mainly in Jiangsu, Zhejiang and Fujian provinces of China. Cultivated E. japonica has experienced little reduction in genome-wide nucleotide polymorphism compared with wild forms. Genes responsible for sugar biosynthesis were enriched in regions harboring putative selective sweeps. An approach based on co-clustering into gene families and evaluating chromosome colinearity of orthologous and paralogous genes was used to identify convergent/parallel selective sweeps among different crops. Specifically, more than one hundred of orthologs and paralogs undergoing selective sweeps were identified between loquat, apple and peach, among which 14 encoded "UDP glycosyltransferase 1." In sum, the study not only provided valuable information for breeding of E. japonica, but also enriched knowledge of crop domestication.
Collapse
Affiliation(s)
- Yunsheng Wang
- College of Health and Life Science, Kaili University, Kaili City, Guizhou Province, 556011, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, 30605, USA
- Southwest University, Chongqing, China
- North China University of Science and Technology, Tangshan City, Hebei Province, 063210, China
| |
Collapse
|
106
|
Yang N, Yan J. New genomic approaches for enhancing maize genetic improvement. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:101977. [PMID: 33418269 DOI: 10.1016/j.pbi.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 05/13/2023]
Abstract
Maize (Zea mays) is one of the most widely grown crops in the world, with an annual global production of over 1147 million tons. Genomics approaches are thought to be the best solution for accelerating yield improvement to meet the challenges of a growing population and global climate change. Here, we review current approaches to the exploration of novel genetic variation in genomes, DNA modifications, and transcription levels of cultivated maize, landraces, and wild relatives. We discuss applications of genetic engineering to maize yield improvement and highlight future directions for maize genomics studies.
Collapse
Affiliation(s)
- Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
107
|
Tian Z, Wang JW, Li J, Han B. Designing future crops: challenges and strategies for sustainable agriculture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1165-1178. [PMID: 33258137 DOI: 10.1111/tpj.15107] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 05/26/2023]
Abstract
Crop production is facing unprecedented challenges. Despite the fact that the food supply has significantly increased over the past half-century, ~8.9 and 14.3% people are still suffering from hunger and malnutrition, respectively. Agricultural environments are continuously threatened by a booming world population, a shortage of arable land, and rapid changes in climate. To ensure food and ecosystem security, there is a need to design future crops for sustainable agriculture development by maximizing net production and minimalizing undesirable effects on the environment. The future crops design projects, recently launched by the National Natural Science Foundation of China and Chinese Academy of Sciences (CAS), aim to develop a roadmap for rapid design of customized future crops using cutting-edge technologies in the Breeding 4.0 era. In this perspective, we first introduce the background and missions of these projects. We then outline strategies to design future crops, such as improvement of current well-cultivated crops, de novo domestication of wild species and redomestication of current cultivated crops. We further discuss how these ambitious goals can be achieved by the recent development of new integrative omics tools, advanced genome-editing tools and synthetic biology approaches. Finally, we summarize related opportunities and challenges in these projects.
Collapse
Affiliation(s)
- Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- ShanghaiTech University, Shanghai, 200031, China
| | - Jiayang Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- ShanghaiTech University, Shanghai, 200031, China
- National Center for Gene Research, Shanghai, 200233, China
| |
Collapse
|
108
|
Yu H, Li Q, Li Y, Yang H, Lu Z, Wu J, Zhang Z, Shahid MQ, Liu X. Genomics Analyses Reveal Unique Classification, Population Structure and Novel Allele of Neo-Tetraploid Rice. RICE (NEW YORK, N.Y.) 2021; 14:16. [PMID: 33547986 PMCID: PMC7867503 DOI: 10.1186/s12284-021-00459-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/28/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Neo-tetraploid rice (NTR) is a useful new germplasm that developed from the descendants of the autotetraploid rice (ATR) hybrids. NTR showed improved fertility and yield potential, and produced high yield heterosis when crossed with indica ATR for commercial utilization. However, their classification, population structure and genomic feature remain elusive. RESULTS Here, high-depth genome resequencing data of 15 NTRs and 18 ATRs, together with 38 publicly available data of diploid rice accessions, were analyzed to conduct classification, population structure and haplotype analyses. Five subpopulations were detected and NTRs were clustered into one independent group that was adjacent to japonica subspecies, which maybe the reason for high heterosis when NTRs crossed with indica ATRs. Haplotype patterns of 717 key genes that associated with yield and other agronomic traits were revealed in these NTRs. Moreover, a novel specific SNP variation was detected in the first exon of HSP101, a known heat-inducible gene, which was conserved in all NTRs but absent in ATRs, 3KRG and RiceVarMap2 databases. The novel allele was named as HSP101-1, which was confirmed to be a heat response factor by qRT-PCR, and knockout of HSP101-1 significantly decreased the thermotolerance capacity of NTR. Interestingly, HSP101-1 was also specifically expressed in the anthers of NTR at pre-meiotic and meiosis stages under optimal environment without heat stress, and its loss-of-function mutant showed significant decrease in fertility of NTR. CONCLUSION The construction of first genomic variation repository and the revelation of population structure provide invaluable information for optimizing the designs of tetraploid rice breeding. The detection of specific genomic variations offered useful genomic markers and new directions to resolve high fertility mechanism of NTR.
Collapse
Affiliation(s)
- Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Qihang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Yudi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Huijing Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
109
|
Liu C, Chen X, Wang W, Hu X, Han W, He Q, Yang H, Xiang S, Gai J. Identifying Wild Versus Cultivated Gene-Alleles Conferring Seed Coat Color and Days to Flowering in Soybean. Int J Mol Sci 2021; 22:1559. [PMID: 33557103 PMCID: PMC7913812 DOI: 10.3390/ijms22041559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022] Open
Abstract
Annual wild soybean (G. soja) is the ancestor of the cultivated soybean (G. max). To reveal the genetic changes from soja to max, an improved wild soybean chromosome segment substitution line (CSSL) population, SojaCSSLP5, composed of 177 CSSLs with 182 SSR markers (SSR-map), was developed based on SojaCSSLP1 generated from NN1138-2(max)×N24852(soja). The SojaCSSLP5 was genotyped further through whole-genome resequencing, resulting in a physical map with 1366 SNPLDBs (SNP linkage-disequilibrium blocks), which are composed of more markers/segments, shorter marker length and more recombination breakpoints than the SSR-map and caused 721 new wild substituted segments. Using the SNPLDB-map, two loci co-segregating with seed-coat color (SCC) and six loci for days to flowering (DTF) with 88.02% phenotypic contribution were identified. Integrated with parental RNA-seq and DNA-resequencing, two SCC and six DTF candidate genes, including three previously cloned (G, E2 and GmPRR3B) and five newly detected ones, were predicted and verified at nucleotide mutant level, and then demonstrated with the consistency between gene-alleles and their phenotypes in SojaCSSLP5. In total, six of the eight genes were identified with the parental allele-pairs coincided to those in 303 germplasm accessions, then were further demonstrated by the consistency between gene-alleles and germplasm phenotypes. Accordingly, the CSSL population integrated with parental DNA and RNA sequencing data was demonstrated to be an efficient platform in identifying candidate wild vs. cultivated gene-alleles.
Collapse
Affiliation(s)
| | | | - Wubin Wang
- Soybean Research Institute & MOA National Center for Soybean Improvement & MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General) & State Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (X.C.); (X.H.); (W.H.); (Q.H.); (H.Y.); (S.X.)
| | | | | | | | | | | | - Junyi Gai
- Soybean Research Institute & MOA National Center for Soybean Improvement & MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General) & State Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (X.C.); (X.H.); (W.H.); (Q.H.); (H.Y.); (S.X.)
| |
Collapse
|
110
|
Gao Y, Yang Z, Yang W, Yang Y, Gong J, Yang QY, Niu X. Plant-ImputeDB: an integrated multiple plant reference panel database for genotype imputation. Nucleic Acids Res 2021; 49:D1480-D1488. [PMID: 33137192 PMCID: PMC7779032 DOI: 10.1093/nar/gkaa953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Genotype imputation is a process that estimates missing genotypes in terms of the haplotypes and genotypes in a reference panel. It can effectively increase the density of single nucleotide polymorphisms (SNPs), boost the power to identify genetic association and promote the combination of genetic studies. However, there has been a lack of high-quality reference panels for most plants, which greatly hinders the application of genotype imputation. Here, we developed Plant-ImputeDB (http://gong_lab.hzau.edu.cn/Plant_imputeDB/), a comprehensive database with reference panels of 12 plant species for online genotype imputation, SNP and block search and free download. By integrating genotype data and whole-genome resequencing data of plants from various studies and databases, the current Plant-ImputeDB provides high-quality reference panels of 12 plant species, including ∼69.9 million SNPs from 34 244 samples. It also provides an easy-to-use online tool with the option of two popular tools specifically designed for genotype imputation. In addition, Plant-ImputeDB accepts submissions of different types of genomic variations, and provides free and open access to all publicly available data in support of related research worldwide. In general, Plant-ImputeDB may serve as an important resource for plant genotype imputation and greatly facilitate the research on plant genetic research.
Collapse
Affiliation(s)
- Yingjie Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zhiquan Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Wenqian Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yanbo Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jing Gong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qing-Yong Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China.,College of Agriculture, Shihezi University, Xinjiang 832003, P.R. China
| | - Xiaohui Niu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
111
|
Kajiya-Kanegae H, Nagasaki H, Kaga A, Hirano K, Ogiso-Tanaka E, Matsuoka M, Ishimori M, Ishimoto M, Hashiguchi M, Tanaka H, Akashi R, Isobe S, Iwata H. Whole-genome sequence diversity and association analysis of 198 soybean accessions in mini-core collections. DNA Res 2021; 28:dsaa032. [PMID: 33492369 PMCID: PMC7934572 DOI: 10.1093/dnares/dsaa032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
We performed whole-genome Illumina resequencing of 198 accessions to examine the genetic diversity and facilitate the use of soybean genetic resources and identified 10 million single nucleotide polymorphisms and 2.8 million small indels. Furthermore, PacBio resequencing of 10 accessions was performed, and a total of 2,033 structure variants were identified. Genetic diversity and structure analysis congregated the 198 accessions into three subgroups (Primitive, World, and Japan) and showed the possibility of a long and relatively isolated history of cultivated soybean in Japan. Additionally, the skewed regional distribution of variants in the genome, such as higher structural variations on the R gene clusters in the Japan group, suggested the possibility of selective sweeps during domestication or breeding. A genome-wide association study identified both known and novel causal variants on the genes controlling the flowering period. Novel candidate causal variants were also found on genes related to the seed coat colour by aligning together with Illumina and PacBio reads. The genomic sequences and variants obtained in this study have immense potential to provide information for soybean breeding and genetic studies that may uncover novel alleles or genes involved in agronomically important traits.
