101
|
Zhang X, Lee SH, Min KW, McEntee MF, Jeong JB, Li Q, Baek SJ. The involvement of endoplasmic reticulum stress in the suppression of colorectal tumorigenesis by tolfenamic acid. Cancer Prev Res (Phila) 2013; 6:1337-47. [PMID: 24104354 DOI: 10.1158/1940-6207.capr-13-0220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nonsteroidal anti-inflammatory drug tolfenamic acid has been shown to suppress cancer cell growth and tumorigenesis in different cancer models. However, the underlying mechanism by which tolfenamic acid exerts its antitumorigenic effect remains unclear. Previous data from our group and others indicate that tolfenamic acid alters expression of apoptosis- and cell-cycle arrest-related genes in colorectal cancer cells. Here, we show that tolfenamic acid markedly reduced the number of polyps and tumor load in APC(min)(/+) mice, accompanied with cyclin D1 downregulation in vitro and in vivo. Mechanistically, tolfenamic acid promotes endoplasmic reticulum (ER) stress, resulting in activation of the unfolded protein response (UPR) signaling pathway, of which PERK-mediated phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) induces the repression of cyclin D1 translation. Moreover, the PERK-eIF2α-ATF4 branch of the UPR pathway plays a role in tolfenamic acid-induced apoptosis in colorectal cancer cells, as silencing ATF4 attenuates tolfenamic acid-induced apoptosis. Taken together, these results suggest ER stress is involved in tolfenamic acid-induced inhibition of colorectal cancer cell growth, which could contribute to antitumorigenesis in a mouse model.
Collapse
Affiliation(s)
- Xiaobo Zhang
- College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996-4542. Phone: 865-974-8216; Fax: 865-974-5616; ; Qingwang Li, College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
102
|
Wu HL, Duan ZT, Jiang ZD, Cao WJ, Wang ZB, Hu KW, Gao X, Wang SK, He BS, Zhang ZY, Xie HG. Increased endoplasmic reticulum stress response is involved in clopidogrel-induced apoptosis of gastric epithelial cells. PLoS One 2013; 8:e74381. [PMID: 24058556 PMCID: PMC3772828 DOI: 10.1371/journal.pone.0074381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/31/2013] [Indexed: 01/20/2023] Open
Abstract
Background The widespread use of clopidogrel alone or in combination with aspirin may result in gastrointestinal mucosal injury, clinically represented as recurrent ulceration and bleeding complications. Our recent work suggested that clopidogrel significantly induced human gastric epithelial cell (GES-1) apoptosis and disrupted gastric mucosal barrier, and that a p38 MAPK inhibitor could attenuate such injury. However, their exact mechanisms are largely unknown. Methods The GES-1 cells were used as a model system, the effects of clopidogrel on the whole gene expression profile were evaluated by human gene expression microarray and gene ontology analysis, changes of the mRNA and protein expression were determined by real-time PCR and Western blot analysis, and cell viability and apoptosis were measured by MTT assay and flow cytometry analysis, respectively. Results Gene microarray analysis identified 79 genes that were differentially expressed (P<0.05 and fold-change >3) when cells were treated with or without clopidogrel. Gene ontology analysis revealed that response to stress and cell apoptosis dysfunction were ranked in the top 10 cellular events being affected, and that the major components of endoplasmic reticulum stress-mediated apoptosis pathway – CHOP and TRIB3– were up-regulated in a concentration- and time-dependent manner when cells were treated with clopidogrel. Pathway analysis demonstrated that multiple MAPK kinases were phosphorylated in clopidogrel-treated GES-1 cells, but that only SB-203580 (a p38-specific MAPK inhibitor) attenuated cell apoptosis and CHOP over-expression, both of which were induced by clopidogrel. Conclusions Increased endoplasmic reticulum stress response is involved in clopidogrel-induced gastric mucosal injury, acting through p38 MAPK activation.
Collapse
Affiliation(s)
- Hai-Lu Wu
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhao-Tao Duan
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zong-Dan Jiang
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei-Jun Cao
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi-Bing Wang
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ke-Wei Hu
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Gao
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shu-Kui Wang
- Central Laboratory, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bang-Shun He
- Central Laboratory, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen-Yu Zhang
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- * E-mail: (ZYZ); (HGX)
| | - Hong-Guang Xie
- Central Laboratory, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, China
- * E-mail: (ZYZ); (HGX)
| |
Collapse
|
103
|
Gurpinar E, Grizzle WE, Piazza GA. COX-Independent Mechanisms of Cancer Chemoprevention by Anti-Inflammatory Drugs. Front Oncol 2013; 3:181. [PMID: 23875171 PMCID: PMC3708159 DOI: 10.3389/fonc.2013.00181] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022] Open
Abstract
Epidemiological and clinical studies suggest that non-steroidal anti-inflammatory drugs (NSAIDs), including cyclooxygenase (COX)-2 selective inhibitors, reduce the risk of developing cancer. Experimental studies in human cancer cell lines and rodent models of carcinogenesis support these observations by providing strong evidence for the antineoplastic properties of NSAIDs. The involvement of COX-2 in tumorigenesis and its overexpression in various cancer tissues suggest that inhibition of COX-2 is responsible for the chemopreventive efficacy of these agents. However, the precise mechanisms by which NSAIDs exert their antiproliferative effects are still a matter of debate. Numerous other studies have shown that NSAIDs can act through COX-independent mechanisms. This review provides a detailed description of the major COX-independent molecular targets of NSAIDs and discusses how these targets may be involved in their anticancer effects. Toxicities resulting from COX inhibition and the suppression of prostaglandin synthesis preclude the long-term use of NSAIDs for cancer chemoprevention. Furthermore, chemopreventive efficacy is incomplete and treatment often leads to the development of resistance. Identification of alternative NSAID targets and elucidation of the biochemical processes by which they inhibit tumor growth could lead to the development of safer and more efficacious drugs for cancer chemoprevention.
Collapse
Affiliation(s)
- Evrim Gurpinar
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham , Birmingham, AL , USA
| | | | | |
Collapse
|
104
|
Nagai N, Takeda A, Itanami Y, Ito Y. Co-administration of water containing magnesium ion prevents loxoprofen-induced lesions in gastric mucosa of adjuvant-induced arthritis rat. Biol Pharm Bull 2013. [PMID: 23207775 DOI: 10.1248/bpb.b12-00703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) comprise one of the most frequently used classes of medicines in the world; however, NSAIDs have significant side effects, such as gastroenteropathy, and rheumatoid arthritis patients taking NSAIDs are more susceptible to NSAID-induced gastric lesions as compared to patients with other diseases. In Asian countries, loxoprofen has been used clinically for many years as a standard NSAID. We demonstrate the preventive effect of the co-administration of water containing magnesium ion (magnesium water, 1-200 µg/kg) on the ulcerogenic response to loxoprofen in adjuvant-induced arthritis (AA) rats. Oral administration of loxoprofen (100 mg/kg) caused hemorrhagic lesions in the gastric mucosa of AA rats 14 d after adjuvant injection, and, following loxoprofen administration, the lesion score of AA rats was significantly higher than that of normal rats. The expression of inducible nitric oxide synthase (iNOS) mRNA and nitric oxide (NO) production in the gastric mucosa of AA rats were also increased by the administration of loxoprofen, and the increase in lesions and NO were prevented by the administration of aminoguanidine, an iNOS inhibitor. The co-administration of magnesium water decreased the ulcerogenic response to loxoprofen in AA rats. In addition, the co-administration of magnesium water attenuated the increase in iNOS mRNA expression and NO production in AA rats receiving loxoprofen. These results suggest that the oral co-administration of magnesium water to AA rats has a potent preventive effect on the ulcerogenic response to loxoprofen, probably by inhibiting the rise in iNOS and NO levels in the gastric mucosa.
Collapse
Affiliation(s)
- Noriaki Nagai
- School of Pharmaceutical Sciences, Kinki University, 3–4–1 Higashi-Osaka, Osaka 577–8502, Japan
| | | | | | | |
Collapse
|
105
|
Suzuki K, Gerelchuluun A, Hong Z, Sun L, Zenkoh J, Moritake T, Tsuboi K. Celecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress. Neuro Oncol 2013; 15:1186-99. [PMID: 23658321 DOI: 10.1093/neuonc/not062] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Refractoriness of glioblastoma multiforme (GBM) largely depends on its radioresistance. We investigated the radiosensitizing effects of celecoxib on GBM cell lines under both normoxic and hypoxic conditions. METHODS Two human GBM cell lines, U87MG and U251MG, and a mouse GBM cell line, GL261, were treated with celecoxib or γ-irradiation either alone or in combination under normoxic and hypoxic conditions. Radiosensitizing effects were analyzed by clonogenic survival assays and cell growth assays and by assessing apoptosis and autophagy. Expression of apoptosis-, autophagy-, and endoplasmic reticulum (ER) stress-related genes was analyzed by immunoblotting. RESULTS Celecoxib significantly enhanced the radiosensitivity of GBM cells under both normoxic and hypoxic conditions. In addition, combined treatment with celecoxib and γ-irradiation induced marked autophagy, particularly in hypoxic cells. The mechanism underlying the radiosensitizing effect of celecoxib was determined to be ER stress loading on GBM cells. CONCLUSION Celecoxib enhances the radiosensitivity of GBM cells by a mechanism that is different from cyclooxygenase-2 inhibition. Our results indicate that celecoxib may be a promising radiosensitizing drug for clinical use in patients with GBM.
