101
|
Ying X, Chen Q, Yang Y, Wu Z, Zeng W, Miao C, Huang Q, Ai K. Nanomedicines harnessing cGAS-STING pathway: sparking immune revitalization to transform 'cold' tumors into 'hot' tumors. Mol Cancer 2024; 23:277. [PMID: 39710707 DOI: 10.1186/s12943-024-02186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
cGAS-STING pathway stands at the forefront of innate immunity and plays a critical role in regulating adaptive immune responses, making it as a key orchestrator of anti-tumor immunity. Despite the great potential, clinical outcomes with cGAS-STING activators have been disappointing due to their unfavorable in vivo fate, signaling an urgent need for innovative solutions to bridge the gap in clinical translation. Recent advancements in nanotechnology have propelled cGAS-STING-targeting nanomedicines to the cutting-edge of cancer therapy, leveraging precise drug delivery systems and multifunctional platforms to achieve remarkable region-specific biodistribution and potent therapeutic efficacy. In this review, we provide an in-depth exploration of the molecular mechanisms that govern cGAS-STING signaling and its potential to dynamically modulate the anti-tumor immune cycle. We subsequently introduced several investigational cGAS-STING-dependent anti-tumor agents and summarized their clinical trial progress. Additionally, we provided a comprehensive review of the unique advantages of cGAS-STING-targeted nanomedicines, highlighting the transformative potential of nanotechnology in this field. Furthermore, we comprehensively reviewed and comparatively analyzed the latest breakthroughs cGAS-STING-targeting nanomedicine, focusing on strategies that induce cytosolic DNA generation via exogenous DNA delivery, chemotherapy, radiotherapy, or dynamic therapies, as well as the nanodelivery of STING agonists. Lastly, we discuss the future prospects and challenges in cGAS-STING-targeting nanomedicine development, offering new insights to bridge the gap between mechanistic research and drug development, thereby opening new pathways in cancer treatment.
Collapse
Affiliation(s)
- Xiaohong Ying
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiaohui Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ziyu Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Wan Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chenxi Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Xiangya Hospital, Ministry of Education, Central South University, Changsha, 410008, China.
| |
Collapse
|
102
|
Yanushkevich S, Zieminska A, Gonzalez J, Añazco F, Song R, Arias-Cavieres A, Granados ST, Zou J, Rao Y, Concepcion AR. Recent advances in the structure, function and regulation of the volume-regulated anion channels and their role in immunity. J Physiol 2024. [PMID: 39709525 DOI: 10.1113/jp285200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024] Open
Abstract
Volume-regulated anion channels (VRACs) are heteromeric complexes formed by proteins of the leucine-rich repeat-containing 8 (LRRC8) family. LRRC8A (also known as SWELL1) is the core subunit required for VRAC function, and it must combine with one or more of the other paralogues (i.e. LRRC8B-E) to form functional heteromeric channels. VRACs were discovered in T lymphocytes over 35 years ago and are found in virtually all vertebrate cells. Initially, these anion channels were characterized for their role in Cl- efflux during the regulatory volume decrease process triggered when cells are subjected to hypotonic challenges. However, substantial evidence suggests that VRACs also transport small molecules under isotonic conditions. These findings have expanded the research on VRACs to explore their functions beyond volume regulation. In innate immune cells, VRACs promote inflammation by modulating the transport of immunomodulatory cyclic dinucleotides, itaconate and ATP. In adaptive immune cells, VRACs suppress their function by taking up cyclic dinucleotides to activate the STING signalling pathway. In this review, we summarize the current understanding of LRRC8 proteins in immunity and discuss recent progress in their structure, function, regulation and mechanisms for channel activation and gating. Finally, we also examine potential immunotherapeutic applications of VRAC modulation.
Collapse
Affiliation(s)
- Sergei Yanushkevich
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Aleksandra Zieminska
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Joshua Gonzalez
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisca Añazco
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Richard Song
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | | | - Sara T Granados
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Junyi Zou
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Yan Rao
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Axel R Concepcion
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
103
|
Gentili M, Carlson RJ, Liu B, Hellier Q, Andrews J, Qin Y, Blainey PC, Hacohen N. Classification and functional characterization of regulators of intracellular STING trafficking identified by genome-wide optical pooled screening. Cell Syst 2024; 15:1264-1277.e8. [PMID: 39657680 DOI: 10.1016/j.cels.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/05/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Stimulator of interferon genes (STING) traffics across intracellular compartments to trigger innate responses. Mutations in factors regulating this process lead to inflammatory disorders. To systematically identify factors involved in STING trafficking, we performed a genome-wide optical pooled screen (OPS). Based on the subcellular localization of STING in 45 million cells, we defined 464 clusters of gene perturbations based on their cellular phenotypes. A secondary, higher-dimensional OPS identified 73 finer clusters. We show that the loss of the gene of unknown function C19orf25, which clustered with USE1, a protein involved in Golgi-to-endoplasmic reticulum (ER) transport, enhances STING signaling. Additionally, HOPS deficiency delayed STING degradation and consequently increased signaling. Similarly, GARP/RIC1-RGP1 loss increased STING signaling by delaying STING Golgi exit. Our findings demonstrate that genome-wide genotype-phenotype maps based on high-content cell imaging outperform other screening approaches and provide a community resource for mining factors that impact STING trafficking and other cellular processes.
Collapse
Affiliation(s)
| | - Rebecca J Carlson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA
| | - Bingxu Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Yue Qin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul C Blainey
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA; Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA.
| | - Nir Hacohen
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA; Massachusetts General Hospital, Krantz Family Center for Cancer Research, Boston, MA, USA.
| |
Collapse
|
104
|
Qi X, Cheng C, Zhang D, Yu Z, Meng X. Exploring the synergy between tumor microenvironment modulation and STING agonists in cancer immunotherapy. Front Immunol 2024; 15:1488345. [PMID: 39712021 PMCID: PMC11659200 DOI: 10.3389/fimmu.2024.1488345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Affiliation(s)
- Xiaoyan Qi
- Zibo Central Hospital, Zibo, China
- Department of Oncology, Zibo Central Hospital, Zibo, China
| | - Cheng Cheng
- Zibo Central Hospital, Zibo, China
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Dawei Zhang
- Zibo Central Hospital, Zibo, China
- Department of Orthopedics, Zibo Central Hospital, Zibo, China
| | - Zongjiang Yu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiangwei Meng
- Zibo Central Hospital, Zibo, China
- Department of Drug Clinical Trials, Zibo Central Hospital, Zibo, China
| |
Collapse
|
105
|
Gao S, Hou Y, Xu Y, Li J, Zhang C, Jiang S, Yu S, Liu L, Tu W, Yu B, Zhang Y, Li L. Discovery of orally bioavailable phosphonate prodrugs of potent ENPP1 inhibitors for cancer treatment. Eur J Med Chem 2024; 279:116853. [PMID: 39270452 DOI: 10.1016/j.ejmech.2024.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is the dominant hydrolase of 2',3'-cyclic GMP-AMP (cGAMP). Inhibition of ENPP1 contributes to increased cGAMP concentration and stimulator of interferon gene (STING) activation, with the potential to boost immune response against cancer. ENPP1 is a promising therapeutic target in tumor immunotherapy. To date, orally bioavailable ENPP1 inhibitors with highly potent activity under physiological conditions have been rarely reported. Herein, we report our effort in the design and synthesis of two different series of ENPP1 inhibitors, and in the identification of a highly potent ENPP1 inhibitor 27 (IC50 = 1.2 nM at pH 7.5), which significantly enhanced the cGAMP-mediated STING activity in THP-1 cells. Phosphonate compound 27 has good preclinical pharmacokinetic profiles with low plasma clearance rate in mouse, rat, and dog. It has been developed as bis-POM prodrug 36 which successfully improves the oral bioavailability of 27. In the Pan02 syngeneic mouse model of pancreatic cancer, orally administered 36 showed synergistic effect in combination with radiotherapy.
Collapse
Affiliation(s)
- Shanyun Gao
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Yingjie Hou
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Yanxiao Xu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Jingjing Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Chaobo Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Shujuan Jiang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Songda Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Lei Liu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Wangyang Tu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Bing Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Yixiang Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Leping Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| |
Collapse
|
106
|
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol 2024; 21:1354-1375. [PMID: 39406966 PMCID: PMC11607068 DOI: 10.1038/s41423-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
107
|
Pan H, Zhou L, Zou J, Sun J, You Y, Zhong G, Liao J, Zhang H, Tang Z, Hu L. Arsenic trioxide induces innate immune response and inflammatory response in chicken liver via cGAS-STING/NF-κB pathway. Comp Biochem Physiol C Toxicol Pharmacol 2024; 286:110017. [PMID: 39218134 DOI: 10.1016/j.cbpc.2024.110017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Arsenic is a toxic metal-like element widely used in the pesticide, preservative and semiconductor industries. However, accumulation of arsenic through the food chain can cause serious damage to animal and human health. However, the toxic mechanism of arsenic-induced hepatotoxicity in chickens is not clear, and the present study aimed to investigate the potential role of cGAS-STING and NF-κB pathways on inflammatory injury in chicken liver. In this study, 75 white-feathered broilers were divided into a control group, a low-dose arsenic group (4 mg/kg) and a high-dose arsenic group (8 mg/kg) to investigate the toxic effects of arsenic on chicken liver. In this study, we found that pathological changes such as inflammatory cell infiltration and vesicular degeneration occurred in the liver when exposed to ATO. Crucially, exposure to ATO triggered the cGAS-STING pathway and markedly raised the levels of mRNA and protein expression of cGAS, STING, TBK1, and IRF7. The type I interferon response was also triggered. Simultaneously, STING induced the activation of the conventional NF-κB signaling pathway and stimulated the expression of genes associated with inflammation, such as IL-6, TNF-α and IL-1β. In summary, the induction of inflammatory responses via cGAS-STING and NF-κB signaling pathways under high ATO exposure provides new ideas for further studies on the toxicological mechanisms of arsenic.
