101
|
Lee SA, Huang KC. Epigenetic profiling of human brain differential DNA methylation networks in schizophrenia. BMC Med Genomics 2016; 9:68. [PMID: 28117656 PMCID: PMC5260790 DOI: 10.1186/s12920-016-0229-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Epigenetics of schizophrenia provides important information on how the environmental factors affect the genetic architecture of the disease. DNA methylation plays a pivotal role in etiology for schizophrenia. Previous studies have focused mostly on the discovery of schizophrenia-associated SNPs or genetic variants. As postmortem brain samples became available, more and more recent studies surveyed transcriptomics of the diseases. In this study, we constructed protein-protein interaction (PPI) network using the disease associated SNP (or genetic variants), differentially expressed disease genes and differentially methylated disease genes (or promoters). By combining the different datasets and topological analyses of the PPI network, we established a more comprehensive understanding of the development and genetics of this devastating mental illness. Results We analyzed the previously published DNA methylation profiles of prefrontal cortex from 335 healthy controls and 191 schizophrenic patients. These datasets revealed 2014 CpGs identified as GWAS risk loci with the differential methylation profile in schizophrenia, and 1689 schizophrenic differential methylated genes (SDMGs) identified with predominant hypomethylation. These SDMGs, combined with the PPIs of these genes, were constructed into the schizophrenic differential methylation network (SDMN). On the SDMN, there are 10 hypermethylated SDMGs, including GNA13, CAPNS1, GABPB2, GIT2, LEFTY1, NDUFA10, MIOS, MPHOSPH6, PRDM14 and RFWD2. The hypermethylation to differential expression network (HyDEN) were constructed to determine how the hypermethylated promoters regulate gene expression. The enrichment analyses of biochemical pathways in HyDEN, including TNF alpha, PDGFR-beta signaling, TGF beta Receptor, VEGFR1 and VEGFR2 signaling, regulation of telomerase, hepatocyte growth factor receptor signaling, ErbB1 downstream signaling and mTOR signaling pathway, suggested that the malfunctioning of these pathways contribute to the symptoms of schizophrenia. Conclusions The epigenetic profiles of DNA differential methylation from schizophrenic brain samples were investigated to understand the regulatory roles of SDMGs. The SDMGs interplays with SCZCGs in a coordinated fashion in the disease mechanism of schizophrenia. The protein complexes and pathways involved in SDMN may be responsible for the etiology and potential treatment targets. The SDMG promoters are predominantly hypomethylated. Increasing methylation on these promoters is proposed as a novel therapeutic approach for schizophrenia. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0229-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng-An Lee
- Department of Information Management, Kainan University, Taoyuan, Taiwan
| | - Kuo-Chuan Huang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan.
| |
Collapse
|
102
|
Cui L, Sun W, Yu M, Li N, Guo L, Gu H, Zhou Y. Disrupted-in-schizophrenia1 (DISC1) L100P mutation alters synaptic transmission and plasticity in the hippocampus and causes recognition memory deficits. Mol Brain 2016; 9:89. [PMID: 27729083 PMCID: PMC5059944 DOI: 10.1186/s13041-016-0270-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/05/2016] [Indexed: 11/21/2022] Open
Abstract
Disrupted-in-schizophrenia 1(DISC1) is a promising candidate susceptibility gene for a spectrum of psychiatric illnesses that share cognitive impairments in common, including schizophrenia, bipolar disorder and major depression. Here we report that DISC1 L100P homozygous mutant shows normal anxiety- and depression-like behavior, but impaired object recognition which is prevented by administration of atypical antipsychotic drug clozapine. Ca2+ image analysis reveals suppression of glutamate-evoked elevation of cytoplasmic [Ca2+] in L100P hippocampal slices. L100P mutant slices exhibit decreased excitatory synaptic transmission (sEPSCs and mEPSCs) in dentate gyrus (DG) and impaired long-term potentiation in the CA1 region of the hippocampus. L100P mutation does not alter proteins expression of the excitatory synaptic markers, PSD95 and synapsin-1; neither does it changes dendrites morphology of primary cultured hippocampal neurons. Our findings suggest that the existence of abnormal synaptic transmission and plasticity in hippocampal network may disrupt declarative information processing and contribute to recognition deficits in DISC1 L100P mutant mice.
Collapse
Affiliation(s)
- Lin Cui
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China.,Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong, 266071, China
| | - Wei Sun
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China.,Departments of Medicine, Shandong Liming Polytechnic Vocational College, Jinan, Shandong, 250116, China
| | - Ming Yu
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China
| | - Nan Li
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China
| | - Li Guo
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China
| | - Huating Gu
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China
| | - Yu Zhou
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China.
| |
Collapse
|
103
|
Severance EG, Yolken RH, Eaton WW. Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr Res 2016; 176:23-35. [PMID: 25034760 PMCID: PMC4294997 DOI: 10.1016/j.schres.2014.06.027] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 12/12/2022]
Abstract
Autoimmunity, gastrointestinal (GI) disorders and schizophrenia have been associated with one another for a long time. This paper reviews these connections and provides a context by which multiple risk factors for schizophrenia may be related. Epidemiological studies strongly link schizophrenia with autoimmune disorders including enteropathic celiac disease. Exposure to wheat gluten and bovine milk casein also contribute to non-celiac food sensitivities in susceptible individuals. Co-morbid GI inflammation accompanies humoral immunity to food antigens, occurs early during the course of schizophrenia and appears to be independent from antipsychotic-generated motility effects. This inflammation impacts endothelial barrier permeability and can precipitate translocation of gut bacteria into systemic circulation. Infection by the neurotropic gut pathogen, Toxoplasma gondii, will elicit an inflammatory GI environment. Such processes trigger innate immunity, including activation of complement C1q, which also functions at synapses in the brain. The emerging field of microbiome research lies at the center of these interactions with evidence that the abundance and diversity of resident gut microbiota contribute to digestion, inflammation, gut permeability and behavior. Dietary modifications of core bacterial compositions may explain inefficient gluten digestion and how immigrant status in certain situations is a risk factor for schizophrenia. Gut microbiome research in schizophrenia is in its infancy, but data in related fields suggest disease-associated altered phylogenetic compositions. In summary, this review surveys associative and experimental data linking autoimmunity, GI activity and schizophrenia, and proposes that understanding of disrupted biological pathways outside of the brain can lend valuable information regarding pathogeneses of complex, polygenic brain disorders.
Collapse
Affiliation(s)
- Emily G. Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933 U.S.A
| | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933 U.S.A
| | - William W. Eaton
- Department of Mental Health, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, U.S.A
| |
Collapse
|
104
|
Furukubo-Tokunaga K, Kurita K, Honjo K, Pandey H, Ando T, Takayama K, Arai Y, Mochizuki H, Ando M, Kamiya A, Sawa A. DISC1 causes associative memory and neurodevelopmental defects in fruit flies. Mol Psychiatry 2016; 21:1232-43. [PMID: 26976042 PMCID: PMC4993648 DOI: 10.1038/mp.2016.15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 01/18/2023]
Abstract
Originally found in a Scottish family with diverse mental disorders, the DISC1 protein has been characterized as an intracellular scaffold protein that associates with diverse binding partners in neural development. To explore its functions in a genetically tractable system, we expressed the human DISC1 in fruit flies (Drosophila melanogaster). As in mammalian neurons, DISC1 is localized to diverse subcellular domains of developing fly neurons including the nuclei, axons and dendrites. Overexpression of DISC1 impairs associative memory. Experiments with deletion/mutation constructs have revealed the importance of amino-terminal domain (46-290) for memory suppression whereas carboxyl domain (598-854) and the amino-terminal residues (1-45) including the nuclear localization signal (NLS1) are dispensable. DISC1 overexpression also causes suppression of axonal and dendritic branching of mushroom body neurons, which mediate a variety of cognitive functions in the fly brain. Analyses with deletion/mutation constructs reveal that protein domains 598-854 and 349-402 are both required for the suppression of axonal branching, while amino-terminal domains including NLS1 are dispensable. In contrast, NLS1 was required for the suppression of dendritic branching, suggesting a mechanism involving gene expression. Moreover, domain 403-596 is also required for the suppression of dendritic branching. We also show that overexpression of DISC1 suppresses glutamatergic synaptogenesis in developing neuromuscular junctions. Deletion/mutation experiments have revealed the importance of protein domains 403-596 and 349-402 for synaptic suppression, while amino-terminal domains including NLS1 are dispensable. Finally, we show that DISC1 functionally interacts with the fly homolog of Dysbindin (DTNBP1) via direct protein-protein interaction in developing synapses.
Collapse
Affiliation(s)
| | - Kazuki Kurita
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Ken Honjo
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Himani Pandey
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Tetsuya Ando
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kojiro Takayama
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yuko Arai
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroaki Mochizuki
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mai Ando
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Atsushi Kamiya
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD, USA
| |
Collapse
|
105
|
Devine MJ, Norkett R, Kittler JT. DISC1 is a coordinator of intracellular trafficking to shape neuronal development and connectivity. J Physiol 2016; 594:5459-69. [PMID: 27121900 DOI: 10.1113/jp272187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/31/2016] [Indexed: 01/14/2023] Open
Abstract
The long, asymmetric and specialised architecture of neuronal processes necessitates a properly regulated transport network of molecular motors and cytoskeletal tracks. This allows appropriate distribution of cargo for correct formation and activity of the synapse, and thus normal neuronal communication. This communication is impaired in psychiatric disease, and ongoing studies have proposed that Disrupted in schizophrenia 1 (DISC1) is an important genetic risk factor for these disorders. The mechanisms by which DISC1 dysfunction might increase propensity to psychiatric disease are not completely understood; however, an emerging theme is that DISC1 can function as a key regulator of neuronal intracellular trafficking. Transport of a wide range of potential cargoes - including mRNAs, neurotransmitter receptors, vesicles and mitochondria - can be modulated by DISC1, and therefore is susceptible to DISC1 dysfunction. This theme highlights the importance of understanding precisely how DISC1 can regulate intracellular trafficking, and suggests that a novel approach to the treatment of psychiatric disorders could be provided by targeting this protein and the trafficking machinery with which it interacts.