Collapse
Affiliation(s)
- Hiromi Kajiya-Kanegae
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hideki Nagasaki
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Akito Kaga
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8518, Japan
| | - Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Eri Ogiso-Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8518, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Motoyuki Ishimori
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masao Ishimoto
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8518, Japan
| | | | - Hidenori Tanaka
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ryo Akashi
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hiroyoshi Iwata
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
112
|
Zhang K, He M, Fan Y, Zhao H, Gao B, Yang K, Li F, Tang Y, Gao Q, Lin T, Quinet M, Janovská D, Meglič V, Kwiatkowski J, Romanova O, Chrungoo N, Suzuki T, Luthar Z, Germ M, Woo SH, Georgiev MI, Zhou M. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biol 2021; 22:23. [PMID: 33430931 PMCID: PMC7802136 DOI: 10.1186/s13059-020-02217-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tartary buckwheat (Fagopyrum tataricum) is a nutritionally balanced and flavonoid-rich crop plant that has been in cultivation for 4000 years and is now grown globally. Despite its nutraceutical and agricultural value, the characterization of its genetics and its domestication history is limited. RESULTS Here, we report a comprehensive database of Tartary buckwheat genomic variation based on whole-genome resequencing of 510 germplasms. Our analysis suggests that two independent domestication events occurred in southwestern and northern China, resulting in diverse characteristics of modern Tartary buckwheat varieties. Genome-wide association studies for important agricultural traits identify several candidate genes, including FtUFGT3 and FtAP2YT1 that significantly correlate with flavonoid accumulation and grain weight, respectively. CONCLUSIONS We describe the domestication history of Tartary buckwheat and provide a detailed resource of genomic variation to allow for genomic-assisted breeding in the improvement of elite cultivars.
Collapse
Affiliation(s)
- Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| | - Ming He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| | - Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| | - Bin Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| | - Keli Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| | - Faliang Li
- Research Station of Alpine Crop, Xichang Institute of Agricultural Sciences, Liangshan, 616150 Sichuan China
| | - Yu Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 58083 Guangdong China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing, 100083 China
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Dagmar Janovská
- Gene Bank, Crop Research Institute, Drnovská 507, Prague 6, Czech Republic
| | - Vladimir Meglič
- Agricultural Institute of Slovenia, Hacquetova ulica, Ljubljana, Slovenia
| | - Jacek Kwiatkowski
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
| | - Olga Romanova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bol’shaya Morskaya, 42-44, St. Petersburg, Russia 190000
| | - Nikhil Chrungoo
- Department of Botany, North Eastern Hill University, Shillong, 793022 India
| | - Tatsuro Suzuki
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Suya 2421, Koshi, Kumamoto 861-1192 Japan
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Milen I. Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 107, Ziyuan North Building, Xueyuan South Road No. 80, Haidian District, Beijing, 100081 China
| |
Collapse
|
113
|
Ye CY, Fan L. Orphan Crops and their Wild Relatives in the Genomic Era. MOLECULAR PLANT 2021; 14:27-39. [PMID: 33346062 DOI: 10.1016/j.molp.2020.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 05/06/2023]
Abstract
More than half of the calories consumed by humans are provided by three major cereal crops (rice, maize, and wheat). Orphan crops are usually well adapted to low-input agricultural conditions, and they not only play vital roles in local areas but can also contribute to food and nutritional needs worldwide. Interestingly, many wild relatives of orphan crops are important weeds of major crops. Although orphan crops and their wild relatives have received little attentions from researchers for many years, genomic studies have recently been performed on these plants. Here, we provide an overview of genomic studies on orphan crops, with a focus on orphan cereals and their wild relatives. The genomes of at least 12 orphan cereals and/or their wild relatives have been sequenced. In addition to genomic benefits for orphan crop breeding, we discuss the potential ways for mutual utilization of genomic data from major crops, orphan crops, and their wild relatives (including weeds) and provide perspectives on genetic improvement of both orphan and major crops (including de novo domestication of orphan crops) in the coming genomic era.
Collapse
Affiliation(s)
- Chu-Yu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572024, China.
| |
Collapse
|
114
|
Chen Q, Li W, Tan L, Tian F. Harnessing Knowledge from Maize and Rice Domestication for New Crop Breeding. MOLECULAR PLANT 2021; 14:9-26. [PMID: 33316465 DOI: 10.1016/j.molp.2020.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 05/11/2023]
Abstract
Crop domestication has fundamentally altered the course of human history, causing a shift from hunter-gatherer to agricultural societies and stimulating the rise of modern civilization. A greater understanding of crop domestication would provide a theoretical basis for how we could improve current crops and develop new crops to deal with environmental challenges in a sustainable manner. Here, we provide a comprehensive summary of the similarities and differences in the domestication processes of maize and rice, two major staple food crops that feed the world. We propose that maize and rice might have evolved distinct genetic solutions toward domestication. Maize and rice domestication appears to be associated with distinct regulatory and evolutionary mechanisms. Rice domestication tended to select de novo, loss-of-function, coding variation, while maize domestication more frequently favored standing, gain-of-function, regulatory variation. At the gene network level, distinct genetic paths were used to acquire convergent phenotypes in maize and rice domestication, during which different central genes were utilized, orthologous genes played different evolutionary roles, and unique genes or regulatory modules were acquired for establishing new traits. Finally, we discuss how the knowledge gained from past domestication processes, together with emerging technologies, could be exploited to improve modern crop breeding and domesticate new crops to meet increasing human demands.
Collapse
Affiliation(s)
- Qiuyue Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lubin Tan
- State Key Laboratory of Agrobiotechnology, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing 100193, China.
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
115
|
Zhao J, He Y, Huang S, Wang Z. Advances in the Identification of Quantitative Trait Loci and Genes Involved in Seed Vigor in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:659307. [PMID: 34335643 PMCID: PMC8316977 DOI: 10.3389/fpls.2021.659307] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 05/08/2023]
Abstract
Seed vigor is a complex trait, including the seed germination, seedling emergence, and growth, as well as seed storability and stress tolerance, which is important for direct seeding in rice. Seed vigor is established during seed development, and its level is decreased during seed storage. Seed vigor is influenced by genetic and environmental factors during seed development, storage, and germination stages. A lot of factors, such as nutrient reserves, seed dying, seed dormancy, seed deterioration, stress conditions, and seed treatments, will influence seed vigor during seed development to germination stages. This review highlights the current advances on the identification of quantitative trait loci (QTLs) and regulatory genes involved in seed vigor at seed development, storage, and germination stages in rice. These identified QTLs and regulatory genes will contribute to the improvement of seed vigor by breeding, biotechnological, and treatment approaches.
Collapse
|
116
|
Yamatani H, Heng T, Yamada T, Kusaba M, Kaga A. Identification and Characterization of an Early Leaf Senescence Gene ELS1 in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:784105. [PMID: 34975969 PMCID: PMC8716371 DOI: 10.3389/fpls.2021.784105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/22/2021] [Indexed: 05/21/2023]
Abstract
Early leaf senescence phenotype in soybean could be helpful to shorten the maturation period and prevent green stem disorder. From a high-density mutation library, we identified two early leaf senescence soybean mutant lines, els1-1 (early leaf senescence 1) and els1-2. The chlorophyll contents of both els1-1 and els1-2 were low in pre-senescent leaves. They degraded rapidly in senescent leaves, revealing that ELS1 is involved in chlorophyll biosynthesis during leaf development and chlorophyll degradation during leaf senescence. The causal mutations in els1 were identified by next-generation sequencing-based bulked segregant analysis. ELS1 encodes the ortholog of the Arabidopsis CaaX-like protease BCM1, which is localized in chloroplasts. Soybean ELS1 was highly expressed in green tissue, especially in mature leaves. The accumulation of photosystem I core proteins and light-harvesting proteins in els1 was low even in pre-senescent leaves, and their degradation was accelerated during leaf senescence. These results suggest that soybean ELS1 is involved in both chlorophyll synthesis and degradation, consistent with the findings in Arabidopsis BCM1. The gene els1, characterized by early leaf senescence and subsequent early maturation, does not affect the flowering time. Hence, the early leaf senescence trait regulated by els1 helps shorten the harvesting period because of early maturation characteristics. The els1-1 allele with weakly impaired function of ELS1 has only a small effect on agricultural traits and could contribute to practical breeding.