Collapse
Affiliation(s)
- Hang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Limeng Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Junbo Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jingping Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yanli You
- College of Life Science, Yantai University, Yantai 264005, Shandong Province, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
108
|
Wang H, Liu Z, Fang Y, Luo X, Zheng C, Xu Y, Zhou X, Yuan Q, Lv S, Ma L, Lao YH, Tao Y, Li M. Spatiotemporal release of non-nucleotide STING agonist and AKT inhibitor from implantable 3D-printed scaffold for amplified cancer immunotherapy. Biomaterials 2024; 311:122645. [PMID: 38850717 DOI: 10.1016/j.biomaterials.2024.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Immunotherapy through the activation of the stimulator of interferon genes (STING) signaling pathway is increasingly recognized for its robust anti-tumor efficacy. However, the effectiveness of STING activation is often compromised by inadequate anti-tumor immunity and a scarcity of primed immune cells in the tumor microenvironment. Herein, we design and fabricate a co-axial 3D-printed scaffold integrating a non-nucleotide STING agonist, SR-717, and an AKT inhibitor, MK-2206, in its respective shell and core layers, to synergistically enhance STING activation, thereby suppressing tumor recurrence and growth. SR-717 initiates the STING activation to enhance the phosphorylation of the factors along the STING pathway, while MK-2206 concurrently inhibits the AKT phosphorylation to facilitate the TBK1 phosphorylation of the STING pathway. The sequential and sustained release of SR-717 and MK-2206 from the scaffold results in a synergistic STING activation, demonstrating substantial anti-tumor efficacy across multiple tumor models. Furthermore, the scaffold promotes the recruitment and enrichment of activated dendritic cells and M1 macrophages, subsequently stimulating anti-tumor T cell activity, thereby amplifying the immunotherapeutic effect. This precise and synergistic activation of STING by the scaffold offers promising potential in tumor immunotherapy.
Collapse
Affiliation(s)
- Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zheng Liu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Youqiang Fang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Xing Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiangfu Zhou
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Qing Yuan
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Limin Ma
- Medical Research Center, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510080, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
109
|
Zhang P, Zhong D, Yu Y, Wang L, Li Y, Liang Y, Shi Y, Duan M, Li B, Niu H, Xu Y. Integration of STING activation and COX-2 inhibition via steric-hindrance effect tuned nanoreactors for cancer chemoimmunotherapy. Biomaterials 2024; 311:122695. [PMID: 38954960 DOI: 10.1016/j.biomaterials.2024.122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Integrating immunotherapy with nanomaterials-based chemotherapy presents a promising avenue for amplifying antitumor outcomes. Nevertheless, the suppressive tumor immune microenvironment (TIME) and the upregulation of cyclooxygenase-2 (COX-2) induced by chemotherapy can hinder the efficacy of the chemoimmunotherapy. This study presents a TIME-reshaping strategy by developing a steric-hindrance effect tuned zinc-based metal-organic framework (MOF), designated as CZFNPs. This nanoreactor is engineered by in situ loading of the COX-2 inhibitor, C-phycocyanin (CPC), into the framework building blocks, while simultaneously weakening the stability of the MOF. Consequently, CZFNPs achieve rapid pH-responsive release of zinc ions (Zn2+) and CPC upon specific transport to tumor cells overexpressing folate receptors. Accordingly, Zn2+ can induce reactive oxygen species (ROS)-mediated cytotoxicity therapy while synchronize with mitochondrial DNA (mtDNA) release, which stimulates mtDNA/cGAS-STING pathway-mediated innate immunity. The CPC suppresses the chemotherapy-induced overexpression of COX-2, thus cooperatively reprogramming the suppressive TIME and boosting the antitumor immune response. In xenograft tumor models, the CZFNPs system effectively modulates STING and COX-2 expression, converting "cold" tumors into "hot" tumors, thereby resulting in ≈ 4-fold tumor regression relative to ZIF-8 treatment alone. This approach offers a potent strategy for enhancing the efficacy of combined nanomaterial-based chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Yongbo Yu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lupeng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yifan Li
- Department of Breast Center of the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Ye Liang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Meilin Duan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Haitao Niu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Yuanhong Xu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
110
|
Bharadwaj R, Jaiswal S, Silverman N. Cytosolic delivery of innate immune agonists. Trends Immunol 2024; 45:1001-1014. [PMID: 39567309 PMCID: PMC11624987 DOI: 10.1016/j.it.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Solute carrier proteins (SLCs) are pivotal for maintaining cellular homeostasis by transporting small molecules across cellular membranes. Recent discoveries have uncovered their involvement in modulating innate immunity, particularly within the cytosol. We review emerging evidence that links SLC transporters to cytosolic innate immune recognition and highlight their role in regulating inflammation. We explore how SLC transporters influence the activation of endosomal Toll-like receptors, cytosolic NODs, and STING sensors. Understanding the contribution of SLCs to innate immune recognition provides insight into their fundamental biological functions and opens new avenues to develop possible therapeutic interventions for autoimmune and inflammatory diseases. This review aims to discuss current knowledge and identify key gaps in this rapidly evolving field.
Collapse
Affiliation(s)
- Ravi Bharadwaj
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Swati Jaiswal
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
111
|
Liu H, Wang J, Xiong J, Hu Z. cGAS deficiency mitigated PM2.5-induced lung injury by inhibiting ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117321. [PMID: 39561560 DOI: 10.1016/j.ecoenv.2024.117321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
Ferroptosis emerges as one of the pivotal types of cell death during fine particulate matter (PM2.5)-induced lung injury. The recently discovered cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), triggers the activation of the downstream adaptor protein STING by synthesizing cyclic GMP-AMP, playing vital roles in innate immunity and cell death. Nonetheless, the specific function of cGAS in lung injury caused by PM2.5 remains to be elucidated. The present study aimed to explore the involvement of cGAS in the pathogenesis of PM2.5-induced lung injury and its potential mechanisms. The expression levels of cGAS in lung tissues and different types of cells isolated from murine lungs were detected. We generated a PM2.5-induced lung injury model with cGAS conditional knockout mice in type II alveolar epithelial (AT2) cells and investigated the roles of cGAS in ferroptosis in PM2.5-treated AT2 cells. The results demonstrated that PM2.5 could upregulate the expression of cGAS in lung tissues and AT2 cells. cGAS deficiency in AT2 cells not only improved pulmonary function, including lung compliance and oxygen saturation, but also relieved lung pathological injury in mice. In terms of mechanism, the absence of cGAS in AT2 cells notably reduced lipid peroxidation and ferroptosis in lungs exposed to PM2.5, achieved by increasing the protein level of ferritin. Meanwhile, cGAS deficiency also blocked the interaction between NCOA4 and ferritin, thus decreasing ferritinophagy. Additionally, periillaldehyde, one of the cGAS inhibitors, could protect against PM2.5-induced inflammation, oxidative stress, and edema in lung tissues by downregulating cGAS. Overall, cGAS promotes ferroptosis in PM2.5-induced lung injury by enhancing NCOA4-mediated ferritinophagy and shows promise as a therapeutic option for diseases associated with PM2.5 exposure.
Collapse
Affiliation(s)
- Huasong Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei University of Medicine, Shiyan, 442000, PR China
| | - Juan Wang
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Juan Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Zhipeng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
112
|
Zeng Z, Sun Y, Jiang J, Xu X, Lin H, Li W, Zheng D, Huang Y, Zhao C. Engineered low-pathogenic Helicobacter pylori as orally tumor immunomodulators for the stimulation of systemic immune response. Biomaterials 2024; 311:122672. [PMID: 38897029 DOI: 10.1016/j.biomaterials.2024.122672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Gastric cancer constitutes a malignant neoplasm characterized by heightened invasiveness, posing significant global health threat. Inspired by the analysis that gastric cancer patients with Helicobacter pylori (H. pylori) infection have higher overall survival, whether H. pylori can be used as therapeutics agent and oral drug delivery system for gastric cancer. Hence, we constructed engineered H. pylori for gastric cancer treatment. A type Ⅱ H. pylori with low pathogenicity, were conjugated with photosensitizer to develop the engineered living bacteria NIR-triggered system (Hp-Ce6). Hp-Ce6 could maintain activity in stomach acid, quickly infiltrate through mucus layer and finally migrate to tumor region owing to the cell morphology and urease of H. pylori. H. pylori, accumulated in the tumor site, severed as vaccine to activate cGAS-STING pathway, and synergistically remodel the macrophages phenotype. Upon irradiation within stomach, Hp-Ce6 directly destroyed tumor cells via photodynamic effect inherited by Ce6, companied by inducing immunogenic tumor cell death. Additionally, Hp-Ce6 exhibited excellent biosafety with fecal elimination and minimal blood absorption. This work explores the feasibility and availability of H. pylori-based oral delivery platforms for gastric tumor and further provides enlightening strategy to utilize H. pylori invariably presented in the stomach as in-situ immunomodulator to enhance antitumor efficacy.
Collapse
Affiliation(s)
- Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yue Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingwen Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xiaoyu Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Huanxin Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Wanzhen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Dong Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
113
|
Yun D, Fagan E, Shin D, Back W, Lee S, Kim MS, Park H, Park JH, Kim YC. pH and Redox Dual-Responsive Nanoparticle with Enhanced Dendritic Cell Maturation for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64592-64608. [PMID: 39538128 DOI: 10.1021/acsami.4c15342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Type I interferons (IFNs) are essential for activating dendritic cells (DCs) and presenting tumor-associated antigens to T cells. IFNs are primarily produced from DCs among immune cells. A combination of chemotherapy and metalloimmunotherapy induces IFN production by activating the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. However, chemotherapeutic agents deplete DC populations, suppressing immunostimulatory activities, despite their potent anticancer activities. Furthermore, an optimal ratio between chemotherapeutic agents and metal for activating DCs at the highest level has not been reported, and evidence for ensuring DC survival is lacking. In this study, we hypothesized that there is an optimal ratio to yield the highest DC maturation and anticancer activity with minimal DC depletion. To demonstrate it, we have designed a pH and redox dual-responsive nanoparticle, MnO2@BSA@DOX (MD), to prevent DCs from depleting and activate the cGAS-STING pathway both in cancer cells and DCs, inducing considerable levels of IFNs and maturation. MD consists of a core-layer structure, a manganese dioxide (MnO2) core, and a cross-linked layer with bovine serum albumin (BSA) and doxorubicin (DOX), with a specific ratio of DOX to manganese. MD exhibits structure-based selectivity between cancer cells and DCs by targeting the extracellular pH of the tumor microenvironment and intracellular redox reactions in cancer cells. Among various formulations, the 1:1 ratio shows the highest maturation with no significant depletion. Moreover, it induces distinct cytotoxicity in cancer cells through apoptosis and cGAS-STING activation, leading to increased calreticulin expression and enhanced DC phagocytosis. Consequently, it results in superior tumor suppression and prolonged survival with the high accumulation of MD in the tumor and no observed systemic toxicities, highlighting its potential as a therapeutic agent in cancer treatments.