Collapse
Affiliation(s)
- M J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - R Norkett
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - J T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK.
| |
Collapse
|
106
|
Schizophrenia interactome with 504 novel protein-protein interactions. NPJ SCHIZOPHRENIA 2016; 2:16012. [PMID: 27336055 PMCID: PMC4898894 DOI: 10.1038/npjschz.2016.12] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 11/29/2022]
Abstract
Genome-wide association studies of schizophrenia (GWAS) have revealed the role of rare and common genetic variants, but the functional effects of the risk variants remain to be understood. Protein interactome-based studies can facilitate the study of molecular mechanisms by which the risk genes relate to schizophrenia (SZ) genesis, but protein–protein interactions (PPIs) are unknown for many of the liability genes. We developed a computational model to discover PPIs, which is found to be highly accurate according to computational evaluations and experimental validations of selected PPIs. We present here, 365 novel PPIs of liability genes identified by the SZ Working Group of the Psychiatric Genomics Consortium (PGC). Seventeen genes that had no previously known interactions have 57 novel interactions by our method. Among the new interactors are 19 drug targets that are targeted by 130 drugs. In addition, we computed 147 novel PPIs of 25 candidate genes investigated in the pre-GWAS era. While there is little overlap between the GWAS genes and the pre-GWAS genes, the interactomes reveal that they largely belong to the same pathways, thus reconciling the apparent disparities between the GWAS and prior gene association studies. The interactome including 504 novel PPIs overall, could motivate other systems biology studies and trials with repurposed drugs. The PPIs are made available on a webserver, called Schizo-Pi at http://severus.dbmi.pitt.edu/schizo-pi with advanced search capabilities.
Collapse
|
107
|
O'Tuathaigh CMP, Desbonnet L, Moran PM, Kirby BP, Waddington JL. Molecular genetic models related to schizophrenia and psychotic illness: heuristics and challenges. Curr Top Behav Neurosci 2016; 7:87-119. [PMID: 21298380 DOI: 10.1007/7854_2010_111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a heritable disorder that may involve several common genes of small effect and/or rare copy number variation, with phenotypic heterogeneity across patients. Furthermore, any boundaries vis-à-vis other psychotic disorders are far from clear. Consequently, identification of informative animal models for this disorder, which typically relate to pharmacological and putative pathophysiological processes of uncertain validity, faces considerable challenges. In juxtaposition, the majority of mutant models for schizophrenia relate to the functional roles of a diverse set of genes associated with risk for the disorder or with such putative pathophysiological processes. This chapter seeks to outline the evidence from phenotypic studies in mutant models related to schizophrenia. These have commonly assessed the degree to which mutation of a schizophrenia-related gene is associated with the expression of several aspects of the schizophrenia phenotype or more circumscribed, schizophrenia-related endophenotypes; typically, they place specific emphasis on positive and negative symptoms and cognitive deficits, and extend to structural and other pathological features. We first consider the primary technological approaches to the generation of such mutants, to include their relative merits and demerits, and then highlight the diverse phenotypic approaches that have been developed for their assessment. The chapter then considers the application of mutant phenotypes to study pathobiological and pharmacological mechanisms thought to be relevant for schizophrenia, particularly in terms of dopaminergic and glutamatergic dysfunction, and to an increasing range of candidate susceptibility genes and copy number variants. Finally, we discuss several pertinent issues and challenges within the field which relate to both phenotypic evaluation and a growing appreciation of the functional genomics of schizophrenia and the involvement of gene × environment interactions.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland,
| | | | | | | | | |
Collapse
|
108
|
Gadelha A, Coleman J, Breen G, Mazzoti DR, Yonamine CM, Pellegrino R, Ota VK, Belangero SI, Glessner J, Sleiman P, Hakonarson H, Hayashi MAF, Bressan RA. Genome-wide investigation of schizophrenia associated plasma Ndel1 enzyme activity. Schizophr Res 2016; 172:60-7. [PMID: 26851141 DOI: 10.1016/j.schres.2016.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/19/2016] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
Ndel1 is a DISC1-interacting oligopeptidase that cleaves in vitro neuropeptides as neurotensin and bradykinin, and which has been associated with both neuronal migration and neurite outgrowth. We previously reported that plasma Ndel1 enzyme activity is lower in patients with schizophrenia (SCZ) compared to healthy controls (HCs). To our knowledge, no previous study has investigated the genetic factors associated with the plasma Ndel1 enzyme activity. In the current analyses, samples from 83 SCZ patients and 92 control subjects that were assayed for plasma Ndel1 enzyme activity were genotyped on Illumina Omni Express arrays. A genetic relationship matrix using genome-wide information was then used for ancestry correction, and association statistics were calculated genome-wide. Ndel1 enzyme activity was significantly lower in patients with SCZ (t=4.9; p<0.001) and was found to be associated with CAMK1D, MAGI2, CCDC25, and GABGR3, at a level of suggestive significance (p<10(-6)), independent of the clinical status. Then, we performed a model to investigate the observed differences for case/control measures. 2 SNPs at region 1p22.2 reached the p<10(-7) level. ZFPM2 and MAD1L1 were the only two genes with more than one hit at 10(-6) order of p value. Therefore, Ndel1 enzyme activity is a complex trait influenced by many different genetic variants that may contribute to SCZ physiopathology.
Collapse
Affiliation(s)
- Ary Gadelha
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil.
| | - Jonathan Coleman
- Medical Research Council Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Gerome Breen
- Medical Research Council Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom; National Institute of Health Research Biomedical Research Centre for Mental Health, Maudsley Hospital and Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | | | - Camila M Yonamine
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil; Department of Pharmacology, UNIFESP/EPM, São Paulo, Brazil
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Vanessa Kiyomi Ota
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil; Department of Morphology and Genetics, UNIFESP/EPM, São Paulo, Brazil
| | - Sintia Iole Belangero
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil; Department of Morphology and Genetics, UNIFESP/EPM, São Paulo, Brazil
| | - Joseph Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Patrick Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, United States; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, United States; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Rodrigo A Bressan
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil
| |
Collapse
|
109
|
Leung C, Jia Z. Mouse Genetic Models of Human Brain Disorders. Front Genet 2016; 7:40. [PMID: 27047540 PMCID: PMC4803727 DOI: 10.3389/fgene.2016.00040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/08/2016] [Indexed: 01/29/2023] Open
Abstract
Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases.
Collapse
Affiliation(s)
- Celeste Leung
- The Hospital for Sick Children, Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, TorontoON, Canada; Program in Physiology, University of Toronto, TorontoON, Canada
| | - Zhengping Jia
- The Hospital for Sick Children, Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, TorontoON, Canada; Program in Physiology, University of Toronto, TorontoON, Canada
| |
Collapse
|
110
|
Tankou S, Ishii K, Elliott C, Yalla KC, Day JP, Furukori K, Kubo KI, Brandon NJ, Tang Q, Hayward G, Nakajima K, Houslay MD, Kamiya A, Baillie G, Ishizuka K, Sawa A. SUMOylation of DISC1: a potential role in neural progenitor proliferation in the developing cortex. MOLECULAR NEUROPSYCHIATRY 2016; 2:20-27. [PMID: 27525255 DOI: 10.1159/000444257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DISC1 is a multifunctional, intracellular scaffold protein. At the cellular level, DISC1 plays a pivotal role in neural progenitor proliferation, migration, and synaptic maturation. Perturbation of the biological pathways involving DISC1 is known to lead to behavioral changes in rodents, which supports a clinical report of a Scottish pedigree in which the majority of family members with disruption of the DISC1 gene manifest depression, schizophrenia, and related mental conditions. The discrepancy of modest evidence in genetics but strong biological support for the role of DISC1 in mental conditions suggests a working hypothesis that regulation of DISC1 at the protein level, such as posttranslational modification, may play a role in the pathology of mental conditions. In this study, we report the SUMOylation of DISC1. This posttranslational modification occurs on lysine residues where small ubiquitin-related modifier (SUMO) and its homologs are conjugated to a large number of cellular proteins, which in turn regulates their subcellular distribution and protein stability. By using in silico, biochemical, and cell biological approaches, we now demonstrate that human DISC1 is SUMOylated at one specific lysine 643 (K643). We also show that this residue is crucial for proper neural progenitor proliferation in the developing cortex.
Collapse
Affiliation(s)
- Stephanie Tankou
- Department of Psychiatry, The Johns Hopkins University, Baltimore, MD, USA
| | - Kazuhiro Ishii
- Department of Psychiatry, The Johns Hopkins University, Baltimore, MD, USA
| | - Christina Elliott
- Molecular Pharmacology Group, CMVLS, University of Glasgow, Glasgow, UK
| | - Krishna C Yalla
- Molecular Pharmacology Group, CMVLS, University of Glasgow, Glasgow, UK
| | - Jon P Day
- Molecular Pharmacology Group, CMVLS, University of Glasgow, Glasgow, UK
| | - Keiko Furukori
- Department of Psychiatry, The Johns Hopkins University, Baltimore, MD, USA
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | | | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Gary Hayward
- Department of Pharmacology, The Johns Hopkins University, Baltimore, MD, USA
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Miles D Houslay
- Institute of Pharmaceutical Sciences, King's College London, London, UK
| | - Atsushi Kamiya
- Department of Psychiatry, The Johns Hopkins University, Baltimore, MD, USA
| | - George Baillie
- Molecular Pharmacology Group, CMVLS, University of Glasgow, Glasgow, UK
| | - Koko Ishizuka
- Department of Psychiatry, The Johns Hopkins University, Baltimore, MD, USA
| | - Akira Sawa
- Department of Psychiatry, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
111
|
Smiley S, Nickerson PE, Comanita L, Daftarian N, El-Sehemy A, Tsai ELS, Matan-Lithwick S, Yan K, Thurig S, Touahri Y, Dixit R, Aavani T, De Repentingy Y, Baker A, Tsilfidis C, Biernaskie J, Sauvé Y, Schuurmans C, Kothary R, Mears AJ, Wallace VA. Establishment of a cone photoreceptor transplantation platform based on a novel cone-GFP reporter mouse line. Sci Rep 2016; 6:22867. [PMID: 26965927 PMCID: PMC4786810 DOI: 10.1038/srep22867] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
We report successful retinal cone enrichment and transplantation using a novel cone-GFP reporter mouse line. Using the putative cone photoreceptor-enriched transcript Coiled-Coil Domain Containing 136 (Ccdc136) GFP-trapped allele, we monitored developmental reporter expression, facilitated the enrichment of cones, and evaluated transplanted GFP-labeled cones in wildtype and retinal degeneration mutant retinas. GFP reporter and endogenous Ccdc136 transcripts exhibit overlapping temporal and spatial expression patterns, both initiated in cone precursors of the embryonic retina and persisting to the adult stage in S and S/M opsin(+) cones as well as rod bipolar cells. The trapped allele does not affect cone function or survival in the adult mutant retina. When comparing the integration of GFP(+) embryonic cones and postnatal Nrl(-/-) 'cods' into retinas of adult wildtype and blind mice, both cell types integrated and exhibited a degree of morphological maturation that was dependent on donor age. These results demonstrate the amenability of the adult retina to cone transplantation using a novel transgenic resource that can advance therapeutic cone transplantation in models of age-related macular degeneration.