Collapse
Affiliation(s)
- Hiroshi Yamatani
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Titnarong Heng
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Thailand
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Makoto Kusaba
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akito Kaga
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
- *Correspondence: Akito Kaga,
| |
Collapse
|
117
|
Zhan C, Lei L, Liu Z, Zhou S, Yang C, Zhu X, Guo H, Zhang F, Peng M, Zhang M, Li Y, Yang Z, Sun Y, Shi Y, Li K, Liu L, Shen S, Wang X, Shao J, Jing X, Wang Z, Li Y, Czechowski T, Hasegawa M, Graham I, Tohge T, Qu L, Liu X, Fernie AR, Chen LL, Yuan M, Luo J. Selection of a subspecies-specific diterpene gene cluster implicated in rice disease resistance. NATURE PLANTS 2020; 6:1447-1454. [PMID: 33299150 DOI: 10.1038/s41477-020-00816-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/04/2020] [Indexed: 05/24/2023]
Abstract
Diterpenoids are the major group of antimicrobial phytoalexins in rice1,2. Here, we report the discovery of a rice diterpenoid gene cluster on chromosome 7 (DGC7) encoding the entire biosynthetic pathway to 5,10-diketo-casbene, a member of the monocyclic casbene-derived diterpenoids. We revealed that DGC7 is regulated directly by JMJ705 through methyl jasmonate-mediated epigenetic control3. Functional characterization of pathway genes revealed OsCYP71Z21 to encode a casbene C10 oxidase, sought after for the biosynthesis of an array of medicinally important diterpenoids. We further show that DGC7 arose relatively recently in the Oryza genus, and that it was partly formed in Oryza rufipogon and positively selected for in japonica during domestication. Casbene-synthesizing enzymes that are functionally equivalent to OsTPS28 are present in several species of Euphorbiaceae but gene tree analysis shows that these and other casbene-modifying enzymes have evolved independently. As such, combining casbene-modifying enzymes from these different families of plants may prove effective in producing a diverse array of bioactive diterpenoid natural products.
Collapse
Affiliation(s)
- Chuansong Zhan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Long Lei
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zixin Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Shen Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xitong Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Hao Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Feng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Meng Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Meng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zixin Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yangyang Sun
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yuheng Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Kang Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ling Liu
- College of Tropical Crops, Hainan University, Haikou, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xuyang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jiawen Shao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xinyu Jing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zixuan Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yi Li
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Tomasz Czechowski
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | | | - Ian Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Takayuki Tohge
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xianqing Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China.
| |
Collapse
|
118
|
Kim JH, Park JS, Lee CY, Jeong MG, Xu JL, Choi Y, Jung HW, Choi HK. Dissecting seed pigmentation-associated genomic loci and genes by employing dual approaches of reference-based and k-mer-based GWAS with 438 Glycine accessions. PLoS One 2020; 15:e0243085. [PMID: 33259564 PMCID: PMC7707508 DOI: 10.1371/journal.pone.0243085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/15/2020] [Indexed: 11/19/2022] Open
Abstract
The soybean is agro-economically the most important among all cultivated legume crops, and its seed color is considered one of the most attractive factors in the selection-by-breeders. Thus, genome-wide identification of genes and loci associated with seed colors is critical for the precision breeding of crop soybeans. To dissect seed pigmentation-associated genomic loci and genes, we employed dual approaches by combining reference-based genome-wide association study (rbGWAS) and k-mer-based reference-free GWAS (rfGWAS) with 438 Glycine accessions. The dual analytical strategy allowed us to identify four major genomic loci (designated as SP1-SP4 in this study) associated with the seed colors of soybeans. The k-mer analysis enabled us to find an important recombination event that occurred between subtilisin and I-cluster B in the soybean genome, which could describe a special structural feature of ii allele within the I locus (SP3). Importantly, mapping analyses of both mRNAs and small RNAs allowed us to reveal that the subtilisin-CHS1/CHS3 chimeric transcripts generate and act as an initiator towards 'mirtron (i.e., intron-harboring miRNA precursor)'-triggered silencing of chalcone synthase (CHS) genes. Consequently, the results led us to propose a working model of 'mirtron-triggered gene silencing (MTGS)' to elucidate a long-standing puzzle in the genome-wide CHS gene silencing mechanism. In summary, our study reports four major genomic loci, lists of key genes and genome-wide variations that are associated with seed pigmentation in soybeans. In addition, we propose that the MTGS mechanism plays a crucial role in the genome-wide silencing of CHS genes, thereby suggesting a clue to currently predominant soybean cultivars with the yellow seed coat. Finally, this study will provide a broad insight into the interactions and correlations among seed color-associated genes and loci within the context of anthocyanin biosynthetic pathways.
Collapse
Affiliation(s)
- Jin-Hyun Kim
- Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Joo-Seok Park
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Chae-Young Lee
- Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
| | - Min-Gyun Jeong
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Jiu Liang Xu
- Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Yongsoo Choi
- Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Ho-Won Jung
- Department of Molecular Genetics, Dong-A University, Busan, Republic of Korea
| | - Hong-Kyu Choi
- Department of Molecular Genetics, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
119
|
Bernau VM, Jardón Barbolla L, McHale LK, Mercer KL. Germination response of diverse wild and landrace chile peppers (Capsicum spp.) under drought stress simulated with polyethylene glycol. PLoS One 2020; 15:e0236001. [PMID: 33196641 PMCID: PMC7668591 DOI: 10.1371/journal.pone.0236001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/10/2020] [Indexed: 11/19/2022] Open
Abstract
Responses to drought within a single species may vary based on plant developmental stage, drought severity, and the avoidance or tolerance mechanisms employed. Early drought stress can restrict emergence and seedling growth. Thus, in areas where water availability is limited, rapid germination leading to early plant establishment may be beneficial. Alternatively, germination without sufficient water to support the seedling may lead to early senescence, so reduced germination under low moisture conditions may be adaptive at the level of the population. We studied the germination response to osmotic stress of diverse chile pepper germplasm collected in southern Mexico from varied ecozones, cultivation systems, and of named landraces. Drought stress was simulated using polyethylene glycol solutions. Overall, survival time analysis revealed delayed germination at the 20% concentration of PEG across all ecozones. The effect was most pronounced in the genotypes from hotter, drier ecozones. Additionally, accessions from wetter and cooler ecozones had the fastest rate of germination. Moreover, accessions of the landraces Costeño Rojo and Tusta germinated more slowly and incompletely if sourced from a drier ecozone than a wetter one, indicating that slower, reduced germination under drought stress may be an adaptive avoidance mechanism. Significant differences were also observed between named landraces, with more domesticated types from intensive cultivation systems nearly always germinating faster than small-fruited backyard- or wild-types, perhaps due to the fact that the smaller-fruited accessions may have undergone less selection. Thus, we conclude that there is evidence of local adaptation to both ecozone of origin and source cultivation system in germination characteristics of diverse chile peppers.
Collapse
Affiliation(s)
- Vivian M. Bernau
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Lev Jardón Barbolla
- Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leah K. McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Kristin L. Mercer
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
120
|
Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu YC, Liu Z, Frommer WB, Ma JF, Chen LQ, Guan Y, Shou H, Tian Z. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev 2020; 7:1776-1786. [PMID: 34691511 PMCID: PMC8290959 DOI: 10.1093/nsr/nwaa110] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/02/2023] Open
Abstract
Soybean accounts for more than half of the global production of oilseed and more than a quarter of the protein used globally for human food and animal feed. Soybean domestication involved parallel increases in seed size and oil content, and a concomitant decrease in protein content. However, science has not yet discovered whether these effects were due to selective pressure on a single gene or multiple genes. Here, re-sequencing data from >800 genotypes revealed a strong selection during soybean domestication on GmSWEET10a. The selection of GmSWEET10a conferred simultaneous increases in soybean-seed size and oil content as well as a reduction in the protein content. The result was validated using both near-isogenic lines carrying substitution of haplotype chromosomal segments and transgenic soybeans. Moreover, GmSWEET10b was found to be functionally redundant with its homologue GmSWEET10a and to be undergoing selection in current breeding, leading the the elite allele GmSWEET10b, a potential target for present-day soybean breeding. Both GmSWEET10a and GmSWEET10b were shown to transport sucrose and hexose, contributing to sugar allocation from seed coat to embryo, which consequently determines oil and protein contents and seed size in soybean. We conclude that past selection of optimal GmSWEET10a alleles drove the initial domestication of multiple soybean-seed traits and that targeted selection of the elite allele GmSWEET10b may further improve the yield and seed quality of modern soybean cultivars.
Collapse
Affiliation(s)
- Shoudong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life sciences, Zhejiang University, Hangzhou 310058, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kengo Yokosho
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Bin Zhou
- Institute of Crop Science, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Ya-Chi Yu
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Li-Qing Chen
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuefeng Guan
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
121
|
Zhang H, Goettel W, Song Q, Jiang H, Hu Z, Wang ML, An YQC. Selection of GmSWEET39 for oil and protein improvement in soybean. PLoS Genet 2020; 16:e1009114. [PMID: 33175845 PMCID: PMC7721174 DOI: 10.1371/journal.pgen.1009114] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/07/2020] [Accepted: 09/12/2020] [Indexed: 11/18/2022] Open
Abstract
Soybean [Glycine max (L.) Merr.] was domesticated from wild soybean (G. soja Sieb. and Zucc.) and has been further improved as a dual-use seed crop to provide highly valuable oil and protein for food, feed, and industrial applications. However, the underlying genetic and molecular basis remains less understood. Having combined high-confidence bi-parental linkage mapping with high-resolution association analysis based on 631 whole sequenced genomes, we mapped major soybean protein and oil QTLs on chromosome15 to a sugar transporter gene (GmSWEET39). A two-nucleotide CC deletion truncating C-terminus of GmSWEET39 was strongly associated with high seed oil and low seed protein, suggesting its pleiotropic effect on protein and oil content. GmSWEET39 was predominantly expressed in parenchyma and integument of the seed coat, and likely regulates oil and protein accumulation by affecting sugar delivery from maternal seed coat to the filial embryo. We demonstrated that GmSWEET39 has a dual function for both oil and protein improvement and undergoes two different paths of artificial selection. A CC deletion (CC-) haplotype H1 has been intensively selected during domestication and extensively used in soybean improvement worldwide. H1 is fixed in North American soybean cultivars. The protein-favored (CC+) haplotype H3 still undergoes ongoing selection, reflecting its sustainable role for soybean protein improvement. The comprehensive knowledge on the molecular basis underlying the major QTL and GmSWEET39 haplotypes associated with soybean improvement would be valuable to design new strategies for soybean seed quality improvement using molecular breeding and biotechnological approaches.