Collapse
Affiliation(s)
- Kenshi Suzuki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
106
|
Mizushima T. [Identification of a molecular mechanism for actions of existing medicines and its application for drug development]. YAKUGAKU ZASSHI 2013; 132:713-20. [PMID: 22687730 DOI: 10.1248/yakushi.132.713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a new strategy for drug discovery and development, we propose here the establishment of drug re-profiling strategy. In this strategy, the actions of existing medicines, whose safety and pharmacokinetic effects in humans have been confirmed already, are examined comprehensively at the molecular level and the results are used for the development of new medicines. For example, identification of the mechanisms underlying the side effects of medicines enables us to develop safer drugs. The results can also be used for developing existing drugs for use as medicines in treatment of other diseases. Promoting this research strategy could provide breakthroughs in drug discovery and development by pharmaceutical companies.
Collapse
Affiliation(s)
- Tohru Mizushima
- Department of Analytical Chemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan.
| |
Collapse
|
107
|
The unfolded protein response triggered by environmental factors. Semin Immunopathol 2013; 35:259-75. [PMID: 23553212 DOI: 10.1007/s00281-013-0371-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/13/2013] [Indexed: 12/14/2022]
Abstract
Endoplasmic reticulum (ER) stress and consequent unfolded protein response (UPR) are involved in a diverse range of pathologies including ischemic diseases, neurodegenerative disorders, and metabolic diseases, such as diabetes mellitus. The UPR is also triggered by various environmental factors; e.g., pollutants, infectious pathogens, therapeutic drugs, alcohol, physical stress, and malnutrition. This review summarizes current knowledge on environmental factors that induce ER stress and describes how the UPR is linked to particular pathological states after exposure to environmental triggers.
Collapse
|
108
|
Yadav SK, Adhikary B, Bandyopadhyay SK, Chattopadhyay S. Inhibition of TNF-α, and NF-κB and JNK pathways accounts for the prophylactic action of the natural phenolic, allylpyrocatechol against indomethacin gastropathy. Biochim Biophys Acta Gen Subj 2013; 1830:3776-86. [PMID: 23523691 DOI: 10.1016/j.bbagen.2013.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 02/05/2013] [Accepted: 03/11/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND The gastro-intestinal disorders, induced by the NSAIDs including indomethacin (IND) remain unresolved medical problems. Herein, we disclose allylpyrocatechol (APC) as a potential agent against IND-gastropathy and rationalize its action mechanistically. METHODS Mice were pre-treated with APC for 1h followed by IND (18mgkg(-1)) administration, and the ulcer-prevention capacity of APC was evaluated on the 3rd day by histology. Its effect on the inflammatory (MPO, cytokines, adhesion molecules), ulcer-healing (COX, prostaglandins, growth factors and their receptors) and signaling parameters (NF-κB and MAPKs) were assessed by immunoblots/mRNA, and ELISA at the time points of their maximal changes due to IND administration. RESULTS IND induced oxidative stress, triggering mucosal TNF-α that activated NF-κB and JNK MAPK signaling in mice. These increased the pro-inflammatory biochemical parameters, but reduced the healing factors. APC reversed all the adverse effects to prevent gastric ulceration. APC (5mgkg(-1)), trolox (50mgkg(-1)) and NAC (250mgkg(-1)) showed similar protection that was better than that by misoprostol (5μgkg(-1)) and omeprazole (3mgkg(-1)). CONCLUSIONS The anti-ulcer effect of APC can be primarily attributed to its antioxidant action that helped in controlling various inflammatory parameters and augmenting angiogenesis. GENERAL SIGNIFICANCE Given that APC is an effective, non-toxic antioxidant with appreciable natural abundance, further evaluation of its pharmacokinetics and dynamics would help in promoting it as a new anti-inflammatory agent.
Collapse
Affiliation(s)
- Sudhir K Yadav
- Department of Biochemistry, Dr. B.C. Roy Post Graduate Institute of Basic Medical Sciences, Kolkata, India
| | | | | | | |
Collapse
|
109
|
Schönthal AH. Pharmacological targeting of endoplasmic reticulum stress signaling in cancer. Biochem Pharmacol 2013; 85:653-666. [DOI: 10.1016/j.bcp.2012.09.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 02/08/2023]
|
110
|
Kamiyama N, Yamamoto M, Saiga H, Ma JS, Ohshima J, Machimura S, Sasai M, Kimura T, Ueda Y, Kayama H, Takeda K. CREBH determines the severity of sulpyrine-induced fatal shock. PLoS One 2013; 8:e55800. [PMID: 23409047 PMCID: PMC3567110 DOI: 10.1371/journal.pone.0055800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/02/2013] [Indexed: 11/18/2022] Open
Abstract
Although the pyrazolone derivative sulpyrine is widely used as an antipyretic analgesic drug, side effects, including fatal shock, have been reported. However, the molecular mechanism underlying such a severe side effect is largely unclear. Here, we report that the transcription factor CREBH that is highly expressed in the liver plays an important role in fatal shock induced by sulpyrine in mice. CREBH-deficient mice were resistant to experimental fatal sulpyrine shock. We found that sulpyrine-induced expression of cytochrome P450 2B (CYP2B) family genes, which are involved in sulpyrine metabolism, in the liver was severely impaired in CREBH-deficient mice. Moreover, introduction of CYP2B in CREBH-deficient liver restored susceptibility to sulpyrine. Furthermore, ectopic expression of CREBH up-regulated CYP2B10 promoter activity, and in vivo knockdown of CREBH in wild-type mice conferred a significant resistance to fatal sulpyrine shock. These data demonstrate that CREBH is a positive regulator of CYP2B in response to sulpyrine administration, which possibly results in fatal shock.
Collapse
Affiliation(s)
- Naganori Kamiyama
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail: (MY); (KT)
| | - Hiroyuki Saiga
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Ji Su Ma
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Jun Ohshima
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Sakaaki Machimura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Miwa Sasai
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Taishi Kimura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yoshiyasu Ueda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hisako Kayama
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail: (MY); (KT)
| |
Collapse
|
111
|
Ji YL, Wang H, Zhang C, Zhang Y, Zhao M, Chen YH, Xu DX. N-acetylcysteine protects against cadmium-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in testes. Asian J Androl 2013; 15:290-6. [PMID: 23353715 DOI: 10.1038/aja.2012.129] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg(-1)). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ cell apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2α (eIF2α), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (JNK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes.
Collapse
Affiliation(s)
- Yan-Li Ji
- Department of Toxicology, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | |
Collapse
|
112
|
Lafleur MA, Stevens JL, Lawrence JW. Xenobiotic perturbation of ER stress and the unfolded protein response. Toxicol Pathol 2013; 41:235-62. [PMID: 23334697 DOI: 10.1177/0192623312470764] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The proper folding, assembly, and maintenance of cellular proteins is a highly regulated process and is critical for cellular homeostasis. Multiple cellular compartments have adapted their own systems to ensure proper protein folding, and quality control mechanisms are in place to manage stress due to the accumulation of unfolded proteins. When the accumulation of unfolded proteins exceeds the capacity to restore homeostasis, these systems can result in a cell death response. Unfolded protein accumulation in the endoplasmic reticulum (ER) leads to ER stress with activation of the unfolded protein response (UPR) governed by the activating transcription factor 6 (ATF6), inositol requiring enzyme-1 (IRE1), and PKR-like endoplasmic reticulum kinase (PERK) signaling pathways. Many xenobiotics have been shown to influence ER stress and UPR signaling with either pro-survival or pro-death features. The ultimate outcome is dependent on many factors including the mechanism of action of the xenobiotic, concentration of xenobiotic, duration of exposure (acute vs. chronic), cell type affected, nutrient levels, oxidative stress, state of differentiation, and others. Assessing perturbations in activation or inhibition of ER stress and UPR signaling pathways are likely to be informative parameters to measure when analyzing mechanisms of action of xenobiotic-induced toxicity.
Collapse
Affiliation(s)
- Marc A Lafleur
- Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, California 91320, USA.
| | | | | |
Collapse
|
113
|
Yamakawa N, Suemasu S, Watanabe H, Tahara K, Tanaka KI, Okamoto Y, Ohtsuka M, Maruyama T, Mizushima T. Comparison of Pharmacokinetics between Loxoprofen and Its Derivative with Lower Ulcerogenic Activity, Fluoro-loxoprofen. Drug Metab Pharmacokinet 2013; 28:118-24. [DOI: 10.2133/dmpk.dmpk-12-rg-050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
114
|
White MC, Johnson GG, Zhang W, Hobrath JV, Piazza GA, Grimaldi M. Sulindac sulfide inhibits sarcoendoplasmic reticulum Ca2+ ATPase, induces endoplasmic reticulum stress response, and exerts toxicity in glioma cells: relevant similarities to and important differences from celecoxib. J Neurosci Res 2012; 91:393-406. [PMID: 23280445 DOI: 10.1002/jnr.23169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 11/09/2022]
Abstract
Malignant gliomas have low survival expectations regardless of current treatments. Nonsteroidal anti-inflammatory drugs (NSAIDs) prevent cell transformation and slow cancer cell growth by mechanisms independent of cyclooxygenase (COX) inhibition. Certain NSAIDs trigger the endoplasmic reticulum stress response (ERSR), as revealed by upregulation of molecular chaperones such as GRP78 and C/EBP homologous protein (CHOP). Although celecoxib (CELE) inhibits the sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA), an effect known to induce ERSR, sulindac sulfide (SS) has not been reported to affect SERCA. Here, we investigated these two drugs for their effects on Ca(2+) homeostasis, ERSR, and glioma cell survival. Our findings indicate that SS is a reversible inhibitor of SERCA and that both SS and CELE bind SERCA at its cyclopiazonic acid binding site. Furthermore, CELE releases additional Ca(2+) from the mitochondria. In glioma cells, both NSAIDS upregulate GRP78 and activate ER-associated caspase-4 and caspase-3. Although only CELE upregulates the expression of CHOP, it appears that CHOP induction could be associated with mitochondrial poisoning. In addition, CHOP induction appears to be uncorrelated with the gliotoxicity of these NSAIDS in our experiments. Our data suggest that activation of ERSR is primarily responsible for the gliotoxic effect of these NSAIDS. Because SS has good brain bioavailability, has lower COX-2 inhibition, and has no mitochondrial effects, it represents a more appealing molecular candidate than CELE to achieve gliotoxicity via activation of ERSR.
