101
|
Exposure to early adversity: Points of cross-species translation that can lead to improved understanding of depression. Dev Psychopathol 2016; 27:477-91. [PMID: 25997766 DOI: 10.1017/s0954579415000103] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The relationship between developmental exposure to adversity and affective disorders is reviewed. Adversity discussed herein includes physical and sexual abuse, neglect, or loss of a caregiver in humans. While these stressors can occur at any point during development, the unique temporal relationship to specific depressive symptoms was the focus of discussion. Further influences of stress exposure during sensitive periods can vary by gender and duration of abuse as well. Data from animal studies are presented to provide greater translational and causal understanding of how sensitive periods, different types of psychosocial stressors, and sex interact to produce depressive-like behaviors. Findings from maternal separation, isolation rearing, chronic variable stress, and peer-peer rearing paradigms clarify interpretation about how various depressive behaviors are influenced by age of exposure. Depressive behaviors are broken down into the following categories: mood and affect, anhedonia, energy, working memory, sleep-wake, appetite changes, suicide, and general malaise. Cross-species evidence from humans, nonhuman primates, rats, and mice within each of these categories is discussed. In conclusion, sensitive periods for affective-related behaviors (anxiety, mood, and controllability) occur earlier in life, while other aspects of depression are associated with adversity later during adolescence.
Collapse
|
102
|
Figueiredo ÍL, Frota PB, da Cunha DG, da Silva Raposo R, Canuto KM, de Andrade GM, Sousa N, Moore SR, Anstead GM, Alvarez-Leite JI, Guerrant RL, Oriá RB. Prolonged maternal separation induces undernutrition and systemic inflammation with disrupted hippocampal development in mice. Nutrition 2016; 32:1019-27. [PMID: 27157468 DOI: 10.1016/j.nut.2016.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/15/2016] [Accepted: 02/21/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Prolonged maternal separation (PMS) in the first 2 wk of life has been associated with poor growth with lasting effects in brain structure and function. This study aimed to investigate whether PMS-induced undernutrition could cause systemic inflammation and changes in nutrition-related hormonal levels, affecting hippocampal structure and neurotransmission in C57BL/6J suckling mice. METHODS This study assessed mouse growth parameters coupled with insulin-like growth factor-1 (IGF-1) serum levels. In addition, leptin, adiponectin, and corticosterone serum levels were measured following PMS. Hippocampal stereology and the amino acid levels were also assessed. Furthermore, we measured myelin basic protein and synapthophysin (SYN) expression in the overall brain tissue and hippocampal SYN immunolabeling. For behavioral tests, we analyzed the ontogeny of selected neonatal reflexes. PMS was induced by separating half the pups in each litter from their lactating dams for defined periods each day (4 h on day 1, 8 h on day 2, and 12 h thereafter). A total of 67 suckling pups were used in this study. RESULTS PMS induced significant slowdown in weight gain and growth impairment. Significant reductions in serum leptin and IGF-1 levels were found following PMS. Total CA3 area and volume were reduced, specifically affecting the pyramidal layer in PMS mice. CA1 pyramidal layer area was also reduced. Overall hippocampal SYN immunolabeling was lower, especially in CA3 field and dentate gyrus. Furthermore, PMS reduced hippocampal aspartate, glutamate, and gamma-aminobutyric acid levels, as compared with unseparated controls. CONCLUSION These findings suggest that PMS causes significant growth deficits and alterations in hippocampal morphology and neurotransmission.
Collapse
Affiliation(s)
- Ítalo Leite Figueiredo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Ceara, Brazil
| | - Priscila B Frota
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Ceara, Brazil
| | - Davi G da Cunha
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Ceara, Brazil
| | | | - Kildere M Canuto
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Ceara, Brazil
| | - Geanne M de Andrade
- Department of Physiology and Pharmacology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Ceara, Brazil
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sean R Moore
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Jacqueline I Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Richard L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Reinaldo B Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Ceara, Brazil.
| |
Collapse
|
103
|
Adolescent mice show anxiety- and aggressive-like behavior and the reduction of long-term potentiation in mossy fiber-CA3 synapses after neonatal maternal separation. Neuroscience 2016; 316:221-31. [DOI: 10.1016/j.neuroscience.2015.12.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/05/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022]
|
104
|
Teicher MH, Samson JA. Annual Research Review: Enduring neurobiological effects of childhood abuse and neglect. J Child Psychol Psychiatry 2016; 57:241-66. [PMID: 26831814 PMCID: PMC4760853 DOI: 10.1111/jcpp.12507] [Citation(s) in RCA: 719] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Childhood maltreatment is the most important preventable cause of psychopathology accounting for about 45% of the population attributable risk for childhood onset psychiatric disorders. A key breakthrough has been the discovery that maltreatment alters trajectories of brain development. METHODS This review aims to synthesize neuroimaging findings in children who experienced caregiver neglect as well as from studies in children, adolescents and adults who experienced physical, sexual and emotional abuse. In doing so, we provide preliminary answers to questions regarding the importance of type and timing of exposure, gender differences, reversibility and the relationship between brain changes and psychopathology. We also discuss whether these changes represent adaptive modifications or stress-induced damage. RESULTS Parental verbal abuse, witnessing domestic violence and sexual abuse appear to specifically target brain regions (auditory, visual and somatosensory cortex) and pathways that process and convey the aversive experience. Maltreatment is associated with reliable morphological alterations in anterior cingulate, dorsal lateral prefrontal and orbitofrontal cortex, corpus callosum and adult hippocampus, and with enhanced amygdala response to emotional faces and diminished striatal response to anticipated rewards. Evidence is emerging that these regions and interconnecting pathways have sensitive exposure periods when they are most vulnerable. CONCLUSIONS Early deprivation and later abuse may have opposite effects on amygdala volume. Structural and functional abnormalities initially attributed to psychiatric illness may be a more direct consequence of abuse. Childhood maltreatment exerts a prepotent influence on brain development and has been an unrecognized confound in almost all psychiatric neuroimaging studies. These brain changes may be best understood as adaptive responses to facilitate survival and reproduction in the face of adversity. Their relationship to psychopathology is complex as they are discernible in both susceptible and resilient individuals with maltreatment histories. Mechanisms fostering resilience will need to be a primary focus of future studies.
Collapse
Affiliation(s)
- Martin H. Teicher
- Department of Psychiatry, Harvard Medical School, Boston, MA,Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, USA
| | - Jacqueline A. Samson
- Department of Psychiatry, Harvard Medical School, Boston, MA,Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
105
|
Matas E, Bock J, Braun K. The Impact of Parent-Infant Interaction on Epigenetic Plasticity Mediating Synaptic Adaptations in the Infant Brain. Psychopathology 2016; 49:201-210. [PMID: 27668788 DOI: 10.1159/000448055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/26/2016] [Indexed: 11/19/2022]
Abstract
The development of the brain depends on an individual's nature (genes) and nurture (environments). This interaction between genetic predispositions and environmental events during brain development drives the maturation of functional brain circuits such as sensory, motor, emotional, and complex cognitive pathways. Adverse environmental conditions such as early life stress can interfere with the functional development of emotional and cognitive brain systems and thereby increase the risk of developing psychiatric disorders later in life. In order to develop more efficient and individualized protective and therapeutic interventions, it is essential to understand how environmental stressors during infancy affect cellular and molecular mechanisms involved in brain maturation. Animal models of early life stress have been able to reveal brain structural and metabolic changes in prefrontolimbic circuits, which are time, brain region, neuron, and sex specific. By focusing on animal models of separation stress during infancy, this review highlights epigenetic and cytoarchitectural modifications which are assumed to mediate lasting changes of brain function and behavior.
Collapse
Affiliation(s)
- Emmanuel Matas
- Department of Zoology/Developmental Neurobiology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | | |
Collapse
|
106
|
Rogers MA, Yamasue H, Kasai K. Antidepressant Medication May Moderate the Effect of Depression Duration on Hippocampus Volume. J PSYCHOPHYSIOL 2016. [DOI: 10.1027/0269-8803/a000148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Hippocampus volume has been frequently, but not universally reported to be reduced in people with major depression relative to age-matched healthy controls. Among the potential reasons for this discrepancy in finding across studies is the effect of antidepressant medication. Hippocampus volume was determined by MRI (1.5 Tesla) for 10 people diagnosed with major depression for who detailed history of depression and antidepressant treatment history were known, and 10 age-matched healthy controls with no history of depression. Left, but not right, hippocampus volumes were significantly smaller in the patient group compared to the controls. Furthermore, there was a significant correlation such that left hippocampus volume was smaller with increasing lifetime duration of depression. However, this relationship was moderated by a significant correlation such that greater lifetime duration of antidepressant medication was associated with larger left hippocampus volume. The findings support the contention that antidepressant medication may act to normalize hippocampus volume.
Collapse
Affiliation(s)
- Mark A. Rogers
- Cognitive Neuroscience Unit, School of Psychology, Faculty of Health, Deakin University, Victoria, Australia
| | - Hidenori Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Japan
| |
Collapse
|
107
|
Chaby LE, Cavigelli SA, Hirrlinger AM, Lim J, Warg KM, Braithwaite VA. Chronic Stress During Adolescence Impairs and Improves Learning and Memory in Adulthood. Front Behav Neurosci 2015; 9:327. [PMID: 26696849 PMCID: PMC4675857 DOI: 10.3389/fnbeh.2015.00327] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
HIGHLIGHTS This study tested the effects of adolescent-stress on adult learning and memory.Adolescent-stressed rats had enhanced reversal learning compared to unstressed rats.Adolescent-stress exposure made working memory more vulnerable to disturbance.Adolescent-stress did not affect adult associative learning or reference memory. Exposure to acute stress can cause a myriad of cognitive impairments, but whether negative experiences continue to hinder individual as they age is not as well understood. We determined how chronic unpredictable stress during adolescence affects multiple learning and memory processes in adulthood. Using male Sprague Dawley rats, we measured learning (both associative and reversal) and memory (both reference and working) starting 110 days after completion of an adolescent-stress treatment. We found that adolescent-stress affected adult cognitive abilities in a context-dependent way. Compared to rats reared without stress, adolescent-stressed rats exhibited enhanced reversal learning, an indicator of behavioral flexibility, but showed no change in associative learning and reference memory abilities. Working memory, which in humans is thought to underpin reasoning, mathematical skills, and reading comprehension, may be enhanced by exposure to adolescent-stress. However, when adolescent-stressed animals were tested after a novel disturbance, they exhibited a 5-fold decrease in working memory performance while unstressed rats continued to exhibit a linear learning curve. These results emphasize the capacity for stress during adolescence to transform the cognitive abilities of adult animals, even after stress exposure has ceased and animals have resided in safe environments for the majority of their lifespans.