Collapse
Affiliation(s)
- Dohyun Yun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Erinn Fagan
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Dongik Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Woojin Back
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Susam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Mun Sik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| |
Collapse
|
114
|
Huang Z, Huang R, Zhu J, Zhou Y, Shi J. PRKDC regulates cGAMP to enhance immune response in lung cancer treatment. Front Immunol 2024; 15:1497570. [PMID: 39660143 PMCID: PMC11628376 DOI: 10.3389/fimmu.2024.1497570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Background Despite its involvement in nucleotide metabolism, tumor immune landscape, and immunotherapy response, the role of 2'-3'-cyclic guanosine monophosphate-adenosine monophosphate (2',3'-cGAMP) in lung adenocarcinoma (LUAD) remails unelucidated. This study aimed to investigate the antitumor effects of 2',3'-cGAMP in LUAD. Method Herein, patients with LUAD were screened for prognostic biomarkers, which were then assessed for sensitivity to immunotherapy and chemotherapy utilizing the "TIDE" algorithm and CellMiner database. The results were validated using a mouse xenograft model. Additionally, macrophages and lung cancer cells were co-cultured, and macrophage polarization and apoptosis levels in the lung cancer cells were detected through flow cytometry. Protein levels were analyzed through western blotting and immunofluorescence. Finally, drug-encapsulated nanoparticles were designed to systematically examine the antitumor efficacy of the treatment against LUAD. Result Notably, 2',3'-cGAMP-mediated protein kinase, DNA-activated, catalytic subunit (PRKDC) inhibition induced macrophage polarization toward the M1 phenotype, thereby triggering apoptosis in LUAD cells. Furthermore, in vivo experiments showed that M1 macrophage infiltration enhancement and apoptosis induction in lung cancer cells were achieved by suppressing PRKDC expression via 2',3'-cGAMP, which inhibited lung cancer growth. The machine-learning approaches revealed SB505124 to be an effective antitumor agent in LUAD cells with high PRKDC levels owing to its ability to promote 2',3'-cGAMP-mediated apoptosis. Encapsulation of 2',3'-cGAMP, and SB505124 within a nano-delivery system markedly reduced tumor volumes in murine lung cancer tissues compared with that by individual agents. Conclusion The findings of this study reveal that PRKDC can predict poor survival of patients with LUAD. Additionally, SB505124 enhances the efficacy of 2',3'-cGAMP-based immunotherapy in patients exhibiting a high PRKDC expression.
Collapse
Affiliation(s)
- Zhanghao Huang
- Medical School of Nantong University, Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Runqi Huang
- Medical School of Nantong University, Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Jun Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Youlang Zhou
- Medical School of Nantong University, Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
115
|
Wei M, Li Q, Li S, Wang D, Wang Y. Multifaceted roles of cGAS-STING pathway in the lung cancer: from mechanisms to translation. PeerJ 2024; 12:e18559. [PMID: 39588006 PMCID: PMC11587877 DOI: 10.7717/peerj.18559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
Lung cancer (LC) remains one of the most prevalent and lethal malignancies globally, with a 5-year survival rate for advanced cases persistently below 10%. Despite the significant advancements in immunotherapy, a substantial proportion of patients with advanced LC fail to respond effectively to these treatments, highlighting an urgent need for novel immunotherapeutic targets. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has gained prominence as a potential target for improving LC immunotherapy due to its pivotal role in enhancing anti-tumor immune responses, augmenting tumor antigen presentation, and promoting T cell infiltration. However, emerging evidence also suggests that the cGAS-STING pathway may have pro-tumorigenic effects in the context of LC. This review aims to provide a comprehensive analysis of the cGAS-STING pathway, including its biological composition, activation mechanisms, and physiological functions, as well as its dual roles in LC and the current and emerging LC treatment strategies that target the pathway. By addressing these aspects, we intend to highlight the potential of the cGAS-STING pathway as a novel immunotherapeutic target, while also considering the challenges and future directions for its clinical application.
Collapse
Affiliation(s)
- Mingming Wei
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingzhou Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shengrong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yumei Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
116
|
Chen J, Duan Z, Zhan Q, Li Q, Qu J, Liu R. Nucleus-Targeted Sonosensitizer Activates the cGAS-STING Pathway for Tumor Sonodynamic Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:7183-7193. [PMID: 39505828 DOI: 10.1021/acsabm.4c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
A nucleus is crucial for both sonodynamic therapy (SDT) and antitumor immunity. However, how to burst ROS generation in situ, accurately damage a nucleus, and meanwhile activate a cGAS-STING pathway-induced innate immune response are still a great challenge. Here, we present TBzT-CPi, a small molecule with a D-A-π-A1 structure that simultaneously amplifies nucleus-targeted SDT and cGAS-STING pathway-dependent immune stimulation. TBzT-CPi could accumulate in the nucleus upon ultrasound irradiation and generate ROS in situ, which damages DNA and simultaneously triggers immunogenic cell death (ICD). Stirringly, nucleus-targeting SDT not only efficiently induces apoptosis in tumor cells but also modifies the immunosuppressive tumor microenvironment by activating cytotoxic T lymphocytes, maturing dendritic cells, and secreting cytokines. These findings pave the way for developing nucleus-targeting sonosensitizers for sonodynamic immunotherapy of cancer.
Collapse
Affiliation(s)
- Jian Chen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Zeyu Duan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Qiyu Zhan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Qiyan Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Ruiyuan Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| |
Collapse
|
117
|
Garcia-Moure M, Laspidea V, Gupta S, Gillard AG, Khatua S, Parthasarathy A, He J, Lang FF, Fueyo J, Alonso MM, Gomez-Manzano C. The emerging field of viroimmunotherapy for pediatric brain tumors. Neuro Oncol 2024; 26:1981-1993. [PMID: 39148489 PMCID: PMC11534321 DOI: 10.1093/neuonc/noae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Indexed: 08/17/2024] Open
Abstract
Pediatric brain tumors are the most common solid tumors in children. Even to date, with the advances in multimodality therapeutic management, survival outcomes remain dismal in some types of tumors, such as pediatric-type diffuse high-grade gliomas or central nervous system embryonal tumors. Failure to understand the complex molecular heterogeneity and the elusive tumor and microenvironment interplay continues to undermine therapeutic efficacy. Developing a strategy that would improve survival for these fatal tumors remains unmet in pediatric neuro-oncology. Oncolytic viruses (OVs) are emerging as a feasible, safe, and promising therapy for brain tumors. The new paradigm in virotherapy implies that the direct cytopathic effect is followed, under certain circumstances, by an antitumor immune response responsible for the partial or complete debulking of the tumor mass. OVs alone or combined with other therapeutic modalities have been primarily used in adult neuro-oncology. A surge in encouraging preclinical studies in pediatric brain tumor models recently led to the clinical translation of OVs with encouraging results in these tumors. In this review, we summarize the different virotherapy tested in preclinical and clinical studies in pediatric brain tumors, and we discuss the limitations and future avenues necessary to improve the response of these tumors to this type of therapy.
Collapse
Affiliation(s)
- Marc Garcia-Moure
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Virginia Laspidea
- Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Spain
| | - Sumit Gupta
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew G Gillard
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Soumen Khatua
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhila Parthasarathy
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiasen He
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marta M Alonso
- Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Spain
- Program of Solid Tumors, Center for the Applied Medical Research, Pamplona, Spain
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
118
|
Zhang X, Yu H, Guan S, Lu Y, Zhang Y, Huang Y, Wang Y, Liu C, Cao Z, Qin Y, Pan M, Shen J, Su C. A Highly Charged Positive Cage Causes Simultaneous Enhancement of Type-II and O 2-Independent-Type-I Photodynamic Therapy via One-/Two-Photon Stimulation and Tumor Immunotherapy via PANoptosis and Ferroptosis. SMALL SCIENCE 2024; 4:2400220. [PMID: 40213464 PMCID: PMC11935160 DOI: 10.1002/smsc.202400220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Indexed: 01/22/2025] Open
Abstract
To solve the oxygen dependence problem of photodynamic therapy (PDT), it is critical to explore photosensitizers that do not rely on O2 molecule to generate reactive oxygen species (ROS). Herein, a stable cationic metal-organic cage [Pd6(RuLoz 3)8](BF4)28 (MOC-88) that possesses high +28 charges is designed. The cage-confined positive microenvironment enables efficient generation of hydroxyl radicals and improved yield of the singlet oxygen under one-/two-photon excitation, showing excellent performance to concurrently enhance Type-II and O2-independent-Type-I PDT. Moreover, the effective ROS production and robust lipid peroxidation trigger a series of signaling pathways (inflammasome, cyclic guanosine monophosphate-adenosine monophosphate synthase stimulator of interferon genes, and NF-κB) to evoke PANoptosis and ferroptosis in tumor cells, enabling MOC-88 to simultaneously cause the loss of cell membrane integrity, release a series of inflammatory cytokines and damage-associated molecular patterns, stimulate the maturation and antigen presentation ability of dendritic cells, and ultimately activate T-cell-dependent adaptive immunity in vivo to inhibit tumor growth.
Collapse
Affiliation(s)
- Xiao‐Dong Zhang
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Hui‐Juan Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of ZoologyGuangdong Academy of SciencesGuangzhou510275China
| | - Shao‐Qi Guan
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yu‐Lin Lu
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yu Zhang
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yin‐Hui Huang
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Ya‐Ping Wang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510030China
| | - Chen‐Hui Liu
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Zhong‐Min Cao
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Yu‐Han Qin
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Mei Pan
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510030China
| | - Cheng‐Yong Su
- Department MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCMESchool of Chemistry Sun Yat‐Sen UniversityGuangzhou510275China
| |
Collapse
|
119
|
Wang N, Liu Y, Peng D, Zhang Q, Zhang Z, Xu L, Yin L, Zhao X, Lu Z, Peng J. Copper-Based Composites Nanoparticles Improve Triple-Negative Breast Cancer Treatment with Induction of Apoptosis-Cuproptosis and Immune Activation. Adv Healthc Mater 2024; 13:e2401646. [PMID: 39001628 DOI: 10.1002/adhm.202401646] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/05/2024] [Indexed: 11/12/2024]
Abstract
The synergistic effect of apoptosis and cuproptosis, along with the activation of the immune system, presents a promising approach to enhance the efficacy against triple-negative breast cancer (TNBC). Here, two prodrugs are synthesized: a reactive oxygen species (ROS)-responsive prodrug PEG-TK-DOX and a glutathione (GSH)-responsive prodrug PEG-DTPA-SS-CPT. These prodrugs are self-assembled and chelated Cu2+ to prepare nanoparticle PCD@Cu that simultaneously loaded doxorubicin (DOX), camptothecin (CPT), and Cu2+. The elevated levels of ROS and GSH in TNBC cells disrupted the PCD@Cu structure, leading to the release of Cu+, DOX, and CPT and the depletion of GSH. DOX and CPT triggered apoptosis with immunogenic cell death (ICD) in TNBC cells. Simultaneously, PCD@Cu downregulated the expression of copper transporting ATPase 2 (ATP7B), causing a significant accumulation of copper ions in TNBC cells. This further induced the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT) and downregulation of iron-sulfur (Fe-S) cluster proteins, ultimately leading to cuproptosis and ICD in TNBC. In vitro and in vivo experiments confirmed that PCD@Cu induced apoptosis and cuproptosis in TNBC and activated the immune system, demonstrating strong anti-tumor capabilities. Moreover, PCD@Cu exhibited an excellent biosafety profile. Overall, this study provides a promising strategy for effective TNBC therapy.