Collapse
Affiliation(s)
- M C White
- Laboratory of Neuropharmacology, Medicinal Chemistry Department, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205, USA
| | | | | | | | | | | |
Collapse
|
115
|
Schönthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. SCIENTIFICA 2012; 2012:857516. [PMID: 24278747 PMCID: PMC3820435 DOI: 10.6064/2012/857516] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/12/2012] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle required for lipid biosynthesis, calcium storage, and protein folding and processing. A number of physiological and pathological conditions, as well as a variety of pharmacological agents, are able to disturb proper ER function and thereby cause ER stress, which severely impairs protein folding and therefore poses the risk of proteotoxicity. Specific triggers for ER stress include, for example, particular intracellular alterations (e.g., calcium or redox imbalances), certain microenvironmental conditions (e.g., hypoglycemia, hypoxia, and acidosis), high-fat and high-sugar diet, a variety of natural compounds (e.g., thapsigargin, tunicamycin, and geldanamycin), and several prescription drugs (e.g., bortezomib/Velcade, celecoxib/Celebrex, and nelfinavir/Viracept). The cell reacts to ER stress by initiating a defensive process, called the unfolded protein response (UPR), which is comprised of cellular mechanisms aimed at adaptation and safeguarding cellular survival or, in cases of excessively severe stress, at initiation of apoptosis and elimination of the faulty cell. In recent years, this dichotomic stress response system has been linked to several human diseases, and efforts are underway to develop approaches to exploit ER stress mechanisms for therapy. For example, obesity and type 2 diabetes have been linked to ER stress-induced failure of insulin-producing pancreatic beta cells, and current research efforts are aimed at developing drugs that ameliorate cellular stress and thereby protect beta cell function. Other studies seek to pharmacologically aggravate chronic ER stress in cancer cells in order to enhance apoptosis and achieve tumor cell death. In the following, these principles will be presented and discussed.
Collapse
Affiliation(s)
- Axel H. Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR-405, Los Angeles, CA 90033, USA
| |
Collapse
|
116
|
Suemasu S, Yamakawa N, Ishihara T, Asano T, Tahara K, Tanaka KI, Matsui H, Okamoto Y, Otsuka M, Takeuchi K, Suzuki H, Mizushima T. Identification of a unique nsaid, fluoro-loxoprofen with gastroprotective activity. Biochem Pharmacol 2012; 84:1470-81. [DOI: 10.1016/j.bcp.2012.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 01/01/2023]
|
117
|
Boelsterli UA, Redinbo MR, Saitta KS. Multiple NSAID-induced hits injure the small intestine: underlying mechanisms and novel strategies. Toxicol Sci 2012; 131:654-67. [PMID: 23091168 DOI: 10.1093/toxsci/kfs310] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) can cause serious gastrointestinal (GI) injury including jejunal/ileal mucosal ulceration, bleeding, and even perforation in susceptible patients. The underlying mechanisms are largely unknown, but they are distinct from those related to gastric injury. Based on recent insights from experimental models, including genetics and pharmacology in rodents typically exposed to diclofenac, indomethacin, or naproxen, we propose a multiple-hit pathogenesis of NSAID enteropathy. The multiple hits start with an initial pharmacokinetic determinant caused by vectorial hepatobiliary excretion and delivery of glucuronidated NSAID or oxidative metabolite conjugates to the distal small intestinal lumen, where bacterial β-glucuronidase produces critical aglycones. The released aglycones are then taken up by enterocytes and further metabolized by intestinal cytochrome P450s to potentially reactive intermediates. The "first hit" is caused by the NSAID and/or oxidative metabolites that induce severe endoplasmic reticulum stress or mitochondrial stress and lead to cell death. The "second hit" is created by the significant subsequent inflammatory response that would follow such a first-hit injury. Based on these putative mechanisms, strategies have been developed to protect the enterocytes from being exposed to the parent NSAID and/or oxidative metabolites. Among these, a novel strategy already demonstrated in a murine model is the selective disruption of bacteria-specific β-glucuronidases with a novel small molecule inhibitor that does not harm the bacteria and that alleviates NSAID-induced enteropathy. Such mechanism-based strategies require further investigation but provide potential avenues for the alleviation of the GI toxicity caused by multiple NSAID hits.
Collapse
Affiliation(s)
- Urs A Boelsterli
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, Connecticut 06269, USA.
| | | | | |
Collapse
|
118
|
Yao S, Zong C, Zhang Y, Sang H, Yang M, Jiao P, Fang Y, Yang N, Song G, Qin S. Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression. J Atheroscler Thromb 2012; 20:94-107. [PMID: 23037953 DOI: 10.5551/jat.13425] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM This study was to explore whether activating transcription factor 6 (ATF6), an important sensor to endoplasmic reticulum (ER) stress, would mediate oxidized low-density lipoprotein (ox-LDL)- induced cholesterol accumulation and apoptosis in cultured macrophages and the underlying molecular mechanisms. METHODS Intracellular lipid droplets and total cholesterol levels were assayed by oil red O staining and enzymatic colorimetry, respectively. Cell viability and apoptosis were determined using MTT assay and AnnexinV-FITC apoptosis detection kit, respectively. The nuclear translocation of ATF6 in cells was detected by immunofluorescence analysis. Protein and mRNA levels were examined by Western blot analysis and real time-PCR, respectively. ATF6 siRNA was transfected to RAW264.7 cells by lipofectamin. RESULTS Exposure of cells to ox-LDL induced glucose-regulated protein 78 (GRP78). C/EBP homologous protein (CHOP), a key-signaling component of ER stress-induced apoptosis, was up-regulated in ox-LDL-treated cells. ATF6, a factor that positively regulates CHOP expression, was activated by ox-LDL in a concentration- and time- dependent manner. The role of the ATF6-mediated ER stress pathway was further confirmed through the siRNA-mediated knockdown of ATF6, which attenuated ox-LDL-induced upregulation of CHOP, cholesterol accumulation and apoptosis in macrophages. In addition, the phosphorylation of double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), another factor that positively regulates CHOP expression, was induced in the presence of ox-LDL, and PERK-specific siRNA also inhibited the ox-LDL-induced upregulation of CHOP and apoptosis in RAW264.7 cells. CONCLUSION These results demonstrate that ER stress-related proteins, particularly ATF6 and its downstream molecule CHOP, are involved in ox-LDL-induced cholesterol accumulation and apoptosis in macrophages.
Collapse
Affiliation(s)
- Shutong Yao
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Yao S, Sang H, Song G, Yang N, Liu Q, Zhang Y, Jiao P, Zong C, Qin S. Quercetin protects macrophages from oxidized low-density lipoprotein-induced apoptosis by inhibiting the endoplasmic reticulum stress-C/EBP homologous protein pathway. Exp Biol Med (Maywood) 2012; 237:822-31. [PMID: 22829699 DOI: 10.1258/ebm.2012.012027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quercetin (QUE), a member of the bioflavonoid family, has been proposed to have antioxidative, anti-inflammatory and antihypertensive properties. This study was designed to investigate the protective effect of QUE on oxidized low-density lipoprotein (ox-LDL)-induced cytotoxicity in RAW264.7 macrophages and specifically the endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP) pathway-mediated apoptosis. Our results showed that treatment with QUE (20, 40 and 80 μmol/L) significantly attenuated ox-LDL-induced cholesterol accumulation in macrophages and foam cell formation in a dose-dependent manner. Similar to tunicamycin (TM), a classical ER stress inducer, ox-LDL reduced cell viability and induced apoptosis in RAW264.7 macrophages. The cytotoxic effects of ox-LDL and TM were significantly inhibited by QUE treatment. Interestingly, we found that QUE also significantly suppressed the ox-LDL- and TM-induced activation of ER stress signaling events, including the phosphorylation of inositol-requiring enzyme 1 (IRE1), translocation of activating transcription factor 6 (ATF6) from the cytoplasm to the nucleus and upregulation of X-box-binding protein 1. In addition, exposure of RAW264.7 macrophages to ox-LDL or TM resulted in a significant increase in the expression of CHOP, a transcription factor regulated by IRE1 and ATF6 under conditions of ER stress, as well as a decrease in Bcl-2 transcript and protein concentrations. QUE blocked these effects in a dose-dependent manner. These data indicate that QUE can protect RAW264.7 cells from ox-LDL-induced apoptosis and that the mechanism at least partially involves its ability to inhibit the ER stress-CHOP signaling pathway.