Collapse
Affiliation(s)
- Lauren E Chaby
- Center for Brain, Behavior, and Cognition, Pennsylvania State University University Park, PA, USA ; Department of Ecosystem Science and Management, Pennsylvania State University University Park, PA, USA ; Institute of the Neurosciences, The Huck Institutes of the Life Sciences, Pennsylvania State University University Park, PA, USA
| | - Sonia A Cavigelli
- Center for Brain, Behavior, and Cognition, Pennsylvania State University University Park, PA, USA ; Institute of the Neurosciences, The Huck Institutes of the Life Sciences, Pennsylvania State University University Park, PA, USA ; Department of Biobehavioral Health, Pennsylvania State University University Park, PA, USA
| | - Amy M Hirrlinger
- Center for Brain, Behavior, and Cognition, Pennsylvania State University University Park, PA, USA
| | - James Lim
- Center for Brain, Behavior, and Cognition, Pennsylvania State University University Park, PA, USA
| | - Kendall M Warg
- Veterinary and Biomedical Sciences, Pennsylvania State University University Park, PA, USA
| | - Victoria A Braithwaite
- Center for Brain, Behavior, and Cognition, Pennsylvania State University University Park, PA, USA ; Department of Ecosystem Science and Management, Pennsylvania State University University Park, PA, USA ; Institute of the Neurosciences, The Huck Institutes of the Life Sciences, Pennsylvania State University University Park, PA, USA ; Department of Biology, Pennsylvania State University University Park, PA, USA
| |
Collapse
|
108
|
Gilliam M, Forbes EE, Gianaros PJ, Erickson KI, Brennan LM, Shaw DS. Maternal depression in childhood and aggression in young adulthood: evidence for mediation by offspring amygdala-hippocampal volume ratio. J Child Psychol Psychiatry 2015; 56:1083-91. [PMID: 25424551 PMCID: PMC4444403 DOI: 10.1111/jcpp.12364] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is abundant evidence that offspring of depressed mothers are at increased risk for persistent behavior problems related to emotion regulation, but the mechanisms by which offspring incur this risk are not entirely clear. Early adverse caregiving experiences have been associated with structural alterations in the amygdala and hippocampus, which parallel findings of cortical regions altered in adults with behavior problems related to emotion regulation. This study examined whether exposure to maternal depression during childhood might predict increased aggression and/or depression in early adulthood, and whether offspring amygdala:hippocampal volume ratio might mediate this relationship. METHODS Participants were 258 mothers and sons at socioeconomic risk for behavior problems. Sons' trajectories of exposure to maternal depression were generated from eight reports collected prospectively from offspring ages 18 months to 10 years. Offspring brain structure, aggression, and depression were assessed at age 20 (n = 170). RESULTS Persistent, moderately high trajectories of maternal depression during childhood predicted increased aggression in adult offspring. In contrast, stable and very elevated trajectories of maternal depression during childhood predicted depression in adult offspring. Increased amygdala: hippocampal volume ratios at age 20 were significantly associated with concurrently increased aggression, but not depression, in adult offspring. Offspring amygdala: hippocampal volume ratio mediated the relationship found between trajectories of moderately elevated maternal depression during childhood and aggression in adult offspring. CONCLUSIONS Alterations in the relative size of brain structures implicated in emotion regulation may be one mechanism by which offspring of depressed mothers incur increased risk for the development of aggression.
Collapse
Affiliation(s)
- Mary Gilliam
- Department of Psychology, University of Pittsburgh, PA, United States,Center for the Neural Basis of Cognition, University of Pittsburgh, PA, United States
| | - Erika E. Forbes
- Department of Psychology, University of Pittsburgh, PA, United States,Department of Psychiatry, University of Pittsburgh, PA, United States,Center for the Neural Basis of Cognition, University of Pittsburgh, PA, United States,Paediatrics, University of Pittsburgh, PA, United States
| | - Peter J. Gianaros
- Department of Psychology, University of Pittsburgh, PA, United States,Center for the Neural Basis of Cognition, University of Pittsburgh, PA, United States
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, PA, United States,Center for the Neural Basis of Cognition, University of Pittsburgh, PA, United States
| | | | - Daniel S. Shaw
- Department of Psychology, University of Pittsburgh, PA, United States
| |
Collapse
|
109
|
Tost H, Champagne FA, Meyer-Lindenberg A. Environmental influence in the brain, human welfare and mental health. Nat Neurosci 2015; 18:1421-31. [PMID: 26404717 DOI: 10.1038/nn.4108] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/14/2015] [Indexed: 12/12/2022]
Abstract
The developing human brain is shaped by environmental exposures--for better or worse. Many exposures relevant to mental health are genuinely social in nature or believed to have social subcomponents, even those related to more complex societal or area-level influences. The nature of how these social experiences are embedded into the environment may be crucial. Here we review select neuroscience evidence on the neural correlates of adverse and protective social exposures in their environmental context, focusing on human neuroimaging data and supporting cellular and molecular studies in laboratory animals. We also propose the inclusion of innovative methods in social neuroscience research that may provide new and ecologically more valid insight into the social-environmental risk architecture of the human brain.
Collapse
Affiliation(s)
- Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | | | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| |
Collapse
|
110
|
Chiang JJ, Taylor SE, Bower JE. Early adversity, neural development, and inflammation. Dev Psychobiol 2015; 57:887-907. [DOI: 10.1002/dev.21329] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 05/08/2015] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Julienne E. Bower
- Department of PsychologyUniversity of CaliforniaLos AngelesCA
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry & Biobehavioral SciencesUniversity of CaliforniaLos AngelesCA
| |
Collapse
|
111
|
Environmental enrichment does not reverse the effects of maternal deprivation on NMDAR and Balb/c mice behaviors. Brain Res 2015; 1624:479-488. [PMID: 26300221 DOI: 10.1016/j.brainres.2015.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/06/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022]
Abstract
Early adverse life experiences have been associated with anxiety-like behavior and memory impairment. N-methyl-d-aspartate receptors (NMDARs) play an important role in brain development. Enriched environments are known to positively influence emotional and cognitive functions in the brain. We examined the effects of maternal deprivation (MD) on NMDAR subunits in the hippocampus, locomotor activity, anxiety behaviors, and learning-memory performance of Balb/c mice. We also examined whether these effects could be reversed by raising the offspring in an enriched environment. The mice were separated from their mothers for a single 24h episode on postnatal day (PND) 9. The mice were weaned on day 21 and were housed under either standard (SE) or enriched (EE) environmental conditions. Emotional behaviors and cognitive processes of mice were evaluated using an open field (OF) test, an elevated plus maze (EPM) test, and a Morris water-maze (MWM). NMDAR subunits (GluN1, GluN2A, and GluN2B) mRNA expression levels in the hippocampus were examined by real-time PCR. In OF, MD had no effect on horizontal locomotor activity. MD increased anxiety-like behaviors in the EPM and decreased spatial learning performance in MWM; however, these effects were not reversed by EE. MD (in SE and EE conditions) increased GluN1, GluN2A, and GluN2B mRNA expressions in the hippocampus. In conclusion, MD led to the deterioration of the emotional and cognitive processes during adulthood. Moreover, environmental enrichment did not reverse the deleterious effects of the MD on emotional and cognitive functions and increased the NMDAR levels.
Collapse
|
112
|
Brain-behavior relationships in the experience and regulation of negative emotion in healthy children: implications for risk for childhood depression. Dev Psychopathol 2015; 26:1289-303. [PMID: 25422962 DOI: 10.1017/s0954579414001035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Structural and functional alterations in a variety of brain regions have been associated with depression and risk for depression across the life span. A majority of these regions are associated with emotion reactivity and/or regulation. However, it is generally unclear what mechanistic role these alterations play in the etiology of depression. A first step toward understanding this is to characterize the relationships between variation in brain structure/function and individual differences in depression severity and related processes, particularly emotion regulation. To this end, the current study examines how brain structure and function predict concurrent and longitudinal measures of depression symptomology and emotion regulation skills in psychiatrically healthy school-age children (N = 60). Specifically, we found that smaller hippocampus volumes and greater responses to sad faces in emotion reactivity regions predict increased depressive symptoms at the time of scan, whereas larger amygdala volumes, smaller insula volumes, and greater responses in emotion reactivity regions predict decreased emotion regulation skills. In addition, larger insula volumes predict improvements in emotion regulation skills even after accounting for emotion regulation at the time of scan. Understanding brain-behavior relationships in psychiatrically healthy samples, especially early in development, will help inform normative developmental trajectories and neural alterations in depression and other affective pathology.