Collapse
Affiliation(s)
- Hengyou Zhang
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Wolfgang Goettel
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Qijian Song
- US Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD, United States of America
| | - He Jiang
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Zhenbin Hu
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Ming Li Wang
- US Department of Agriculture, Agricultural Research Service, Plant Genetics Resource Conservation Unit, Griffin, GA, United States of America
| | - Yong-qiang Charles An
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
- US Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit at Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| |
Collapse
|
122
|
Du W, Ning L, Liu Y, Zhang S, Yang Y, Wang Q, Chao S, Yang H, Huang F, Cheng H, Yu D. Identification of loci and candidate gene GmSPX-RING1 responsible for phosphorus efficiency in soybean via genome-wide association analysis. BMC Genomics 2020; 21:725. [PMID: 33076835 PMCID: PMC7574279 DOI: 10.1186/s12864-020-07143-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/11/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Phosphorus (P) is an essential element in maintaining high biomass and yield in crops. Soybean [Glycine max (L.) Merr.] requires a large amount of P during growth and development. Improvement of P efficiency and identification of P efficiency genes are important strategies for increasing soybean yield. RESULTS Genome-wide association analysis (GWAS) with NJAU 355 K SoySNP array was performed to identify single nucleotide polymorphisms (SNPs) significantly associated with three shoot P efficiency-related traits of a natural population of 211 cultivated soybeans and relative values of these traits under normal P (+P) condition and P deficiency (-P) condition. A total of 155 SNPs were identified significantly associated with P efficiency-related traits. SNPs that were significantly associated with shoot dry weight formed a SNP cluster on chromosome 11, while SNPs that were significantly associated with shoot P concentration formed a SNP cluster on chromosome 10. Thirteen haplotypes were identified based on 12 SNPs, and Hap9 was considered as the optimal haplotype. Four SNPs (AX-93636685, AX-93636692, AX-93932863, and AX-93932874) located on chromosome 10 were identified to be significantly associated with shoot P concentration under +P condition in two hydroponic experiments. Among these four SNPs, two of them (AX-93636685 and AX-93932874) were also significantly associated with the relative values of shoot P concentration under two P conditions. One SNP AX-93932874 was detected within 5'-untranslated region of Glyma.10 g018800, which contained SPX and RING domains and was named as GmSPX-RING1. Furthermore, the function research of GmSPX-RING1 was carried out in soybean hairy root transformation. Compared with their respective controls, P concentration in GmSPX-RING1 overexpressing transgenic hairy roots was significantly reduced by 32.75% under +P condition; In contrast, P concentration in RNA interference of GmSPX-RING1 transgenic hairy roots was increased by 38.90 and 14.51% under +P and -P conditions, respectively. CONCLUSIONS This study shows that the candidate gene GmSPX-RING1 affects soybean phosphorus efficiency by negatively regulating soybean phosphorus concentration in soybean hairy roots. The SNPs and candidate genes identified should be potential for improvement of P efficiency in future soybean breeding programs.
Collapse
Affiliation(s)
- Wenkai Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lihua Ning
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Yongshun Liu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shixi Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuming Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qing Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shengqian Chao
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hui Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
123
|
Gao Y, Xu Z, Zhang L, Li S, Wang S, Yang H, Liu X, Zeng D, Liu Q, Qian Q, Zhang B, Zhou Y. MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. Nat Commun 2020; 11:5219. [PMID: 33060584 PMCID: PMC7566476 DOI: 10.1038/s41467-020-19019-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
Nitrogen (N) is a macronutrient that boosts carbon (C) metabolism and plant growth leading to biomass accumulation. The molecular connection between nitrogen utilization efficiency (NUE) and biomass production remains unclear. Here, via quantitative trait loci analysis and map-based cloning, we reveal that natural variation at the MYB61 locus leads to differences in N use and cellulose biogenesis between indica and japonica subspecies of rice. MYB61, a transcriptional factor that regulates cellulose synthesis, is directly regulated by a known NUE regulator GROWTH-REGULATING FACTOR4 (GRF4), which coordinates cellulosic biomass production and N utilization. The variation at MYB61 has been selected during indica and japonica domestication. The indica allele of MYB61 displays robust transcription resulting in higher NUE and increased grain yield at reduced N supply than that of japonica. Our study hence unravels how C metabolism is linked to N uptake and may provide an opportunity to reduce N use for sustainable agriculture. The molecular connection between nitrogen utilization efficiency (NUE) and biomass production is unclear. Here, the authors show that differences in NUE and cellulose biogenesis between rice indica and japonica subspecies can be explained by variation at the MYB61 locus, which is regulated by the NUE regulator GRF4.
Collapse
Affiliation(s)
- Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, 225009, Yangzhou, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shance Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shaogan Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hanlei Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, 310006, Hangzhou, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, 225009, Yangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, 310006, Hangzhou, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
124
|
Ku YS, Contador CA, Ng MS, Yu J, Chung G, Lam HM. The Effects of Domestication on Secondary Metabolite Composition in Legumes. Front Genet 2020; 11:581357. [PMID: 33193705 PMCID: PMC7530298 DOI: 10.3389/fgene.2020.581357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Legumes are rich in secondary metabolites, such as polyphenols, alkaloids, and saponins, which are important defense compounds to protect the plant against herbivores and pathogens, and act as signaling molecules between the plant and its biotic environment. Legume-sourced secondary metabolites are well known for their potential benefits to human health as pharmaceuticals and nutraceuticals. During domestication, the color, smell, and taste of crop plants have been the focus of artificial selection by breeders. Since these agronomic traits are regulated by secondary metabolites, the basis behind the genomic evolution was the selection of the secondary metabolite composition. In this review, we will discuss the classification, occurrence, and health benefits of secondary metabolites in legumes. The differences in their profiles between wild legumes and their cultivated counterparts will be investigated to trace the possible effects of domestication on secondary metabolite compositions, and the advantages and drawbacks of such modifications. The changes in secondary metabolite contents will also be discussed at the genetic level to examine the genes responsible for determining the secondary metabolite composition that might have been lost due to domestication. Understanding these genes would enable breeding programs and metabolic engineering to produce legume varieties with favorable secondary metabolite profiles for facilitating adaptations to a changing climate, promoting beneficial interactions with biotic factors, and enhancing health-beneficial secondary metabolite contents for human consumption.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Jeongjun Yu
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
125
|
Zhang C, Yuan Z, Wang Y, Sun W, Tang X, Sun Y, Yu S. Genetic Dissection of Seed Dormancy in Rice (Oryza sativa L.) by Using Two Mapping Populations Derived from Common Parents. RICE (NEW YORK, N.Y.) 2020; 13:52. [PMID: 32757080 PMCID: PMC7406625 DOI: 10.1186/s12284-020-00413-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/29/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Seed dormancy, a quality characteristic that plays a role in seed germination, seedling establishment and grain yield, is affected by multiple genes and environmental factors. The genetic and molecular mechanisms underlying seed dormancy in rice remain largely unknown. RESULTS Quantitative trait loci (QTLs) for seed dormancy were identified in two different mapping populations, a chromosome segment substitution line (CSSL) and backcross inbred line (BIL) population, both derived from the same parents Nipponbare, a japonica cultivar with seed dormancy, and 9311, an indica cultivar lacking seed dormancy. A total of 12 and 27 QTL regions for seed dormancy were detected in the CSSLs and BILs, respectively. Among these regions, four major loci (qSD3.1, qSD3.2, qSD5.2 and qSD11.2) were commonly identified for multiple germination parameters associated with seed dormancy in both populations, with Nipponbare alleles delaying the seed germination percentage and decreasing germination uniformity. Two loci (qSD3.1 and qSD3.2) were individually validated in the near-isogenic lines containing the QTL of interest. The effect of qSD3.2 was further confirmed in a CSSL-derived F2 population. Furthermore, both qSD3.1 and qSD3.2 were sensitive to abscisic acid and exhibited a significant epistatic interaction to increase seed dormancy. CONCLUSIONS Our results indicate that the integration of the developed CSSLs and BILs with high-density markers can provide a powerful tool for dissecting the genetic basis of seed dormancy in rice. Our findings regarding the major loci and their interactions with several promising candidate genes that are induced by abscisic acid and specifically expressed in the seeds will facilitate further gene discovery and a better understanding of the genetic and molecular mechanisms of seed dormancy for improving seed quality in rice breeding programs.
Collapse
Affiliation(s)
- Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Zhiyang Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Yuntong Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Xinxin Tang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Yongjian Sun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, China.
| |
Collapse
|
126
|
Pourkheirandish M, Golicz AA, Bhalla PL, Singh MB. Global Role of Crop Genomics in the Face of Climate Change. FRONTIERS IN PLANT SCIENCE 2020; 11:922. [PMID: 32765541 PMCID: PMC7378793 DOI: 10.3389/fpls.2020.00922] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/05/2020] [Indexed: 05/05/2023]
Abstract
The development of climate change resilient crops is necessary if we are to meet the challenge of feeding the growing world's population. We must be able to increase food production despite the projected decrease in arable land and unpredictable environmental conditions. This review summarizes the technological and conceptual advances that have the potential to transform plant breeding, help overcome the challenges of climate change, and initiate the next plant breeding revolution. Recent developments in genomics in combination with high-throughput and precision phenotyping facilitate the identification of genes controlling critical agronomic traits. The discovery of these genes can now be paired with genome editing techniques to rapidly develop climate change resilient crops, including plants with better biotic and abiotic stress tolerance and enhanced nutritional value. Utilizing the genetic potential of crop wild relatives (CWRs) enables the domestication of new species and the generation of synthetic polyploids. The high-quality crop plant genome assemblies and annotations provide new, exciting research targets, including long non-coding RNAs (lncRNAs) and cis-regulatory regions. Metagenomic studies give insights into plant-microbiome interactions and guide selection of optimal soils for plant cultivation. Together, all these advances will allow breeders to produce improved, resilient crops in relatively short timeframes meeting the demands of the growing population and changing climate.