Collapse
Affiliation(s)
- Shutong Yao
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Siegelin MD. Utilization of the cellular stress response to sensitize cancer cells to TRAIL-mediated apoptosis. Expert Opin Ther Targets 2012; 16:801-17. [PMID: 22762543 DOI: 10.1517/14728222.2012.703655] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a promising death ligand who has received significant attention due to its specific anti-cancer activity. Recently, a number of clinical trials involving either recombinant soluble TRAIL or agonistic death receptor (DR) antibodies have even been initiated. One major caveat in TRAIL-based anti-cancer therapies is that a considerable number of cancer cells are notorious resistant to apoptosis induction by TRAIL. Overcoming this primary or secondary evolved resistance is an utmost important goal of present cancer research. The current literature suggests that TRAIL resistance is mediated by a number of endogenous factors. AREAS COVERED According to recent research, stress-related transcription factors have acquired a pivotal role in the sensitization of highly resistant cancer cells, for example, pancreatic cancer and glioblastoma cells, to TRAIL-mediated cell death. Out of this transcription factor family, C/EBP-homologous protein (CHOP) is linked to the control of DR-mediated apoptosis by modulation of several apoptotic and anti-apoptotic factors. Stress responses in certain organelles, such as endoplasmic reticulum (ER) and mitochondria, are potent inductors of CHOP expression. This report focuses on the influence of stress responses on endogenous or acquired resistance to extrinsic apoptosis in tumor cells and summarizes recent findings and results. The Medline and ClinicalTrials database with key words were used for this review. EXPERT OPINION A potential novel treatment strategy for highly treatment-resistant tumors is the induction of a cellular stress response in cancer cells. The induction of an organelle-related stress response, such as nuclear, ER and mitochondrial stress, leads to a dramatic sensitization of a broad variety of cancer cells of different tumor entities to the apoptotic ligand, TRAIL. Importantly, non-neoplastic cells are not sensitized to TRAIL-mediated cell death through the unfolded protein response in most instances, suggesting that this treatment is not only of high efficacy, but even more less of unwanted toxicity in patients.
Collapse
Affiliation(s)
- Markus David Siegelin
- Department of Pathology & Cell Biology, Columbia University College of Physicians & Surgeons, 630 W. 168th Street, VC14-239, New York, NY 10032, USA.
| |
Collapse
|
121
|
CD147 induces UPR to inhibit apoptosis and chemosensitivity by increasing the transcription of Bip in hepatocellular carcinoma. Cell Death Differ 2012; 19:1779-90. [PMID: 22595757 DOI: 10.1038/cdd.2012.60] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The unfolded protein response (UPR) is generally activated in solid tumors and results in tumor cell anti-apoptosis and drug resistance. However, tumor-specific UPR transducers are largely unknown. In the present study, we identified CD147, a cancer biomarker, as an UPR inducer in hepatocellular carcinoma (HCC). The expression of the major UPR target, Bip, was found to be positively associated with CD147 in human hepatoma tissues. By phosphorylating FAK and Src, CD147-enhanced TFII-I tyrosine phosphorylation at Tyr248. CD147 also induced p-TFII-I nuclear localization and binding to the Bip promoter where endoplasmic reticulum (ER) stress response element 1 (ERSE1) (-82/-50) is the most efficient target of the three ERSEs, thus increasing transcription of Bip. Furthermore, by inducing UPR, CD147 inhibited HCC cell apoptosis and decreased cell Adriamycin chemosensitivity, thus decreasing the survival rate of hepatoma-bearing nude mice. Together, these results reveal pivotal roles for CD147 in modulating the UPR in HCC and raise the possibility that CD147 is a target that promotes HCC cell apoptosis and increases the sensitivity of tumors to anti-cancer drugs. Therefore, CD147 inhibition provides an opportunity to enhance the efficacy of existing agents and represents a novel target for HCC treatment.
Collapse
|
122
|
Ji YL, Wang Z, Wang H, Zhang C, Zhang Y, Zhao M, Chen YH, Meng XH, Xu DX. Ascorbic acid protects against cadmium-induced endoplasmic reticulum stress and germ cell apoptosis in testes. Reprod Toxicol 2012; 34:357-63. [PMID: 22569276 DOI: 10.1016/j.reprotox.2012.04.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 04/07/2012] [Accepted: 04/27/2012] [Indexed: 11/29/2022]
Abstract
Cadmium (Cd) is a testicular toxicant which induces endoplasmic reticulum (ER) stress and germ cell apoptosis in testes. This study investigated the effects of ascorbic acid on Cd-evoked ER stress and germ cell apoptosis in testes. Male mice were intraperitoneally injected with CdCl(2) (2.0 mg/kg). As expected, a single dose of Cd induced testicular germ cell apoptosis. Interestingly, Cd-triggered testicular germ cell apoptosis was almost completely inhibited in mice treated with ascorbic acid. Interestingly, ascorbic acid significantly attenuated Cd-induced upregulation of GRP78 in testes. In addition, ascorbic acid significantly attenuated Cd-triggered testicular IRE1α and eIF2α phosphorylation and XBP-1 activation, indicating that this antioxidant counteracts Cd-induced unfolded protein response (UPR) in testes. Finally, ascorbic acid significantly attenuated Cd-evoked upregulation of CHOP and JNK phosphorylation, two components in ER stress-mediated apoptotic pathway. In conclusion, ascorbic acid protects mice from Cd-triggered germ cell apoptosis via inhibiting ER stress and UPR in testes.
Collapse
Affiliation(s)
- Yan-Li Ji
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Lin P, Yang Y, Li X, Chen F, Cui C, Hu L, Li Q, Liu W, Jin Y. Endoplasmic reticulum stress is involved in granulosa cell apoptosis during follicular atresia in goat ovaries. Mol Reprod Dev 2012; 79:423-32. [PMID: 22532439 DOI: 10.1002/mrd.22045] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/13/2012] [Indexed: 12/11/2022]
Abstract
Follicular atresia is primarily induced by granulosa cell apoptosis, but description of the apoptotic pathway in granulosa cells is incomplete. In this study, we explored the possibility that endoplasmic reticulum (ER) stress could be involved in granulosa cell apoptosis during goat follicular atresia. Immunohistochemical analysis revealed that DNA damage-inducible transcript 3 (DDIT3) and glucose-regulated protein 78 (Grp78) were observed in scattered apoptotic granulosa cells of atretic follicles. Grp78 and DDIT3 mRNA and protein were upregulated in granulosa cells during follicular atresia, although DDIT3 was not significantly different between early atretic and progressed atretic follicles. Spontaneous apoptosis was also observed in vitro in granulosa cells induced by serum deprivation or by the ER stress agent tunicamycin, both inducing similar increases in DDIT3 mRNA. Activating transcription factor-6 (ATF6) and ATF4 mRNAs were significantly increased during granulosa cell apoptosis in vivo; in contrast to ATF6, ATF4 mRNA was attenuated after 16 hr of culture despite the persistence of ER stress. Taken together, ER stress-dependent DDIT3 pathways may play an important role in the regulation of selective granulosa cell apoptosis in goat ovaries during early follicular atresia. Serum deprivation could also increase apoptosis of cultured granulosa cells through the ER stress pathway as both ATF6 and PERK/eIF2α/ATF4 signaling have been implicated in the granulosa cell apoptosis of atretic follicles.
Collapse
Affiliation(s)
- Pengfei Lin
- Key Laboratory of Animal Reproductive Endocrinology and Embryo Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Huang KH, Kuo KL, Chen SC, Weng TI, Chuang YT, Tsai YC, Pu YS, Chiang CK, Liu SH. Down-regulation of glucose-regulated protein (GRP) 78 potentiates cytotoxic effect of celecoxib in human urothelial carcinoma cells. PLoS One 2012; 7:e33615. [PMID: 22438966 PMCID: PMC3306428 DOI: 10.1371/journal.pone.0033615] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/13/2012] [Indexed: 11/30/2022] Open
Abstract
Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor that has been reported to elicit anti-proliferative response in various tumors. In this study, we aim to investigate the antitumor effect of celecoxib on urothelial carcinoma (UC) cells and the role endoplasmic reticulum (ER) stress plays in celecoxib-induced cytotoxicity. The cytotoxic effects were measured by MTT assay and flow cytometry. The cell cycle progression and ER stress-associated molecules were examined by Western blot and flow cytometry. Moreover, the cytotoxic effects of celecoxib combined with glucose-regulated protein (GRP) 78 knockdown (siRNA), (−)-epigallocatechin gallate (EGCG) or MG132 were assessed. We demonstrated that celecoxib markedly reduces the cell viability and causes apoptosis in human UC cells through cell cycle G1 arrest. Celecoxib possessed the ability to activate ER stress-related chaperones (IRE-1α and GRP78), caspase-4, and CCAAT/enhancer binding protein homologous protein (CHOP), which were involved in UC cell apoptosis. Down-regulation of GRP78 by siRNA, co-treatment with EGCG (a GRP78 inhibitor) or with MG132 (a proteasome inhibitor) could enhance celecoxib-induced apoptosis. We concluded that celecoxib induces cell cycle G1 arrest, ER stress, and eventually apoptosis in human UC cells. The down-regulation of ER chaperone GRP78 by siRNA, EGCG, or proteosome inhibitor potentiated the cytotoxicity of celecoxib in UC cells. These findings provide a new treatment strategy against UC.