Collapse
|
113
|
Wei L, Hao J, Lacher RK, Abbott T, Chung L, Colangelo CM, Kaffman A. Early-Life Stress Perturbs Key Cellular Programs in the Developing Mouse Hippocampus. Dev Neurosci 2015; 37:476-88. [PMID: 26068561 DOI: 10.1159/000430861] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/21/2015] [Indexed: 01/07/2023] Open
Abstract
Conflicting reports are available with regard to the effects of childhood abuse and neglect on hippocampal function in children. While earlier imaging studies and some animal work have suggested that the effects of early-life stress (ELS) manifest only in adulthood, more recent studies have documented impaired hippocampal function in maltreated children and adolescents. Additional work using animal modes is needed to clarify the effects of ELS on hippocampal development. In this regard, genomic, proteomic, and molecular tools uniquely available in the mouse make it a particularly attractive model system to study this issue. However, very little work has been done so far to characterize the effects of ELS on hippocampal development in the mouse. To address this issue, we examined the effects of brief daily separation (BDS), a mouse model of ELS that impairs hippocampal-dependent memory in adulthood, on hippocampal development in 28-day-old juvenile mice. This age was chosen because it corresponds to the developmental period in which human imaging studies have revealed abnormal hippocampal development in maltreated children. Exposure to BDS caused a significant decrease in the total protein content of synaptosomes harvested from the hippocampus of 28-day-old male and female mice, suggesting that BDS impairs normal synaptic development in the juvenile hippocampus. Using a novel liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM) assay, we found decreased expression of many synaptic proteins, as well as proteins involved in axonal growth, myelination, and mitochondrial activity. Golgi staining in 28-day-old BDS mice showed an increase in the number of immature and abnormally shaped spines and a decrease in the number of mature spines in CA1 neurons, consistent with defects in synaptic maturation and synaptic pruning at this age. In 14-day-old pups, BDS deceased the expression of proteins involved in axonal growth and myelination, but did not affect the total protein content of synaptosomes harvested from the hippocampus, or protein levels of other synaptic markers. These results add two important findings to previous work in the field. First, our findings demonstrate that in 28-day-old juvenile mice, BDS impairs synaptic maturation and reduces the expression of proteins that are necessary for axonal growth, myelination, and mitochondrial function. Second, the results suggest a sequential model in which BDS impairs normal axonal growth and myelination before it disrupts synaptic maturation in the juvenile hippocampus.
Collapse
Affiliation(s)
- Lan Wei
- Department of Psychiatry, Yale University School of Medicine, New Haven, Conn., USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Beating the brain about abuse: Empirical and meta-analytic studies of the association between maltreatment and hippocampal volume across childhood and adolescence. Dev Psychopathol 2015; 27:507-20. [DOI: 10.1017/s0954579415000127] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractWe present new empirical data and meta-analytic evidence for the association of childhood maltreatment with reduced hippocampal volume. In Study 1, we examined the effects of maltreatment experiences reported during the Adult Attachment Interview on hippocampal volume in female twin pairs. We found that reduced hippocampal volume was related to childhood maltreatment. In addition, individuals who reported having experienced maltreatment at older ages had larger reductions in hippocampal volume compared to individuals who reported maltreatment in early childhood. In Study 2, we present the results of a meta-analysis of 49 studies (including 2,720 participants) examining hippocampal volume in relation to experiences of child maltreatment, and test the moderating role of the timing of the maltreatment, the severity of maltreatment, and the time after exposure to maltreatment. The results of the meta-analysis confirmed that experiences of childhood maltreatment are associated with a reduction in hippocampal volume and that the effects of maltreatment are more pronounced when the maltreatment occurs in middle childhood compared to early childhood or adolescence.
Collapse
|
115
|
Dalvie S, Stein DJ, Koenen K, Cardenas V, Cuzen NL, Ramesar R, Fein G, Brooks SJ. The BDNF p.Val66Met polymorphism, childhood trauma, and brain volumes in adolescents with alcohol abuse. BMC Psychiatry 2014; 14:328. [PMID: 25510982 PMCID: PMC4295262 DOI: 10.1186/s12888-014-0328-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have indicated that early life adversity, genetic factors and alcohol dependence are associated with reduced brain volume in adolescents. However, data on the interactive effects of early life adversity, genetic factors (e.g. p.Met66 allele of BDNF), and alcohol dependence, on brain structure in adolescents is limited. We examined whether the BDNF p.Val66Met polymorphism interacts with childhood trauma to predict alterations in brain volume in adolescents with alcohol use disorders (AUDs). METHODS We examined 160 participants (80 adolescents with DSM-IV AUD and 80 age- and gender-matched controls) who were assessed for trauma using the Childhood Trauma Questionnaire (CTQ). Magnetic resonance images were acquired for a subset of the cohort (58 AUD and 58 controls) and volumes of global and regional structures were estimated using voxel-based morphometry (VBM). Samples were genotyped for the p.Val66Met polymorphism using the TaqMan® Assay. Analysis of covariance (ANCOVA) and post-hoc t-tests were conducted using SPM8 VBM. RESULTS No significant associations, corrected for multiple comparisons, were found between the BDNF p.Val66Met polymorphism, brain volumes and AUD in adolescents with childhood trauma. CONCLUSIONS These preliminary findings suggest that the BDNF p.Met66 allele and childhood trauma may not be associated with reduced structural volumes in AUD. Other genetic contributors should be investigated in future studies.
Collapse
Affiliation(s)
- Shareefa Dalvie
- MRC/UCT Human Genetics Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa.
| | - Karestan Koenen
- Mailman School of Public Health, Columbia University, New York, NY, USA.
| | | | - Natalie L Cuzen
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa.
| | - Raj Ramesar
- MRC/UCT Human Genetics Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | - George Fein
- Neurobehavioral Research Inc, Honolulu, HI, USA.
| | - Samantha J Brooks
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa.
| |
Collapse
|
116
|
Abstract
Objectives:To examine the ultrastructural effects of maternal deprivation during developmental periods of limbi-chypothalamo-pituitary-adrenal system on hippocampal dendritic structures in adult rats.Methods:The experiments were carried out with male and female wistar rats in our department. The rats were mated and, after birth, the pups were divided into four groups. The first group (control group) pups remained undisturbed with their dam until postweaning day 22. Maternal deprived groups were separated from their dams for 24 hours at postnatal day 4, 9 and 18. The subjects were provided with food and water ad libitum until 3-months-of-age. At the third month, the rats were transcardially perfused, samples were taken from CA1 and CA3 regions of the hippocampus. Tissues were prepared for electron microscopy.Results:When the data were analyzed, there were no differences between male and female rats in both ultrastructure and semiquantitative analysis of axodendritic synapses. The ultrastructure of Group 1 was seen as normal while in the second Group some neurons nuclear envelope made deep invagination into the nucleus. Additionally, axodendritic synapses were found normal. In Group 3, micrographs and axodendritic synapses were showed normal structure. However, in Group 4 in some neurons invaginations were seen similar to Group 2. Axodendritic synapses were found to be normal.Conclusion:These experiments establish that MD in rats produces slight ultrastructural changes and decreases the number of synapses in CA1 and CA3 subregions of the hippocampus.
Collapse
|
117
|
Hodel AS, Hunt RH, Cowell RA, Van Den Heuvel SE, Gunnar MR, Thomas KM. Duration of early adversity and structural brain development in post-institutionalized adolescents. Neuroimage 2014; 105:112-9. [PMID: 25451478 DOI: 10.1016/j.neuroimage.2014.10.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/21/2014] [Accepted: 10/08/2014] [Indexed: 01/29/2023] Open
Abstract
For children reared in institutions for orphaned or abandoned children, multiple aspects of the early environment deviate from species-typical experiences, which may lead to alterations in neurobehavioral development. Although the effects of early deprivation and early life stress have been studied extensively in animal models, less is known about implications for human brain development. This structural neuroimaging study examined the long-term neural correlates of early adverse rearing environments in a large sample of 12-14 year old children (N = 110) who were internationally adopted from institutional care as young children (median age at adoption = 12 months) relative to a same age, comparison group reared with their biological families in the United States. History of institutional rearing was associated with broad changes in cortical volume even after controlling for variability in head size. Results suggested that prefrontal cortex was especially susceptible to early adversity, with significant reductions in volume (driven primarily by differences in surface area rather than cortical thickness) in post-institutionalized youth. Hippocampal volumes showed an association with duration of institutional care, with later-adopted children showing the smallest volumes relative to non-adopted controls. Larger amygdala volumes were not detected in this sample of post-institutionalized children. These data suggest that this temporally discrete period of early deprivation is associated with persisting alterations in brain morphology even years after exposure. Furthermore, these alterations are not completely ameliorated by subsequent environmental enrichment by early adolescence.
Collapse
Affiliation(s)
- Amanda S Hodel
- Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN 55455, USA.
| | - Ruskin H Hunt
- Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN 55455, USA
| | - Raquel A Cowell
- Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN 55455, USA
| | - Sara E Van Den Heuvel
- Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN 55455, USA
| | - Megan R Gunnar
- Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN 55455, USA
| | - Kathleen M Thomas
- Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN 55455, USA
| |
Collapse
|
118
|
Early deprivation induces competitive subordinance in C57BL/6 male mice. Physiol Behav 2014; 137:42-52. [PMID: 25089814 DOI: 10.1016/j.physbeh.2014.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 06/13/2014] [Indexed: 02/01/2023]
Abstract
Rodent models have been widely used to investigate the impact of early life stress on adult health and behavior. However, the social dimension has rarely been incorporated into the analysis due to methodological limitations. This study characterized the effects of neonatal social isolation (early deprivation, ED) on adult C57BL/6 mouse behavior in a social context using our recently developed behavioral test protocols for group-housed mice. During the first two postnatal weeks, half of the pups per dam were separated from their dam and littermates for 3h per day (ED group). Post weaning, ED and control pups were electronically tagged and co-housed. At 12weeks, the mixed cohorts were transferred to IntelliCages, equipped with computer-controlled operant chambers. Access to the chambers was used as an index to analyze novel object response, behavioral flexibility, and competitive dominance with minimal experimenter intervention. In general, ED had greater effects on males; ED males exhibited reduced body weight, increased novelty response, and were subordinate to control littermates when competing for reward access. Male ED mice also demonstrated mildly impaired reversal learning. Analyzing gene expression changes in brain regions controlling emotion, stress, spatial memory, and executive function revealed reduced BDNF and c-Fos in hippocampal CA1, enhanced c-Fos in the basolateral amygdala, reduced Map2 while enhanced HSD11β2 in prefrontal cortex of ED males. In male mice, it was suggested that neonatal social isolation results in sustained changes in social behavior with altered function of limbic and frontal cortices.