Collapse
Affiliation(s)
| | | | | | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
127
|
Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou GA, Zhang H, Liu Z, Shi M, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z. Pan-Genome of Wild and Cultivated Soybeans. Cell 2020; 182:162-176.e13. [PMID: 32553274 DOI: 10.1016/j.cell.2020.05.023] [Citation(s) in RCA: 469] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022]
Abstract
Soybean is one of the most important vegetable oil and protein feed crops. To capture the entire genomic diversity, it is needed to construct a complete high-quality pan-genome from diverse soybean accessions. In this study, we performed individual de novo genome assemblies for 26 representative soybeans that were selected from 2,898 deeply sequenced accessions. Using these assembled genomes together with three previously reported genomes, we constructed a graph-based genome and performed pan-genome analysis, which identified numerous genetic variations that cannot be detected by direct mapping of short sequence reads onto a single reference genome. The structural variations from the 2,898 accessions that were genotyped based on the graph-based genome and the RNA sequencing (RNA-seq) data from the representative 26 accessions helped to link genetic variations to candidate genes that are responsible for important traits. This pan-genome resource will promote evolutionary and functional genomics studies in soybean.
Collapse
Affiliation(s)
- Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Li
- Berry Genomics Corporation, Beijing 100015, China
| | - Yanting Shen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hua Peng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guo-An Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Shi
- Berry Genomics Corporation, Beijing 100015, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yan Li
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoge Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Han
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
128
|
Wang S, Tian L, Liu H, Li X, Zhang J, Chen X, Jia X, Zheng X, Wu S, Chen Y, Yan J, Wu L. Large-Scale Discovery of Non-conventional Peptides in Maize and Arabidopsis through an Integrated Peptidogenomic Pipeline. MOLECULAR PLANT 2020; 13:1078-1093. [PMID: 32445888 DOI: 10.1016/j.molp.2020.05.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
Non-conventional peptides (NCPs), which include small open reading frame-encoded peptides, play critical roles in fundamental biological processes. In this study, we developed an integrated peptidogenomic pipeline using high-throughput mass spectra to probe a customized six-frame translation database and applied it to large-scale identification of NCPs in plants.A total of 1993 and 1860 NCPs were unambiguously identified in maize and Arabidopsis, respectively. These NCPs showed distinct characteristics compared with conventional peptides and were derived from introns, 3' UTRs, 5' UTRs, junctions, and intergenic regions. Furthermore, our results showed that translation events in unannotated transcripts occur more broadly than previously thought. In addition, we found that dozens of maize NCPs are enriched within regions associated with phenotypic variations and domestication selection, indicating that they potentially are involved in genetic regulation of complex traits and domestication in maize. Taken together, our study developed an integrated peptidogenomic pipeline for large-scale identification of NCPs in plants, which would facilitate global characterization of NCPs from other plants. The identification of large-scale NCPs in both monocot (maize) and dicot (Arabidopsis) plants indicates that a large portion of plant genome can be translated into biologically functional molecules, which has important implications for functional genomic studies.
Collapse
Affiliation(s)
- Shunxi Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Tian
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueyan Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xingmeng Jia
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xu Zheng
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shubiao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
129
|
Tohge T, Scossa F, Wendenburg R, Frasse P, Balbo I, Watanabe M, Alseekh S, Jadhav SS, Delfin JC, Lohse M, Giavalisco P, Usadel B, Zhang Y, Luo J, Bouzayen M, Fernie AR. Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex. MOLECULAR PLANT 2020; 13:1027-1046. [PMID: 32305499 DOI: 10.1016/j.molp.2020.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/01/2020] [Accepted: 04/11/2020] [Indexed: 05/10/2023]
Abstract
While the structures of plant primary metabolic pathways are generally well defined and highly conserved across species, those defining specialized metabolism are less well characterized and more highly variable across species. In this study, we investigated polyphenolic metabolism in the lycopersicum complex by characterizing the underlying biosynthetic and decorative reactions that constitute the metabolic network of polyphenols across eight different species of tomato. For this purpose, GC-MS- and LC-MS-based metabolomics of different tissues of Solanum lycopersicum and wild tomato species were carried out, in concert with the evaluation of cross-hybridized microarray data for MapMan-based transcriptomic analysis, and publicly available RNA-sequencing data for annotation of biosynthetic genes. The combined data were used to compile species-specific metabolic networks of polyphenolic metabolism, allowing the establishment of an entire pan-species biosynthetic framework as well as annotation of the functions of decoration enzymes involved in the formation of metabolic diversity of the flavonoid pathway. The combined results are discussed in the context of the current understanding of tomato flavonol biosynthesis as well as a global view of metabolic shifts during fruit ripening. Our results provide an example as to how large-scale biology approaches can be used for the definition and refinement of large specialized metabolism pathways.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, via Ardeatina 546 00178 Rome, Italy
| | - Regina Wendenburg
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Pierre Frasse
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan 31326, France
| | - Ilse Balbo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria
| | - Sagar Sudam Jadhav
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jay C Delfin
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Marc Lohse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany
| | - Bjoern Usadel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52056 Aachen, Germany
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Mondher Bouzayen
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan 31326, France
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
130
|
Liu M, Wang Y, Nie Z, Gai J, Bhat JA, Kong J, Zhao T. Double mutation of two homologous genes YL1 and YL2 results in a leaf yellowing phenotype in soybean [Glycine max (L.) Merr]. PLANT MOLECULAR BIOLOGY 2020; 103:527-543. [PMID: 32323129 DOI: 10.1007/s11103-020-01008-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Two homologous, chloroplast located CAAX proteases were identified to be functional redundancy in determining soybean leaf color, and they probably play essential roles in regulating light harvesting and absorption during photosynthesis process. Leaf color mutants are ideal materials for studying photosynthesis and chlorophyll metabolism. The soybean [Glycine max (L.) Merr.] yellowing leaf (yl) variation is a recombinant mutant characterized by yellow foliage, which derived from the specific cross between green seed-coated and yellow seed-coated soybean varieties. Molecular cloning and subsequent gene silencing revealed that the yellow leaf trait of yl was controlled by two recessive nuclear genes, glyma11g04660 and glyma01g40650, named as YL1 and YL2 respectively, and the latter was confirmed to be same as the earlier reported green seed-coat gene G. Both YL1 and YL2 belonged to chloroplast-located proteases possessing Abi domain, and these genes were expressed in various tissues, especially in young leaves. In yl, the expression of YL1 and YL2 were suppressed in most tissues, and the young leaf of yl presented an increased maximal photochemical efficiency (Fv/Fm) as well as enhanced net photosynthesis activity (Pn), indicating that YL1 and YL2 are involved in light absorption regulation during photosynthesis process. Collectively, the identification and description of YL1 and YL2 in our study provides insights for the regulatory mechanism of photosynthesis process, and these findings will further assist to clarify the close relationship between photosynthesis and chlorophyll metabolism.
Collapse
Affiliation(s)
- Meifeng Liu
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Yaqi Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Zhixing Nie
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Junyi Gai
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jiejie Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
131
|
Ruan B, Shang L, Zhang B, Hu J, Wang Y, Lin H, Zhang A, Liu C, Peng Y, Zhu L, Ren D, Shen L, Dong G, Zhang G, Zeng D, Guo L, Qian Q, Gao Z. Natural variation in the promoter of TGW2 determines grain width and weight in rice. THE NEW PHYTOLOGIST 2020; 227:629-640. [PMID: 32167575 DOI: 10.1111/nph.16540] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/03/2020] [Indexed: 05/10/2023]
Abstract
Understanding the genetic basis of natural variation in grain size among diverse rice varieties can help breeders develop high-yielding rice cultivars. Here, we report the discovery of qTGW2, a new semidominant quantitative trait locus for grain width and weight. The corresponding gene, TGW2, encodes CELL NUMBER REGULATOR 1 (OsCNR1) localized to the plasma membrane. A single nucleotide polymorphism (SNP) variation 1818 bp upstream of TGW2 is responsible for its different expression, leading to alteration in grain width and weight by influencing cell proliferation and expansion in glumes. TGW2 interacts with KRP1, a regulator of cell cycle in plants, to negatively regulate grain width and weight. Genetic diversity analysis of TGW2 in 141 rice accessions revealed it as a breeding target in a selective sweep region. Our findings provide new insights into the genetic mechanism underlying grain morphology and grain weight, and uncover a promising gene for improving rice yield.
Collapse
Affiliation(s)
- Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Bin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Hai Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Anpeng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Youlin Peng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Lan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| |
Collapse
|
132
|
Genomic Insight into Differentiation and Selection Sweeps in the Improvement of Upland Cotton. PLANTS 2020; 9:plants9060711. [PMID: 32503111 PMCID: PMC7356552 DOI: 10.3390/plants9060711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023]
Abstract
Upland cotton is the most economically important fibre crop. The human-mediated selection has resulted in modern upland cultivars with higher yield and better fibre quality. However, changes in genome structure resulted from human-mediated selection are poorly understood. Comparative population genomics offers us tools to dissect the genetic history of domestication and helps to understand the genome-wide effects of human-mediated selection. Hereby, we report a comprehensive assessment of Gossypium hirsutum landraces, obsolete cultivars and modern cultivars based on high throughput genome-wide sequencing of the core set of genotypes. As a result of the genome-wide scan, we identified 93 differential regions and 311 selection sweeps associated with domestication and improvement. Furthermore, we performed genome-wide association studies to identify traits associated with the differential regions and selection sweeps. Our study provides a genetic basis to understand the domestication process in Chinese cotton cultivars. It also provides a comprehensive insight into changes in genome structure due to selection and improvement during the last century. We also identified multiple genome-wide associations (GWAS associations) for fibre yield, quality and other morphological characteristics.