Collapse
Affiliation(s)
- Ning Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yichao Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Dezhou Peng
- School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Qiyu Zhang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhibo Zhang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xuerong Zhao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhi Lu
- Department of Nuclear Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| |
Collapse
|
120
|
Zhou R, Wang M, Li X, Liu Y, Yao Y, Wang A, Chen C, Zhang Q, Wu Q, Zhang Q, Neculai D, Xia B, Shao JZ, Feng XH, Liang T, Zou J, Wang X, Xu P. TBK1-Zyxin signaling controls tumor-associated macrophage recruitment to mitigate antitumor immunity. EMBO J 2024; 43:4984-5017. [PMID: 39304793 PMCID: PMC11535546 DOI: 10.1038/s44318-024-00244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Mechanical control is fundamental for cellular localization within a tissue, including for tumor-associated macrophages (TAMs). While the innate immune sensing pathways cGAS-STING and RLR-MAVS impact the pathogenesis and therapeutics of malignant diseases, their effects on cell residency and motility remain incompletely understood. Here, we uncovered that TBK1 kinase, activated by cGAS-STING or RLR-MAVS signaling in macrophages, directly phosphorylates and mobilizes Zyxin, a key regulator of actin dynamics. Under pathological conditions and in STING or MAVS signalosomes, TBK1-mediated Zyxin phosphorylation at S143 facilitates rapid recruitment of phospho-Zyxin to focal adhesions, leading to subsequent F-actin reorganization and reduced macrophage migration. Intratumoral STING-TBK1-Zyxin signaling was evident in TAMs and critical in antitumor immunity. Furthermore, myeloid-specific or global disruption of this signaling decreased the population of CD11b+ F4/80+ TAMs and promoted PD-1-mediated antitumor immunotherapy. Thus, our findings identify a new biological function of innate immune sensing pathways by regulating macrophage tissue localization, thus providing insights into context-dependent mitigation of antitumor immunity.
Collapse
Affiliation(s)
- Ruyuan Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mengqiu Wang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Li
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yutong Liu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yihan Yao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ailian Wang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chen Chen
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qian Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qirou Wu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qi Zhang
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
| | - Dante Neculai
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China
| | - Bing Xia
- Department of Thoracic Cancer, Affiliated Hangzhou Cancer Hospital, Westlake University, Hangzhou, 310030, China
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Hua Feng
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Tingbo Liang
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojian Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China.
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
121
|
Dong M, Fitzgerald KA. DNA-sensing pathways in health, autoinflammatory and autoimmune diseases. Nat Immunol 2024; 25:2001-2014. [PMID: 39367124 DOI: 10.1038/s41590-024-01966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
Detection of microbial DNA is a primary means of host defense. In mammalian cells, DNA-sensing pathways induce robust anti-microbial responses and initiation of adaptive immunity, leading to the eventual clearance of the infectious agent. However, while conferring the advantage of broad detection capability, the sequence-independent recognition mechanisms of most DNA sensors pose a significant challenge for mammalian cells to maintain ignorance to self-DNA under homeostatic conditions. In this Review, we summarize the fundamentals of DNA-sensing pathways and the intricate regulatory networks that keep these pathways in check. In addition, we describe how regulatory restraints can be defective and underlie human autoinflammatory and autoimmune diseases. Further, we discuss therapies in development that limit inflammation fueled by self-DNA or inappropriate activation of DNA-sensing pathways.
Collapse
Affiliation(s)
- Mingqi Dong
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
122
|
Li Z, Li X, Lu Y, Zhu X, Zheng W, Chen K, Wang X, Wang T, Guan W, Su Z, Liu S, Wu J. Novel Photo-STING Agonists Delivered by Erythrocyte Efferocytosis-Mimicking Pattern to Repolarize Tumor-Associated Macrophages for Boosting Anticancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410937. [PMID: 39380354 DOI: 10.1002/adma.202410937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/22/2024] [Indexed: 10/10/2024]
Abstract
Immunotherapy has emerged as a highly effective therapeutic strategy for cancer treatment. Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon gene (STING) pathway activation facilitates tumor-associated macrophage (TAM) polarization toward M1 phenotype, and Mn2+ are effective agents for this pathway activation. However, the high in vivo degradation rate and toxicity of Mn2+ hamper clinical application of immunotherapy. Here, this work has newly synthesized and screened manganese porphyrins for Mn2+ transport, referred to as photo-STING agonists (PSAs), and further encapsulate them into core-shell nanoparticles named Rm@PP-GA with dual specificity for tumor tissue and TAMs. Not only do PSAs achieve higher Mn2+ delivery efficiency compared to Mn2+, but they also generate reactive oxygen species under light exposure, promoting mitochondrial DNA release for cGAS-STING pathway activation. In Rm@PP-GA, globin and red blood cell membranes (Rm) are used for erythrocyte efferocytosis-mimicking delivery. Rm can effectively prolong the in vivo circulation period while globin enables PSAs to be taken up by TAMs via CD163 receptors. After Rm rupture mediated by perfluorohexane in nanoparticles under ultrasonication, drugs are specifically released for TAM repolarization. Further, dendritic cells mature, as well as T lymphocyte infiltrate, both of which favor tumor eradication. Therefore, cancer immunotherapy is optimized by novel PSAs delivered by erythrocyte efferocytosis-mimicking delivery pattern.
Collapse
Affiliation(s)
- Zhiyan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xianghui Li
- First Affiliated Hospital of Guangxi Medical University, Department of Dermatology, Nanning, 530021, China
| | - Yanjun Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xudong Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenxuan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Kai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xingzhou Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenxian Guan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Song Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
123
|
Xu Z, Wu Y, Hu J, Mei Z, Zhao Y, Yang K, Shi Y, Xu X. Recent advances in nanoadjuvant-triggered STING activation for enhanced cancer immunotherapy. Heliyon 2024; 10:e38900. [PMID: 39640775 PMCID: PMC11620084 DOI: 10.1016/j.heliyon.2024.e38900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
The development of effective cancer treatments is a popular in contemporary medical research. Immunotherapy, the fourth most common cancer treatment method, relies on activating autoimmune function to eradicate tumors and exhibits advantages such as a good curative effect and few side effects. In recent years, tumor vaccines that activate the stimulator of interferon genes (STING) pathway are being actively researched in the field of immunotherapy; however, their application is still limited because of the rapid clearance rate of tumor-related lymph nodes and low efficiency of antigen presentation. The rise of nanomedicine has provided new opportunities for solving these problems. By preparing materials with adjuvant effects nanoparticles, the small size of nanoparticles can be exploited to enable the entry of vaccines into tumor-related lymph nodes to accurately deliver STING agonists and activate the immune response. Based on this, this paper reviews various types of nano-adjuvants based on metals, platinum chemotherapy drugs, camptothecin derivatives, deoxyribonucleic acid, etc. and highlights the transformation prospects of these nano-adjuvants in tumor vaccines to provide a reference for promoting the development of nano-medicine and tumor vaccinology.
Collapse
Affiliation(s)
- Zicong Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yihong Wu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Junjie Hu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Zhaozhao Mei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yutong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, PR China
| | - Keda Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Xiaoling Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| |
Collapse
|
124
|
Cheng SL, Lee HM, Li CP, Lin MW, Chou MY, Yen YT, Wu TH, Lian YC, Shih YC, Chiang CS, Chen TW, Wan D, Chen Y. Robust and Sustained STING Pathway Activation via Hydrogel-Based In Situ Vaccination for Cancer Immunotherapy. ACS NANO 2024; 18:29439-29456. [PMID: 39405469 PMCID: PMC11526424 DOI: 10.1021/acsnano.3c12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
The stimulator of interferon genes (STING) pathway is crucial for tumor immunity, leading to the exploration of STING agonists as potential immunotherapy adjuvants. However, their clinical application faces obstacles including poor pharmacokinetics, transient activation, and an immunosuppressive tumor microenvironment (TME). Addressing these limitations, our study aims to develop an injectable silk fibroin hydrogel-based in situ vaccine. It incorporates a nanoscale STING agonist, an immunogenic cell death (ICD) inducer, and an immunomodulator to ensure their controlled and sustained release. cGAMP nanoparticles (cGAMPnps) with a core-shell structure ensure optimal delivery of cGAMP to dendritic cells (DCs), thereby activating the STING pathway and fostering DC maturation. ICD-associated damage-associated molecular patterns amplify and prolong STING activation via enhanced type I IFN and other inflammatory pathways, along with delayed degradation of cGAMP and STING. Furthermore, the STING-driven vascular normalization by cGAMPnps and ICD, in conjunction with immunomodulators like antiprogrammed cell death protein 1 antibody (anti-PD-1 Ab) or OX40 ligand (OX40L), effectively remodels the immunosuppressive TME. This in situ gel vaccine, when used independently or with surgery as neoadjuvant/adjuvant immunotherapy, enhances DC and CD8+ T-cell activation, suppressing tumor progression and recurrence across various immunologically cold tumor models. It revolutionizes the application of STING agonists in cancer immunotherapy, offering substantial promise for improving outcomes across a broad spectrum of malignancies.
Collapse
Affiliation(s)
- Sheng-Liang Cheng
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
- International
Intercollegiate Ph.D. Program, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Mei Lee
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Chung-Pin Li
- Division
of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division
of Clinical Skills Training, Department of Medical Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Therapeutic
and Research Center of Pancreatic Cancer, Veterans General Hospital, Taipei 11217, Taiwan
- School
of
Medicine, College of Medicine, National
Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Mei-Wei Lin
- Biomedical
Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan
| | - Min-Yuan Chou
- Biomedical
Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan
| | - Yu-Ting Yen
- Institute
of Translational Medicine and New Drug Development, School of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Tun-Han Wu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Yun-Chen Lian
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chuan Shih
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Chi-Shiun Chiang
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ting-Wen Chen
- Institute
of Bioinformatics and Systems Biology, National
Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Center for Intelligent
Drug Systems and Smart Bio-devices, National
Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Dehui Wan
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Yunching Chen
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Tsing
Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
125
|
Zhan S, Zhang Y, Cao T, Yang R, Wang Q, Huang L, Cui R, Yu J, Meng H, Wang Y, Zhang S, Zheng M, Wu X. Discovery of Imidazo[1,2- a]pyrazine Derivatives as Potent ENPP1 Inhibitors. J Med Chem 2024; 67:18317-18333. [PMID: 39357030 DOI: 10.1021/acs.jmedchem.4c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
ENPP1 acts as a negative regulator of the cGAS-STING pathway through the hydrolysis of 2'3'-cGAMP. Inhibitors of ENPP1 are regarded as promising agents for stimulating the immune response in cancer immunotherapy. This study describes the identification and optimization of imidazo[1,2-a]pyrazine derivative 7 as a highly potent and selective ENPP1 inhibitor. Compound 7 demonstrated substantial inhibitory activity against ENPP1 with an IC50 value of 5.70 or 9.68 nM while showing weak inhibition against ENPP2 and ENPP3. Furthermore, compound 7 was shown to enhance the mRNA expression of cGAMP-induced STING pathway downstream target genes, such as IFNB1, CXCL10, and IL6. In vivo pharmacokinetic and antitumor studies showed promising results, with 7 not only exhibiting efficient pharmacokinetic properties but also enhancing the antitumor efficacy of the anti-PD-1 antibody. Treatment with 7 (80 mg/kg) combined with anti-PD-1 antibody achieved a tumor growth inhibition rate of 77.7% and improved survival in a murine model.