Collapse
|
119
|
Tractenberg SG, Viola TW, Gomes CFA, Wearick-Silva LE, Kristensen CH, Stein LM, Grassi-Oliveira R. Dual-memory processes in crack cocaine dependents: The effects of childhood neglect on recall. Memory 2014; 23:955-71. [DOI: 10.1080/09658211.2014.938084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
120
|
Chowdhury TG, Ríos MB, Chan TE, Cassataro DS, Barbarich-Marsteller NC, Aoki C. Activity-based anorexia during adolescence disrupts normal development of the CA1 pyramidal cells in the ventral hippocampus of female rats. Hippocampus 2014; 24:1421-9. [PMID: 24976385 DOI: 10.1002/hipo.22320] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/22/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022]
Abstract
Anorexia nervosa (AN) is a psychiatric illness characterized by restricted eating and irrational fears of gaining weight. There is no accepted pharmacological treatment for AN, and AN has the highest mortality rate among psychiatric illnesses. Anorexia nervosa most commonly affects females during adolescence, suggesting an effect of sex and hormones on vulnerability to the disease. Activity-based anorexia (ABA) is a rodent model of AN that shares symptoms with AN, including over-exercise, elevation of stress hormones, and genetic links to anxiety traits. We previously reported that ABA in adolescent female rats results in increased apical dendritic branching in CA1 pyramidal cells of the ventral hippocampus at postnatal day 44 (P44). To examine the long-term effects of adolescent ABA (P44) in female rats, we compared the apical branching in the ventral hippocampal CA1 after recovery from ABA (P51) and after a relapse of ABA (P55) with age-matched controls. To examine the age-dependence of the hippocampal plasticity, we examined the effect of ABA during adulthood (P67). We found that while ABA at P44 resulted in increased branching of ventral hippocampal pyramidal cells, relapse of ABA at P55 resulted in decreased branching. ABA induced during adulthood did not have an effect on dendritic branching, suggesting an age-dependence of the vulnerability to structural plasticity. Cells from control animals were found to exhibit a dramatic increase in branching, more than doubling from P44 to P51, followed by pruning from P51 to P55. The proportion of mature spines on dendrites from the P44-ABA animals is similar to that on dendrites from P55-CON animals. These results suggest that the experience of ABA may cause precocious anatomical development of the ventral hippocampus. Importantly, we found that adolescence is a period of continued development of the hippocampus, and increased vulnerability to mental disorders during adolescence may be due to insults during this developmentally critical period.
Collapse
Affiliation(s)
- Tara G Chowdhury
- Center for Neural Science, New York University, New York, New York
| | | | | | | | | | | |
Collapse
|
121
|
Ganella DE, Kim JH. Developmental rodent models of fear and anxiety: from neurobiology to pharmacology. Br J Pharmacol 2014; 171:4556-74. [PMID: 24527726 DOI: 10.1111/bph.12643] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/21/2014] [Accepted: 02/06/2014] [Indexed: 01/15/2023] Open
Abstract
Anxiety disorders pose one of the biggest threats to mental health in the world, and they predominantly emerge early in life. However, research of anxiety disorders and fear-related memories during development has been largely neglected, and existing treatments have been developed based on adult models of anxiety. The present review describes animal models of anxiety disorders across development and what is currently known of their pharmacology. To summarize, the underlying mechanisms of intrinsic 'unlearned' fear are poorly understood, especially beyond the period of infancy. Models using 'learned' fear reveal that through development, rats exhibit a stress hyporesponsive period before postnatal day 10, where they paradoxically form odour-shock preferences, and then switch to more adult-like conditioned fear responses. Juvenile rats appear to forget these aversive associations more easily, as is observed with the phenomenon of infantile amnesia. Juvenile rats also undergo more robust extinction, until adolescence where they display increased resistance to extinction. Maturation of brain structures, such as the amygdala, prefrontal cortex and hippocampus, along with the different temporal recruitment and involvement of various neurotransmitter systems (including NMDA, GABA, corticosterone and opioids) are responsible for these developmental changes. Taken together, the studies described in this review highlight that there is a period early in development where rats appear to be more robust in overcoming adverse early life experience. We need to understand the fundamental pharmacological processes underlying anxiety early in life in order to take advantage of this period for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Despina E Ganella
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
122
|
The downside of strong emotional memories: How human memory-related genes influence the risk for posttraumatic stress disorder – A selective review. Neurobiol Learn Mem 2014; 112:75-86. [DOI: 10.1016/j.nlm.2013.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022]
|
123
|
Stress modulation of hippocampal activity – Spotlight on the dentate gyrus. Neurobiol Learn Mem 2014; 112:53-60. [DOI: 10.1016/j.nlm.2014.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/17/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
|
124
|
Poletti S, Locatelli C, Radaelli D, Lorenzi C, Smeraldi E, Colombo C, Benedetti F. Effect of early stress on hippocampal gray matter is influenced by a functional polymorphism in EAAT2 in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51:146-52. [PMID: 24518437 DOI: 10.1016/j.pnpbp.2014.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/17/2014] [Accepted: 01/30/2014] [Indexed: 01/08/2023]
Abstract
Current views on the pathogenesis of psychiatric disorders focus on the interplay between genetic and environmental factors, with individual variation in vulnerability and resilience to hazards being part of the multifactorial development of illness. The aim of the study is to investigate the effect of glutamate transporter polymorphism SLC1A2-181A>C and exposure to Adverse Childhood Experiences (ACE) on hippocampal gray matter volume of patients with bipolar disorder (BD). Patients exposed to higher levels of ACE reported lower gray matter volume. The effect of SLC1A2-181A>C revealed itself only among patients exposed to lower levels of ACE, with T/T homozygotes showing the lowest, and G/G the highest, gray matter volume. The greatest difference between high and low exposures to ACE was observed in carriers of the G allele. Since the mutant G allele has been associated with a reduced transcriptional activity and expression of the transporter protein, we could hypothesize that after exposure to highest levels of ACE G/G homozygotes are more vulnerable to stress reporting the highest brain damage as a consequence of an excess of free glutamate.
Collapse
Affiliation(s)
- Sara Poletti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy.
| | - Clara Locatelli
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Daniele Radaelli
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Lorenzi
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Enrico Smeraldi
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Colombo
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
125
|
Hill RA, Klug M, Kiss Von Soly S, Binder MD, Hannan AJ, van den Buuse M. Sex-specific disruptions in spatial memory and anhedonia in a "two hit" rat model correspond with alterations in hippocampal brain-derived neurotrophic factor expression and signaling. Hippocampus 2014; 24:1197-211. [PMID: 24802968 DOI: 10.1002/hipo.22302] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 01/01/2023]
Abstract
Post-mortem studies have demonstrated reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of schizophrenia and major depression patients. The "two hit" hypothesis proposes that two or more major disruptions at specific time points during development are involved in the pathophysiology of these mental illnesses. However, the role of BDNF in these "two hit" effects is unclear. Our aim was to behaviorally characterize a "two hit" rat model of developmental stress accompanied by an in-depth assessment of BDNF expression and signalling. Wistar rats were exposed to neonatal maternal separation (MS) stress and/or adolescent/young-adult corticosterone (CORT) treatment. In adulthood, models of cognitive and negative symptoms of mental illness were analyzed. The hippocampus was then dissected into dorsal (DHP) and ventral (VHP) regions and analyzed by qPCR for exon-specific BDNF gene expression or by Western blot for BDNF protein expression and downstream signaling. Male "two hit" rats showed marked disruptions in short-term spatial memory (Y-maze) which were absent in females. However, female "two hit" rats showed signs of anhedonia (sucrose preference test), which were absent in males. Novel object recognition and anxiety (elevated plus maze) were unchanged by either of the two "hits". In the DHP, MS caused a male-specific increase in BDNF Exons I, II, IV, VII, and IX mRNA but a decrease in mature BDNF and phosphorylated TrkB (pTrkB) protein expression in adulthood. In the VHP, BDNF transcript expression was unchanged; however, in female rats only, MS significantly decreased mature BDNF and pTrkB protein expression in adulthood. These data demonstrate that MS causes region-specific and sex-specific long-term effects on BDNF expression and signaling and, importantly, mRNA expression does not always infer protein expression. Alterations to BDNF signaling may mediate the sex-specific effects of developmental stress on anhedonic behaviors.
Collapse
Affiliation(s)
- Rachel A Hill
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
126
|
Stress in adolescence and drugs of abuse in rodent models: role of dopamine, CRF, and HPA axis. Psychopharmacology (Berl) 2014; 231:1557-80. [PMID: 24370534 PMCID: PMC3969449 DOI: 10.1007/s00213-013-3369-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/18/2013] [Indexed: 01/12/2023]
Abstract
RATIONALE Research on adolescence and drug abuse increased substantially in the past decade. However, drug-addiction-related behaviors following stressful experiences during adolescence are less studied. We focus on rodent models of adolescent stress cross-sensitization to drugs of abuse. OBJECTIVES Review the ontogeny of behavior, dopamine, corticotropin-releasing factor (CRF), and the hypothalamic-pituitary-adrenal (HPA) axis in adolescent rodents. We evaluate evidence that stressful experiences during adolescence engender hypersensitivity to drugs of abuse and offer potential neural mechanisms. RESULTS AND CONCLUSIONS Much evidence suggests that final maturation of behavior, dopamine systems, and HPA axis occurs during adolescence. Stress during adolescence increases amphetamine- and ethanol-stimulated locomotion, preference, and self-administration under many conditions. The influence of adolescent stress on subsequent cocaine- and nicotine-stimulated locomotion and preference is less clear. The type of adolescent stress, temporal interval between stress and testing, species, sex, and the drug tested are key methodological determinants for successful cross-sensitization procedures. The sensitization of the mesolimbic dopamine system is proposed to underlie stress cross-sensitization to drugs of abuse in both adolescents and adults through modulation by CRF. Reduced levels of mesocortical dopamine appear to be a unique consequence of social stress during adolescence. Adolescent stress may reduce the final maturation of cortical dopamine through D2 dopamine receptor regulation of dopamine synthesis or glucocorticoid-facilitated pruning of cortical dopamine fibers. Certain rodent models of adolescent adversity are useful for determining neural mechanisms underlying the cross-sensitization to drugs of abuse.