Collapse
Affiliation(s)
- Kuo-How Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (KHH); (SHL)
| | - Kuan-Lin Kuo
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
| | - Shyh-Chyan Chen
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
| | - Te-I Weng
- Department of Forensic Medicine, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
| | - Yuan-Ting Chuang
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chieh Tsai
- Department of Oncology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
- Department of Integrated Diagnostics and Therapeutics, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (KHH); (SHL)
| |
Collapse
|
125
|
Ohyama K, Shiokawa A, Ito K, Masuyama R, Ichibangase T, Kishikawa N, Imai K, Kuroda N. Toxicoproteomic analysis of a mouse model of nonsteroidal anti-inflammatory drug-induced gastric ulcers. Biochem Biophys Res Commun 2012; 420:210-5. [PMID: 22426477 DOI: 10.1016/j.bbrc.2012.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 12/11/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are valuable agents; however, their use has been limited by their association with mucosal damage in the upper gastrointestinal tract. NSAIDs inhibit cyclooxygenase and consequently block the synthesis of prostaglandins, which have cytoprotective effects in gastric mucosa; these effects on prostaglandins have been thought to be major cause of NSAID-induced ulceration. However, studies indicate that additional NSAID-related mechanisms are involved in formation of gastric lesions. Here, we used a toxicoproteomic approach to understand cellular processes that are affected by NSAIDs in mouse stomach tissue during ulcer formation. We used fluorogenic derivatization-liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS)-which consists of fluorogenic derivatization, separation and fluorescence detection by LC, and identification by LC-tandem mass spectrometry-in this proteomic analysis of pyrolic stomach from control and diclofenac (Dic)-treated mice. FD-LC-MS/MS results were highly sensitive; 10 differentially expressed proteins were identified, and all 10 were more highly expressed in Dic-treated mice than in control mice. Specifically, expression levels of 78 kDa glucose-regulated protein (GRP78), heat shock protein beta-1 (HSP27), and gastrin were more than 3-fold higher in Dic-treated mice than in control mice. This study represents a first step to ascertain the precise actors of early NSAID-induced ulceration.
Collapse
Affiliation(s)
- Kaname Ohyama
- Department of Environmental and Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Enhanced antitumor effect of lower-dose and longer-term CPT-11 treatment in combination with low-dose celecoxib against neuroblastoma xenografts. Int J Clin Oncol 2011; 18:116-25. [PMID: 22127347 DOI: 10.1007/s10147-011-0354-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 11/07/2011] [Indexed: 01/07/2023]
Abstract
BACKGROUND We have previously reported that the combination of low-dose (5.9 mg/kg/dose) irinotecan (CPT-11) and simultaneous low-dose (5 mg/kg/dose) celecoxib, a cyclooxygenase-2 inhibitor, administered for 20 consecutive days, had synergistic antitumor activity against human neuroblastoma xenografts in mice. Possible further antitumor efficacy of lower-dose and longer-term CPT-11 combined with simultaneous low-dose celecoxib was investigated for chemosensitive TNB9 and multi-drug resistant TS-N-2nu neuroblastoma xenografts. METHODS The time from initiation of drug treatment to tumor regrowth, tumor doubling time, and body weight change of mice were evaluated between treatments with lower-dose (3 mg/kg/dose) CPT-11 alone and the combination of the two drugs for 60 consecutive days. Induction of apoptosis and autophagy during treatments were analyzed by immunoblotting, real-time quantitative RT-PCR, TUNEL assay, and immunohistochemistry. RESULTS The combination of the two drugs administered for 60 consecutive days resulted in a significantly longer time to tumor regrowth (p < 0.011) and longer tumor doubling time (p < 0.013) in both xenografts than for the lower-dose CPT-11 therapy alone, without substantial side effects in mice. In particular, five of six TNB9 tumors treated with the combination of the two drugs showed no regrowth even 120 or 150 days after the initiation of therapy. The combined treatment suppressed the induction of autophagy leading to apoptosis in TNB9 tumors, and induced autophagy to enhance the antitumor effect in TS-N-2nu tumors. CONCLUSION Our findings demonstrate that lower-dose and longer-term CPT-11 treatment in combination with simultaneous low-dose celecoxib enhances antitumor activity and can successfully eradicate most of the neuroblastoma xenografts.
Collapse
|
127
|
John L, Thomas S, Herchenröder O, Pützer BM, Schaefer S. Hepatitis E virus ORF2 protein activates the pro-apoptotic gene CHOP and anti-apoptotic heat shock proteins. PLoS One 2011; 6:e25378. [PMID: 21966512 PMCID: PMC3179511 DOI: 10.1371/journal.pone.0025378] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/02/2011] [Indexed: 12/11/2022] Open
Abstract
Background Hepatitis E virus (HEV) is a non-enveloped plus-strand RNA virus that causes acute hepatitis. The capsid protein open reading frame 2 (ORF2) is known to induce endoplasmic reticulum stress in ORF2 expressing cells. Methodology/Principal Findings In this study we found that HEV ORF2 activates the expression of the pro-apoptotic gene C/EBP homologous protein (CHOP). ORF2 stimulates the CHOP promoter mainly through AARE (amino acid response elements) and to a minor extent the ERSE (endoplasmic reticulum stress response elements). Activating transcription factor 4 (ATF4) protein binds and activates the AARE regulatory sites of the CHOP promoter. ORF2 expression also leads to increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) that in turn initiates the translation of ATF4 mRNA. The pro-apoptotic gene CHOP is an important trigger to initiate endoplasmic reticulum stress induced apoptosis. However, the activation of CHOP by ORF2 in this study did not induce apoptosis, nor did BCL2-associated X protein (Bax) translocate to mitochondria. Microarray analysis revealed an ORF2 specific increased expression of chaperones Hsp72, Hsp70B', and co-chaperone Hsp40. Co-immunoprecipitation (Co-IP) and in silico molecular docking analysis suggests that HEV ORF2 interacts with Hsp72. In addition, Hsp72 shows nuclear accumulation in ORF2 expressing cells. Conclusions/Significance These data provide new insight into simultaneously occurring counter-acting effects of HEV ORF2 that may be part of a strategy to prevent host suicide before completion of the viral replication cycle.
Collapse
Affiliation(s)
- Lijo John
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock Medical School, Rostock, Germany
| | - Saijo Thomas
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock Medical School, Rostock, Germany
| | - Ottmar Herchenröder
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock Medical School, Rostock, Germany
| | - Brigitte M. Pützer
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock Medical School, Rostock, Germany
- * E-mail:
| | - Stephan Schaefer
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock Medical School, Rostock, Germany
| |
Collapse
|
128
|
Franceschelli S, Moltedo O, Amodio G, Tajana G, Remondelli P. In the Huh7 Hepatoma Cells Diclofenac and Indomethacin Activate Differently the Unfolded Protein Response and Induce ER Stress Apoptosis. Open Biochem J 2011; 5:45-51. [PMID: 21966325 PMCID: PMC3182409 DOI: 10.2174/1874091x01105010045] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 12/21/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are cyclooxygenases (COXs) inhibitors frequently used in the treatment of acute and chronic inflammation. Side effects of NSAIDs are often due to their ability to induce apoptosis. Located at the Endoplasmic Reticulum membranes a tripartite signalling pathway, collectively known as the Unfolded Protein Response (UPR), decides survival or death of cells exposed to cytotoxic agents. To shed light on the molecular events responsible for the cytotoxicity of NSAIDs, we analysed the ability of diclofenac and indomethacin to activate the UPR in the human hepatoma cell line Huh7. We report that both NSAIDs can induce differently the single arms of the UPR. We show that indomethacin turns on the PERK and, only in part, the ATF6 and IRE1 pathways. Instead, diclofenac reduces the expression of ATF6 and does not stimulate the IRE1 endonuclease, which drives the expression of the prosurvival factor XBP1. Diclofenac, as well as indomethacin, is able to activate efficiently only the PERK pathway of the UPR, which induces the expression of the proapoptotic GADD153/CHOP protein. Our results highlight the importance of the UPR in evaluating the potential of drugs to induce apoptosis.
Collapse
Affiliation(s)
- Silvia Franceschelli
- Dipartimento di Scienze Farmaceutiche e Biomediche, University of Salerno, via Ponte Don Melillo, I-84084, Fisciano-Salerno, Italy
| | | | | | | | | |
Collapse
|
129
|
Roberts HR, Smartt HJM, Greenhough A, Moore AE, Williams AC, Paraskeva C. Colon tumour cells increase PGE(2) by regulating COX-2 and 15-PGDH to promote survival during the microenvironmental stress of glucose deprivation. Carcinogenesis 2011; 32:1741-7. [PMID: 21926111 DOI: 10.1093/carcin/bgr210] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Due to poor tumour-associated vasculature, tumour cells are subjected to a fluctuating microenvironment with periods of limited oxygen and glucose availability. Adaptive mechanisms to adverse microenvironments are important for tumour cell survival. The cyclooxygenase (COX)-2/prostaglandin E(2) (PGE(2)) pathway has key roles in colorectal tumorigenesis. Although glucose is important as an energy source and in maintaining endoplasmic reticulum homeostasis, relatively little is known regarding how tumour cells adapt to the microenvironmental stress of reduced glucose availability. Here, we report the novel findings that glucose deprivation of colorectal tumour cells not only increases COX-2 expression but also decreases 15-hydroxyprostaglandin dehydrogenase (15-PGDH) expression, resulting in increased extracellular PGE(2). Furthermore, we have shown that PGE(2) promotes tumour cell survival during glucose deprivation. Glucose deprivation enhances phosphoinositide 3-kinase/Akt activity, which has a role in both the up-regulation of COX-2 and down-regulation of 15-PGDH. Glucose deprivation also activates the unfolded protein response (UPR) resulting in elevated C/EBP-homologous protein (CHOP) expression. Interestingly, inhibiting CHOP expression by small interfering RNA during glucose deprivation attenuates the reduction in 15-PGDH expression. This is the first report linking activation of the UPR with a reduction in expression of tumour-suppressive 15-PGDH and may have implications for tumour cells' ability to survive exposure to therapeutic agents that activate the UPR. Our data suggest that diverse microenvironmental stresses converge to regulate PGE(2) as a common and crucial mediator of cell survival during adaptation to the tumour microenvironment and may lead to novel chemopreventive and therapeutic strategies.