Collapse
Affiliation(s)
- Shiping Zhan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yingying Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tian Cao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550014, China
| | - Ruirui Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Lin Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Rongrong Cui
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haifang Meng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yitian Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sulin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingyue Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaowei Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
126
|
Oh KS, Nam AR, Bang JH, Jeong Y, Choo SY, Kim HJ, Lee SI, Kim JM, Yoon J, Kim TY, Oh DY. Immunomodulatory effects of trastuzumab deruxtecan through the cGAS-STING pathway in gastric cancer cells. Cell Commun Signal 2024; 22:518. [PMID: 39449023 PMCID: PMC11515331 DOI: 10.1186/s12964-024-01893-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Although the efficacy of trastuzumab deruxtecan (T-DXd) against HER2-positive gastric cancers (GCs) has driven its clinical application, the precise mechanisms governing its immunomodulatory role remain unclear. In this study, we examined the immune-related mechanisms of action of T-DXd in GC cells. T-DXd exhibited potent antitumor effects in GC cells across diverse HER2 expression levels by inducing DNA damage and apoptosis. Activation of the DNA damage response by T-DXd led to increased PD-L1 expression. RNA-Seq analysis revealed that T-DXd modulated immune-related pathways, resulting in the upregulation of genes associated with inflammation and IFN signaling. Importantly, T-DXd activated the cGAS-STING pathway, inducing an IFN-I response in HER2-positive GC cells. Furthermore, T-DXd activated dendritic cells via the cancer cell-intrinsic cGAS-STING-IFN axis and enhanced PBMC-mediated tumor cell killing by activating CD8+ T cells. These findings provide valuable insights into the role of the cytosolic DNA sensing pathway in the action of T-DXd and offer a compelling rationale for combining T-DXd with immune checkpoint blockade therapies in GC treatment.
Collapse
Affiliation(s)
- Kyoung-Seok Oh
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Yoojin Jeong
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Sea Young Choo
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Hyo Jung Kim
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Su In Lee
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Jae-Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Korea
| | - Jeesun Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Korea
| | - Tae-Yong Kim
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Korea.
| |
Collapse
|
127
|
Ribeiro ARS, Neuper T, Horejs-Hoeck J. The Role of STING-Mediated Activation of Dendritic Cells in Cancer Immunotherapy. Int J Nanomedicine 2024; 19:10685-10697. [PMID: 39464674 PMCID: PMC11512692 DOI: 10.2147/ijn.s477320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
The signaling pathway that comprises cyclic guanosine monophosphate-adenosine monophosphate (cGAMP or GMP-AMP) synthase (cGAS) and Stimulator of Interferon Genes (STING) is emerging as a druggable target for immunotherapy, with tumor-resident dendritic cells (DC) playing a critical role in mediating its effects. The STING receptor is part of the DNA-sensing cellular machinery, that can trigger the secretion of pro-inflammatory mediators, priming effector T cells and initiating specific antitumor responses. Yet, recent studies have highlighted the dual role of STING activation in the context of cancer: STING can either promote antitumor responses or enhance tumor progression. This dichotomy often depends on the cell type in which cGAS-STING signaling is induced and the activation mode, namely acute versus chronic. Of note, STING activation at the DC level appears to be particularly important for tumor eradication. This review outlines the contribution of the different conventional and plasmacytoid DC subsets and describes the mechanisms underlying STING-mediated activation of DCs in cancer. We further highlight how the STING pathway plays an intricate role in modulating the function of DCs embedded in tumor tissue. Additionally, we discuss the strategies being employed to harness STING activation for cancer treatment, such as the development of synthetic agonists and nano-based delivery systems, spotlighting the current techniques used to prompt STING engagement specifically in DCs.
Collapse
Affiliation(s)
- Ana R S Ribeiro
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| |
Collapse
|
128
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
129
|
Pulliam T, Jani S, Goff PH, Bhakuni R, Tabachnick-Cherny S, Smythe K, Seaton BW, Tachiki L, Kulikauskas R, Church C, Koelle DM, Nghiem P, Bhatia S. Intratumoral STING agonist reverses immune evasion in PD-(L)1-refractory Merkel cell carcinoma: mechanistic insights from detailed biomarker analyses. J Immunother Cancer 2024; 12:e009803. [PMID: 39401968 PMCID: PMC11474899 DOI: 10.1136/jitc-2024-009803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND Antibodies blocking programmed death (PD)-1 or its ligand (PD-L1) have revolutionized cancer care, but many patients do not experience durable benefits. Novel treatments to stimulate antitumor immunity are needed in the PD-(L)1 refractory setting. The stimulator of interferon genes (STING) protein, an innate sensor of cytoplasmic DNA, is a promising target with several agonists in development. However, response rates in most recent clinical trials have been low and mechanisms of response remain unclear. We report detailed biomarker analyses in a patient with anti-PD-L1 refractory, Merkel cell polyomavirus (MCPyV)-positive, metastatic Merkel cell carcinoma (MCC) who was treated with an intratumoral (IT) STING agonist (ADU-S100) plus intravenous anti-PD-1 antibody (spartalizumab) and experienced a durable objective response with regression of both injected and non-injected lesions. METHODS We analyzed pretreatment and post-treatment tumor and peripheral blood samples from our patient with single-cell RNA sequencing, 30-parameter flow cytometry, T cell receptor sequencing, and multiplexed immunohistochemistry. We analyzed cancer-specific CD8 T cells using human leukocyte antigen (HLA)-I tetramers loaded with MCPyV peptides. We also analyzed STING expression and signaling in the tumor microenvironment (TME) of 88 additional MCC tumor specimens and in MCC cell lines. RESULTS We observed high levels of MCPyV-specific T cells (12% of T cells) in our patient's tumor at baseline. These cancer-specific CD8 T cells exhibited characteristics of exhaustion including high TOX and low TCF1 proteins. Following treatment with STING-agonist plus anti-PD-1, IT CD8 T cells expanded threefold. We also observed evidence of likely improved antigen presentation in the MCC TME (greater than fourfold increase of HLA-I-positive cancer cells). STING expression was not detected in any cancer cells within our patient's tumor or in 88 other MCC tumors, however high STING expression was observed in immune and stromal cells within all 89 MCC tumors. CONCLUSIONS Our results suggest that STING agonists may be able to work indirectly in MCC via signaling through immune and stromal cells in the TME, and may not necessarily need STING expression in the cancer cells. This approach may be particularly effective in tumors that are already infiltrated by inflammatory cells in the TME but are evading immune detection via HLA-I downregulation.
Collapse
Affiliation(s)
- Thomas Pulliam
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Saumya Jani
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Peter H Goff
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Rashmi Bhakuni
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shira Tabachnick-Cherny
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | - Lisa Tachiki
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rima Kulikauskas
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Candice Church
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - David M Koelle
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Paul Nghiem
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Shailender Bhatia
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
130
|
Shang X, Xie Y, Yu J, Zhang C, Zhao G, Liang F, Liu L, Zhang W, Li R, Yu W, Yue J, Chen C, Duan X, Ma Z, Chen Z, Xiong Y, Yang F, Xiao J, Zhang R, Liu P, Cheng Y, Cao F, Guo F, Liu G, Meng B, Zhou D, Sun Y, Ren X, Yu J, Hao J, Jiang H. A prospective study of neoadjuvant pembrolizumab plus chemotherapy for resectable esophageal squamous cell carcinoma: The Keystone-001 trial. Cancer Cell 2024; 42:1747-1763.e7. [PMID: 39406186 DOI: 10.1016/j.ccell.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 11/15/2024]
Abstract
In this phase II study, 47 patients with locally advanced, resectable esophageal squamous cell carcinoma (ESCC) received three cycles of pembrolizumab plus chemotherapy, followed by Da Vinci robot-assisted surgery. The primary endpoints were safety and major pathological response (MPR). Key secondary endpoints included complete pathological response (pCR) and survival. No grade ≥3 adverse events or surgical delays occurred during neoadjuvant therapy. Among 46 patients studied for efficacy, the MPR and pCR rates were 72% and 41%, respectively. After a median follow-up of 27.2 months, the 2-year overall survival (OS) and disease-free survival (DFS) rates were 91% and 89%, respectively. Expansion of TRGC2+ NKT cells in peripheral blood correlated with neoadjuvant treatment effectiveness, which was validated by in vitro organoid experiments and external cancer datasets, and its functional classification and mechanism of action were further explored. These findings show preoperative pembrolizumab plus chemotherapy is a promising therapeutic strategy for resectable ESCC.