Collapse
|
127
|
Stanis JJ, Andersen SL. Reducing substance use during adolescence: a translational framework for prevention. Psychopharmacology (Berl) 2014; 231:1437-53. [PMID: 24464527 PMCID: PMC3969413 DOI: 10.1007/s00213-013-3393-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/30/2013] [Indexed: 11/30/2022]
Abstract
RATIONALE Most substance use is initiated during adolescence when substantial development of relevant brain circuitry is still rapidly maturing. Developmental differences in reward processing, behavioral flexibility, and self-regulation lead to changes in resilience or vulnerability to drugs of abuse depending on exposure to risk factors. Intervention and prevention approaches to reducing addiction in teens may be able to capitalize on malleable brain systems in a predictable manner. OBJECTIVE This review will highlight what is known about how factors that increase vulnerability to addiction, including developmental stage, exposure to early life adversity (ranging from abuse, neglect, and bullying), drug exposure, and genetic predisposition, impact the development of relevant systems. RESULTS AND CONCLUSIONS Appropriate, early intervention may restore the normal course of an abnormal trajectory and reduce the likelihood of developing a substance use disorder (SUD) later in life. A considerable amount is known about the functional neuroanatomy and/or pharmacology of risky behaviors based on clinical and preclinical studies, but relatively little has been directly translated to reduce their impact on addiction in high-risk children or teenagers. An opportunity exists to effectively intervene before adolescence when substance use is likely to emerge.
Collapse
Affiliation(s)
- Jessica J Stanis
- Laboratory of Developmental Neuropharmacology, McLean Hospital and Department of Psychiatry, Harvard Medical School, Mailstop 333, 115 Mill Street, Belmont, MA, 02478, USA
| | | |
Collapse
|
128
|
Holland FH, Ganguly P, Potter DN, Chartoff EH, Brenhouse HC. Early life stress disrupts social behavior and prefrontal cortex parvalbumin interneurons at an earlier time-point in females than in males. Neurosci Lett 2014; 566:131-6. [PMID: 24565933 DOI: 10.1016/j.neulet.2014.02.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/05/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
Early life stress exposure (ELS) yields risk for psychiatric disorders that might occur though a population-specific mechanism that impacts prefrontal cortical development. Sex differences in ELS effects are largely unknown and are also essential to understand social and cognitive development. ELS can cause dysfunction within parvalbumin (PVB)-containing inhibitory interneurons in the prefrontal cortex and in several prefrontal cortex-mediated behaviors including social interaction. Social behavior deficits are often the earliest observed changes in psychiatric disorders, therefore the time-course and causation of social interaction deficits after ELS are important to determine. PVB interneuron dysfunction can disrupt social behavior, and has been correlated in males with elevated markers of oxidative stress and inflammation, such as cyclooxygenase-2 after ELS. Here, we measured the effects of maternal separation ELS on social interaction behaviors in males and females. Prefrontal cortex PVB and cyclooxygenase-2 were also measured in juveniles and adolescents using Western blots. ELS led to social interaction alterations earlier in females than males. Sexually dimorphic behavioral changes were consistent with prefrontal cortex PVB loss after ELS. PVB levels were decreased in ELS-exposed juvenile females, while males exposed to ELS do not display parvalbumin decreases until adolescence. Early behavioral and PVB changes in females did not appear to be mediated through cyclooxygenase-2, since levels were not affected in ELS females. Therefore, these data suggest that ELS affects males and females differently and with distinct developmental profiles.
Collapse
Affiliation(s)
- Freedom H Holland
- Northeastern University, Psychology Department, 125 NI, 360 Huntington Ave, Boston, MA 02115, United States
| | - Prabarna Ganguly
- Northeastern University, Psychology Department, 125 NI, 360 Huntington Ave, Boston, MA 02115, United States
| | - David N Potter
- McLean Hospital, 115 Mill St, Belmont, MA 02478, United States
| | | | - Heather C Brenhouse
- Northeastern University, Psychology Department, 125 NI, 360 Huntington Ave, Boston, MA 02115, United States.
| |
Collapse
|
129
|
Bock J, Rether K, Gröger N, Xie L, Braun K. Perinatal programming of emotional brain circuits: an integrative view from systems to molecules. Front Neurosci 2014; 8:11. [PMID: 24550772 PMCID: PMC3913903 DOI: 10.3389/fnins.2014.00011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/17/2014] [Indexed: 02/06/2023] Open
Abstract
Environmental influences such as perinatal stress have been shown to program the developing organism to adapt brain and behavioral functions to cope with daily life challenges. Evidence is now accumulating that the specific and individual effects of early life adversity on the functional development of brain and behavior emerge as a function of the type, intensity, timing and the duration of the adverse environment, and that early life stress (ELS) is a major risk factor for developing behavioral dysfunctions and mental disorders. Results from clinical as well as experimental studies in animal models support the hypothesis that ELS can induce functional “scars” in prefrontal and limbic brain areas, regions that are essential for emotional control, learning and memory functions. On the other hand, the concept of “stress inoculation” is emerging from more recent research, which revealed positive functional adaptations in response to ELS resulting in resilience against stress and other adversities later in life. Moreover, recent studies indicate that early life experiences and the resulting behavioral consequences can be transmitted to the next generation, leading to a transgenerational cycle of adverse or positive adaptations of brain function and behavior. In this review we propose a unifying view of stress vulnerability and resilience by connecting genetic predisposition and programming sensitivity to the context of experience-expectancy and transgenerational epigenetic traits. The adaptive maturation of stress responsive neural and endocrine systems requires environmental challenges to optimize their functions. Repeated environmental challenges can be viewed within the framework of the match/mismatch hypothesis, the outcome, psychopathology or resilience, depends on the respective predisposition and on the context later in life.
Collapse
Affiliation(s)
- Jörg Bock
- PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Kathy Rether
- PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany ; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| | - Nicole Gröger
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| | - Lan Xie
- PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany ; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| | - Katharina Braun
- Center for Behavioral Brain Sciences Magdeburg, Germany ; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| |
Collapse
|
130
|
Staffend NA, Mohr MA, DonCarlos LL, Sisk CL. A decrease in the addition of new cells in the nucleus accumbens and prefrontal cortex between puberty and adulthood in male rats. Dev Neurobiol 2014; 74:633-42. [PMID: 24339170 DOI: 10.1002/dneu.22160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/19/2013] [Accepted: 12/09/2013] [Indexed: 01/18/2023]
Abstract
Adolescence involves shifts in social behaviors, behavioral flexibility, and adaptive risk-taking that coincide with structural remodeling of the brain. We previously showed that new cells are added to brain regions associated with sexual behaviors, suggesting that cytogenesis may be a mechanism for acquiring adult-typical behaviors during adolescence. Whether pubertal cell addition occurs in brain regions associated with behavioral flexibility or motivation and whether these patterns differ between pubertal and adult animals had not been determined. Therefore, we assessed patterns of cell proliferation or survival in the prefrontal cortex and nucleus accumbens. Pubertal and adult male rats were given injections of bromo-deoxyuridine (BrdU). To assess cell proliferation, half of the animals from each group were sacrificed 24 h following the last injection. The remaining animals were sacrificed at Day 30 following the last injection to evaluate cell survival. Adult animals had significantly lower densities of BrdU-immunoreactive (ir) cells in the prefrontal cortex, irrespective of post-BrdU survival time, whereas in the nucleus accumbens, adult animals had a lower density of BrdU-ir cells at the short survival time; however, the density of BrdU-ir cells was equivalent in pubertal and adult animals at the longer survival time. These data provide evidence that cell addition during puberty may contribute to the remodeling of brain regions associated with behavioral flexibility and motivation, and this cell addition continues into adulthood, albeit at lower levels. Higher levels of cell proliferation or survival in younger animals may reflect a higher level of plasticity, possibly contributing to the dynamic remodeling of the pubertal brain.
Collapse
Affiliation(s)
- Nancy A Staffend
- Neuroscience Program, Michigan State University, East Lansing, Michigan, 48824
| | | | | | | |
Collapse
|
131
|
Bernard K, Lind T, Dozier M. Neurobiological Consequences of Neglect and Abuse. HANDBOOK OF CHILD MALTREATMENT 2014. [DOI: 10.1007/978-94-007-7208-3_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
132
|
Holder MK, Blaustein JD. Puberty and adolescence as a time of vulnerability to stressors that alter neurobehavioral processes. Front Neuroendocrinol 2014; 35:89-110. [PMID: 24184692 PMCID: PMC3946873 DOI: 10.1016/j.yfrne.2013.10.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 01/30/2023]
Abstract
Puberty and adolescence are major life transitions during which an individual's physiology and behavior changes from that of a juvenile to that of an adult. Here we review studies documenting the effects of stressors during pubertal and adolescent development on the adult brain and behavior. The experience of complex or compound stressors during puberty/adolescence generally increases stress reactivity, increases anxiety and depression, and decreases cognitive performance in adulthood. These behavioral changes correlate with decreased hippocampal volumes and alterations in neural plasticity. Moreover, stressful experiences during puberty disrupt behavioral responses to gonadal hormones both in sexual performance and on cognition and emotionality. These behavioral changes correlate with altered estrogen receptor densities in some estrogen-concentrating brain areas, suggesting a remodeling of the brain's response to hormones. A hypothesis is presented that activation of the immune system results in chronic neuroinflammation that may mediate the alterations of hormone-modulated behaviors in adulthood.