Collapse
Affiliation(s)
- Sheila Smiley
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Division of Vision Science, Department of Ophthalmology and Vision Science, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Philip E. Nickerson
- Division of Vision Science, Department of Ophthalmology and Vision Science, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Lacrimioara Comanita
- Division of Vision Science, Department of Ophthalmology and Vision Science, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Narsis Daftarian
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Ahmed El-Sehemy
- Division of Vision Science, Department of Ophthalmology and Vision Science, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 2J4, Canada
| | - En Leh Samuel Tsai
- Division of Vision Science, Department of Ophthalmology and Vision Science, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 2J4, Canada
| | - Stuart Matan-Lithwick
- Division of Vision Science, Department of Ophthalmology and Vision Science, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 2J4, Canada
| | - Keqin Yan
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
| | - Sherry Thurig
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
| | - Yacine Touahri
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
| | - Rajiv Dixit
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
| | - Tooka Aavani
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
| | - Yves De Repentingy
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
| | - Adam Baker
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
| | - Catherine Tsilfidis
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
- Department of Ophthalmology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
| | - Yves Sauvé
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Carol Schuurmans
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Alan J. Mears
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Valerie A. Wallace
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
- Department of Ophthalmology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Division of Vision Science, Department of Ophthalmology and Vision Science, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 2J4, Canada
| |
Collapse
|
112
|
Wang Q, Amato SP, Rubitski DM, Hayward MM, Kormos BL, Verhoest PR, Xu L, Brandon NJ, Ehlers MD. Identification of Phosphorylation Consensus Sequences and Endogenous Neuronal Substrates of the Psychiatric Risk Kinase TNIK. J Pharmacol Exp Ther 2016; 356:410-23. [PMID: 26645429 DOI: 10.1124/jpet.115.229880] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022] Open
Abstract
Traf2- and Nck-interacting kinase (TNIK) is a serine/threonine kinase highly expressed in the brain and enriched in the postsynaptic density of glutamatergic synapses in the mammalian brain. Accumulating genetic evidence and functional data have implicated TNIK as a risk factor for psychiatric disorders. However, the endogenous substrates of TNIK in neurons are unknown. Here, we describe a novel selective small molecule inhibitor of the TNIK kinase family. Using this inhibitor, we report the identification of endogenous neuronal TNIK substrates by immunoprecipitation with a phosphomotif antibody followed by mass spectrometry. Phosphorylation consensus sequences were defined by phosphopeptide sequence analysis. Among the identified substrates were members of the delta-catenin family including p120-catenin, δ-catenin, and armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF), each of which is linked to psychiatric or neurologic disorders. Using p120-catenin as a representative substrate, we show TNIK-induced p120-catenin phosphorylation in cells requires intact kinase activity and phosphorylation of TNIK at T181 and T187 in the activation loop. Addition of the small molecule TNIK inhibitor or knocking down TNIK by two shRNAs reduced endogenous p120-catenin phosphorylation in cells. Together, using a TNIK inhibitor and phosphomotif antibody, we identify endogenous substrates of TNIK in neurons, define consensus sequences for TNIK, and suggest signaling pathways by which TNIK influences synaptic development and function linked to psychiatric and neurologic disorders.
Collapse
Affiliation(s)
- Qi Wang
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Stephen P Amato
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - David M Rubitski
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Matthew M Hayward
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Bethany L Kormos
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Patrick R Verhoest
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Lan Xu
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Nicholas J Brandon
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Michael D Ehlers
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| |
Collapse
|
113
|
Dachtler J, Elliott C, Rodgers RJ, Baillie GS, Clapcote SJ. Missense mutation in DISC1 C-terminal coiled-coil has GSK3β signaling and sex-dependent behavioral effects in mice. Sci Rep 2016; 6:18748. [PMID: 26728762 PMCID: PMC4700527 DOI: 10.1038/srep18748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/23/2015] [Indexed: 11/09/2022] Open
Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and affective disorders. The full-length DISC1 protein consists of an N-terminal 'head' domain and a C-terminal tail domain that contains several predicted coiled-coils, structural motifs involved in protein-protein interactions. To probe the in vivo effects of missense mutation of DISC1's C-terminal tail, we tested mice carrying mutation D453G within a predicted α-helical coiled-coil region. We report that, relative to wild-type littermates, female DISC1(D453G) mice exhibited novelty-induced hyperlocomotion, an anxiogenic profile in the elevated plus-maze and open field tests, and reduced social exploration of unfamiliar mice. Male DISC1(D453G) mice displayed a deficit in passive avoidance, while neither males nor females exhibited any impairment in startle reactivity or prepulse inhibition. Whole brain homogenates showed normal levels of DISC1 protein, but decreased binding of DISC1 to GSK3β, decreased phospho-inhibition of GSK3β at serine 9, and decreased levels of β-catenin in DISC1(D453G) mice of either sex. Interrupted GSK3β signaling may thus be part of the mechanism underlying the behavioral phenotype associated with D453G, in common with the previously described N-terminal domain mutations Q31L and L100P in mice, and the schizophrenia risk-conferring variant R264Q in humans.
Collapse
Affiliation(s)
- James Dachtler
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Christina Elliott
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - R John Rodgers
- Institute of Psychological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
114
|
Zanzoni A. A Computational Network Biology Approach to Uncover Novel Genes Related to Alzheimer's Disease. Methods Mol Biol 2016; 1303:435-446. [PMID: 26235083 DOI: 10.1007/978-1-4939-2627-5_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent advances in the fields of genetics and genomics have enabled the identification of numerous Alzheimer's disease (AD) candidate genes, although for many of them the role in AD pathophysiology has not been uncovered yet. Concomitantly, network biology studies have shown a strong link between protein network connectivity and disease. In this chapter I describe a computational approach that, by combining local and global network analysis strategies, allows the formulation of novel hypotheses on the molecular mechanisms involved in AD and prioritizes candidate genes for further functional studies.
Collapse
Affiliation(s)
- Andreas Zanzoni
- Laboratoire TAGC/INSERM UMR_S1090, Parc Scientifique de Luminy, Case 928, 163, Avenue de Luminy, Marseille cedex 9, 13288, France,
| |
Collapse
|
115
|
Disrupted in schizophrenia 1 (DISC1) L100P mutants have impaired activity-dependent plasticity in vivo and in vitro. Transl Psychiatry 2016; 6:e712. [PMID: 26756905 PMCID: PMC5068880 DOI: 10.1038/tp.2015.206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/30/2015] [Indexed: 12/26/2022] Open
Abstract
Major neuropsychiatric disorders are genetically complex but share overlapping etiology. Mice mutant for rare, highly penetrant risk variants can be useful in dissecting the molecular mechanisms involved. The gene disrupted in schizophrenia 1 (DISC1) has been associated with increased risk for neuropsychiatric conditions. Mice mutant for Disc1 display morphological, functional and behavioral deficits that are consistent with impairments observed across these disorders. Here we report that Disc1 L100P mutants are less able to reorganize cortical circuitry in response to stimulation in vivo. Molecular analysis reveals that the mutants have a reduced expression of PSD95 and pCREB in visual cortex and fail to adjust expression of such markers in response to altered stimulation. In vitro analysis shows that mutants have impaired functional reorganization of cortical neurons in response to selected forms of neuronal stimulation, but there is no altered basal expression of synaptic markers. These findings suggest that DISC1 has a critical role in the reorganization of cortical plasticity and that this phenotype becomes evident only under challenge, even at early postnatal stages. This result may represent an important etiological mechanism in the emergence of neuropsychiatric disorders.
Collapse
|
116
|
Norkett R, Modi S, Birsa N, Atkin TA, Ivankovic D, Pathania M, Trossbach SV, Korth C, Hirst WD, Kittler JT. DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites. J Biol Chem 2015; 291:613-29. [PMID: 26553875 PMCID: PMC4705382 DOI: 10.1074/jbc.m115.699447] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 01/09/2023] Open
Abstract
The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development.
Collapse
Affiliation(s)
- Rosalind Norkett
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Souvik Modi
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Nicol Birsa
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Talia A Atkin
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Davor Ivankovic
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Manav Pathania
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Svenja V Trossbach
- the Department of Neuropathology, Heinrich Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| | - Carsten Korth
- the Department of Neuropathology, Heinrich Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| | - Warren D Hirst
- the Neuroscience Research Unit, Pfizer, Cambridge, Massachusetts 02139, and
| | - Josef T Kittler
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom,
| |
Collapse
|
117
|
Microtubule-Actin Crosslinking Factor 1 Is Required for Dendritic Arborization and Axon Outgrowth in the Developing Brain. Mol Neurobiol 2015; 53:6018-6032. [PMID: 26526844 DOI: 10.1007/s12035-015-9508-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/22/2015] [Indexed: 12/20/2022]
Abstract
Dendritic arborization and axon outgrowth are critical steps in the establishment of neural connectivity in the developing brain. Changes in the connectivity underlie cognitive dysfunction in neurodevelopmental disorders. However, molecules and associated mechanisms that play important roles in dendritic and axon outgrowth in the brain are only partially understood. Here, we show that microtubule-actin crosslinking factor 1 (MACF1) regulates dendritic arborization and axon outgrowth of developing pyramidal neurons by arranging cytoskeleton components and mediating GSK-3 signaling. MACF1 deletion using conditional mutant mice and in utero gene transfer in the developing brain markedly decreased dendritic branching of cortical and hippocampal pyramidal neurons. MACF1-deficient neurons showed reduced density and aberrant morphology of dendritic spines. Also, loss of MACF1 impaired the elongation of callosal axons in the brain. Actin and microtubule arrangement appeared abnormal in MACF1-deficient neurites. Finally, we found that GSK-3 is associated with MACF1-controlled dendritic differentiation. Our findings demonstrate a novel role for MACF1 in neurite differentiation that is critical to the creation of neuronal connectivity in the developing brain.