Collapse
Affiliation(s)
- Xiaobin Shang
- Department of Minimally Invasive Esophageal Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yongjie Xie
- The Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chen Zhang
- Department of Minimally Invasive Esophageal Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fei Liang
- Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Liu
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Weihong Zhang
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Runmei Li
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenwen Yu
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jie Yue
- Department of Minimally Invasive Esophageal Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chuangui Chen
- Department of Minimally Invasive Esophageal Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaofeng Duan
- Department of Minimally Invasive Esophageal Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhao Ma
- Department of Minimally Invasive Esophageal Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zuoyu Chen
- Department of Minimally Invasive Esophageal Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanjuan Xiong
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fan Yang
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianyu Xiao
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanan Cheng
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fuliang Cao
- Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Feng Guo
- Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Guoyan Liu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bin Meng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dejun Zhou
- Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiubao Ren
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Jun Yu
- The Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Jihui Hao
- The Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Hongjing Jiang
- Department of Minimally Invasive Esophageal Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
131
|
Du J, Que Z, Aihaiti A, Zhai M, Zhang Z, Shao Y, Zhang Y, Miao F, Shen Y, Chen X, Zhang J. Co-delivery of SN38 and MEF2D-siRNA via tLyp-1-modified liposomes reverses PD-L1 expression induced by STING activation in hepatocellular carcinoma. Colloids Surf B Biointerfaces 2024; 245:114318. [PMID: 39418821 DOI: 10.1016/j.colsurfb.2024.114318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Hepatocellular carcinoma (HCC) exhibits an immunosuppressive tumor microenvironment, leading to a low objective response rate when immune checkpoint inhibitors (ICIs) are utilized. The cGAS-STING pathway demonstrates a powerful immune stimulatory effect, nevertheless, activation of this pathway triggers an upregulation of PD-L1, which inhibits the anti-tumor function of immune cells. The present study discovered that knockdown of MEF2D by a siRNA in H22 cells decreases the expression of PD-L1. Subsequently, tLyp-1-modified liposomes were developed for the delivery of SN38 and MEF2D-siRNA. The outcomes indicated that the modification of tLyp-1 could enhance the uptake of liposomes by tumor cells. tLip/siMEF2D/SN38 liposomes can effectively knockdown the expression of MEF2D in HCC cells and reduce the expression of PD-L1 in vitro and in vivo, thereby enhancing proliferation inhibition and apoptosis induction, and effectively suppressing the growth of tumors. SN38 treatment elevated the expression of p-TBK1 and p-IRF3 in tumor tissue, signifying the activation of the cGAS-STING pathway and facilitating the maturation of dendritic cells in vitro and in vivo. At the same time, the co-delivery of MEF2D-siRNA reduced the expression of PD-L1, thereby decreasing the quantity of M2 macrophages and myeloid-derived suppressor cells (MDSCs) in tumors, increasing the number of CD4+ T cells within the tumor, and strengthening the anti-tumor immune efficacy. In conclusion, our results suggest that tLyP-1 modified, SN38- and MEF2D siRNA-loaded liposomes have the potential for the treatment of HCC and optimize the immunotherapy of HCC via STING activation.
Collapse
Affiliation(s)
- Jiawei Du
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, PR China; Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Ziting Que
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, PR China; Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, PR China
| | - Ailifeire Aihaiti
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, PR China
| | - Mengyan Zhai
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing 210009, PR China
| | - Zhiwei Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, PR China
| | - Yong Shao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, PR China
| | - Ying Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing 210009, PR China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing 210009, PR China
| | - Yuqing Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing 210009, PR China
| | - Xin Chen
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, PR China; Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, PR China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, PR China.
| | - Jianqiong Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, PR China; Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, PR China; Department of Microbiology and Immunology, Medical School, Southeast University, 87th DingJiaQiao Road, Nanjing 210009, PR China.
| |
Collapse
|
132
|
Zhang Y, Wang Y, Mu P, Zhu X, Dong Y. Bidirectional regulation of the cGAS-STING pathway in the immunosuppressive tumor microenvironment and its association with immunotherapy. Front Immunol 2024; 15:1470468. [PMID: 39464890 PMCID: PMC11502381 DOI: 10.3389/fimmu.2024.1470468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Adaptive anti-tumor immunity is currently dependent on the natural immune system of the body. The emergence of tumor immunotherapy has improved prognosis and prolonged the survival cycle of patients. Current mainstream immunotherapies, including immune checkpoint blockade, chimeric antigen receptor T-cell immunotherapy, and monoclonal antibody therapy, are linked to natural immunity. The cGAS-STING pathway is an important natural immunity signaling pathway that plays an important role in fighting against the invasion of foreign pathogens and maintaining the homeostasis of the organism. Increasing evidence suggests that the cGAS-STING pathway plays a key role in tumor immunity, and the combination of STING-related agonists can significantly enhance the efficacy of immunotherapy and reduce the emergence of immunotherapeutic resistance. However, the cGAS-STING pathway is a double-edged sword, and its activation can enhance anti-tumor immunity and immunosuppression. Immunosuppressive cells, including M2 macrophages, MDSC, and regulatory T cells, in the tumor microenvironment play a crucial role in tumor escape, thereby affecting the immunotherapy effect. The cGAS-STING signaling pathway can bi-directionally regulate this group of immunosuppressive cells, and targeting this pathway can affect the function of immunosuppressive cells, providing new ideas for immunotherapy. In this study, we summarize the activation pathway of the cGAS-STING pathway and its immunological function and elaborate on the key role of this pathway in immune escape mediated by the tumor immunosuppressive microenvironment. Finally, we summarize the mainstream immunotherapeutic approaches related to this pathway and explore ways to improve them, thereby providing guidelines for further clinical services.
Collapse
Affiliation(s)
- Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yudi Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Peizheng Mu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
133
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
134
|
Tian M, Liu X, Pei H. Nanomaterial-based cancer immunotherapy: enhancing treatment strategies. Front Chem 2024; 12:1492215. [PMID: 39449695 PMCID: PMC11499128 DOI: 10.3389/fchem.2024.1492215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Cancer immunotherapy has emerged as a pivotal approach for treating various types of cancer, incorporating strategies such as chimeric antigen receptor T-cell (CAR-T) therapy, immune checkpoint blockade therapy, neoantigen peptides, mRNA vaccines, and small molecule modulators. However, the clinical efficacy of these therapies is frequently constrained by significant adverse effects and limited therapeutic outcomes. In recent years, the integration of nanotechnology into cancer immunotherapy has gained considerable attention, showcasing notable advantages in drug delivery, targeted accumulation, controlled release, and localized administration. This review focuses on nanomaterial-based immunotherapeutic strategies, particularly the development and application of nanocarriers such as liposomes, lipid nanoparticles, polymeric nanoparticles, and self-assembling scaffolds. We examine how these strategies can enhance the efficacy of cancer immunotherapy while minimizing adverse effects and analyze their potential for clinical translation.
Collapse
Affiliation(s)
- Mengxiang Tian
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xionglin Liu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- Guangxi Key Laboratory for High-Incidence Tumor Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Haiping Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
135
|
Xu Y, Xiong Y. Targeting STING signaling for the optimal cancer immunotherapy. Front Immunol 2024; 15:1482738. [PMID: 39450170 PMCID: PMC11500076 DOI: 10.3389/fimmu.2024.1482738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Despite the transformative impact of anti-PD-1/PD-L1 therapies, challenges such as low response rates persist. The stimulator of interferon genes (STING) pathway, a crucial element of innate immunity, emerges as a strategic target to overcome these limitations. Understanding its multifaceted functions in cancer, including antigen presentation and response to DNA damage, provides valuable insights. STING agonists, categorized into cyclic dinucleotides (CDNs) and non-CDNs, exhibit promising safety and efficacy profiles. Innovative delivery systems, including antibody-drug conjugates, nanocarriers, and exosome-based therapies, address challenges associated with systemic administration and enhance targeted tumor delivery. Personalized vaccines, such as DT-Exo-STING, showcase the adaptability of STING agonists for individualized treatment. These advancements not only offer new prospects for combination therapies but also pave the way for overcoming resistance mechanisms. This review focuses on the potential of targeting STING pathway to enhance cancer immunotherapy. The integration of STING agonists into cancer immunotherapy holds promise for more effective, personalized, and successful approaches against malignancies, presenting a beacon of hope for the future of cancer treatment.
Collapse
Affiliation(s)
| | - Ying Xiong
- Department of Obstetrics and Gynecology, Haiyan People’s Hospital,
Jiaxing, China
| |
Collapse
|
136
|
Huang Z, Huang S, Song S, Ding Y, Zhou H, Zhang S, Weng L, Zhang Y, Hu Y, Yuan A, Dai Y, Luo Z, Wang L. Two-dimensional coordination risedronate-manganese nanobelts as adjuvant for cancer radiotherapy and immunotherapy. Nat Commun 2024; 15:8692. [PMID: 39375342 PMCID: PMC11458765 DOI: 10.1038/s41467-024-53084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
The irradiated tumor itself represents an opportunity to establish endogenous in situ vaccines. However, such in situ cancer vaccination (ISCV) triggered by radiation therapy (RT) alone is very weak and hardly elicits systemic anticancer immunity. In this study, we develop two-dimensional risedronate-manganese nanobelts (RMn-NBs) as an adjuvant for RT to address this issue. RMn-NBs exhibit good T2 magnetic resonance imaging performance and enhanced Fenton-like catalytic activity, which induces immunogenic cell death. RMn-NBs can inhibit the HIF-1α/VEGF axis to empower RT and synchronously activate the cGAS/STING pathway for promoting the secretion of type I interferon, thereby boosting RT-triggered ISCV and immune checkpoint blockade therapy against primary and metastatic tumors. RMn-NBs as a nano-adjuvant for RT show good biocompatibility and therapeutic efficacy, presenting a promising prospect for cancer radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Zhusheng Huang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, China
- Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, College of Optical Engineering & Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Shiqian Huang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Simin Song
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yankui Ding
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Hao Zhou
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Shaoyin Zhang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Lixing Weng
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, China
- Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, College of Optical Engineering & Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Ying Zhang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, China
- Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, College of Optical Engineering & Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| | - Zhimin Luo
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, China.
- Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, College of Optical Engineering & Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, China.
- Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, College of Optical Engineering & Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, China.
| |
Collapse
|
137
|
Xu X, Li T, Yang T, Liu F, Guo Z, Wu H, Tang Y, Chen H. A Photoactivatable Self-Assembled Nanoagonist for Synergistic Therapy against Pancreatic Ductal Adenocarcinoma. NANO LETTERS 2024; 24:12239-12248. [PMID: 39248330 DOI: 10.1021/acs.nanolett.4c02959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Immunotherapy has revolutionized the cancer treatment paradigm, yet efficient immunotherapeutic responses against immune-cold/desert cancers remain challenging. Herein, we report that photoactivatable nanoagonists yield a potent antitumor synergy of photoimmunotherapy against pancreatic ductal adenocarcinoma (PDAC). The nanoagonist was fabricated by assembling an amphiphilic boron dipyrromethene-derived polymer conjugated with a Toll-like receptor agonist via a photocleavable linker and stimulator of interferon genes agonist. The nanoagonist enables light-induced generation of reactive oxygen species and on-demand release of the agonists to yield synergistic photoimmunotherapy. The produced tumor antigens promote dendritic cell maturation, which is further amplified by these agonists for eliciting adaptive immunity, accompanied by apparently abscopal and long-term memory effects. The nanoagonist further alleviates the fibrosis of tumor stroma and the immunosuppressive microenvironment, leading to the deep infiltrations of clinically used therapeutics and immune cells to yield preferable combinational treatments against PDAC models. These results provide valuable insights into activatable nanoparticles for cancer therapy against immune-desert cancers.