Collapse
|
133
|
Shi Y, Zhang Z, Wen Y, Yu G, Zou J, Huang S, Wang J, Zhu J, Wang J, Chen L, Ma C, Liu X, Zhu R, Li Q, Li J, Guo M, Liu H, Zhu Y, Sun Z, Han L, Jiang H, Wu X, Wang N, Zhang W, Yin Z, Li C, Hu Z, Qi Z, Liu C, Chen Q, Xin D. RNA Sequencing-Associated Study Identifies GmDRR1 as Positively Regulating the Establishment of Symbiosis in Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:798-807. [PMID: 32186464 DOI: 10.1094/mpmi-01-20-0017-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In soybean (Glycine max)-rhizobium interactions, the type III secretion system (T3SS) of rhizobium plays a key role in regulating host specificity. However, the lack of information on the role of T3SS in signaling networks limits our understanding of symbiosis. Here, we conducted an RNA sequencing analysis of three soybean chromosome segment substituted lines, one female parent and two derived lines with different chromosome-substituted segments of wild soybean and opposite nodulation patterns. By analyzing chromosome-linked differentially expressed genes in the substituted segments and quantitative trait loci (QTL)-assisted selection in the substituted-segment region, genes that may respond to type III effectors to mediate plant immunity-related signaling were identified. To narrow down the number of candidate genes, QTL assistant was used to identify the candidate region consistent with the substituted segments. Furthermore, one candidate gene, GmDRR1, was identified in the substituted segment. To investigate the role of GmDRR1 in symbiosis establishment, GmDRR1-overexpression and RNA interference soybean lines were constructed. The nodule number increased in the former compared with wild-type soybean. Additionally, the T3SS-regulated effectors appeared to interact with the GmDDR1 signaling pathway. This finding will allow the detection of T3SS-regulated effectors involved in legume-rhizobium interactions.
Collapse
Affiliation(s)
- Yan Shi
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhanguo Zhang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yingnan Wen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Guolong Yu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jianan Zou
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shiyu Huang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jinhui Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jingyi Zhu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jieqi Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Lin Chen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chao Ma
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xueying Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Rongsheng Zhu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Qingying Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jianyi Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Miaoxin Guo
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Hanxi Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongxu Zhu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhijun Sun
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Lu Han
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongwei Jiang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
- Jilin Academy of Agricultural Sciences, Soybean Research Institute, Changchun, People's Republic of China
| | - Xiaoxia Wu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Nannan Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
- Jiamusi Branch of Heilongjiang Academy of Agricultural, Jiamusi, People's Republic of China
| | - Weiyao Zhang
- Suihua Branch of Heilongjiang Academy of Agricultural, Suihua, China, Crop Breeding Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Zhengong Yin
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
- Suihua Branch of Heilongjiang Academy of Agricultural, Suihua, China, Crop Breeding Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Candong Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
- Jiamusi Branch of Heilongjiang Academy of Agricultural, Jiamusi, People's Republic of China
| | - Zhenbang Hu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhaoming Qi
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chunyan Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Qingshan Chen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Dawei Xin
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
134
|
Li C, Li YH, Li Y, Lu H, Hong H, Tian Y, Li H, Zhao T, Zhou X, Liu J, Zhou X, Jackson SA, Liu B, Qiu LJ. A Domestication-Associated Gene GmPRR3b Regulates the Circadian Clock and Flowering Time in Soybean. MOLECULAR PLANT 2020; 13:745-759. [PMID: 32017998 DOI: 10.1016/j.molp.2020.01.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/28/2019] [Accepted: 01/29/2020] [Indexed: 05/24/2023]
Abstract
Improved soybean cultivars have been adapted to grow at a wide range of latitudes, enabling expansion of cultivation worldwide. However, the genetic basis of this broad adaptation is still not clear. Here, we report the identification of GmPRR3b as a major flowering time regulatory gene that has been selected during domestication and genetic improvement for geographic expansion. Through a genome-wide association study of a diverse soybean landrace panel consisting of 279 accessions, we identified 16 candidate quantitative loci associated with flowering time and maturity time. The strongest signal resides in the known flowering gene E2, verifying the effectiveness of our approach. We detected strong signals associated with both flowering and maturity time in a genomic region containing GmPRR3b. Haplotype analysis revealed that GmPRR3bH6 is the major form of GmPRR3b that has been utilized during recent breeding of modern cultivars. mRNA profiling analysis showed that GmPRR3bH6 displays rhythmic and photoperiod-dependent expression and is preferentially induced under long-day conditions. Overexpression of GmPRR3bH6 increased main stem node number and yield, while knockout of GmPRR3bH6 using CRISPR/Cas9 technology delayed growth and the floral transition. GmPRR3bH6 appears to act as a transcriptional repressor of multiple predicted circadian clock genes, including GmCCA1a, which directly upregulates J/GmELF3a to modulate flowering time. The causal SNP (Chr12:5520945) likely endows GmPRR3bH6 a moderate but appropriate level of activity, leading to early flowering and vigorous growth traits preferentially selected during broad adaptation of landraces and improvement of cultivars.
Collapse
Affiliation(s)
- Cong Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yanfei Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Hongfeng Lu
- Novogene Bioinformatics Institute, Beijing, P.R. China
| | - Huilong Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yu Tian
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Tao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xiaowei Zhou
- Novogene Bioinformatics Institute, Beijing, P.R. China
| | - Jun Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xinan Zhou
- Key Laboratory of Oil Crop Biology (MOA), Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China.
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China.
| |
Collapse
|
135
|
Gong Z. Flowering phenology as a core domestication trait in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:546-549. [PMID: 32237187 DOI: 10.1111/jipb.12934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 05/26/2023]
Abstract
Flowering time variation in soybean is well characterized within domesticated germplasms and is critical for modern production, but its importance during domestication is unclear. Recently, Lu et al. (Nature Genetics, 2020) reported that two homeologous pseudo-response-regulator genes, Tof12 and Tof11, were sequentially selected in early soybean evolution for ancient flowering time adaptation and intensification of crop cultivation.
Collapse
Affiliation(s)
- Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
136
|
Blalogoe JS, Odindo AO, Sogbohossou EOD, Sibiya J, Achigan-Dako EG. Origin-dependence of variation in seed morphology, mineral composition and germination percentage in Gynandropsis gynandra (L.) Briq. accessions from Africa and Asia. BMC PLANT BIOLOGY 2020; 20:168. [PMID: 32295516 PMCID: PMC7160957 DOI: 10.1186/s12870-020-02364-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 03/26/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Spider plant [Gynandropsis gynandra (L.) Briq.], an economically promising African leafy vegetable, characterized for leaf yield components and nutritive quality, exhibits poor seed germination that hinders a wider expansion of the crop in urban and periurban horticultural systems. So far, there is little information pertaining to seed morphological traits and mineral elements content that may be associated with higher seed germination. This research investigated the hypothesis that spider plants from different geographical areas exhibited differences in seed mineral composition, morphological traits, and germination capacity. To this end, twenty-nine accessions of Gynandropsis gynandra from West and East-Southern Africa, and Asia were screened for variation in seed size (area, perimeter, length, width), 10-seed weight, mean germination time, germination percentage and mineral content variations. The scanning electron microscopy (SEM), light microscopy and energy dispersive spectroscopy (EDS) solution were used to study seed morphology and mineral composition. RESULTS We show for the first time the external and internal structure of the seeds of Gynandropsis gynandra and measured eight mineral elements, including carbon (C), oxygen (O), magnesium (Mg), aluminium (Al), phosphorus (P), sulphur (S), potassium (K) and calcium (Ca). The accessions differed significantly (p < 0.001) with respect to seed size (area, perimeter, length, width), 10-seed weight, mean germination time and germination percentage. The hierarchical cluster analysis based on fourteen variables grouped the accessions into three distinct clusters, partially dependent on their geographical origin. Asian accessions exhibited smaller seeds and recorded higher values in terms of germination percentage. West African accessions had bigger seeds but with lower germination percentage. Variation in minerals such as potassium, carbon, and calcium content showed different patterns according to geographical origins. CONCLUSION Smaller seeds in G. gynandra exhibited better germination capacity. The Asian germplasm is a potential source of cultivars with a higher germination percentage for improving seed quality in the species.
Collapse
Affiliation(s)
- Jelila S Blalogoe
- Laboratory of Genetics, Horticulture and Seed Science, Faculty of Agronomic Sciences, University of Abomey-Calavi, BP 526, Abomey-Calavi, Republic of Benin
- Discipline of Plant Breeding, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, Republic of South Africa
| | - Alfred O Odindo
- Crop Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, Republic of South Africa
| | - E O Dêêdi Sogbohossou
- Laboratory of Genetics, Horticulture and Seed Science, Faculty of Agronomic Sciences, University of Abomey-Calavi, BP 526, Abomey-Calavi, Republic of Benin
- Biosystematics Group, Wageningen University, Postbus 647 6700AP, Wageningen, The Netherlands
| | - Julia Sibiya
- Discipline of Plant Breeding, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, Republic of South Africa
| | - Enoch G Achigan-Dako
- Laboratory of Genetics, Horticulture and Seed Science, Faculty of Agronomic Sciences, University of Abomey-Calavi, BP 526, Abomey-Calavi, Republic of Benin.
| |
Collapse
|
137
|
Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q, Chen L, Su T, Nan H, Zhang D, Zhang L, Wang Z, Yang Y, Yu D, Liu X, Yang Q, Lin X, Tang Y, Zhao X, Yang X, Tian C, Xie Q, Li X, Yuan X, Tian Z, Liu B, Weller JL, Kong F. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet 2020; 52:428-436. [PMID: 32231277 DOI: 10.1038/s41588-020-0604-7] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/27/2020] [Indexed: 01/01/2023]
Abstract
Adaptive changes in plant phenology are often considered to be a feature of the so-called 'domestication syndrome' that distinguishes modern crops from their wild progenitors, but little detailed evidence supports this idea. In soybean, a major legume crop, flowering time variation is well characterized within domesticated germplasm and is critical for modern production, but its importance during domestication is unclear. Here, we identify sequential contributions of two homeologous pseudo-response-regulator genes, Tof12 and Tof11, to ancient flowering time adaptation, and demonstrate that they act via LHY homologs to promote expression of the legume-specific E1 gene and delay flowering under long photoperiods. We show that Tof12-dependent acceleration of maturity accompanied a reduction in dormancy and seed dispersal during soybean domestication, possibly predisposing the incipient crop to latitudinal expansion. Better understanding of this early phase of crop evolution will help to identify functional variation lost during domestication and exploit its potential for future crop improvement.