Collapse
|
118
|
Closing the translational gap between mutant mouse models and the clinical reality of psychotic illness. Neurosci Biobehav Rev 2015; 58:19-35. [DOI: 10.1016/j.neubiorev.2015.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/03/2023]
|
119
|
Lopez-Sanchez I, Ma GS, Pedram S, Kalogriopoulos N, Ghosh P. GIV/girdin binds exocyst subunit-Exo70 and regulates exocytosis of GLUT4 storage vesicles. Biochem Biophys Res Commun 2015; 468:287-93. [PMID: 26514725 DOI: 10.1016/j.bbrc.2015.10.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
Abstract
Insulin resistance (IR) is a metabolic disorder characterized by impaired glucose uptake in response to insulin. The current paradigm for insulin signaling centers upon the insulin receptor (InsR) and its substrate IRS1; the latter is believed to be the chief conduit for post-receptor signaling. We recently demonstrated that GIV, a Guanidine Exchange Factor (GEF) for the trimeric G protein, Gαi, is a major hierarchical conduit for the metabolic insulin response. By virtue of its ability to directly bind the InsR, IRS1 and PI3K, GIV enhances the InsR-IRS1-Akt-AS160 (RabGAP) signaling cascade and cellular glucose uptake via its GEF function. Phosphoinhibition of GIV-GEF by the fatty-acid/PKCθ pathway inhibits the cascade and impairs glucose uptake. Here we show that GIV directly and constitutively binds the exocyst complex subunit Exo-70 and also associates with GLUT4-storage vesicles (GSVs) exclusively upon insulin stimulation. Without GIV or its GEF function, membrane association of Exo-70 as well as exocytosis of GSVs in response to insulin are impaired. Thus, GIV is an essential component within the insulin signaling cascade that couples upstream signal transducers within the InsR and G-Protein signaling cascade to downstream vesicular trafficking events within the exocytic pathway. These findings suggest a role of GIV in coordinating key signaling and trafficking events of metabolic insulin response.
Collapse
Affiliation(s)
- Inmaculada Lopez-Sanchez
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Gary S Ma
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Shabnam Pedram
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Nicholas Kalogriopoulos
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA; Department of Cell and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
120
|
Johnstone M, Maclean A, Heyrman L, Lenaerts AS, Nordin A, Nilsson LG, De Rijk P, Goossens D, Adolfsson R, St Clair DM, Hall J, Lawrie SM, McIntosh AM, Del-Favero J, Blackwood DHR, Pickard BS. Copy Number Variations in DISC1 and DISC1-Interacting Partners in Major Mental Illness. MOLECULAR NEUROPSYCHIATRY 2015; 1:175-190. [PMID: 27239468 PMCID: PMC4872463 DOI: 10.1159/000438788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/13/2015] [Indexed: 01/15/2023]
Abstract
Robust statistical, genetic and functional evidence supports a role for DISC1 in the aetiology of major mental illness. Furthermore, many of its protein-binding partners show evidence for involvement in the pathophysiology of a range of neurodevelopmental and psychiatric disorders. Copy number variants (CNVs) are suspected to play an important causal role in these disorders. In this study, CNV analysis of DISC1 and its binding partners PAFAH1B1, NDE1, NDEL1, FEZ1, MAP1A, CIT and PDE4B in Scottish and Northern Swedish population-based samples was carried out using multiplex amplicon quantification. Here, we report the finding of rare CNVs in DISC1, NDE1 (together with adjacent genes within the 16p13.11 duplication), NDEL1 (including the overlapping MYH10 gene) and CIT. Our findings provide further evidence for involvement of DISC1 and its interaction partners in neuropsychiatric disorders and also for a role of structural variants in the aetiology of these devastating diseases.
Collapse
Affiliation(s)
- Mandy Johnstone
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alan Maclean
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lien Heyrman
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - An-Sofie Lenaerts
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Annelie Nordin
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
| | | | - Peter De Rijk
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Dirk Goossens
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
| | - David M St Clair
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeremy Hall
- Neurosciences & Mental Health Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Jurgen Del-Favero
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Douglas H R Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Benjamin S Pickard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
121
|
Uncovering the function of Disrupted in Schizophrenia 1 through interactions with the cAMP phosphodiesterase PDE4: Contributions of the Houslay lab to molecular psychiatry. Cell Signal 2015; 28:749-52. [PMID: 26432168 DOI: 10.1016/j.cellsig.2015.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022]
Abstract
Nearly 10years ago the laboratory of Miles Houslay was part of a collaboration which identified and characterized the interaction between Disrupted in Schizophrenia 1 and phosphodiesterase type 4. This work has had significant impact on our thinking of psychiatric illness causation and the potential for therapeutics.
Collapse
|
122
|
Wei J, Graziane NM, Gu Z, Yan Z. DISC1 Protein Regulates γ-Aminobutyric Acid, Type A (GABAA) Receptor Trafficking and Inhibitory Synaptic Transmission in Cortical Neurons. J Biol Chem 2015; 290:27680-7. [PMID: 26424793 DOI: 10.1074/jbc.m115.656173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 12/12/2022] Open
Abstract
Association studies have suggested that Disrupted-in-Schizophrenia 1 (DISC1) confers a genetic risk at the level of endophenotypes that underlies many major mental disorders. Despite the progress in understanding the significance of DISC1 at neural development, the mechanisms underlying DISC1 regulation of synaptic functions remain elusive. Because alterations in the cortical GABA system have been strongly linked to the pathophysiology of schizophrenia, one potential target of DISC1 that is critically involved in the regulation of cognition and emotion is the GABAA receptor (GABAAR). We found that cellular knockdown of DISC1 significantly reduced GABAAR-mediated synaptic and whole-cell current, whereas overexpression of wild-type DISC1, but not the C-terminal-truncated DISC1 (a schizophrenia-related mutant), significantly increased GABAAR currents in pyramidal neurons of the prefrontal cortex. These effects were accompanied by DISC1-induced changes in surface GABAAR expression. Moreover, the regulation of GABAARs by DISC1 knockdown or overexpression depends on the microtubule motor protein kinesin 1 (KIF5). Our results suggest that DISC1 exerts an important effect on GABAergic inhibitory transmission by regulating KIF5/microtubule-based GABAAR trafficking in the cortex. The knowledge gained from this study would shed light on how DISC1 and the GABA system are linked mechanistically and how their interactions are critical for maintaining a normal mental state.
Collapse
Affiliation(s)
- Jing Wei
- From the Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 and the Veterans Affairs Western New York Healthcare System, Buffalo, New York 14215
| | - Nicholas M Graziane
- From the Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 and
| | - Zhenglin Gu
- From the Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 and
| | - Zhen Yan
- From the Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 and the Veterans Affairs Western New York Healthcare System, Buffalo, New York 14215
| |
Collapse
|
123
|
Arnsten AFT. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat Neurosci 2015; 18:1376-85. [PMID: 26404712 DOI: 10.1038/nn.4087] [Citation(s) in RCA: 459] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/15/2015] [Indexed: 12/13/2022]
Abstract
A variety of cognitive disorders are worsened by stress exposure and involve dysfunction of the newly evolved prefrontal cortex (PFC). Exposure to acute, uncontrollable stress increases catecholamine release in PFC, reducing neuronal firing and impairing cognitive abilities. High levels of noradrenergic α1-adrenoceptor and dopaminergic D1 receptor stimulation activate feedforward calcium-protein kinase C and cyclic AMP-protein kinase A signaling, which open potassium channels to weaken synaptic efficacy in spines. In contrast, high levels of catecholamines strengthen the primary sensory cortices, amygdala and striatum, rapidly flipping the brain from reflective to reflexive control of behavior. These mechanisms are exaggerated by chronic stress exposure, where architectural changes lead to persistent loss of PFC function. Understanding these mechanisms has led to the successful translation of prazosin and guanfacine for treating stress-related disorders. Dysregulation of stress signaling pathways by genetic insults likely contributes to PFC deficits in schizophrenia, while age-related insults initiate interacting vicious cycles that increase vulnerability to Alzheimer's degeneration.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
124
|
Kodani A, Yu TW, Johnson JR, Jayaraman D, Johnson TL, Al-Gazali L, Sztriha L, Partlow JN, Kim H, Krup AL, Dammermann A, Krogan NJ, Walsh CA, Reiter JF. Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication. eLife 2015; 4:e07519. [PMID: 26297806 PMCID: PMC4574112 DOI: 10.7554/elife.07519] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022] Open
Abstract
Primary microcephaly (MCPH) associated proteins CDK5RAP2, CEP152, WDR62 and CEP63 colocalize at the centrosome. We found that they interact to promote centriole duplication and form a hierarchy in which each is required to localize another to the centrosome, with CDK5RAP2 at the apex, and CEP152, WDR62 and CEP63 at sequentially lower positions. MCPH proteins interact with distinct centriolar satellite proteins; CDK5RAP2 interacts with SPAG5 and CEP72, CEP152 with CEP131, WDR62 with MOONRAKER, and CEP63 with CEP90 and CCDC14. These satellite proteins localize their cognate MCPH interactors to centrosomes and also promote centriole duplication. Consistent with a role for satellites in microcephaly, homozygous mutations in one satellite gene, CEP90, may cause MCPH. The satellite proteins, with the exception of CCDC14, and MCPH proteins promote centriole duplication by recruiting CDK2 to the centrosome. Thus, centriolar satellites build a MCPH complex critical for human neurodevelopment that promotes CDK2 centrosomal localization and centriole duplication.
Collapse
Affiliation(s)
- Andrew Kodani
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Timothy W Yu
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Divya Jayaraman
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Tasha L Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Lāszló Sztriha
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jennifer N Partlow
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Hanjun Kim
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Alexis L Krup
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | | | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Christopher A Walsh
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
125
|
Variations in Disrupted-in-Schizophrenia 1 gene modulate long-term longitudinal differences in cortical thickness in patients with a first-episode of psychosis. Brain Imaging Behav 2015. [DOI: 10.1007/s11682-015-9433-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
126
|
Burette AC, Phend KD, Burette S, Lin Q, Liang M, Foltz G, Taylor N, Wang Q, Brandon NJ, Bates B, Ehlers MD, Weinberg RJ. Organization of TNIK in dendritic spines. J Comp Neurol 2015; 523:1913-24. [PMID: 25753355 DOI: 10.1002/cne.23770] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 01/16/2023]
Abstract
Tumor necrosis factor receptor-associated factor 2 (TRAF2)- and noncatalytic region of tyrosine kinase (NCK)-interacting kinase (TNIK) has been identified as an interactor in the psychiatric risk factor, Disrupted in Schizophrenia 1 (DISC1). As a step toward deciphering its function in the brain, we performed high-resolution light and electron microscopic immunocytochemistry. We demonstrate here that TNIK is expressed in neurons throughout the adult mouse brain. In striatum and cerebral cortex, TNIK concentrates in dendritic spines, especially in the vicinity of the lateral edge of the synapse. Thus, TNIK is highly enriched at a microdomain critical for glutamatergic signaling.