Collapse
Affiliation(s)
- Xiangxiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ting Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Fan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zhengqing Guo
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Hong Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an 71003, China
| | - Yongan Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou 215006, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| |
Collapse
|
138
|
Wang B, Yu W, Jiang H, Meng X, Tang D, Liu D. Clinical applications of STING agonists in cancer immunotherapy: current progress and future prospects. Front Immunol 2024; 15:1485546. [PMID: 39421752 PMCID: PMC11483357 DOI: 10.3389/fimmu.2024.1485546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The STING (Stimulator of Interferon Genes) pathway is pivotal in activating innate immunity, making it a promising target for cancer immunotherapy. STING agonists have shown potential in enhancing immune responses, particularly in tumors resistant to traditional therapies. This scholarly review examines the diverse categories of STING agonists, encompassing CDN analogues, non-CDN chemotypes, CDN-infused exosomes, engineered bacterial vectors, and hybrid structures of small molecules-nucleic acids. We highlight their mechanisms, clinical trial progress, and therapeutic outcomes. While these agents offer significant promise, challenges such as toxicity, tumor heterogeneity, and delivery methods remain obstacles to their broader clinical use. Ongoing research and innovation are essential to overcoming these hurdles. STING agonists could play a transformative role in cancer treatment, particularly for patients with hard-to-treat malignancies, by harnessing the body's immune system to target and eliminate cancer cells.
Collapse
Affiliation(s)
- Bin Wang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Medical Education Department, Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, China
| | - Xiangwei Meng
- Department of Drug Clinical Trials, Zibo Central Hospital, Zibo, China
| | - Dongmei Tang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Anesthesia, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Liu
- Medical Education Department, Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, China
| |
Collapse
|
139
|
Schleyer K, Halabi EA, Weissleder R. γ-Butyrolactone Derivatives of MSA-2 are STING Prodrugs. ChemMedChem 2024; 19:e202400416. [PMID: 38887174 PMCID: PMC11979874 DOI: 10.1002/cmdc.202400416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
STING agonists are potent enhancers of a pro-inflammatory response and, thus, potentially useful therapeutics. Unfortunately, many agonists developed to date require complex drug delivery formulations and often have poor water solubility, limiting their use for systemic administration. Here, we report the discovery and chemical characterization of lactones of MSA-2 as new STING prodrugs with enhanced properties. We show that these prodrugs form efficient inclusion complexes with tumor myeloid cell targeting cyclodextrin nanoparticles and propose a new mechanism of formation and hydrolysis.
Collapse
Affiliation(s)
- Kelton Schleyer
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Elias A. Halabi
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115
| |
Collapse
|
140
|
Ma D, Xie A, Lv J, Min X, Zhang X, Zhou Q, Gao D, Wang E, Gao L, Cheng L, Liu S. Engineered extracellular vesicles enable high-efficient delivery of intracellular therapeutic proteins. Protein Cell 2024; 15:724-743. [PMID: 38518087 PMCID: PMC11443452 DOI: 10.1093/procel/pwae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/19/2024] [Indexed: 03/24/2024] Open
Abstract
Developing an intracellular delivery system is of key importance in the expansion of protein-based therapeutics acting on cytosolic or nuclear targets. Recently, extracellular vesicles (EVs) have been exploited as next-generation delivery modalities due to their natural role in intercellular communication and biocompatibility. However, fusion of protein of interest to a scaffold represents a widely used strategy for cargo enrichment in EVs, which could compromise the stability and functionality of cargo. Herein, we report intracellular delivery via EV-based approach (IDEA) that efficiently packages and delivers native proteins both in vitro and in vivo without the use of a scaffold. As a proof-of-concept, we applied the IDEA to deliver cyclic GMP-AMP synthase (cGAS), an innate immune sensor. The results showed that cGAS-carrying EVs activated interferon signaling and elicited enhanced antitumor immunity in multiple syngeneic tumor models. Combining cGAS EVs with immune checkpoint inhibition further synergistically boosted antitumor efficacy in vivo. Mechanistically, scRNA-seq demonstrated that cGAS EVs mediated significant remodeling of intratumoral microenvironment, revealing a pivotal role of infiltrating neutrophils in the antitumor immune milieu. Collectively, IDEA, as a universal and facile strategy, can be applied to expand and advance the development of protein-based therapeutics.
Collapse
Affiliation(s)
- Ding Ma
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - An Xie
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiahui Lv
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaolin Min
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xinye Zhang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qian Zhou
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Daxing Gao
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Enyu Wang
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
| | - Lei Gao
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
| | - Linzhao Cheng
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Senquan Liu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
141
|
Cui L, Xu X, Fan H, Wan X, Chen Q, Zhang J, Tao C, Du Z, Wang Y, Zhang J, Zeng J, Zhang Y, Zhang C, Li L, Bu Y, Lei Y. Reuterin promotes pyroptosis in hepatocellular cancer cells through mtDNA-mediated STING activation and caspase 8 expression. Cancer Lett 2024; 601:217183. [PMID: 39153728 DOI: 10.1016/j.canlet.2024.217183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer with poor prognosis. The available drugs for advanced HCC are limited and substantial therapeutic advances including new drugs and new combination therapies are still in urgent need. In this study, we found that the major metabolite of Lactobacillus reuteri (L. reuteri), reuterin showed great anti-HCC potential and could help in sorafenib treatment. Reuterin treatment impaired mitophagy and caused the aberrant clustering of mitochondrial nucleoids to block mitochondrial DNA (mtDNA) replication and mitochondrial fission, which could promote mtDNA leakage and subsequent STING activation in HCC cells. STING could activate pyroptosis and necroptosis, while reuterin treatment also induced caspase 8 expression to inhibit necroptosis through cleaving RIPK3 in HCC cells. Thus, pyroptosis was the main death form in reuterin-treated HCC cells and STING suppression remarkably rescued the growth inhibitory effect of reuterin and concurrently knockdown caspase 8 synergized to restrain the induction of pyroptosis. In conclusion, our study explains the detailed molecular mechanisms of the antitumor effect of reuterin and reveals its potential to perform as a combinational drug for HCC treatment.
Collapse
Affiliation(s)
- Lin Cui
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaohui Xu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Fan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyan Wan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Junhui Zhang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing, 400030, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Chuntao Tao
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Du
- Department of Urology, The Affiliated People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Zeng
- College of Life Sciences and Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, Chongqing, 401331, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Longhao Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
142
|
Huang C, Tong T, Ren L, Wang H. STING-Activating Small Molecular Therapeutics for Cancer Immunotherapy. Chembiochem 2024; 25:e202400255. [PMID: 38980259 DOI: 10.1002/cbic.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/10/2024]
Abstract
Immuno-oncology has become a revolutionary strategy for cancer treatment. Therapeutic interventions based on adaptive immunity through immune checkpoint therapy or chimeric antigen receptor (CAR) T cells have received clinical approval for monotherapy and combination treatment in various cancers. Although these treatments have achieved clinical successes, only a minority of cancer patients show a response, highlighting the urgent need to discover new therapeutic molecules that could be exploited to improve clinical outcomes and pave the way for the next generation of immunotherapy. Given the critical role of the innate immune system against infection and cancer, substantial efforts have been dedicated to developing novel anticancer therapeutics that target these pathways. Targeting the stimulator of interferon genes (STING) pathway is a powerful strategy to generate a durable antitumor response, and activation of the adaptor protein STING induces the initiation of transcriptional cascades, thereby producing type I interferons, pro-inflammatory cytokines and chemokines. Various STING agonists, including natural or synthetic cyclic dinucleotides (CDNs), have been developed as anticancer therapeutics. However, since most CDNs are confined to intratumoral administration, there has been a great interest in developing non-nucleotide agonists for systemic treatment. Here, we review the current development of STING-activating therapeutics in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Chuhan Huang
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tianrui Tong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lulu Ren
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, 250117, P. R. China
| |
Collapse
|
143
|
O’Donoghue JC, Freeman FE. Make it STING: nanotechnological approaches for activating cGAS/STING as an immunomodulatory node in osteosarcoma. Front Immunol 2024; 15:1403538. [PMID: 39403376 PMCID: PMC11471590 DOI: 10.3389/fimmu.2024.1403538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Osteosarcoma is a highly aggressive bone cancer primarily affecting children, adolescents, and young adults. The current gold standard for treatment of osteosarcoma patients consists of two to three rounds of chemotherapy, followed by extensive surgical intervention from total limb reconstruction to amputation, followed by additional rounds of chemotherapy. Although chemotherapy has advanced the treatment of osteosarcoma significantly, the overall 5-year survival rate in resistant forms of osteosarcoma is still below 20%. The interaction between cancer and the immune system has long been recognized as a critical aspect of tumour growth. Tumour cells within the tumour microenvironment (TME) suppress antitumour immunity, and immunosuppressive cells and cytokines provide the extrinsic factors of tumour drug resistance. Emerging research demonstrates an immunostimulatory role for the cGAS/STING pathway in osteosarcoma, typically considered an immune-cold or immunosuppressed cancer type. cGAS/STING signalling appears to drive an innate immune response against tumours and potentiates the efficacy of other common therapies including chemo and radiotherapy. Nanotechnological delivery systems for improved therapy delivery for osteosarcoma have also been under investigation in recent years. This review provides an overview of cGAS/STING signalling, its divergent roles in the context of cancer, and collates current research which activates cGAS/STING as an adjuvant immunomodulatory target for the treatment of osteosarcoma. It will also discuss current nanotechnological delivery approaches that have been developed to stimulate cGAS/STING. Finally, it will highlight the future directions that we believe will be central to the development of this transformative field.
Collapse
Affiliation(s)
- Jordan C. O’Donoghue
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, Ireland
- University College Dublin (UCD) Centre for Biomedical Engineering, University College Dublin, Belfield Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Fiona E. Freeman
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, Ireland
- University College Dublin (UCD) Centre for Biomedical Engineering, University College Dublin, Belfield Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- I-Form Centre, School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
144
|
Wang L, Tang T, Zuo K, Liu N, Wei Y, Zhu X. A Novel Manganese Ion Delivery Carrier Promotes Immune Cell Proliferation and Enhances Innate Immune Responses. ACS OMEGA 2024; 9:40226-40233. [PMID: 39346829 PMCID: PMC11425805 DOI: 10.1021/acsomega.4c06497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
Manganese is a transition metal that is an essential trace element for human health. Manganese ions (Mn2+), which serve as one of the most common transition metal ions, play vital roles in enhancing innate immune responses. However, immune agonists based on Mn2+ are poorly utilized in clinical trials due to poor chemodynamics and adverse events. In this work, we designed a novel delivery carrier for loading manganese ions by constructing hFn-MT3(Mn2+) protein nanoparticles (termed as NPs(Mn2+)), which contained human ferritin heavy chain (hFn) and metallothionein-3 (MT3), induced by isopropyl β-d-thiogalactoside (IPTG) and manganese ions in the prokaryotic expression system. The NPs(Mn2+) protein nanoparticles could not only stimulate immune cell proliferation but also activate innate immune responses via the cGAS-STING-IRF3 signaling pathway. Collectively, our results unveil a candidate strategy for delivering metal ions beyond Mn2+ and may broaden metal ion clinical use in the field of immunotherapies.