Collapse
Affiliation(s)
- Heather R Roberts
- School of Cellular and Molecular Medicine, Cancer Research UK Colorectal Tumour Biology Research Group, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
130
|
Ji YL, Wang H, Zhao XF, Wang Q, Zhang C, Zhang Y, Zhao M, Chen YH, Meng XH, Xu DX. Crosstalk Between Endoplasmic Reticulum Stress and Mitochondrial Pathway Mediates Cadmium-Induced Germ Cell Apoptosis in Testes. Toxicol Sci 2011; 124:446-59. [DOI: 10.1093/toxsci/kfr232] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
131
|
Pessayre D, Fromenty B, Berson A, Robin MA, Lettéron P, Moreau R, Mansouri A. Central role of mitochondria in drug-induced liver injury. Drug Metab Rev 2011; 44:34-87. [PMID: 21892896 DOI: 10.3109/03602532.2011.604086] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A frequent mechanism for drug-induced liver injury (DILI) is the formation of reactive metabolites that trigger hepatitis through direct toxicity or immune reactions. Both events cause mitochondrial membrane disruption. Genetic or acquired factors predispose to metabolite-mediated hepatitis by increasing the formation of the reactive metabolite, decreasing its detoxification, or by the presence of critical human leukocyte antigen molecule(s). In other instances, the parent drug itself triggers mitochondrial membrane disruption or inhibits mitochondrial function through different mechanisms. Drugs can sequester coenzyme A or can inhibit mitochondrial β-oxidation enzymes, the transfer of electrons along the respiratory chain, or adenosine triphosphate (ATP) synthase. Drugs can also destroy mitochondrial DNA, inhibit its replication, decrease mitochondrial transcripts, or hamper mitochondrial protein synthesis. Quite often, a single drug has many different effects on mitochondrial function. A severe impairment of oxidative phosphorylation decreases hepatic ATP, leading to cell dysfunction or necrosis; it can also secondarily inhibit ß-oxidation, thus causing steatosis, and can also inhibit pyruvate catabolism, leading to lactic acidosis. A severe impairment of β-oxidation can cause a fatty liver; further, decreased gluconeogenesis and increased utilization of glucose to compensate for the inability to oxidize fatty acids, together with the mitochondrial toxicity of accumulated free fatty acids and lipid peroxidation products, may impair energy production, possibly leading to coma and death. Susceptibility to parent drug-mediated mitochondrial dysfunction can be increased by factors impairing the removal of the toxic parent compound or by the presence of other medical condition(s) impairing mitochondrial function. New drug molecules should be screened for possible mitochondrial effects.
Collapse
Affiliation(s)
- Dominique Pessayre
- INSERM, U, Centre de Recherche Bichat Beaujon CRB, Faculté de Médecine Xavier-Bichat, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
132
|
Yamakawa N, Suemasu S, Matoyama M, Tanaka KI, Katsu T, Miyata K, Okamoto Y, Otsuka M, Mizushima T. Synthesis and biological evaluation of loxoprofen derivatives. Bioorg Med Chem 2011; 19:3299-311. [DOI: 10.1016/j.bmc.2011.04.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
|
133
|
Mizushima T. Drug discovery and development focusing on existing medicines: drug re-profiling strategy. J Biochem 2011; 149:499-505. [PMID: 21436140 DOI: 10.1093/jb/mvr032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
As a new strategy for drug discovery and development, I focus on drug re-profiling as a way to identify new treatments for diseases. In this strategy, the actions of existing medicines, whose safety and pharmacokinetic effects in humans have already been confirmed clinically and approved for use, are examined comprehensively at the molecular level and the results used for the development of new medicines. This strategy is based on the fact that we still do not understand the underlying mechanisms of action of many existing medicines, and as such the cellular responses that give rise to their main effects and side effects are yet to be elucidated. To this extent, identification of the mechanisms underlying the side effects of medicines offers a means for us to develop safer drugs. The results can also be used for developing existing drugs for use as medicines for the treatment of other diseases. Promoting this research strategy could provide breakthroughs in drug discovery and development.
Collapse
Affiliation(s)
- Tohru Mizushima
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
134
|
PETERSEN SUSANNEGERMANN, MILLER BENF, HANSEN METTE, KJAER MICHAEL, HOLM LARS. Exercise and NSAIDs. Med Sci Sports Exerc 2011; 43:425-31. [DOI: 10.1249/mss.0b013e3181f27375] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
135
|
Jendrossek V. Targeting apoptosis pathways by Celecoxib in cancer. Cancer Lett 2011; 332:313-24. [PMID: 21345578 DOI: 10.1016/j.canlet.2011.01.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 12/23/2010] [Accepted: 01/01/2011] [Indexed: 12/19/2022]
Abstract
Celecoxib is a paradigmatic selective inhibitor of cyclooxygenase-2 (COX-2). This anti-inflammatory drug has potent anti-tumor activity in a wide variety of human epithelial tumor types, such as colorectal, breast, non-small cell lung, and prostate cancers. Up to now, the drug found application in cancer prevention in patients with familial adenomatous polyposis. Moreover, the use of Celecoxib is currently tested in the prevention and treatment of pancreatic, breast, ovarian, non-small cell lung cancer and other advanced human epithelial cancers. Induction of apoptosis contributes to the anti-neoplastic activity of Celecoxib. In most cellular systems Celecoxib induces apoptosis independently from its COX-2 inhibitory action via a mitochondrial apoptosis pathway which is however, not inhibited by overexpression of Bcl-2. In addition, Celecoxib exerts antagonistic effects on the anti-apoptotic proteins Mcl-1 and survivin. Consequently, the use of Celecoxib may be of specific value for the treatment of apoptosis-resistant tumors with overexpression of Bcl-2, Mcl-1, or survivin as single drug or in combination with radiotherapy, chemotherapy, or targeted pro-apoptotic drugs that are inhibited by survivin, Bcl-2 or Mcl-1. As COX-2 inhibition has been associated with cardiovascular toxicity, the value of drug derivatives without COX-2 inhibitory action should be validated for prevention and treatment of human epithelial tumors to reduce the risk for heart attack or stroke. However, its additional COX-2 inhibitory action may qualify Celecoxib for a cautious use in COX-2-dependent epithelial tumors, where the drug could additionally suppress COX-2-mediated growth and survival promoting signals from the tumor and the stromal cells.
Collapse
Affiliation(s)
- Verena Jendrossek
- Institute for Cell Biology (Cancer Research), Department of Molecular Cell Biology, University of Duisburg-Essen Medical School, Virchowstrasse 173, 45122 Essen, Germany.
| |
Collapse
|
136
|
Styner M, Sen B, Xie Z, Case N, Rubin J. Indomethacin promotes adipogenesis of mesenchymal stem cells through a cyclooxygenase independent mechanism. J Cell Biochem 2011; 111:1042-50. [PMID: 20672310 DOI: 10.1002/jcb.22793] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulation of mesenchymal stem cell (MSC) lineage selection is important for the generation of bone mass. Inhibition of cyclooxygenase-2 (COX2) may increase adipogenesis at the cost of decreasing osteoprogenitor output. Here we investigated the role of COX2 and its products during MSC differentiation. Indomethacin stimulated adipogenesis (increased aP2, adiponectin and lipid droplets) of CH310T1/2 stem cells as well as marrow-derived MSCs to a degree similar to the PPARγ2 ligand, rosiglitazone. Unlike rosiglitazone, indomethacin significantly upregulated PPARγ2 expression. Indomethacin and the COX2 specific inhibitor celecoxib suppressed PGE2 production, but celecoxib did not induce adipogenesis. As well, addition of PGE2 failed to reverse indomethacin induced adipogenesis, indicating that indomethacin's effects were prostaglandin independent. In MSCs over-expressing PPARγ2 and RXRα, indomethacin did not increase PPAR-induced transcription, while rosiglitazone and 15d-PGJ2 did (1.7- and 1.3-fold, respectively, P < 0.001). We considered whether indomethacin might directly affect C/EBPβ proximally to PPARγ2 induction. Indomethacin significantly increased C/EBPβ expression and protein within 24 h of addition. These results indicate that indomethacin promotes adipogenesis by increasing C/EBPβ and PPARγ2 expression in a prostaglandin-independent fashion. This effect of indomethacin is pertinent to potential deleterious effects of this commonly used anti-inflammatory drug on bone remodeling and tissue healing.