Collapse
Affiliation(s)
- Alain C Burette
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kristen D Phend
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Susan Burette
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Qingcong Lin
- Shenogen Pharma Group, Beijing, People's Republic of China 102206
| | - Musen Liang
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Andover, Massachusetts 01810
| | - Gretchen Foltz
- Clinical Research Unit, Pfizer, New Haven, Connecticut 06511
| | - Noël Taylor
- Biomarker and Personalized Medicine Group, Eisai Product Creation Systems, Eisai, Andover, Massachusetts 01810
| | - Qi Wang
- Neuroscience Research Unit, Pfizer, Cambridge, Massachusetts 02139
| | | | - Brian Bates
- Centers for Therapeutic Innovation, Pfizer, Boston, Massachusetts 02115
| | - Michael D Ehlers
- Neuroscience Research Unit, Pfizer, Cambridge, Massachusetts 02139
| | - Richard J Weinberg
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
127
|
Yeh FC, Kao CF, Kuo PH. Explore the Features of Brain-Derived Neurotrophic Factor in Mood Disorders. PLoS One 2015; 10:e0128605. [PMID: 26091093 PMCID: PMC4474832 DOI: 10.1371/journal.pone.0128605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
Objectives Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal survival and differentiation; however, the effects of BDNF on mood disorders remain unclear. We investigated BDNF from the perspective of various aspects of systems biology, including its molecular evolution, genomic studies, protein functions, and pathway analysis. Methods We conducted analyses examining sequences, multiple alignments, phylogenetic trees and positive selection across 12 species and several human populations. We summarized the results of previous genomic and functional studies of pro-BDNF and mature-BDNF (m-BDNF) found in a literature review. We identified proteins that interact with BDNF and performed pathway-based analysis using large genome-wide association (GWA) datasets obtained for mood disorders. Results BDNF is encoded by a highly conserved gene. The chordate BDNF genes exhibit an average of 75% identity with the human gene, while vertebrate orthologues are 85.9%-100% identical to human BDNF. No signs of recent positive selection were found. Associations between BDNF and mood disorders were not significant in most of the genomic studies (e.g., linkage, association, gene expression, GWA), while relationships between serum/plasma BDNF level and mood disorders were consistently reported. Pro-BDNF is important in the response to stress; the literature review suggests the necessity of studying both pro- and m-BDNF with regard to mood disorders. In addition to conventional pathway analysis, we further considered proteins that interact with BDNF (I-Genes) and identified several biological pathways involved with BDNF or I-Genes to be significantly associated with mood disorders. Conclusions Systematically examining the features and biological pathways of BDNF may provide opportunities to deepen our understanding of the mechanisms underlying mood disorders.
Collapse
Affiliation(s)
- Fan-Chi Yeh
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chung-Feng Kao
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Research Center for Genes, Environment and Human Health, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
128
|
Yamamuro K, Kimoto S, Rosen KM, Kishimoto T, Makinodan M. Potential primary roles of glial cells in the mechanisms of psychiatric disorders. Front Cell Neurosci 2015; 9:154. [PMID: 26029044 PMCID: PMC4432872 DOI: 10.3389/fncel.2015.00154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/06/2015] [Indexed: 01/05/2023] Open
Abstract
While neurons have long been considered the major player in multiple brain functions such as perception, emotion, and memory, glial cells have been relegated to a far lesser position, acting as merely a “glue” to support neurons. Multiple lines of recent evidence, however, have revealed that glial cells such as oligodendrocytes, astrocytes, and microglia, substantially impact on neuronal function and activities and are significantly involved in the underlying pathobiology of psychiatric disorders. Indeed, a growing body of evidence indicates that glial cells interact extensively with neurons both chemically (e.g., through neurotransmitters, neurotrophic factors, and cytokines) and physically (e.g., through gap junctions), supporting a role for these cells as likely significant modifiers not only of neural function in brain development but also disease pathobiology. Since questions have lingered as to whether glial dysfunction plays a primary role in the biology of neuropsychiatric disorders or a role related solely to their support of neuronal physiology in these diseases, informative and predictive animal models have been developed over the last decade. In this article, we review recent findings uncovered using glia-specific genetically modified mice with which we can evaluate both the causation of glia dysfunction and its potential role in neuropsychiatric disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Kazuhiko Yamamuro
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| | - Sohei Kimoto
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| | | | - Toshifumi Kishimoto
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| | - Manabu Makinodan
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| |
Collapse
|
129
|
Guedj F, Pennings JLA, Ferres MA, Graham LC, Wick HC, Miczek KA, Slonim DK, Bianchi DW. The fetal brain transcriptome and neonatal behavioral phenotype in the Ts1Cje mouse model of Down syndrome. Am J Med Genet A 2015; 167A:1993-2008. [PMID: 25975229 DOI: 10.1002/ajmg.a.37156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/27/2015] [Indexed: 11/07/2022]
Abstract
Human fetuses with Down syndrome demonstrate abnormal brain growth and reduced neurogenesis. Despite the prenatal onset of the phenotype, most therapeutic trials have been conducted in adults. Here, we present evidence for fetal brain molecular and neonatal behavioral alterations in the Ts1Cje mouse model of Down syndrome. Embryonic day 15.5 brain hemisphere RNA from Ts1Cje embryos (n = 5) and wild type littermates (n = 5) was processed and hybridized to mouse gene 1.0 ST arrays. Bioinformatic analyses were implemented to identify differential gene and pathway regulation during Ts1Cje fetal brain development. In separate experiments, the Fox scale, ultrasonic vocalization and homing tests were used to investigate behavioral deficits in Ts1Cje pups (n = 29) versus WT littermates (n = 64) at postnatal days 3-21. Ts1Cje fetal brains displayed more differentially regulated genes (n = 71) than adult (n = 31) when compared to their age-matched euploid brains. Ts1Cje embryonic brains showed up-regulation of cell cycle markers and down-regulation of the solute-carrier amino acid transporters. Several cellular processes were dysregulated at both stages, including apoptosis, inflammation, Jak/Stat signaling, G-protein signaling, and oxidoreductase activity. In addition, early behavioral deficits in surface righting, cliff aversion, negative geotaxis, forelimb grasp, ultrasonic vocalization, and the homing tests were observed. The Ts1Cje mouse model exhibits abnormal gene expression during fetal brain development, and significant neonatal behavioral deficits in the pre-weaning period. In combination with human studies, this suggests that the Down syndrome phenotype manifests prenatally and provides a rationale for prenatal therapy to improve perinatal brain development and postnatal neurocognition.
Collapse
Affiliation(s)
- Faycal Guedj
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| | - Jeroen L A Pennings
- Center for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Millie A Ferres
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| | - Leah C Graham
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| | - Heather C Wick
- Department of Computer Science, Tufts University, Medford, Massachusetts
| | - Klaus A Miczek
- Department of Psychology, Tufts University, Medford, Massachusetts
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, Massachusetts
| | - Diana W Bianchi
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts
| |
Collapse
|
130
|
Altered functional brain network connectivity and glutamate system function in transgenic mice expressing truncated Disrupted-in-Schizophrenia 1. Transl Psychiatry 2015; 5:e569. [PMID: 25989143 PMCID: PMC4471291 DOI: 10.1038/tp.2015.60] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 02/08/2023] Open
Abstract
Considerable evidence implicates DISC1 as a susceptibility gene for multiple psychiatric diseases. DISC1 has been intensively studied at the molecular, cellular and behavioral level, but its role in regulating brain connectivity and brain network function remains unknown. Here, we utilize a set of complementary approaches to assess the functional brain network abnormalities present in mice expressing a truncated Disc1 gene (Disc1tr Hemi mice). Disc1tr Hemi mice exhibited hypometabolism in the prefrontal cortex (PFC) and reticular thalamus along with a reorganization of functional brain network connectivity that included compromised hippocampal-PFC connectivity. Altered hippocampal-PFC connectivity in Disc1tr Hemi mice was confirmed by electrophysiological analysis, with Disc1tr Hemi mice showing a reduced probability of presynaptic neurotransmitter release in the monosynaptic glutamatergic hippocampal CA1-PFC projection. Glutamate system dysfunction in Disc1tr Hemi mice was further supported by the attenuated cerebral metabolic response to the NMDA receptor (NMDAR) antagonist ketamine and decreased hippocampal expression of NMDAR subunits 2A and 2B in these animals. These data show that the Disc1 truncation in Disc1tr Hemi mice induces a range of translationally relevant endophenotypes underpinned by glutamate system dysfunction and altered brain connectivity.
Collapse
|
131
|
Disrupted-in-schizophrenia-1 (DISC1) Regulates Endoplasmic Reticulum Calcium Dynamics. Sci Rep 2015; 5:8694. [PMID: 25732993 PMCID: PMC4346799 DOI: 10.1038/srep08694] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/02/2015] [Indexed: 11/22/2022] Open
Abstract
Disrupted-in-schizophrenia-1 (DISC1) has emerged as a convincing susceptibility gene for multiple mental disorders, but its mechanistic link to the pathogenesis of schizophrenia related psychiatric conditions is yet to be further understood. Here, we showed that DISC1 localizes to the outer surface of the endoplasmic reticulum (ER). EXOC1, a subunit of the exocyst complex, interacted with DISC1 and affected its recruitment to inositol-1,4,5-trisphosphate receptor 1 (IP3R1). Notably, knockdown of DISC1 and EXOC1 elicited an exaggerated ER calcium response upon stimulation of IP3R agonists. Similar abnormal ER calcium responses were observed in hippocampal neurons from DISC1-deficient mutant mice. Moreover, perturbation of ER calcium dynamics upon DISC1 knockdown was effectively reversed by treatment with antipsychotic drugs, such as clozapine and haloperidol. These results collectively indicate that DISC1 is a regulatory factor in ER calcium dynamics, linking a perturbed intracellular calcium signaling and schizophrenia pathogenesis.