Collapse
Affiliation(s)
- Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liyu Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Tong Su
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyang Nan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Lei Zhang
- Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zhijuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongqing Yang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qingyong Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xiaoya Lin
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yang Tang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaohui Zhao
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xinquan Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Changen Tian
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qiguang Xie
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaohui Yuan
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
138
|
Wang P, Richter AS, Kleeberg JRW, Geimer S, Grimm B. Post-translational coordination of chlorophyll biosynthesis and breakdown by BCMs maintains chlorophyll homeostasis during leaf development. Nat Commun 2020; 11:1254. [PMID: 32198392 PMCID: PMC7083845 DOI: 10.1038/s41467-020-14992-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Chlorophyll is indispensable for life on Earth. Dynamic control of chlorophyll level, determined by the relative rates of chlorophyll anabolism and catabolism, ensures optimal photosynthesis and plant fitness. How plants post-translationally coordinate these two antagonistic pathways during their lifespan remains enigmatic. Here, we show that two Arabidopsis paralogs of BALANCE of CHLOROPHYLL METABOLISM (BCM) act as functionally conserved scaffold proteins to regulate the trade-off between chlorophyll synthesis and breakdown. During early leaf development, BCM1 interacts with GENOMES UNCOUPLED 4 to stimulate Mg-chelatase activity, thus optimizing chlorophyll synthesis. Meanwhile, BCM1’s interaction with Mg-dechelatase promotes degradation of the latter, thereby preventing chlorophyll degradation. At the onset of leaf senescence, BCM2 is up-regulated relative to BCM1, and plays a conserved role in attenuating chlorophyll degradation. These results support a model in which post-translational regulators promote chlorophyll homeostasis by adjusting the balance between chlorophyll biosynthesis and breakdown during leaf development. Plants regulate chlorophyll levels to optimise photosynthesis. Here Wang et al. describe two paralogous thylakoid proteins, BCM1 and BCM2, which stimulate chlorophyll biosynthesis and attenuate chlorophyll degradation respectively through interaction with the Mg-chelatase-stimulating factor GUN4 and Mg-dechelatase isoform SGR1.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.
| | - Andreas S Richter
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.,Institute of Biology/Physiology of Plant Cell Organelles, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Julius R W Kleeberg
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
139
|
Desta ZA, de Koning DJ, Ortiz R. Molecular mapping and identification of quantitative trait loci for domestication traits in the field cress (Lepidium campestre L.) genome. Heredity (Edinb) 2020; 124:579-591. [PMID: 32076125 PMCID: PMC7080786 DOI: 10.1038/s41437-020-0296-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
Lepidium campestre (L.) or field cress is a multifaceted oilseed plant, which is not yet domesticated. Moreover, the molecular and genetic mechanisms underlying the domestication traits of field cress remain largely elusive. The overarching goal of this study is to identify quantitative trait loci (QTL) that are fundamental for domestication of field cress. Mapping and dissecting quantitative trait variation may provide important insights into genomic trajectories underlying field cress domestication. We used 7624 single nucleotide polymorphism (SNP) markers for QTL mapping in 428 F2 interspecific hybrid individuals, while field phenotyping was conducted in F2:3 segregating families. We applied multiple QTL mapping algorithms to detect and estimate the QTL effects for seven important domestication traits of field cress. Verification of pod shattering across sites revealed that the non-shattering lines declined drastically whereas the shattering lines increased sharply, possibly due to inbreeding followed by selection events. In total, 1461 of the 7624 SNP loci were mapped to eight linkage groups (LGs), spanning 571.9 cM map length. We identified 27 QTL across all LGs of field cress genome, which captured medium to high heritability, implying that genomics-assisted selection could deliver domesticated lines in field cress breeding. The use of high throughput genotyping can accelerate the process of domestication in novel crop species. This is the first QTL mapping analysis in the field cress genome that may lay a foundational framework for positional or functional QTL cloning, introgression as well as genomics-assisted breeding in field cress domestication.
Collapse
Affiliation(s)
- Zeratsion Abera Desta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundesvagen 10 Box 101, 23053, Alnarp, Sweden.
| | - Dirk-Jan de Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 75007, Uppsala, Sweden
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundesvagen 10 Box 101, 23053, Alnarp, Sweden
| |
Collapse
|
140
|
Lyu J, Huang L, Zhang S, Zhang Y, He W, Zeng P, Zeng Y, Huang G, Zhang J, Ning M, Bao Y, Zhao S, Fu Q, Wade LJ, Chen H, Wang W, Hu F. Neo-functionalization of a Teosinte branched 1 homologue mediates adaptations of upland rice. Nat Commun 2020; 11:725. [PMID: 32024833 PMCID: PMC7002408 DOI: 10.1038/s41467-019-14264-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/19/2019] [Indexed: 12/02/2022] Open
Abstract
The rice orthologue of maize domestication gene Teosinte branched 1 (Tb1) affects tillering. But, unlike maize Tb1 gene, it was not selected during domestication. Here, we report that an OsTb1 duplicate gene (OsTb2) has been artificially selected during upland rice adaptation and that natural variation in OsTb2 is associated with tiller number. Interestingly, transgenic rice overexpressing this gene shows increased rather than decreased tillering, suggesting that OsTb2 gains a regulatory effect opposite to that of OsTb1 following duplication. Functional analyses suggest that the OsTb2 protein positively regulates tillering by interacting with the homologous OsTb1 protein and counteracts the inhibitory effect of OsTb1 on tillering. We further characterize two functional variations within OsTb2 that regulate protein function and gene expression, respectively. These results not only present an example of neo-functionalization that generates an opposite function following duplication but also suggest that the Tb1 homologue has been selected in upland rice.
Collapse
Affiliation(s)
- Jun Lyu
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Liyu Huang
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Shilai Zhang
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Yesheng Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
| | - Weiming He
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Peng Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
| | - Guangfu Huang
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Jing Zhang
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Min Ning
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Yachong Bao
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Shilei Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qi Fu
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Len J Wade
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, QLD, 4072, Australia.
| | - Hua Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.
- Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience & Biotechnology, Northwestern Polytechnical University, 710072, Xi'an, China.
| | - Fengyi Hu
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China.
| |
Collapse
|
141
|
Bian XH, Li W, Niu CF, Wei W, Hu Y, Han JQ, Lu X, Tao JJ, Jin M, Qin H, Zhou B, Zhang WK, Ma B, Wang GD, Yu DY, Lai YC, Chen SY, Zhang JS. A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis. THE NEW PHYTOLOGIST 2020; 225:268-283. [PMID: 31400247 DOI: 10.1111/nph.16104] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/01/2019] [Indexed: 05/24/2023]
Abstract
Soybean (Glycine max) production is severely affected in unfavorable environments. Identification of the regulatory factors conferring stress tolerance would facilitate soybean breeding. In this study, through coexpression network analysis of salt-tolerant wild soybeans, together with molecular and genetic approaches, we revealed a previously unidentified function of a class B heat shock factor, HSFB2b, in soybean salt stress response. We showed that HSFB2b improves salt tolerance through the promotion of flavonoid accumulation by activating one subset of flavonoid biosynthesis-related genes and by inhibiting the repressor gene GmNAC2 to release another subset of genes in the flavonoid biosynthesis pathway. Moreover, four promoter haplotypes of HSFB2b were identified from wild and cultivated soybeans. Promoter haplotype II from salt-tolerant wild soybean Y20, with high promoter activity under salt stress, is probably selected for during domestication. Another promoter haplotype, III, from salt-tolerant wild soybean Y55, had the highest promoter activity under salt stress, had a low distribution frequency and may be subjected to the next wave of selection. Together, our results revealed the mechanism of HSFB2b in soybean salt stress tolerance. Its promoter variations were identified, and the haplotype with high activity may be adopted for breeding better soybean cultivars that are adapted to stress conditions.
Collapse
Affiliation(s)
- Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- National Center for Soybean Improvement, National Key Lab of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Can-Fang Niu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Qi Han
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Jin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Qin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Zhou
- Institute of Crop Science, Anhui Provincial Academy of Agricultural Sciences, Hefei, 230031, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- Biology and Agriculture Research Center, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, 100024, China
| | - Guo-Dong Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - De-Yue Yu
- National Center for Soybean Improvement, National Key Lab of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong-Cai Lai
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
142
|
Zhang X, Lin Z, Wang J, Liu H, Zhou L, Zhong S, Li Y, Zhu C, Liu J, Lin Z. The tin1 gene retains the function of promoting tillering in maize. Nat Commun 2019; 10:5608. [PMID: 31811145 PMCID: PMC6898233 DOI: 10.1038/s41467-019-13425-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/09/2019] [Indexed: 11/29/2022] Open
Abstract
Sweet maize and popcorn retain tillering growth habit during maize diversification. However, the underlying molecular genetic mechanism remains unknown. Here, we show that the retention of maize tillering is controlled by a major quantitative trait locus (QTL), tin1, which encodes a C2H2-zinc-finger transcription factor that acts independently of tb1. In sweet maize, a splice-site variant from G/GT to C/GT leads to intron retention, which enhances tin1 transcript levels and consequently increases tiller number. Comparative genomics analysis and DNA diversity analysis reveal that tin1 is under parallel selection across different cereal species. tin1 is involved in multiple pathways, directly represses two tiller-related genes, gt1 and Laba1/An-2, and interacts with three TOPLESS proteins to regulate the outgrowth of tiller buds. Our results support that maize tin1, derived from a standing variation in wild progenitor teosinte population, determines tillering retention during maize diversification. Unlike the other domesticated maize, sweet maize and popcorn retain tillering growth habit, but the underlying mechanism is unknown. Here, the authors identify a transcription factor tin1 that maintains outgrowth of tiller independent of tb1 and show its conservation in foxtail millet and rice.