Collapse
Affiliation(s)
- Maya Styner
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7170, USA.
| | | | | | | | | |
Collapse
|
137
|
Xu K, Gao H, Shu HKG. Celecoxib Can Induce Vascular Endothelial Growth Factor Expression and Tumor Angiogenesis. Mol Cancer Ther 2011; 10:138-47. [DOI: 10.1158/1535-7163.mct-10-0415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
138
|
Oh YT, Liu X, Yue P, Kang S, Chen J, Taunton J, Khuri FR, Sun SY. ERK/ribosomal S6 kinase (RSK) signaling positively regulates death receptor 5 expression through co-activation of CHOP and Elk1. J Biol Chem 2010; 285:41310-41319. [PMID: 21044953 PMCID: PMC3009856 DOI: 10.1074/jbc.m110.153775] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/26/2010] [Indexed: 01/01/2023] Open
Abstract
Death receptor 5 (DR5) is a death domain-containing transmembrane receptor that triggers apoptosis upon binding to its ligand or when overexpressed. Its expression is induced by certain small molecule drugs, including celecoxib, through mechanisms that have not been fully elucidated. The current study has revealed a novel ERK/ribosomal S6 kinase (RSK)-dependent mechanism that regulates DR5 expression primarily using celecoxib as a DR5 inducer. Both C/EBP homologous protein (CHOP) and Elk1 are required for celecoxib-induced DR5 expression based on promoter deletion and mutation analysis and siRNA-mediated gene silencing results. Co-expression of both CHOP and Elk1 exhibited enhanced effects on increasing DR5 promoter activity and DR5 expression, indicating that CHOP and Elk1 co-operatively regulate DR5 expression. Because Elk1 is an ERK-regulated protein, we accordingly found that celecoxib increased the levels of phosphorylated ERK1/2, RSK2, and Elk1. Inhibition of either ERK signaling with a MEK inhibitor or ERK1/2 siRNA, or RSK2 signaling with an RSK2 inhibitor or RSK2 siRNA abrogated DR5 up-regulation by celecoxib as well as other agents. Moreover, these inhibitions suppressed celecoxib-induced CHOP up-regulation. Thus, ERK/RSK-dependent, CHOP and Elk1-mediated mechanisms are critical for DR5 induction. Additionally, celecoxib increased CHOP promoter activity in an ATF4-dependent manner, and siRNA-mediated blockade of ATF4 abrogated both CHOP induction and DR5 up-regulation, indicating that ATF4 is involved in celecoxib-induced CHOP and DR5 expression. Collectively, we conclude that small molecules such as celecoxib induce DR5 expression through activating ERK/RSK signaling and subsequent Elk1 activation and ATF4-dependent CHOP induction.
Collapse
Affiliation(s)
- You-Take Oh
- From the Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia 30322
| | - Xiangguo Liu
- From the Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia 30322
- the School of Life Sciences, Shandong University, Jinan City, Shandong Province 250100, China, and
| | - Ping Yue
- From the Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia 30322
| | - Sumin Kang
- From the Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia 30322
| | - Jing Chen
- From the Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia 30322
| | - Jack Taunton
- the Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94117
| | - Fadlo R. Khuri
- From the Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia 30322
| | - Shi-Yong Sun
- From the Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia 30322
| |
Collapse
|
139
|
LoGuidice A, Ramirez-Alcantara V, Proli A, Gavillet B, Boelsterli UA. Pharmacologic targeting or genetic deletion of mitochondrial cyclophilin D protects from NSAID-induced small intestinal ulceration in mice. Toxicol Sci 2010; 118:276-85. [PMID: 20668000 DOI: 10.1093/toxsci/kfq226] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Small intestinal ulceration is a frequent and potentially serious condition associated with nonselective cyclooxygenase 1/2 inhibitors (nonsteroidal anti-inflammatory drugs, NSAIDs) including diclofenac (DCF). An initial topical effect involving mitochondria has been implicated in the pathogenesis, but the exact mechanisms of NSAID-induced enteropathy are unknown. We aimed at investigating whether DCF caused enterocyte demise via the mitochondrial permeability transition (mPT) and whether inhibition of critical mPT regulators might protect the mucosa from DCF injury. Cultured enterocytes (IEC-6) exposed to DCF readily underwent mPT-mediated cell death. We then targeted mitochondrial cyclophilin D (CypD), a key regulator of the mPT, in a mouse model of NSAID enteropathy. C57BL/6J mice were treated with an ulcerogenic dose of DCF (60 mg/kg, ip), followed (+ 1 h) by a non-cholestatic dose (10 mg/kg, ip) of the CypD inhibitor, cyclosporin A (CsA). CsA greatly reduced the extent of small intestinal ulceration. To avoid potential calcineurin-mediated effects, we used the non-immunosuppressive cyclosporin analog, D-MeAla(3)-EtVal(4)-cyclosporin (Debio 025). Debio 025 similarly protected the mucosa from DCF injury. To exclude drug-drug interactions, we exposed mice genetically deficient in mitochondrial CypD (peptidyl-prolyl cis-trans isomerase F [Ppif(-/-)]) to DCF. Ppif-null mice were largely protected from the ulcerogenic effects of DCF, whereas their wild-type littermates developed typical enteropathy. Enterocyte injury was preceded by upregulation of the proapoptotic transcription factor C/EBP homologous protein (Chop). Chop-null mice were refractory to DCF enteropathy, suggesting a critical role of endoplasmic reticulum stress induced by DCF. In conclusion, mitochondrial CypD plays a key role in NSAID-induced enteropathy, lending itself as a potentially new therapeutic target for cytoprotective intervention.
Collapse
Affiliation(s)
- Amanda LoGuidice
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, Connecticut 06269, USA
| | | | | | | | | |
Collapse
|
140
|
Park SH, Choi HJ, Yang H, Do KH, Kim J, Moon Y. Repression of Peroxisome Proliferator-Activated Receptor γ by Mucosal Ribotoxic Insult-Activated CCAAT/Enhancer-Binding Protein Homologous Protein. THE JOURNAL OF IMMUNOLOGY 2010; 185:5522-30. [DOI: 10.4049/jimmunol.1001315] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
141
|
Namba T, Hoshino T, Suemasu S, Takarada-Iemata M, Hori O, Nakagata N, Yanaka A, Mizushima T. Suppression of expression of endoplasmic reticulum chaperones by Helicobacter pylori and its role in exacerbation of non-steroidal anti-inflammatory drug-induced gastric lesions. J Biol Chem 2010; 285:37302-13. [PMID: 20861013 DOI: 10.1074/jbc.m110.148882] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Both the use of non-steroidal anti-inflammatory drugs (NSAIDs), such as indomethacin, and infection with Helicobacter pylori are major causes of gastric ulcers. Although some clinical studies suggest that infection with H. pylori increases the risk of developing NSAID-induced gastric lesions, the molecular mechanism governing this effect is unknown. We recently found that in cultured gastric cells, expression of endoplasmic reticulum (ER) chaperones (such as 150-kDa oxygen-regulated protein (ORP150) and glucose-regulated protein 78 (GRP78)) is induced by NSAIDs and confers protection against NSAID-induced apoptosis, which is important in the development of NSAID-induced gastric lesions. In this study we have found that co-culture of gastric cells with H. pylori suppresses the expression of ER chaperones. This suppression was regulated at the level of transcription and accompanied by a reduction in the level of activating transcription factor 6 (ATF6), one of the transcription factors for ER chaperone genes. In vivo, inoculation of mice with H. pylori suppressed the expression of ER chaperones at gastric mucosa both with and without administration of indomethacin. Inoculation with H. pylori also stimulated formation of indomethacin-induced gastric lesions and mucosal cell death. In addition, we found that heterozygous ORP150-deficient mice are sensitive to the development of indomethacin-induced gastric lesions and mucosal cell death. The results of this study suggest that H. pylori exacerbates NSAID-induced gastric lesions through suppression of expression of ER chaperones, which stimulates NSAID-induced mucosal cell death.
Collapse
Affiliation(s)
- Takushi Namba
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, USA
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Tsukano H, Gotoh T, Endo M, Miyata K, Tazume H, Kadomatsu T, Yano M, Iwawaki T, Kohno K, Araki K, Mizuta H, Oike Y. The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2010; 30:1925-32. [PMID: 20651282 DOI: 10.1161/atvbaha.110.206094] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To elucidate whether and how the endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP) pathway in macrophages is involved in the rupture of atherosclerotic plaques. METHODS AND RESULTS Increases in macrophage-derived foam cell death in coronary atherosclerotic plaques cause the plaque to become vulnerable, thus resulting in acute coronary syndrome. The ER stress-CHOP/growth arrest and DNA damage-inducible gene-153 (GADD153) pathway is induced in the macrophage-derived cells in atherosclerotic lesions and is involved in plaque formation. However, the role of CHOP in the final stage of atherosclerosis has not been fully elucidated. Many CHOP-expressing macrophages showed apoptosis in advanced ruptured atherosclerotic lesions in wild-type mice, whereas few apoptotic cells were observed in Chop(-/-) mice. The rupture of atherosclerotic plaques was significantly reduced in high cholesterol-fed Chop(-/-)/Apoe(-/-) mice compared with Chop(+/+)/Apoe(-/-) mice. Furthermore, using mice that underwent bone marrow transplantation, we showed that expression of CHOP in macrophages significantly contributes to the formation of ruptures. By using primary cultured macrophages, we further showed that unesterified free cholesterol derived from incorporated denatured low-density lipoprotein was accumulated in the ER and induced ER stress-mediated apoptosis in a CHOP-Bcl2-associated X protein (Bax) pathway-dependent manner. CONCLUSIONS The ER stress-CHOP-Bax-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Hiroto Tsukano
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Diclofenac-induced apoptosis in the neuroblastoma cell line SH-SY5Y: possible involvement of the mitochondrial superoxide dismutase. J Biomed Biotechnol 2010; 2010:801726. [PMID: 20625417 PMCID: PMC2896885 DOI: 10.1155/2010/801726] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/18/2010] [Accepted: 04/10/2010] [Indexed: 11/30/2022] Open
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug, induces apoptosis on the neuroblastoma cell line SH-SY5Y through a mitochondrial dysfunction, affecting some antioxidant mechanisms. Indeed, the time- and dose-dependent increase of apoptosis is associated to an early enhancement of the reactive oxygen species (ROS). Mitochondrial superoxide dismutase (SOD2) plays a crucial role in the defence against ROS, thus protecting against several apoptotic stimuli. Diclofenac decreased the protein levels and the enzymatic activity of SOD2, without any significant impairment of the corresponding mRNA levels in the SH-SY5Y extracts. When cells were incubated with an archaeal exogenous thioredoxin, an attenuation of the diclofenac-induced apoptosis was observed, together with an increase of SOD2 protein levels. Furthermore, diclofenac impaired the mitochondrial membrane potential, leading to a release of cytochrome c. These data suggest that mitochondria are involved in the diclofenac-induced apoptosis of SH-SY5Y cells and point to a possible role of SOD2 in this process.