Collapse
|
132
|
Bertelsen B, Melchior L, Jensen LR, Groth C, Nazaryan L, Debes NM, Skov L, Xie G, Sun W, Brøndum-Nielsen K, Kuss AW, Chen W, Tümer Z. A t(3;9)(q25.1;q34.3) translocation leading to OLFM1 fusion transcripts in Gilles de la Tourette syndrome, OCD and ADHD. Psychiatry Res 2015; 225:268-75. [PMID: 25595337 DOI: 10.1016/j.psychres.2014.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 01/13/2023]
Abstract
Gilles de la Tourette syndrome (GTS) is a neuropsychiatric disorder with a strong genetic etiology; however, finding of candidate genes is hampered by its genetic heterogeneity and the influence of non-genetic factors on disease pathogenesis. We report a case of a male patient with GTS, obsessive compulsive disorder, attention-deficit/hyperactivity-disorder, as well as other comorbidities, and a translocation t(3;9)(q25.1;q34.3) inherited from a mother with tics. Mate-pair sequencing revealed that the translocation breakpoints truncated the olfactomedin 1 (OLFM1) gene and two uncharacterized transcripts. Reverse-transcription PCR identified several fusion transcripts in the carriers, and OLFM1 expression was found to be high in GTS-related human brain regions. As OLFM1 plays a role in neuronal development it is a likely candidate gene for neuropsychiatric disorders and haploinsufficiency of OLFM1 could be a contributing risk factor to the phenotype of the carriers. In addition, one of the fusion transcripts may exert a dominant-negative or gain-of-function effect. OLFM1 is unlikely to be a major GTS susceptibility gene as no point mutations or copy number variants affecting OLFM1 were identified in 175 additional patients. The translocation described is thus a unique event, but further studies in larger cohorts are required to elucidate involvement of OLFM1 in GTS pathogenesis.
Collapse
Affiliation(s)
- Birgitte Bertelsen
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Linea Melchior
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Lars Riff Jensen
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Camilla Groth
- Tourette Clinic, Department of Pediatrics, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Lusine Nazaryan
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Nanette Mol Debes
- Tourette Clinic, Department of Pediatrics, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Liselotte Skov
- Tourette Clinic, Department of Pediatrics, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Gangcai Xie
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Wei Sun
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Karen Brøndum-Nielsen
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Andreas Walter Kuss
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Wei Chen
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Zeynep Tümer
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
133
|
Lee SA, Kim SM, Suh BK, Sun HY, Park YU, Hong JH, Park C, Nguyen MD, Nagata KI, Yoo JY, Park SK. Disrupted-in-schizophrenia 1 (DISC1) regulates dysbindin function by enhancing its stability. J Biol Chem 2015; 290:7087-96. [PMID: 25635053 DOI: 10.1074/jbc.m114.614750] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dysbindin and DISC1 are schizophrenia susceptibility factors playing roles in neuronal development. Here we show that the physical interaction between dysbindin and DISC1 is critical for the stability of dysbindin and for the process of neurite outgrowth. We found that DISC1 forms a complex with dysbindin and increases its stability in association with a reduction in ubiquitylation. Furthermore, knockdown of DISC1 or expression of a deletion mutant, DISC1 lacking amino acid residues 403-504 of DISC1 (DISC1(Δ403-504)), effectively decreased levels of endogenous dysbindin. Finally, the neurite outgrowth defect induced by knockdown of DISC1 was partially reversed by coexpression of dysbindin. Taken together, these results indicate that dysbindin and DISC1 form a physiologically functional complex that is essential for normal neurite outgrowth.
Collapse
Affiliation(s)
- Seol-Ae Lee
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Seong-Mo Kim
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bo Kyoung Suh
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Hwa-Young Sun
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Young-Un Park
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ji-Ho Hong
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Cana Park
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Minh Dang Nguyen
- the Hotchkiss Brain Institute, Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada, and
| | - Koh-Ichi Nagata
- the Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Joo-Yeon Yoo
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Sang Ki Park
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea,
| |
Collapse
|
134
|
Systematic identification of molecular links between core and candidate genes in breast cancer. J Mol Biol 2015; 427:1436-1450. [PMID: 25640309 DOI: 10.1016/j.jmb.2015.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/22/2015] [Accepted: 01/24/2015] [Indexed: 01/07/2023]
Abstract
Despite the remarkable progress achieved in the identification of specific genes involved in breast cancer (BC), our understanding of their complex functioning is still limited. In this manuscript, we systematically explore the existence of direct physical interactions between the products of BC core and associated genes. Our aim is to generate a protein interaction network of BC-associated gene products and suggest potential molecular mechanisms to unveil their role in the disease. In total, we report 599 novel high-confidence interactions among 44 BC core, 54 BC candidate/associated and 96 newly identified proteins. Our findings indicate that this network-based approach is indeed a robust inference tool to pinpoint new potential players and gain insight into the underlying mechanisms of those proteins with previously unknown roles in BC. To illustrate the power of our approach, we provide initial validation of two BC-associated proteins on the alteration of DNA damage response as a result of specific re-wiring interactions. Overall, our BC-related network may serve as a framework to integrate clinical and molecular data and foster novel global therapeutic strategies.
Collapse
|
135
|
Samsom JN, Wong AHC. Schizophrenia and Depression Co-Morbidity: What We have Learned from Animal Models. Front Psychiatry 2015; 6:13. [PMID: 25762938 PMCID: PMC4332163 DOI: 10.3389/fpsyt.2015.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/24/2015] [Indexed: 12/15/2022] Open
Abstract
Patients with schizophrenia are at an increased risk for the development of depression. Overlap in the symptoms and genetic risk factors between the two disorders suggests a common etiological mechanism may underlie the presentation of comorbid depression in schizophrenia. Understanding these shared mechanisms will be important in informing the development of new treatments. Rodent models are powerful tools for understanding gene function as it relates to behavior. Examining rodent models relevant to both schizophrenia and depression reveals a number of common mechanisms. Current models which demonstrate endophenotypes of both schizophrenia and depression are reviewed here, including models of CUB and SUSHI multiple domains 1, PDZ and LIM domain 5, glutamate Delta 1 receptor, diabetic db/db mice, neuropeptide Y, disrupted in schizophrenia 1, and its interacting partners, reelin, maternal immune activation, and social isolation. Neurotransmission, brain connectivity, the immune system, the environment, and metabolism emerge as potential common mechanisms linking these models and potentially explaining comorbid depression in schizophrenia.
Collapse
Affiliation(s)
- James N Samsom
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada ; Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| | - Albert H C Wong
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada ; Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada ; Department of Psychiatry, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
136
|
Terzić T, Kastelic M, Dolžan V, Plesničar BK. Genetic variability testing of neurodevelopmental genes in schizophrenic patients. J Mol Neurosci 2014; 56:205-11. [PMID: 25529856 DOI: 10.1007/s12031-014-0482-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
Abstract
This study investigated the associations between single nucleotide polymorphisms in the neurodevelopmental Disrupted In Schizophrenia 1 (DISC1 ), neuregulin 1 (NRG1), brain-derived neurotrophic factor (BDNF) and NOTCH4 genes and the clinical symptoms and the occurrence of treatment-resistant schizophrenia in the Slovenian population. We included 138 schizophrenia patients, divided into treatment-responsive and treatment-resistant group and 94 healthy blood donors. All subjects were genotyped for eight polymorphisms (DISC1 rs6675281, DISC1 rs821616, NRG1 rs3735781, NRG1 rs3735782, NRG1 rs10503929, NRG1 rs3924999, BDNF rs6265, NOTCH rs367398) and investigated for associations with clinical variables. NOTCH4 rs367398 AA/AG was significantly associated with worse Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression (CGI) score. NOTCH4 rs367398 was not statistically significantly associated with the occurrence of treatment-resistant schizophrenia after the correction for multiple testing. Our data indicate that NOTCH4 polymorphism can influence clinical symptoms in Slovenian patients with schizophrenia.
Collapse
Affiliation(s)
- Tea Terzić
- University Psychiatric Clinic Ljubljana, Studenec 48, 1260, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
137
|
Donegan RK, Hill SE, Freeman DM, Nguyen E, Orwig SD, Turnage KC, Lieberman RL. Structural basis for misfolding in myocilin-associated glaucoma. Hum Mol Genet 2014; 24:2111-24. [PMID: 25524706 DOI: 10.1093/hmg/ddu730] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Olfactomedin (OLF) domain-containing proteins play roles in fundamental cellular processes and have been implicated in disorders ranging from glaucoma, cancers and inflammatory bowel disorder, to attention deficit disorder and childhood obesity. We solved crystal structures of the OLF domain of myocilin (myoc-OLF), the best studied such domain to date. Mutations in myoc-OLF are causative in the autosomal dominant inherited form of the prevalent ocular disorder glaucoma. The structures reveal a new addition to the small family of five-bladed β-propellers. Propellers are most well known for their ability to act as hubs for protein-protein interactions, a function that seems most likely for myoc-OLF, but they can also act as enzymes. A calcium ion, sodium ion and glycerol molecule were identified within a central hydrophilic cavity that is accessible via movements of surface loop residues. By mapping familial glaucoma-associated lesions onto the myoc-OLF structure, three regions sensitive to aggregation have been identified, with direct applicability to differentiating between neutral and disease-causing non-synonymous mutations documented in the human population worldwide. Evolutionary analysis mapped onto the myoc-OLF structure reveals conserved and divergent regions for possible overlapping and distinctive functional protein-protein or protein-ligand interactions across the broader OLF domain family. While deciphering the specific normal biological functions, ligands and binding partners for OLF domains will likely continue to be a challenging long-term experimental pursuit, atomic detail structural knowledge of myoc-OLF is a valuable guide for understanding the implications of glaucoma-associated mutations and will help focus future studies of this biomedically important domain family.
Collapse
Affiliation(s)
- Rebecca K Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Shannon E Hill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Dana M Freeman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Elaine Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Susan D Orwig
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Katherine C Turnage
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| |
Collapse
|
138
|
Randall AD, Kurihara M, Brandon NJ, Brown JT. Disrupted in schizophrenia 1 and synaptic function in the mammalian central nervous system. Eur J Neurosci 2014; 39:1068-73. [PMID: 24712987 PMCID: PMC4232872 DOI: 10.1111/ejn.12500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/02/2014] [Accepted: 01/07/2014] [Indexed: 11/28/2022]
Abstract
The disrupted in schizophrenia 1 (DISC1) gene is found at the breakpoint of an inherited chromosomal translocation, and segregates with major mental illnesses. Its potential role in central nervous system (CNS) malfunction has triggered intensive investigation of the biological roles played by DISC1, with the hope that this may shed new light on the pathobiology of psychiatric disease. Such work has ranged from investigations of animal behavior to detailed molecular-level analysis of the assemblies that DISC1 forms with other proteins. Here, we discuss the evidence for a role of DISC1 in synaptic function in the mammalian CNS.