Collapse
Affiliation(s)
- Mary K Holder
- Neuroscience and Behavior Program, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA; Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA.
| | - Jeffrey D Blaustein
- Neuroscience and Behavior Program, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA; Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA.
| |
Collapse
|
133
|
Spinelli S, Müller T, Friedel M, Sigrist H, Lesch KP, Henkelman M, Rudin M, Seifritz E, Pryce CR. Effects of repeated adolescent stress and serotonin transporter gene partial knockout in mice on behaviors and brain structures relevant to major depression. Front Behav Neurosci 2013; 7:215. [PMID: 24427124 PMCID: PMC3876674 DOI: 10.3389/fnbeh.2013.00215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/13/2013] [Indexed: 12/03/2022] Open
Abstract
In humans, exposure to stress during development is associated with structural and functional alterations of the prefrontal cortex (PFC), amygdala (AMY), and hippocampus (HC) and their circuits of connectivity, and with an increased risk for developing major depressive disorder particularly in carriers of the short (s) variant of the serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR). Although changes in these regions are found in carriers of the s allele and/or in depressed patients, evidence for a specific genotype × developmental stress effect on brain structure and function is limited. Here, we investigated the effect of repeated stress exposure during adolescence in mice with partial knockout of the 5-HTT gene (HET) vs. wildtype (WT) on early-adulthood behavioral measures and brain structure [using magnetic resonance imaging (MRI)] relevant to human major depression. Behaviorally, adolescent stress (AS) increased anxiety and decreased activity and did so to a similar degree in HET and WT. In a probabilistic reversal learning task, HET-AS mice achieved fewer reversals than did HET-No-AS mice. 5-HTT genotype and AS were without effect on corticosterone stress response. In terms of structural brain differences, AS reduced the volume of two long-range white matter tracts, the optic tract (OT) and the cerebral peduncle (CP), in WT mice specifically. In a region-of-interest analysis, AS was associated with increased HC volume and HET genotype with a decreased frontal lobe volume. In conclusion, we found that 5-HTT and AS genotype exerted long-term effects on behavior and development of brain regions relevant to human depression.
Collapse
Affiliation(s)
- Simona Spinelli
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland ; Neuroscience Center, University and ETH Zurich Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, University of Zurich Zurich, Switzerland
| | - Tanja Müller
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland
| | - Miriam Friedel
- Mouse Imaging Centre, Hospital for Sick Children Toronto, Canada
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg Würzburg, Germany
| | - Mark Henkelman
- Mouse Imaging Centre, Hospital for Sick Children Toronto, Canada
| | - Markus Rudin
- Neuroscience Center, University and ETH Zurich Zurich, Switzerland ; Institute for Biomedical Engineering, University and ETH Zurich Zurich, Switzerland
| | - Erich Seifritz
- Neuroscience Center, University and ETH Zurich Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, University of Zurich Zurich, Switzerland ; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland ; Neuroscience Center, University and ETH Zurich Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, University of Zurich Zurich, Switzerland
| |
Collapse
|
134
|
Developmental changes in the acute ethanol sensitivity of glutamatergic and GABAergic transmission in the BNST. Alcohol 2013; 47:531-7. [PMID: 24103431 DOI: 10.1016/j.alcohol.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
Glutamatergic and GABAergic transmission undergo significant changes during adolescence. Receptors for both of these transmitters (NMDAR, and GABAA) are known to be key targets for the acute effects of ethanol in adults. The current study set out to investigate the acute effects of ethanol on both NMDAR-mediated excitatory transmission and GABAergic inhibitory transmission within the bed nucleus of the stria terminalis (BNST) across age. The BNST is an area of the brain implicated in the negative reinforcing properties associated with alcohol dependence, and the BNST plays a critical role in stress-induced relapse. Therefore, assessing the developmental regulation of ethanol sensitivity in this key brain region is important to understanding the progression of ethanol dependence. To do this, whole-cell recordings of isolated NMDAR-evoked excitatory postsynaptic currents (eEPSCs) or evoked GABAergic inhibitory postsynaptic currents (eIPSCs) were performed on BNST neurons in slices from 4- or 8-week-old male C57BL/6J mice. Ethanol (50 mm) produced greater inhibition of NMDAR-eEPSCs in adolescent mice than in adult mice. This enhanced sensitivity in adolescence was not a result of shifts in function of the GluN2B subunit of the NMDAR, measured by Ro25-6981 inhibition and decay kinetics measured across age. Adolescent mice also exhibited greater ethanol sensitivity of GABAergic transmission, as ethanol (50 mm) enhanced eIPSCs in the BNST of adolescent but not adult mice. Collectively, this work illustrates that a moderate dose of ethanol produces greater inhibition of transmission in the BNST (through greater excitatory inhibition and enhancement of inhibitory transmission) in adolescents compared to adults. Given the role of the BNST in alcohol dependence, these developmental changes in acute ethanol sensitivity could accelerate neuroadaptations that result from chronic ethanol use during the critical period of adolescence.
Collapse
|
135
|
Teicher MH, Samson JA. Childhood maltreatment and psychopathology: A case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. Am J Psychiatry 2013; 170:1114-33. [PMID: 23982148 PMCID: PMC3928064 DOI: 10.1176/appi.ajp.2013.12070957] [Citation(s) in RCA: 660] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Childhood maltreatment increases risk for psychopathology. For some highly prevalent disorders (major depression, substance abuse, anxiety disorders, and posttraumatic stress disorder) a substantial subset of individuals have a history of maltreatment and a substantial subset do not. The authors examined the evidence to assess whether those with a history of maltreatment represent a clinically and biologically distinct subtype. METHOD The authors reviewed the literature on maltreatment as a risk factor for these disorders and on the clinical differences between individuals with and without a history of maltreatment who share the same diagnoses. Neurobiological findings in maltreated individuals were reviewed and compared with findings reported for these disorders. RESULTS Maltreated individuals with depressive, anxiety, and substance use disorders have an earlier age at onset, greater symptom severity, more comorbidity, a greater risk for suicide, and poorer treatment response than nonmaltreated individuals with the same diagnoses. Imaging findings associated with these disorders, such as reduced hippocampal volume and amygdala hyperreactivity, are more consistently observed in maltreated individuals and may represent a maltreatment-related risk factor. Maltreated individuals also differ from others as a result of epigenetic modifications and genetic polymorphisms that interact with experience to increase risk for psychopathology. CONCLUSIONS Phenotypic expression of psychopathology may be strongly influenced by exposure to maltreatment, leading to a constellation of ecophenotypes. While these ecophenotypes fit within conventional diagnostic boundaries, they likely represent distinct subtypes. Recognition of this distinction may be essential in determining the biological bases of these disorders. Treatment guidelines and algorithms may be enhanced if maltreated and nonmaltreated individuals with the same diagnostic labels are differentiated.
Collapse
|
136
|
Freund N, Thompson BS, Denormandie J, Vaccarro K, Andersen SL. Windows of vulnerability: maternal separation, age, and fluoxetine on adolescent depressive-like behavior in rats. Neuroscience 2013; 249:88-97. [PMID: 23850503 PMCID: PMC5267225 DOI: 10.1016/j.neuroscience.2013.06.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 11/30/2022]
Abstract
Early exposure to stressful life events plays a significant role in adolescent depression. Clinical studies have identified a number of factors that increase the risk of depression, including sex of the subject, duration of the stressor, and genetic polymorphisms that elevate serotonin levels. In this study we used the maternal separation (MS) model to investigate to what extent these factors interacted during development to manifest in depressive-like behavior in male and female rats. The triadic model of learned helplessness parses depressive-like behavior into aspects of controllable, uncontrollable, and motivational behaviors. This model was used to investigate how the timing of MS between the ages of postnatal day (P) 2-9 and P9-16 interacted with either simultaneous vehicle (saline; 1ml/kg; i.p.) or fluoxetine (10mg/kg) exposure, which was used to enhance serotonin levels; these experiments also compared the effect of a vehicle injection during these developmental periods to a no injection control. Vehicle injections alone increased helplessness in the controllable condition in male rats when injected between P9-16 only, and did not interact further with MS. MS at both ages decreased controllability in male adolescents; females demonstrated an increase in controllability after MS. Elevated serotonin at P2-9 increased escape latencies in male and female control and MS subjects. Fluoxetine exposure at P9-16 increased helplessness in controls. Fluoxetine decreased helplessness in MS males independent of age, but increases helplessness in MS females. This study highlights the importance of age of MS (MS between P2-9 increases helplessness in males more than females), the duration of the stressor (previous results show females are effected by longer MS [P2-20], but not shorter [this study]), and that elevated serotonin increases escape latencies to a greater extent in females.
Collapse
Affiliation(s)
- N Freund
- Laboratory of Developmental Neuropsychopharmacology, Department of Psychiatry, McLean Hospital and Harvard Medical School, 115 Mill Street, Belmont, MA 0247, United States.
| | | | | | | | | |
Collapse
|
137
|
Otte WM, van Meer MPA, van der Marel K, Zwartbol R, Viergever MA, Braun KPJ, Dijkhuizen RM. Experimental focal neocortical epilepsy is associated with reduced white matter volume growth: results from multiparametric MRI analysis. Brain Struct Funct 2013; 220:27-36. [DOI: 10.1007/s00429-013-0633-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
|
138
|
Whittle S, Dennison M, Vijayakumar N, Simmons JG, Yücel M, Lubman DI, Pantelis C, Allen NB. Childhood maltreatment and psychopathology affect brain development during adolescence. J Am Acad Child Adolesc Psychiatry 2013; 52:940-952.e1. [PMID: 23972696 DOI: 10.1016/j.jaac.2013.06.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 05/20/2013] [Accepted: 06/18/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The hippocampus and amygdala have received much attention with regard to the deleterious effects of childhood maltreatment. However, it is not known if and when these effects emerge during adolescence and whether comorbid psychopathology is more likely to explain these effects. This study investigated whether childhood maltreatment was associated with hippocampal and amygdala development from early to midadolescence and whether the experience of psychopathology during this period mediated the relation. METHOD One hundred seventeen (60 male) adolescents, recruited as part of a broader adolescent development study, participated in magnetic resonance imaging assessments during early and midadolescence (mean age at baseline 12.62 years, SD 0.44 years; mean follow-up period 3.78 years, SD 0.20 years), and completed self-report measurements of childhood maltreatment and diagnostic interviews assessing DSM-IV mental disorders. RESULTS Childhood maltreatment was associated with larger baseline left hippocampal volumes and retarded growth of the left amygdala over time and was indirectly associated, through the experience of psychopathology, with retarded growth of the left hippocampus and accelerated growth of the left amygdala over time. Exploratory cortical analysis showed that maltreatment influenced thickening of the superior parietal region through the experience of psychopathology. CONCLUSIONS Childhood maltreatment was associated with altered brain development during adolescence. The experience of Axis I psychopathology during adolescence may be one mechanism by which childhood maltreatment has continuing effects on brain development during the adolescent years. These findings highlight the importance of early intervention for individuals who have experienced childhood maltreatment.