Collapse
Affiliation(s)
- Xuan Zhang
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Zhelong Lin
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Jian Wang
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Hangqin Liu
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Leina Zhou
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Shuyang Zhong
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Can Zhu
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Jiacheng Liu
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Zhongwei Lin
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
143
|
Dawson IK, Powell W, Hendre P, Bančič J, Hickey JM, Kindt R, Hoad S, Hale I, Jamnadass R. The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition. THE NEW PHYTOLOGIST 2019; 224:37-54. [PMID: 31063598 DOI: 10.1111/nph.15895] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/28/2019] [Indexed: 05/27/2023]
Abstract
Especially in low-income nations, new and orphan crops provide important opportunities to improve diet quality and the sustainability of food production, being rich in nutrients, capable of fitting into multiple niches in production systems, and relatively adapted to low-input conditions. The evolving space for these crops in production systems presents particular genetic improvement requirements that extensive gene pools are able to accommodate. Particular needs for genetic development identified in part with plant breeders relate to three areas of fundamental importance for addressing food production and human demographic trends and associated challenges, namely: facilitating integration into production systems; improving the processability of crop products; and reducing farm labour requirements. Here, we relate diverse involved target genes and crop development techniques. These techniques include transgressive methods that involve defining exemplar crop models for effective new and orphan crop improvement pathways. Research on new and orphan crops not only supports the genetic improvement of these crops, but they serve as important models for understanding crop evolutionary processes more broadly, guiding further major crop evolution. The bridging position of orphan crops between new and major crops provides unique opportunities for investigating genetic approaches for de novo domestications and major crop 'rewildings'.
Collapse
Affiliation(s)
- Ian K Dawson
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Wayne Powell
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Prasad Hendre
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Jon Bančič
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - John M Hickey
- The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Roeland Kindt
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Steve Hoad
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Iago Hale
- University of New Hampshire, Durham, NH,, 03824, USA
| | - Ramni Jamnadass
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| |
Collapse
|
144
|
Wang Q, Li G, Zheng K, Zhu X, Ma J, Wang D, Tang K, Feng X, Leng J, Yu H, Yang S, Feng X. The Soybean Laccase Gene Family: Evolution and Possible Roles in Plant Defense and Stem Strength Selection. Genes (Basel) 2019; 10:E701. [PMID: 31514462 PMCID: PMC6770974 DOI: 10.3390/genes10090701] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Laccase is a widely used industrial oxidase for food processing, dye synthesis, paper making, and pollution remediation. At present, laccases used by industries come mainly from fungi. Plants contain numerous genes encoding laccase enzymes that show properties which are distinct from that of the fungal laccases. These plant-specific laccases may have better potential for industrial purposes. The aim of this work was to conduct a genome-wide search for the soybean laccase genes and analyze their characteristics and specific functions. A total of 93 putative laccase genes (GmLac) were identified from the soybean genome. All 93 GmLac enzymes contain three typical Cu-oxidase domains, and they were classified into five groups based on phylogenetic analysis. Although adjacent members on the tree showed highly similar exon/intron organization and motif composition, there were differences among the members within a class for both conserved and differentiated functions. Based on the expression patterns, some members of laccase were expressed in specific tissues/organs, while some exhibited a constitutive expression pattern. Analysis of the transcriptome revealed that some laccase genes might be involved in providing resistance to oomycetes. Analysis of the selective pressures acting on the laccase gene family in the process of soybean domestication revealed that 10 genes could have been under artificial selection during the domestication process. Four of these genes may have contributed to the transition of the soft and thin stem of wild soybean species into strong, thick, and erect stems of the cultivated soybean species. Our study provides a foundation for future functional studies of the soybean laccase gene family.
Collapse
Affiliation(s)
- Quan Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kaijie Zheng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Xiaobin Zhu
- School of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dongmei Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xingxing Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
145
|
Fernie AR, Yan J. De Novo Domestication: An Alternative Route toward New Crops for the Future. MOLECULAR PLANT 2019; 12:615-631. [PMID: 30999078 DOI: 10.1016/j.molp.2019.03.016] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 05/19/2023]
Abstract
Current global agricultural production must feed over 7 billion people. However, productivity varies greatly across the globe and is under threat from both increased competitions for land and climate change and associated environmental deterioration. Moreover, the increase in human population size and dietary changes are putting an ever greater burden on agriculture. The majority of this burden is met by the cultivation of a very small number of species, largely in locations that differ from their origin of domestication. Recent technological advances have raised the possibility of de novo domestication of wild plants as a viable solution for designing ideal crops while maintaining food security and a more sustainable low-input agriculture. Here we discuss how the discovery of multiple key domestication genes alongside the development of technologies for accurate manipulation of several target genes simultaneously renders de novo domestication a route toward crops for the future.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
146
|
Xie M, Chung CYL, Li MW, Wong FL, Wang X, Liu A, Wang Z, Leung AKY, Wong TH, Tong SW, Xiao Z, Fan K, Ng MS, Qi X, Yang L, Deng T, He L, Chen L, Fu A, Ding Q, He J, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen HT, Cannon SB, Foyer CH, Chan TF, Lam HM. A reference-grade wild soybean genome. Nat Commun 2019; 10:1216. [PMID: 30872580 PMCID: PMC6418295 DOI: 10.1038/s41467-019-09142-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/22/2019] [Indexed: 01/01/2023] Open
Abstract
Efficient crop improvement depends on the application of accurate genetic information contained in diverse germplasm resources. Here we report a reference-grade genome of wild soybean accession W05, with a final assembled genome size of 1013.2 Mb and a contig N50 of 3.3 Mb. The analytical power of the W05 genome is demonstrated by several examples. First, we identify an inversion at the locus determining seed coat color during domestication. Second, a translocation event between chromosomes 11 and 13 of some genotypes is shown to interfere with the assignment of QTLs. Third, we find a region containing copy number variations of the Kunitz trypsin inhibitor (KTI) genes. Such findings illustrate the power of this assembly in the analysis of large structural variations in soybean germplasm collections. The wild soybean genome assembly has wide applications in comparative genomic and evolutionary studies, as well as in crop breeding and improvement programs.
Collapse
Affiliation(s)
- Min Xie
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Claire Yik-Lok Chung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Xin Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Ailin Liu
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Alden King-Yung Leung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Tin-Hang Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Suk-Wah Tong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Zhixia Xiao
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Kejing Fan
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Xinpeng Qi
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Linfeng Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Tianquan Deng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Lijuan He
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Lu Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Aisi Fu
- Wuhan Institute of Biotechnology, Wuhan, 430075, Hubei, China
| | - Qiong Ding
- Wuhan Institute of Biotechnology, Wuhan, 430075, Hubei, China
| | - Junxian He
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Gwangju, 550-749, Jeonnam, South Korea
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, 292-0818, Chiba, Japan
| | - Takanari Tanabata
- Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, 292-0818, Chiba, Japan
| | - Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, Iowa, 50011-4014, USA
| | - Christine H Foyer
- Faculty of Biological Sciences, Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, Yorkshire, UK
| | - Ting-Fung Chan
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
147
|
Zhao Y, Song Z, Zhong L, Li Q, Chen J, Rong J. Inferring the Origin of Cultivated Zizania latifolia, an Aquatic Vegetable of a Plant-Fungus Complex in the Yangtze River Basin. FRONTIERS IN PLANT SCIENCE 2019; 10:1406. [PMID: 31787995 PMCID: PMC6856052 DOI: 10.3389/fpls.2019.01406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/10/2019] [Indexed: 05/10/2023]
Abstract
Crop domestication is one of the essential topics in evolutionary biology. Cultivated Zizania latifolia, domesticated as the special form of a plant-fungus (the host Zizania latifolia and the endophyte Ustilago esculenta) complex, is a popular aquatic vegetable endemic in East Asia. The rapid domestication of cultivated Z. latifolia can be traced in the historical literature but still need more evidence. This study focused on deciphering the genetic relationship between wild and cultivated Z. latifolia, as well as the corresponding parasitic U. esculenta. Twelve microsatellites markers were used to study the genetic variations of 32 wild populations and 135 landraces of Z. latifolia. Model simulations based on approximate Bayesian computation (ABC) were then performed to hierarchically infer the population history. We also analyzed the ITS sequences of the smut fungus U. esculenta to reveal its genetic structure. Our results indicated a significant genetic divergence between cultivated Z. latifolia and its wild ancestors. The wild Z. latifolia populations showed significant hierarchical genetic subdivisions, which may be attributed to the joint effect of isolation by distance and hydrological unconnectedness between watersheds. Cultivated Z. latifolia was supposedly domesticated once in the low reaches of the Yangtze River. The genetic structure of U. esculenta also indicated a single domestication event, and the genetic variations in this fungus might be associated with the diversification of cultivars. These findings provided molecular evidence in accordance with the historical literature that addressed the domestication of cultivated Z. latifolia involved adaptive evolution driven by artificial selection in both the plant and fungus.
Collapse
Affiliation(s)
- Yao Zhao
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Zhiping Song
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Lan Zhong
- Institute of Vegetable, Wuhan Academy of Agriculture Science and Technology, Wuhan, China
| | - Qin Li
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Jiakuan Chen
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- *Correspondence: Jun Rong,
| |
Collapse
|
148
|
Wei X, Huang X. Identification of a seed dormancy gene in soybean sheds light on crop domestication. SCIENCE CHINA. LIFE SCIENCES 2018; 61:1439-1441. [PMID: 30414006 DOI: 10.1007/s11427-018-9410-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Xin Wei
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
149
|
Rendón-Anaya M, Herrera-Estrella A. The advantage of parallel selection of domestication genes to accelerate crop improvement. Genome Biol 2018; 19:147. [PMID: 30266085 PMCID: PMC6161459 DOI: 10.1186/s13059-018-1537-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A recent study identifies a locus controlling seed dormancy – a key trait of the ‘domestication syndrome’ – that has been selected for in parallel across multiple crop families.
Collapse
Affiliation(s)
- Martha Rendón-Anaya
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, PO Box 7080, SE-750 07, Uppsala, Sweden
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|