Collapse
Affiliation(s)
- Andrew D Randall
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol, UK; Institute of Biomedical and Clinical Sciences, University of Exeter, The Hatherley Building, Prince of Wales Road, Exeter, EX4 4PS, UK
| | | | | | | |
Collapse
|
139
|
Podder A, Latha N. New Insights into Schizophrenia Disease Genes Interactome in the Human Brain: Emerging Targets and Therapeutic Implications in the Postgenomics Era. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:754-66. [DOI: 10.1089/omi.2014.0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Avijit Podder
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Narayanan Latha
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, University of Delhi, New Delhi, India
| |
Collapse
|
140
|
Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, Kim NS, Yoon KJ, Shin J, Zhang C, Makri G, Nauen D, Yu H, Guzman E, Chiang CH, Yoritomo N, Kaibuchi K, Zou J, Christian KM, Cheng L, Ross CA, Margolis RL, Chen G, Kosik KS, Song H, Ming GL. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 2014; 515:414-8. [PMID: 25132547 PMCID: PMC4501856 DOI: 10.1038/nature13716] [Citation(s) in RCA: 423] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 07/28/2014] [Indexed: 12/13/2022]
Abstract
Dysregulated neurodevelopment with altered structural and functional connectivity is believed to underlie many neuropsychiatric disorders, and 'a disease of synapses' is the major hypothesis for the biological basis of schizophrenia. Although this hypothesis has gained indirect support from human post-mortem brain analyses and genetic studies, little is known about the pathophysiology of synapses in patient neurons and how susceptibility genes for mental disorders could lead to synaptic deficits in humans. Genetics of most psychiatric disorders are extremely complex due to multiple susceptibility variants with low penetrance and variable phenotypes. Rare, multiply affected, large families in which a single genetic locus is probably responsible for conferring susceptibility have proven invaluable for the study of complex disorders. Here we generated induced pluripotent stem (iPS) cells from four members of a family in which a frameshift mutation of disrupted in schizophrenia 1 (DISC1) co-segregated with major psychiatric disorders and we further produced different isogenic iPS cell lines via gene editing. We showed that mutant DISC1 causes synaptic vesicle release deficits in iPS-cell-derived forebrain neurons. Mutant DISC1 depletes wild-type DISC1 protein and, furthermore, dysregulates expression of many genes related to synapses and psychiatric disorders in human forebrain neurons. Our study reveals that a psychiatric disorder relevant mutation causes synapse deficits and transcriptional dysregulation in human neurons and our findings provide new insight into the molecular and synaptic etiopathology of psychiatric disorders.
Collapse
Affiliation(s)
- Zhexing Wen
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3]
| | - Ha Nam Nguyen
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3]
| | - Ziyuan Guo
- 1] Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA [2]
| | - Matthew A Lalli
- Neuroscience Research Institute, Department of Molecular Cellular and Developmental Biology, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Xinyuan Wang
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yijing Su
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Nam-Shik Kim
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ki-Jun Yoon
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jaehoon Shin
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ce Zhang
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Georgia Makri
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - David Nauen
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Huimei Yu
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Elmer Guzman
- Neuroscience Research Institute, Department of Molecular Cellular and Developmental Biology, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Cheng-Hsuan Chiang
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Nadine Yoritomo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya 466-8550, Japan
| | - Jizhong Zou
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kimberly M Christian
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Linzhao Cheng
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Christopher A Ross
- 1] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Russell L Margolis
- 1] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular Cellular and Developmental Biology, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Hongjun Song
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [4] The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Guo-li Ming
- 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [4] The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
141
|
Abayomi O, Amato D, Bailey C, Bitanihirwe B, Bowen L, Burshtein S, Cullen A, Fusté M, Herrmann AP, Khodaie B, Kilian S, Lang QA, Manning EE, Massuda R, Nurjono M, Sadiq S, Sanchez-Gutierrez T, Sheinbaum T, Shivakumar V, Simon N, Spiteri-Staines A, Sirijit S, Toftdahl NG, Wadehra S, Wang Y, Wigton R, Wright S, Yagoda S, Zaytseva Y, O'Shea A, DeLisi LE. The 4th Schizophrenia International Research Society Conference, 5-9 April 2014, Florence, Italy: a summary of topics and trends. Schizophr Res 2014; 159:e1-22. [PMID: 25306204 PMCID: PMC4394607 DOI: 10.1016/j.schres.2014.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/07/2014] [Accepted: 08/26/2014] [Indexed: 11/26/2022]
Abstract
The 4th Schizophrenia International Research Society Conference was held in Florence, Italy, April 5-9, 2014 and this year had as its emphasis, "Fostering Collaboration in Schizophrenia Research". Student travel awardees served as rapporteurs for each oral session, summarized the important contributions of each session and then each report was integrated into a final summary of data discussed at the entire conference by topic. It is hoped that by combining data from different presentations, patterns of interest will emerge and thus lead to new progress for the future. In addition, the following report provides an overview of the conference for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research.
Collapse
Affiliation(s)
- Olukayode Abayomi
- Ladoke Akintola University of Technology Teaching Hospital, PMB 4007, Ogbomoso, Oyo, Nigeria
| | - Davide Amato
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Ulmenweg 19, 91054 Erlangen, Germany
| | - Candace Bailey
- University of Texas Medical Branch, School of Medicine, 215 Mechanic Street, Apt. M206, Galveston77550, TX, United States
| | - Byron Bitanihirwe
- Laboratory of System and Cell Biology of Neurodegeneration, University of Zurich, Wagistrasse 12, 8952 Schlieren, Zurich, Switzerland
| | - Lynneice Bowen
- Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, United States
| | | | - Alexis Cullen
- Health Services and Population Research Department, David Goldberg Centre, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Montserrat Fusté
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF London, UK
| | - Ana P Herrmann
- Pharmacology Department, Basic Health Sciences Institute, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | | | - Sanja Kilian
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Qortni A Lang
- Howard University College of Medicine, 520 W Street, Washington, DC 20059, United States
| | - Elizabeth E Manning
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, 30 Royal Parade, Parkville 3052, VIC, Australia
| | - Raffael Massuda
- Laboratory of Molecular Psychiatry, INCT for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350 Santa Cecília, Porto Alegre, RS 90035-903, Brazil
| | - Milawaty Nurjono
- Saw Swee Hock School of Public Health, National University of Singapore, MD3, 16 Medical Drive, Singapore 117597, Singapore
| | - Sarosh Sadiq
- Government College University, 170-S, 19/B, College Road, New Samanabad, Lahore, Pakistan
| | - Teresa Sanchez-Gutierrez
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, C/Ibiza, 43 28009, Madrid, Spain
| | - Tamara Sheinbaum
- Departament de Psicologia Clínica i de la Salut, Universitat Autònoma de Barcelona, Edifici B, 08193 Bellaterra, Barcelona, Spain
| | | | - Nicholas Simon
- Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Anneliese Spiteri-Staines
- Centre for Youth Mental Health, The University of Melbourne, 35 Poplar Road, Parkville 3052, Victoria, Australia
| | - Suttajit Sirijit
- Department of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanna Gilliam Toftdahl
- Mental Health Centre Copenhagen, Bispebjerg Bakke 23, Entrance 13A, 3rd floor, DK-2400, Copenhagen NV, Denmark
| | - Sunali Wadehra
- Wayne State University School of Medicine, 469 West Hancock, Detroit 48201, MI, United States
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Rebekah Wigton
- Cognition and Schizophrenia Imaging Laboratory, Institute of Psychiatry, King's College, 16 De Crespigny Park Rd, Denmark Hill, London SE5 8AF, UK
| | - Susan Wright
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Neuroimaging Research Program, P.O. Box 21247, Baltimore, MD 21228, United States
| | - Sergey Yagoda
- Department of Psychiatry, Psychotherapy and Medical Psychology of Stavropol State Medical University, 28b Aivazovsky str, Stavropol 355007, Russia
| | - Yuliya Zaytseva
- Moscow Research Institute of Psychiatry, Russian Federation/Prague Psychiatric Centre affiliated with 3rd Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Anne O'Shea
- Harvard Medical School, Brockton, MA 02301, United States. anne_o'
| | - Lynn E DeLisi
- Department of Psychiatry, Harvard Medical School, 940 Belmont Street, Brockton, MA 02301, United States; VA Boston Healthcare System, 940 Belmont Street, Brockton, MA 02301, United States.
| |
Collapse
|
142
|
Han MHJ, Hu Z, Chen CY, Chen Y, Gucek M, Li Z, Markey SP. Dysbindin-associated proteome in the p2 synaptosome fraction of mouse brain. J Proteome Res 2014; 13:4567-80. [PMID: 25198678 PMCID: PMC4227559 DOI: 10.1021/pr500656z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
The
gene DTNBP1 encodes the protein dysbindin and is among the
most promising and highly investigated schizophrenia-risk genes. Accumulating
evidence suggests that dysbindin plays an important role in the regulation
of neuroplasticity. Dysbindin was reported to be a stable component
of BLOC-1 complex in the cytosol. However, little is known about the
endogenous dysbindin-containing complex in the brain synaptosome.
In this study, we investigated the associated proteome of dysbindin
in the P2 synaptosome fraction of mouse brain. Our data suggest that
dysbindin has three isoforms associating with different complexes
in the P2 fraction of mouse brain. To facilitate immunopurification,
BAC transgenic mice expressing a tagged dysbindin were generated,
and 47 putative dysbindin-associated proteins, including all components
of BLOC-1, were identified by mass spectrometry in the dysbindin-containing
complex purified from P2. The interactions of several selected candidates,
including WDR11, FAM91A1, snapin, muted, pallidin, and two proteasome
subunits, PSMD9 and PSMA4, were verified by coimmunoprecipitation.
The specific proteasomal activity is significantly reduced in the
P2 fraction of the brains of the dysbindin-null mutant (sandy) mice.
Our data suggest that dysbindin is functionally interrelated to the
ubiquitin-proteasome system and offer a molecular repertoire for future
study of dysbindin functional networks in brain.