Collapse
|
144
|
Mizushima T. Molecular Mechanism for Various Pharmacological Activities of NSAIDS. Pharmaceuticals (Basel) 2010; 3:1614-1636. [PMID: 27713320 PMCID: PMC4034000 DOI: 10.3390/ph3051614] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 04/29/2010] [Accepted: 05/11/2010] [Indexed: 12/21/2022] Open
Abstract
The anti-inflammatory action of non-steroidal anti-inflammatory drugs (NSAIDs) is mediated through their inhibitory effects on cyclooxygenase (COX) activity. On the other hand, NSAID use is often associated with gastrointestinal complications. The inhibition of COX by NSAIDs is not the sole explanation for the gastrointestinal side effects of NSAIDs. Furthermore, recent epidemiological studies have revealed that prolonged NSAID use reduces the risk of cancer and Alzheimer’s disease (AD) and a COX-independent unknown mechanism is suggested to be involved in these activities of NSAIDs. In this article, I review our recent work on the COX-independent mechanism involved in NSAID-induced gastric lesions and anti-tumor and anti-AD activities of NSAIDs. Using DNA microarray analysis, we found that NSAIDs affect expression of various genes in a COX-independent manner. We found that membrane permeabilization activity of NSAIDs and resulting NSAID-induced apoptosis are involved in NSAID-induced gastric lesions. On the other hand, induction of expression of tight junction-related genes and endoplasmic reticulum chaperones were suggested to be involved in anti-tumor and anti-AD, respectively, activities of NSAIDs. These results suggest that NSAIDs affect expression of various genes in a COX-independent manner, which is involved in various pharmacological activities of NSAIDs.
Collapse
Affiliation(s)
- Tohru Mizushima
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan.
| |
Collapse
|
145
|
Abstract
Mitochondrial dysfunction is a major mechanism of liver injury. A parent drug or its reactive metabolite can trigger outer mitochondrial membrane permeabilization or rupture due to mitochondrial permeability transition. The latter can severely deplete ATP and cause liver cell necrosis, or it can instead lead to apoptosis by releasing cytochrome c, which activates caspases in the cytosol. Necrosis and apoptosis can trigger cytolytic hepatitis resulting in lethal fulminant hepatitis in some patients. Other drugs severely inhibit mitochondrial function and trigger extensive microvesicular steatosis, hypoglycaemia, coma, and death. Milder and more prolonged forms of drug-induced mitochondrial dysfunction can also cause macrovacuolar steatosis. Although this is a benign liver lesion in the short-term, it can progress to steatohepatitis and then to cirrhosis. Patient susceptibility to drug-induced mitochondrial dysfunction and liver injury can sometimes be explained by genetic or acquired variations in drug metabolism and/or elimination that increase the concentration of the toxic species (parent drug or metabolite). Susceptibility may also be increased by the presence of another condition, which also impairs mitochondrial function, such as an inborn mitochondrial cytopathy, beta-oxidation defect, certain viral infections, pregnancy, or the obesity-associated metabolic syndrome. Liver injury due to mitochondrial dysfunction can have important consequences for pharmaceutical companies. It has led to the interruption of clinical trials, the recall of several drugs after marketing, or the introduction of severe black box warnings by drug agencies. Pharmaceutical companies should systematically investigate mitochondrial effects during lead selection or preclinical safety studies.
Collapse
|
146
|
Huang S, Sinicrope FA. Celecoxib-induced apoptosis is enhanced by ABT-737 and by inhibition of autophagy in human colorectal cancer cells. Autophagy 2010; 6:256-69. [PMID: 20104024 DOI: 10.4161/auto.6.2.11124] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Apoptosis and autophagy have been shown to be negatively regulated by prosurvival Bcl-2 proteins. We determined whether the anticancer agent celecoxib, alone or combined with a small molecule Bcl-2/Bcl-x(L) antagonist (ABT-737), can induce autophagy in colon cancer cells. Furthermore, we determined whether inhibition of autophagy can drive colon cancer cells into apoptosis. Celecoxib was shown to induce apoptosis that was attenuated by ectopic Bcl-2 or Bax knockout. ABT-737 synergistically enhanced celecoxib-induced cytotoxicity that was primarily due to apoptosis as shown by caspase cleavage and Annexin V labeling that was attenuated by a pan caspase inhibitor (z-VAD-fmk). Celecoxib triggered conversion of the autophagosome-associated protein light chain 3 (LC3) from a cytosolic (LC3I) to a membrane-bound (LC3II) form, as shown by immunoblotting and a punctate fluorescence pattern of an ectopic GFP-LC3 protein. Celecoxib-induced conversion of LC3 was due to autophagy induction, as supported using the lysosome inhibitor, bafilomycin A1, which produced an accumulation of LC3II. ABT-737 enhanced celecoxib-induced LC3 conversion and p62/SQSTM1 degradation. Inhibition of autophagy was then studied in an effort to drive cells into apoptosis. 3-methyladenine (3-MA) blocked LC3 conversion, and 3-MA and wortmannin significantly enhanced apoptotic signaling in cells treated with celecoxib plus ABT-737. Furthermore, knockdown of Atg8/LC3B or Vps34 using siRNA attenuated p62 degradation and enhanced apoptotic signaling; Vps34 siRNA potentiated annexin V(+), PI(-) labeled cells induced by celecoxib + ABT-737. In conclusion, celecoxib induces apoptosis and autophagy that can both be potentiated by ABT-737. Inhibition of autophagy was shown to enhance apoptosis, suggesting a novel therapeutic strategy against colon cancer.
Collapse
Affiliation(s)
- Shengbing Huang
- Divisions of Oncology and Gastroenterology, Fiterman Center for Digestive Diseases and Mayo Cancer Center, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
147
|
Yang H, Park SH, Choi HJ, Moon Y. The integrated stress response-associated signals modulates intestinal tumor cell growth by NSAID-activated gene 1 (NAG-1/MIC-1/PTGF- ). Carcinogenesis 2010; 31:703-11. [PMID: 20130018 DOI: 10.1093/carcin/bgq008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hyun Yang
- Department of Microbiology and Immunology and Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-813, Korea
| | | | | | | |
Collapse
|
148
|
Ishihara T, Tanaka KI, Tashiro S, Yoshida K, Mizushima T. Protective effect of rebamipide against celecoxib-induced gastric mucosal cell apoptosis. Biochem Pharmacol 2010; 79:1622-33. [PMID: 20132796 DOI: 10.1016/j.bcp.2010.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/24/2010] [Accepted: 01/25/2010] [Indexed: 02/07/2023]
Abstract
A major clinical problem encountered with the use of non-steroidal anti-inflammatory drugs (NSAIDs) is gastrointestinal complications. We have previously suggested that both decreases in prostaglandin E(2) (PGE(2)) levels and mucosal apoptosis are involved in the development of NSAID-produced gastric lesions and that this apoptosis is mediated by an increase in the intracellular Ca(2+) concentration and the resulting endoplasmic reticulum (ER) stress response and mitochondrial dysfunction. Celecoxib and rebamipide are being used clinically as a safer NSAID and an anti-ulcer drug, respectively. In this study, we have examined the effect of rebamipide on celecoxib-induced production of gastric lesions. In mice pre-administered with a low dose of indomethacin, orally administered rebamipide suppressed celecoxib-induced mucosal apoptosis and lesion production but did not decrease in PGE(2) levels in the stomach. Rebamipide also suppressed celecoxib-induced increases in intracellular Ca(2+) concentration, the ER stress response, mitochondrial dysfunction and apoptosis in vitro. We also found that rebamipide suppresses the increases in intracellular Ca(2+) concentration induced by an activator of voltage-dependent L-type Ca(2+) channels and that another blocker of this channel suppresses celecoxib-induced increases in intracellular Ca(2+) concentration. These results suggest that celecoxib activates voltage-dependent L-type Ca(2+) channels and that rebamipide blocks this activation, resulting in suppression of celecoxib-induced apoptosis. We believe that this novel activity of rebamipide may play an important role in the protection of gastric mucosa against the formation of celecoxib-induced lesions.
Collapse
|
149
|
Yamakawa N, Suemasu S, Kimoto A, Arai Y, Ishihara T, Yokomizo K, Okamoto Y, Otsuka M, Tanaka KI, Mizushima T. Low Direct Cytotoxicity of Loxoprofen on Gastric Mucosal Cells. Biol Pharm Bull 2010; 33:398-403. [DOI: 10.1248/bpb.33.398] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Naoki Yamakawa
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University
| | - Shintaro Suemasu
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University
| | - Ayumi Kimoto
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University
| | - Yasuhiro Arai
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University
| | - Tomoaki Ishihara
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University
| | - Kazumi Yokomizo
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University
| | - Yoshinari Okamoto
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University
| | - Masami Otsuka
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University
| | - Ken-ichiro Tanaka
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University
| | - Tohru Mizushima
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
150
|
Retinal ganglion cell death induced by endoplasmic reticulum stress in a chronic glaucoma model. Brain Res 2010; 1308:158-66. [DOI: 10.1016/j.brainres.2009.10.025] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/09/2009] [Accepted: 10/09/2009] [Indexed: 12/31/2022]
|