Collapse
Affiliation(s)
- Sarah Whittle
- Melbourne Neuropsychiatry Centre, the University of Melbourne, and Melbourne Health, Canada
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Liao M, Yang F, Zhang Y, He Z, Song M, Jiang T, Li Z, Lu S, Wu W, Su L, Li L. Childhood maltreatment is associated with larger left thalamic gray matter volume in adolescents with generalized anxiety disorder. PLoS One 2013; 8:e71898. [PMID: 23951265 PMCID: PMC3741188 DOI: 10.1371/journal.pone.0071898] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Generalized anxiety disorder (GAD) is a common anxiety disorder that usually begins in adolescence. Childhood maltreatment is highly prevalent and increases the possibility for developing a variety of mental disorders including anxiety disorders. An earlier age at onset of GAD is significantly related to maltreatment in childhood. Exploring the underpinnings of the relationship between childhood maltreatment and adolescent onset GAD would be helpful in identifying the potential risk markers of this condition. METHODS Twenty-six adolescents with GAD and 25 healthy controls participated in this study. A childhood trauma questionnaire (CTQ) was introduced to assess childhood maltreatment. All subjects underwent high-resolution structural magnetic resonance scans. Voxel-based morphometry (VBM) was used to investigate gray matter alterations. RESULTS Significantly larger gray matter volumes of the right putamen were observed in GAD patients compared to healthy controls. In addition, a significant diagnosis-by-maltreatment interaction effect for the left thalamic gray matter volume was revealed, as shown by larger volumes of the left thalamic gray matter in GAD patients with childhood maltreatment compared with GAD patients without childhood maltreatment as well as with healthy controls with/without childhood maltreatment. A significant positive association between childhood maltreatment and left thalamic gray matter volume was only seen in GAD patients. CONCLUSIONS These findings revealed an increased volume in the subcortical regions in adolescent GAD, and the alterations in the left thalamus might be involved in the association between childhood maltreatment and the occurrence of GAD.
Collapse
Affiliation(s)
- Mei Liao
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Fan Yang
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhong He
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Song
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Tianzi Jiang
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zexuan Li
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Shaojia Lu
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Weiwei Wu
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Linyan Su
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingjiang Li
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
140
|
Early and later life stress alter brain activity and sleep in rats. PLoS One 2013; 8:e69923. [PMID: 23922857 PMCID: PMC3724678 DOI: 10.1371/journal.pone.0069923] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/13/2013] [Indexed: 12/14/2022] Open
Abstract
Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way.
Collapse
|
141
|
León Rodríguez DA, Dueñas Z. Maternal Separation during Breastfeeding Induces Gender-Dependent Changes in Anxiety and the GABA-A Receptor Alpha-Subunit in Adult Wistar Rats. PLoS One 2013; 8:e68010. [PMID: 23826356 PMCID: PMC3694908 DOI: 10.1371/journal.pone.0068010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/24/2013] [Indexed: 11/18/2022] Open
Abstract
Different models of rodent maternal separation (MS) have been used to investigate long-term neurobiological and behavioral changes, associated with early stress. However, few studies have involved the analysis of sex-related differences in central anxiety modulation. This study investigated whether MS during breastfeeding affected adult males and females in terms of anxiety and brain GABA-A receptor-alpha-subunit immunoreactivity. The brain areas analyzed were the amygdale (AM), hippocampus (HP), medial prefrontal cortex (mPFC), medial preoptic area (POA) and paraventricular nucleus (PVN). Rats were housed under a reversed light/dark cycle (lights off at 7∶00 h) with access to water and food ad libitum. Animals underwent MS twice daily during the dark cycle from postnatal day 1 to postnatal day 21. Behavior was tested when rats were 65-70 days old using the elevated plus maze and after brains were treated for immunohistochemistry. We found that separated females spent more time in the open arms and showed more head dipping behavior compared with controls. The separated males spent more time in the center of the maze and engaged in more stretching behavior than the controls. Immunohistochemistry showed that separated females had less immunostained cells in the HP, mPFC, PVN and POA, while separated males had fewer immunolabeled cells in the PFC, PVN and AM. These results could indicate that MS has gender-specific effects on anxiety behaviors and that these effects are likely related to developmental alterations involving GABA-A neurotransmission.
Collapse
Affiliation(s)
| | - Zulma Dueñas
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
142
|
Jin F, Li L, Shi M, Li Z, Zhou J, Chen L. The longitudinal study of rat hippocampus influenced by stress: Early adverse experience enhances hippocampal vulnerability and working memory deficit in adult rats. Behav Brain Res 2013; 246:116-24. [DOI: 10.1016/j.bbr.2013.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 11/16/2022]
|
143
|
Larsson S, Aas M, Klungsøyr O, Agartz I, Mork E, Steen NE, Barrett EA, Lagerberg TV, Røssberg JI, Melle I, Andreassen OA, Lorentzen S. Patterns of childhood adverse events are associated with clinical characteristics of bipolar disorder. BMC Psychiatry 2013; 13:97. [PMID: 23522391 PMCID: PMC3637635 DOI: 10.1186/1471-244x-13-97] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/04/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies in bipolar disorder investigating childhood trauma and clinical presentations of the illness have mainly focused on physical and sexual abuse. Our aim was to explore further the relationship between childhood trauma and disease characteristics in bipolar disorder to determine which clinical characteristics were most strongly associated with childhood trauma total score, as well as subtypes of adverse childhood events, including physical, sexual, emotional abuse and neglect. METHODS 141 Patients with bipolar disorder were consecutively recruited, and disease history and clinical characteristics were assessed. History of childhood abuse was obtained using the Childhood Trauma Questionnaire (CTQ). Statistical methods used were factor analysis, Poisson and linear regression, and generalized additive modeling (GAM). RESULTS The factor analysis of CTQ identified three factors: emotional abuse/neglect, sexual abuse and physical abuse. There were significant associations between CTQ total score and earlier onset of illness, reduced level of psychosocial functioning (GAF; Global Assessment of Functioning) and decreased number of hospitalization, which mainly were due to the factor emotional abuse/neglect. Physical abuse was significantly associated with lower GAF scores, and increased number of mood episodes, as well as self-harm. Sexual abuse was significantly associated with increased number of mood episodes. For mood episodes and self-harm the associations were characterized by great variance and fluctuations. CONCLUSIONS Our results suggest that childhood trauma is associated with a more severe course of bipolar illness. Further, childhood abuse (physical and sexual), as well as emotional abuse and neglect were significantly associated with accelerating staging process of bipolar disorder. By using specific trauma factors (physical abuse, sexual abuse and emotional abuse/neglect) the associations become both more precise, and diverse.
Collapse
Affiliation(s)
- Sara Larsson
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Monica Aas
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole Klungsøyr
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Erlend Mork
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,National Centre for Suicide Research and Prevention, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Elizabeth A Barrett
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | | - Jan Ivar Røssberg
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Steinar Lorentzen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Clinic of Health and Addiction, University of Oslo, 1039, Blindern, Oslo, N-0315, Norway
| |
Collapse
|
144
|
Milstein JA, Elnabawi A, Vinish M, Swanson T, Enos JK, Bailey AM, Kolb B, Frost DO. Olanzapine treatment of adolescent rats causes enduring specific memory impairments and alters cortical development and function. PLoS One 2013; 8:e57308. [PMID: 23437365 PMCID: PMC3577739 DOI: 10.1371/journal.pone.0057308] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/21/2013] [Indexed: 01/31/2023] Open
Abstract
Antipsychotic drugs are increasingly used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of early life antipsychotic drug treatment. Most antipsychotic drugs are potent antagonists or partial agonists of dopamine D2 receptors; atypical antipsychotic drugs also antagonize type 2A serotonin receptors. Dopamine and serotonin regulate many neurodevelopmental processes. Thus, early life antipsychotic drug treatment can, potentially, perturb these processes, causing long-term behavioral- and neurobiological impairments. Here, we treated adolescent, male rats with olanzapine on post-natal days 28-49. As adults, they exhibited impaired working memory, but normal spatial memory, as compared to vehicle-treated control rats. They also showed a deficit in extinction of fear conditioning. Measures of motor activity and skill, habituation to an open field, and affect were normal. In the orbital- and medial prefrontal cortices, parietal cortex, nucleus accumbens core and dentate gyrus, adolescent olanzapine treatment altered the developmental dynamics and mature values of dendritic spine density in a region-specific manner. Measures of motor activity and skill, habituation to an open field, and affect were normal. In the orbital- and medial prefrontal cortices, D1 binding was reduced and binding of GABA(A) receptors with open Cl(-) channels was increased. In medial prefrontal cortex, D2 binding was also increased. The persistence of these changes underscores the importance of improved understanding of the enduring sequelae of pediatric APD treatment as a basis for weighing the benefits and risks of adolescent antipsychotic drug therapy, especially prophylactic treatment in high risk, asymptomatic patients. The long-term changes in neurotransmitter receptor binding and neural circuitry induced by adolescent APD treatment may also cause enduring changes in behavioral- and neurobiological responses to other therapeutic- or illicit psychotropic drugs.