Collapse
Affiliation(s)
- Meng-Hsuan J Han
- National Institute of Mental Health , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | |
Collapse
|
143
|
Ka M, Jung EM, Mueller U, Kim WY. MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling. Dev Biol 2014; 395:4-18. [PMID: 25224226 DOI: 10.1016/j.ydbio.2014.09.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/13/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
Abstract
Neuronal migration and subsequent differentiation play critical roles for establishing functional neural circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1 deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons.
Collapse
Affiliation(s)
- Minhan Ka
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Eui-Man Jung
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Ulrich Mueller
- Dorris Neuroscience Center and Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Woo-Yang Kim
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
144
|
Morris BJ, Pratt JA. Novel treatment strategies for schizophrenia from improved understanding of genetic risk. Clin Genet 2014; 86:401-11. [PMID: 25142969 DOI: 10.1111/cge.12485] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 01/19/2023]
Abstract
Recent years have seen significant advances in our understanding of the genetic basis of schizophrenia. In particular, genome-wide approaches have suggested the involvement of many common genetic variants of small effect, together with a few rare variants exerting relatively large effects. While unequivocal identification of the relevant genes has, for the most part, remained elusive, the genes revealed as potential candidates can in many cases be clustered into functionally related groups which are potentially open to therapeutic intervention. In this review, we summarise this information, focusing on the accumulating evidence that genetic dysfunction at glutamatergic synapses and post-synaptic signalling complexes contributes to the aetiology of the disease. In particular, there is converging support for involvement of post-synaptic JNK pathways in disease aetiology. An expansion of our neurobiological knowledge of the basis of schizophrenia is urgently needed, yet some promising novel pharmacological targets can already be discerned.
Collapse
Affiliation(s)
- B J Morris
- Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), University of Glasgow, Glasgow, UK; Institute of Neuroscience and Psychology, School of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
145
|
Trossbach SV, Fehsel K, Henning U, Winterer G, Luckhaus C, Schäble S, Silva MADS, Korth C. Peripheral DISC1 protein levels as a trait marker for schizophrenia and modulating effects of nicotine. Behav Brain Res 2014; 275:176-82. [PMID: 25218871 DOI: 10.1016/j.bbr.2014.08.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 08/31/2014] [Indexed: 11/25/2022]
Abstract
The Disrupted-in-Schizophrenia 1 (DISC1) protein plays a key role in behavioral control and vulnerability for mental illnesses, including schizophrenia. In this study we asked whether peripheral DISC1 protein levels in lymphocytes of patients diagnosed with schizophrenia can serve as a trait marker for the disease. Since a prominent comorbidity of schizophrenia patients is nicotine abuse or addiction, we also examined modulation of lymphocyte DISC1 protein levels in smokers, as well as the relationship between nicotine and DISC1 solubility status. We show decreased DISC1 levels in patients diagnosed with schizophrenia independent of smoking, indicating its potential use as a trait marker of this disease. In addition, lymphocytic DISC1 protein levels were decreased in smoking, mentally healthy individuals but not to the degree of overriding the trait level. Since DISC1 protein has been reported to exist in different solubility states in the brain, we also investigated DISC1 protein solubility in brains of rats treated with nicotine. Sub-chronic treatment with progressively increasing doses of nicotine from 0.25mg/kg to 1mg/kg for 15 days led to a decrease of insoluble DISC1 in the medial prefrontal cortex. Our results demonstrate that DISC1 protein levels in human lymphocytes are correlated with the diagnosis of schizophrenia independent of smoking and thus present a potential biomarker. Reduced DISC1 protein levels in lymphocytes of healthy individuals exposed to nicotine suggest that peripheral DISC1 could have potential for monitoring the effects of psychoactive substances.
Collapse
Affiliation(s)
- Svenja V Trossbach
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Uwe Henning
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Georg Winterer
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Christian Luckhaus
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Sandra Schäble
- Center for Behavioral Neuroscience, Heinrich Heine University Düsseldorf, Germany
| | | | - Carsten Korth
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
146
|
Gonzalez S, Camarillo C, Rodriguez M, Ramirez M, Zavala J, Armas R, Contreras SA, Contreras J, Dassori A, Almasy L, Flores D, Jerez A, Raventós H, Ontiveros A, Nicolini H, Escamilla M. A genome-wide linkage scan of bipolar disorder in Latino families identifies susceptibility loci at 8q24 and 14q32. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:479-91. [PMID: 25044503 DOI: 10.1002/ajmg.b.32251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022]
Abstract
A genome-wide nonparametric linkage screen was performed to localize Bipolar Disorder (BP) susceptibility loci in a sample of 3757 individuals of Latino ancestry. The sample included 963 individuals with BP phenotype (704 relative pairs) from 686 families recruited from the US, Mexico, Costa Rica, and Guatemala. Non-parametric analyses were performed over a 5 cM grid with an average genetic coverage of 0.67 cM. Multipoint analyses were conducted across the genome using non-parametric Kong & Cox LOD scores along with Sall statistics for all relative pairs. Suggestive and significant genome-wide thresholds were calculated based on 1000 simulations. Single-marker association tests in the presence of linkage were performed assuming a multiplicative model with a population prevalence of 2%. We identified two genome-wide significant susceptibly loci for BP at 8q24 and 14q32, and a third suggestive locus at 2q13-q14. Within these three linkage regions, the top associated single marker (rs1847694, P = 2.40 × 10(-5)) is located 195 Kb upstream of DPP10 in Chromosome 2. DPP10 is prominently expressed in brain neuronal populations, where it has been shown to bind and regulate Kv4-mediated A-type potassium channels. Taken together, these results provide additional evidence that 8q24, 14q32, and 2q13-q14 are susceptibly loci for BP and these regions may be involved in the pathogenesis of BP in the Latino population.
Collapse
Affiliation(s)
- Suzanne Gonzalez
- Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas; Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. Mol Psychiatry 2014; 19:872-9. [PMID: 24126926 DOI: 10.1038/mp.2013.127] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 08/02/2013] [Accepted: 08/08/2013] [Indexed: 02/03/2023]
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders that may share an underlying pathology suggested by shared genetic risk variants. We sequenced the exonic regions of 215 genes in 147 ASD cases, 273 SZ cases and 287 controls, to identify rare risk mutations. Genes were primarily selected for their function in the synapse and were categorized as: (1) Neurexin and Neuroligin Interacting Proteins, (2) Post-synaptic Glutamate Receptor Complexes, (3) Neural Cell Adhesion Molecules, (4) DISC1 and Interactors and (5) Functional and Positional Candidates. Thirty-one novel loss-of-function (LoF) variants that are predicted to severely disrupt protein-coding sequence were detected among 2 861 rare variants. We found an excess of LoF variants in the combined cases compared with controls (P=0.02). This effect was stronger when analysis was limited to singleton LoF variants (P=0.0007) and the excess was present in both SZ (P=0.002) and ASD (P=0.001). As an individual gene category, Neurexin and Neuroligin Interacting Proteins carried an excess of LoF variants in cases compared with controls (P=0.05). A de novo nonsense variant in GRIN2B was identified in an ASD case adding to the growing evidence that this is an important risk gene for the disorder. These data support synapse formation and maintenance as key molecular mechanisms for SZ and ASD.
Collapse
|
148
|
Lipina TV, Roder JC. Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehav Rev 2014; 45:271-94. [PMID: 25016072 DOI: 10.1016/j.neubiorev.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Disrupted-In-Schizophrenia-1 (DISC1) has captured much attention because it predisposes individuals to a wide range of mental illnesses. Notably, a number of genes encoding proteins interacting with DISC1 are also considered to be relevant risk factors of mental disorders. We reasoned that the understanding of DISC1-associated mental disorders in the context of network principles will help to address fundamental properties of DISC1 as a disease gene. Systematic integration of behavioural phenotypes of genetic mouse lines carrying perturbation in DISC1 interacting proteins would contribute to a better resolution of neurobiological mechanisms of mental disorders associated with the impaired DISC1 interactome and lead to a development of network medicine. This review also makes specific recommendations of how to assess DISC1 associated mental disorders in mouse models and discuss future directions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Departments of Medical Biophysics and Molecular & Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
149
|
Steinecke A, Gampe C, Nitzsche F, Bolz J. DISC1 knockdown impairs the tangential migration of cortical interneurons by affecting the actin cytoskeleton. Front Cell Neurosci 2014; 8:190. [PMID: 25071449 PMCID: PMC4086047 DOI: 10.3389/fncel.2014.00190] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/20/2014] [Indexed: 12/29/2022] Open
Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is a risk gene for a spectrum of major mental disorders. It has been shown to regulate radial migration as well as dendritic arborization during neurodevelopment and corticogenesis. In a previous study we demonstrated through in vitro experiments that DISC1 also controls the tangential migration of cortical interneurons originating from the medial ganglionic eminence (MGE). Here we first show that DISC1 is necessary for the proper tangential migration of cortical interneurons in the intact brain. Expression of EGFP under the Lhx6 promotor allowed us to analyze exclusively interneurons transfected in the MGE after in utero electroporation. After 3 days in utero, DISC1 deficient interneurons displayed prolonged leading processes and, compared to control, fewer neurons reached the cortex. Time-lapse video microscopy of cortical feeder-layers revealed a decreased migration velocity due to a reduction of soma translocations. Immunostainings indicated that DISC1 is co-localized with F-actin in the growth cone-like structure of the leading process. DISC1 knockdown reduced F-actin levels whereas the overall actin level was not altered. Moreover, DISC1 knockdown also decreased levels of phosphorylated Girdin, which cross-links F-actin, as well as the Girdin-activator pAkt. In contrast, using time-lapse video microscopy of fluorescence-tagged tubulin and EB3 in fibroblasts, we found no effects on microtubule polymerization when DISC1 was reduced. However, DISC1 affected the acetylation of microtubules in the leading processes of MGE-derived cortical interneurons. Together, our results provide a mechanism how DISC1 might contribute to interneuron migration thereby explaining the reduced number of specific classes of cortical interneurons in some DISC1 mouse models.
Collapse
Affiliation(s)
- André Steinecke
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| | - Christin Gampe
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| | - Falk Nitzsche
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| | - Jürgen Bolz
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| |
Collapse
|
150
|
Female-dependent impaired fear memory of adult rats induced by maternal separation, and screening of possible related genes in the hippocampal CA1. Behav Brain Res 2014; 267:111-8. [DOI: 10.1016/j.bbr.2014.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 12/29/2022]
|