Collapse
Affiliation(s)
- Lingjuan Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China
| | - Tingting Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China
| | - Kaiyue Zuo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China
| | - Naiyu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China
| | - Yingrui Wei
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China
| | - Xinjie Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Li Song's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Hainan University, Sanya 572000, China
| |
Collapse
|
145
|
Aybar-Torres AA, Saldarriaga LA, Pham AT, Emtiazjoo AM, Sharma AK, Bryant AJ, Jin L. The common Sting1 HAQ, AQ alleles rescue CD4 T cellpenia, restore T-regs, and prevent SAVI (N153S) inflammatory disease in mice. eLife 2024; 13:RP96790. [PMID: 39291958 PMCID: PMC11410371 DOI: 10.7554/elife.96790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The significance of STING1 gene in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human STING1 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING1 mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using Sting1 knock-in mice expressing common human STING1 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING1-mediated cell death ex vivo, establishing a critical role of STING1 residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING1 activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING1 research and STING1-targeting immunotherapy should consider STING1 heterogeneity in humans.
Collapse
Affiliation(s)
- Alexandra a Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Lennon A Saldarriaga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Ann T Pham
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Amir M Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Ashish K Sharma
- Division of Vascular Surgery & Endovascular Therapy, Department of Surgery, University of FloridaGainesvilleUnited States
| | - Andrew j Bryant
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| |
Collapse
|
146
|
Lyu Y, Liu C, Lin H, Song H, Zhuang Q, Hu A, Chen L, Yang H, Mao Y. Nuclear translocation of nucleotide enzyme Phosphoglucomutase 2 governs DNA damage response and anti-tumor immunity. Heliyon 2024; 10:e36415. [PMID: 39286116 PMCID: PMC11402934 DOI: 10.1016/j.heliyon.2024.e36415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Targeting nucleotide enzymes emerges as a promising avenue for impeding tumor proliferation and fortifying anti-tumor immunogenicity. The non-canonical role of nucleotide enzymes remains poorly understood. In this study, we have identified that Phosphoglucomutase 2 (PGM2) rapidly accumulates at the DNA damage site to govern the DNA damage response mediated by the phosphorylation at Serine 165 and by forming a complex with Rho-associated coiled-coil-containing protein kinase 2 (ROCK2). Silencing PGM2 in Glioblastoma Multiforme (GBM) cells heightens DNA damage in vitro and enhances the sensitivity of temozolomide (TMZ) treatment by activating anti-tumor immunity in vivo. Furthermore, we demonstrate that pharmacological inhibition of ROCK2 synergistically complements TMZ treatment and pembrolizumab (PD-L1) checkpoint immunotherapy, augmenting anti-tumor immunity. This study reveals the non-canonical role of the nucleotide enzyme PGM2 in the regulation of DNA damage response and anti-tumor immunity, with implications for the development of therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Yingying Lyu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Haikun Song
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Qiyuan Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, PR China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, PR China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, PR China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, PR China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| |
Collapse
|
147
|
Goswami A, Goyal S, Khurana P, Singh K, Deb B, Kulkarni A. Small molecule innate immune modulators in cancer therapy. Front Immunol 2024; 15:1395655. [PMID: 39318624 PMCID: PMC11419979 DOI: 10.3389/fimmu.2024.1395655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Immunotherapy has proved to be a breakthrough in cancer treatment. So far, a bulk of the approved/late-stage cancer immunotherapy are antibody-based. Although these antibody-based drugs have demonstrated great promise, a majority of them are limited due to their access to extracellular targets, lack of oral bioavailability, tumor microenvironment penetration, induction of antibody dependent cytotoxicity etc. In recent times, there has been an increased research focus on the development of small molecule immunomodulators since they have the potential to overcome the aforementioned limitations posed by antibodies. Furthermore, while most biologics based therapeutics that are in clinical use are limited to modulating the adaptive immune system, very few clinically approved therapeutic modalities exist that modulate the innate immune system. The innate immune system, which is the body's first line of defense, has the ability to turn cold tumors hot and synergize strongly with existing adaptive immune modulators. In preclinical studies, small molecule innate immune modulators have demonstrated synergistic efficacy as combination modalities with current standard-of-care immune checkpoint antibodies. In this review, we highlight the recent advances made by small molecule innate immunomodulators in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Barnali Deb
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
| | - Aditya Kulkarni
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
- Avammune Therapeutics, Philadelphia, PA, United States
| |
Collapse
|
148
|
Ling YY, Li ZY, Mu X, Kong YJ, Hao L, Wang WJ, Shen QH, Zhang YB, Tan CP. Self-assembly of a ruthenium-based cGAS-STING photoactivator for carrier-free cancer immunotherapy. Eur J Med Chem 2024; 275:116638. [PMID: 38950489 DOI: 10.1016/j.ejmech.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
The cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway promotes antitumor immune responses by sensing cytosolic DNA fragments leaked from nucleus and mitochondria. Herein, we designed a highly charged ruthenium photosensitizer (Ru1) with a β-carboline alkaloid derivative as the ligand for photo-activating of the cGAS-STING pathway. Due to the formation of multiple non-covalent intermolecular interactions, Ru1 can self-assemble into carrier-free nanoparticles (NPs). By incorporating the triphenylphosphine substituents, Ru1 can target and photo-damage mitochondrial DNA (mtDNA) to cause the cytoplasmic DNA leakage to activate the cGAS-STING pathway. Finally, Ru1 NPs show potent antitumor effects and elicit intense immune responses in vivo. In conclusion, we report the first self-assembling mtDNA-targeted photosensitizer, which can effectively activate the cGAS-STING pathway, thus providing innovations for the design of new photo-immunotherapeutic agents.
Collapse
Affiliation(s)
- Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China; Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Guangzhou, 510006, PR China
| | - Zhi-Yuan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China; Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Guangzhou, 510006, PR China
| | - Xia Mu
- State Key Laboratory of Molecular Reaction, Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Ya-Jie Kong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China; Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Guangzhou, 510006, PR China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China; Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Guangzhou, 510006, PR China
| | - Wen-Jin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China; Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Guangzhou, 510006, PR China
| | - Qing-Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China; Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Guangzhou, 510006, PR China
| | - Yue-Bin Zhang
- State Key Laboratory of Molecular Reaction, Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China; Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Guangzhou, 510006, PR China.
| |
Collapse
|
149
|
Chen Z, Ji W, Feng W, Cui J, Wang Y, Li F, Chen J, Guo Z, Xia L, Zhu X, Niu X, Zhang Y, Li Z, Wong AST, Lu S, Xia W. PTPRT loss enhances anti-PD-1 therapy efficacy by regulation of STING pathway in non-small cell lung cancer. Sci Transl Med 2024; 16:eadl3598. [PMID: 39231239 DOI: 10.1126/scitranslmed.adl3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/18/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
With the revolutionary progress of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer, identifying patients with cancer who would benefit from ICIs has become critical and urgent. Here, we report protein tyrosine phosphatase receptor type T (PTPRT) loss as a precise and convenient predictive marker independent of PD-L1 expression for anti-PD-1/PD-L1 axis therapy. Anti-PD-1/PD-L1 axis treatment markedly increased progression-free survival in patients with PTPRT-deficient tumors. PTPRT-deficient tumors displayed cumulative DNA damage, increased cytosolic DNA release, and higher tumor mutation burden. Moreover, the tyrosine residue 240 of STING was identified as a direct substrate of PTPRT. PTPRT loss elevated phosphorylation of STING at Y240 and thus inhibited its proteasome-mediated degradation. PTPRT-deficient tumors released more IFN-β, CCL5, and CXCL10 by activation of STING pathway and increased immune cell infiltration, especially of CD8 T cells and natural killer cells, ultimately enhancing the efficacy of anti-PD-1 therapy in multiple subcutaneous and orthotopic tumor mouse models. The response of PTPRT-deficient tumors to anti-PD-1 therapy depends on the tumor-intrinsic STING pathway. In summary, our findings reveal the mechanism of how PTPRT-deficient tumors become sensitive to anti-PD-1 therapy and highlight the biological function of PTPRT in innate immunity. Considering the prevalence of PTPRT mutations and negative expression, this study has great value for patient stratification and clinical decision-making.
Collapse
Affiliation(s)
- Zhuo Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenxiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wenxin Feng
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingchuan Cui
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuchen Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fan Li
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiachen Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziheng Guo
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liliang Xia
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaokuan Zhu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaomin Niu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yanshuang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Alice S T Wong
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, 999077, Hong Kong
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Weiliang Xia
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
150
|
Zhang K, Zhao D, Li Z, Wang Y, Liu J, Du T, Zhou L, Chen Y, Yu Q, Chen Q, Cai R, Zhao Z, Shan J, Hu B, Zhang H, Feng G, Zhu X, Tang J, Deng R. Inactivated cGAS-STING Signaling Facilitates Endocrine Resistance by Forming a Positive Feedback Loop with AKT Kinase in ER+HER2- Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403592. [PMID: 39023171 PMCID: PMC11425221 DOI: 10.1002/advs.202403592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Endocrine-resistant ER+HER2- breast cancer (BC) is particularly aggressive and leads to poor clinical outcomes. Effective therapeutic strategies against endocrine-resistant BC remain elusive. Here, analysis of the RNA-sequencing data from ER+HER2- BC patients receiving neoadjuvant endocrine therapy and spatial transcriptomics analysis both show the downregulation of innate immune signaling sensing cytosolic DNA, which primarily occurs in endocrine-resistant BC cells, not immune cells. Indeed, compared with endocrine-sensitive BC cells, the activity of sensing cytosolic DNA through the cGAS-STING pathway is attenuated in endocrine-resistant BC cells. Screening of kinase inhibitor library show that this effect is mainly mediated by hyperactivation of AKT1 kinase, which binds to kinase domain of TBK1, preventing the formation of a trimeric complex TBK1/STING/IRF3. Notably, inactivation of cGAS-STING signaling forms a positive feedback loop with hyperactivated AKT1 to promote endocrine resistance, which is physiologically important and clinically relevant in patients with ER+HER2- BC. Blocking the positive feedback loop using the combination of an AKT1 inhibitor with a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of endocrine-resistant tumors in humanized mice models, providing a potential strategy for treating patients with endocrine-resistant BC.
Collapse
Affiliation(s)
- Kai‐Ming Zhang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - De‐Chang Zhao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Ze‐Yu Li
- BGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yan Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jian‐Nan Liu
- Department of OncologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShangdong264000China
| | - Tian Du
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Ling Zhou
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yu‐Hong Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Qi‐Chao Yu
- BGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qing‐Shan Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Rui‐Zhao Cai
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zi‐Xuan Zhao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jia‐Lu Shan
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Bing‐Xin Hu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hai‐Liang Zhang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Gong‐Kan Feng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiao‐Feng Zhu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jun Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Rong Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|