Collapse
Affiliation(s)
- Jean A. Milstein
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ahmed Elnabawi
- Dept. of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Monika Vinish
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas Swanson
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer K. Enos
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Aileen M. Bailey
- Dept. of Psychology, St. Mary's College of Maryland, St. Mary's, Maryland, United States of America
| | - Bryan Kolb
- University of Lethbridge, Canadian Center for Behavioral Neuroscience, Lethbridge, Alberta, Canada
| | - Douglas O. Frost
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Dept. of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
145
|
Early life adversity alters the developmental profiles of addiction-related prefrontal cortex circuitry. Brain Sci 2013; 3:143-58. [PMID: 24961311 PMCID: PMC4061828 DOI: 10.3390/brainsci3010143] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/11/2012] [Accepted: 01/24/2013] [Indexed: 01/21/2023] Open
Abstract
Early adverse experience is a well-known risk factor for addictive behaviors later in life. Drug addiction typically manifests during adolescence in parallel with the later-developing prefrontal cortex (PFC). While it has been shown that dopaminergic modulation within the PFC is involved in addiction-like behaviors, little is known about how early adversity modulates its development. Here, we report that maternal separation stress (4 h per day between postnatal days 2–20) alters the development of the prelimbic PFC. Immunofluorescence and confocal microscopy revealed differences between maternally-separated and control rats in dopamine D1 and D2 receptor expression during adolescence, and specifically the expression of these receptors on projection neurons. In control animals, D1 and D2 receptors were transiently increased on all glutamatergic projection neurons, as well as specifically on PFC→nucleus accumbens projection neurons (identified with retrograde tracer). Maternal separation exacerbated the adolescent peak in D1 expression and blunted the adolescent peak in D2 expression on projection neurons overall. However, neurons retrogradely traced from the accumbens expressed lower levels of D1 during adolescence after maternal separation, compared to controls. Our findings reveal microcircuitry-specific changes caused by early life adversity that could help explain heightened vulnerability to drug addiction during adolescence.
Collapse
|
146
|
Evidence for a neuroinflammatory mechanism in delayed effects of early life adversity in rats: relationship to cortical NMDA receptor expression. Brain Behav Immun 2013. [PMID: 23207107 DOI: 10.1016/j.bbi.2012.11.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Postnatal maternal separation in rats causes a reduction of GABAergic parvalbumin-containing interneurons in the prefrontal cortex that first occurs in adolescence. This parvalbumin loss can be prevented by pre-adolescent treatment with a non-steroidal anti-inflammatory drug that also protects against excitotoxicity. Therefore, the neuropsychiatric disorders associated with early life adversity and interneuron dysfunction may involve neuroinflammatory processes and/or aberrant glutamatergic activity. Here, we aimed to determine whether delayed parvalbumin loss after maternal separation was due to inflammatory activity, and whether central administration of the anti-inflammatory cytokine interleukin (IL)-10 could protect against such loss. We also investigated the effects of maternal separation and IL-10 treatment on cortical NMDA receptor expression. Male rat pups were isolated for 4h/day between postnatal days 2-20. IL-10 was administered intracerebroventricularly through an indwelling cannula between P30 and 38. Adolescent prefrontal cortices were analyzed using Western blotting and immunohistochemistry for parvalbumin and NMDA NR2A subunit expression. We demonstrate that central IL-10 administration during pre-adolescence protects maternally separated animals from parvalbumin loss in adolescence. Linear regression analyses revealed that increased circulating levels of the pro-inflammatory cytokines IL-1β and IL-6 predicted lowered parvalbumin levels in maternally separated adolescents. Maternal separation also increases cortical expression of the NR2A NMDA receptor subunit in adolescence, which is prevented by IL-10 treatment. These data suggest that inflammatory damage to parvalbumin interneurons may occur via aberrant glutamatergic activity in the prefrontal cortex. Our findings provide a novel interactive mechanism between inflammation and neural dysfunction that helps explain deleterious effects of early life adversity on prefrontal cortex interneurons.
Collapse
|
147
|
Wang X, Zhao K, Wang D, Adams W, Fu Y, Sun H, Liu X, Yu H, Ma Y. Effects of exposure to a 50 Hz sinusoidal magnetic field during the early adolescent period on spatial memory in mice. Bioelectromagnetics 2013; 34:275-84. [DOI: 10.1002/bem.21775] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 11/29/2012] [Indexed: 11/08/2022]
|
148
|
Suzuki A, Matsumoto Y, Shibuya N, Ryoichi S, Kamata M, Enokido M, Goto K, Otani K. Interaction effect between the BDNF Val66Met polymorphism and parental rearing for interpersonal sensitivity in healthy subjects. Psychiatry Res 2012; 200:945-8. [PMID: 22542952 DOI: 10.1016/j.psychres.2012.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/18/2011] [Accepted: 03/15/2012] [Indexed: 12/19/2022]
Abstract
Interpersonal sensitivity is defined as undue and excessive awareness of, and sensitivity to, the behaviour and feelings of others and is one of the vulnerable factors to depression. In a twin study, it was suggested that this personality trait was characterised by both genetic and environmental factors. In the present study, we examined the effects of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and parental rearing on interpersonal sensitivity in 725 healthy Japanese subjects. Assessment of interpersonal sensitivity was performed by the Japanese version of the Interpersonal Sensitivity Measure (IPSM). Perceived parental rearing was assessed by the Parental Bonding Instrument (PBI), which consists of the care and protection factors. The BDNF polymorphism was detected by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. There was no main effect of the BDNF genotype on the IPSM score, while the PBI factors except maternal care had significant main effect on the IPSM score. There was significant interaction effect between the BDNF genotype and maternal care of the PBI on the IPSM score. Post-hoc analysis of simple slopes showed that the negative relationship between the IPSM score and maternal care was strongest and significant in the Met/Met genotype group, intermediate in the Val/Met genotype group and weakest in the Val/Val genotype group. The present study suggests that the interaction between the BDNF Val66Met polymorphism and parental rearing, especially maternal care, influences interpersonal sensitivity in healthy subjects.
Collapse
Affiliation(s)
- Akihito Suzuki
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Walf AA, Frye CA. Gestational or acute restraint in adulthood reduces levels of 5α-reduced testosterone metabolites in the hippocampus and produces behavioral inhibition of adult male rats. Front Cell Neurosci 2012; 6:40. [PMID: 23264760 PMCID: PMC3524518 DOI: 10.3389/fncel.2012.00040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 09/12/2012] [Indexed: 01/31/2023] Open
Abstract
Stressors, during early life or adulthood, can alter steroid-sensitive behaviors, such as exploration, anxiety, and/or cognitive processes. We investigated if exposure to acute stressors in adulthood may alter behavioral and neuroendocrine responses of male rats that were exposed to gestational stress or not. We hypothesized that rats exposed to gestational and acute stress may show behavioral inhibition, increased corticosterone, and altered androgen levels in the hippocampus. Subjects were adult, male offspring of rat dams that were restrained daily on gestational days 14–20, or did not experience this manipulation. Immediately before testing, rats were restraint stressed for 20 min or not. During week 1, rats were tested in a battery of tasks, including the open field, elevated plus maze, social interaction, tailflick, pawlick, and defensive burying tasks. During week 2, rats were trained and tested 24 h later in the inhibitory avoidance task. Plasma corticosterone and androgen levels, and hippocampal androgen levels, were measured in all subjects. Gestational and acute restraint stress increased plasma levels of corticosterone, and reduced levels of testosterone's 5α-reduced metabolites, dihydrotestosterone (DHT) and 3α-androstanediol (3α-diol), but not the aromatized metabolite, estradiol (E2), in plasma or the hippocampus. Gestational and acute restraint stress reduced central entries made in the open field, and latencies to enter the shock-associated side of the inhibitory avoidance chamber during testing. Gestational stress reduced time spent interacting with a conspecific. These data suggest that gestational and acute restraint stress can have actions to produce behavioral inhibition coincident with increased corticosterone and decreased 5α-reduced androgens of adult male rats. Thus, gestational stress altered neural circuits involved in the neuroendocrine response to acute stress in early adulthood.
Collapse
Affiliation(s)
- Alicia A Walf
- Life Sciences Research, The University at Albany-SUNY Albany, NY, USA
| | | |
Collapse
|
150
|
Schneider S, Brassen S, Bromberg U, Banaschewski T, Conrod P, Flor H, Gallinat J, Garavan H, Heinz A, Martinot JL, Nees F, Rietschel M, Smolka MN, Ströhle A, Struve M, Schumann G, Büchel C. Maternal interpersonal affiliation is associated with adolescents' brain structure and reward processing. Transl Psychiatry 2012; 2:e182. [PMID: 23149446 PMCID: PMC3565762 DOI: 10.1038/tp.2012.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/21/2012] [Accepted: 10/06/2012] [Indexed: 11/09/2022] Open
Abstract
Considerable animal and human research has been dedicated to the effects of parenting on structural brain development, focusing on hippocampal and prefrontal areas. Conversely, although functional imaging studies suggest that the neural reward circuitry is involved in parental affection, little is known about mothers' interpersonal qualities in relation to their children's brain structure and function. Moreover, gender differences concerning the effect of maternal qualities have rarely been investigated systematically. In 63 adolescents, we assessed structural and functional magnetic resonance imaging as well as interpersonal affiliation in their mothers. This allowed us to associate maternal affiliation with gray matter density and neural responses during different phases of the well-established Monetary Incentive Delay task. Maternal affiliation was positively associated with hippocampal and orbitofrontal gray matter density. Moreover, in the feedback of reward hit as compared with reward miss, an association with caudate activation was found. Although no significant gender effects were observed in these associations, during reward feedback as compared with baseline, maternal affiliation was significantly associated with ventral striatal and caudate activation only in females. Our findings demonstrate that maternal interpersonal affiliation is related to alterations in both the brain structure and reward-related activation in healthy adolescents. Importantly, the pattern is in line with typical findings in depression and post-traumatic stress disorder, suggesting that a lack of maternal affiliation might have a role in the genesis of mental disorders.
Collapse
Affiliation(s)
- S Schneider
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|