101
|
Jungert K, Buck A, von Wichert G, Adler G, König A, Buchholz M, Gress TM, Ellenrieder V. Sp1 is required for transforming growth factor-beta-induced mesenchymal transition and migration in pancreatic cancer cells. Cancer Res 2007; 67:1563-70. [PMID: 17308095 DOI: 10.1158/0008-5472.can-06-1670] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transition from a sessile epithelial phenotype to a migrating mesenchymal phenotype is a crucial step in transforming growth factor-beta (TGF-beta)-induced pancreatic cancer cell migration and invasion. These profound morphologic and functional alterations are associated with characteristic changes in TGF-beta-regulated gene expression, defined by rapid repression of epithelial markers and a strong and sustained transcriptional induction of mesenchymal markers such as the intermediate filament vimentin. In this study, we have analyzed the role of the transcription factor Sp1 in TGF-beta-induced and Smad-mediated gene regulation during epithelial to mesenchymal transition (EMT) and migration of pancreatic cancer cells. Here, we show that Sp1 is required for TGF-beta-induced EMT, and that this function is especially mediated through transcriptional induction of vimentin. Our results emphasize the functional relevance of vimentin in TGF-beta-induced EMT because prevention of its induction strongly reduces cell migration. Altogether, this study helps to better understand the role of Sp1 in TGF-beta-induced progression of pancreatic cancer. It suggests that Sp1, via transcriptional induction of vimentin, cooperates with activated Smad complexes in mesenchymal transition and migration of pancreatic cancer cells upon TGF-beta stimulation.
Collapse
Affiliation(s)
- Kerstin Jungert
- Department of Gastroenterology, University of Ulm, 35043 Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Kalantari F, Miao D, Emadali A, Tzimas GN, Goltzman D, Vali H, Chevet E, Auguste P. Cellular and molecular mechanisms of abnormal calcification following ischemia-reperfusion injury in human liver transplantation. Mod Pathol 2007; 20:357-66. [PMID: 17334330 DOI: 10.1038/modpathol.3800747] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies suggest a possible link between calcification and ischemia-reperfusion injury following liver transplantation. Histological staining, immunolabeling, and biochemical and electron microscopy analyses were applied to assess the possible mechanism(s) of calcification in liver tissue. Although light microscopy studies did not reveal the presence of large necrotic or apoptotic areas, electron microscopy showed the presence of membrane-bound vacuolar structures in hepatocytes, indicative of cell damage. Myofibroblasts were abundant in regions surrounding and within calcification. In these precalcified and calcified areas, myofibroblasts expressed bone-specific matrix proteins, such as osteopontin, type 1 collagen and bone sialoprotein. In addition, transforming growth factor beta (TGFbeta)-1 and BMP2, two growth factors implicated in osteoblast differentiation, and Runx2 and Msx2, two transcription factors targets of TGFbeta-1 and BMP2, were also expressed in these myofibroblasts. These data suggest that liver calcification following transplantation may be a consequence of precipitation of hydroxylapatite emanating from necrotic or apoptotic hepatocytes associated with proliferation of myofibroblasts expressing bone-specific matrix proteins.
Collapse
Affiliation(s)
- Fariba Kalantari
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Peng Z, Wei D, Wang L, Tang H, Zhang J, Le X, Jia Z, Li Q, Xie K. RUNX3 inhibits the expression of vascular endothelial growth factor and reduces the angiogenesis, growth, and metastasis of human gastric cancer. Clin Cancer Res 2007; 12:6386-94. [PMID: 17085650 DOI: 10.1158/1078-0432.ccr-05-2359] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Recent studies indicated that RUNX3 exhibits potent antitumor activity. However, the underlying molecular mechanisms of this activity remain unclear. In the present study, we used a gastric cancer model to determine the effect of RUNX3 expression on tumor angiogenesis. EXPERIMENTAL DESIGN The effects of increased RUNX3 expression on vascular endothelial growth factor (VEGF) expression in and angiogenic potential of human gastric cancer cells were determined in vitro and in animal models. RUNX3 and VEGF expression was determined in 120 human gastric cancer specimens and their relationship was analyzed. RESULTS RUNX3 gene transfer suppressed VEGF expression in human gastric cancer cells. Down-regulation of VEGF expression correlated with a significantly impaired angiogenic potential of human gastric cancer cells. Furthermore, RUNX3 restoration inhibited tumor growth and metastasis in animal models, which was consistent with inhibition of angiogenesis as determined by evaluating VEGF expression and tumor microvessel formation. In gastric cancer specimens, loss or decrease in RUNX3 expression inversely associated with increased VEGF expression and elevated microvessel formation. CONCLUSIONS Our clinical and experimental data provide a novel molecular mechanism for the antitumor activity of RUNX3 and may help design effective therapy targeting RUNX3 pathway to control gastric cancer growth and metastasis.
Collapse
Affiliation(s)
- Zhihai Peng
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, China
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Puig-Kröger A, Domínguez-Soto A, Martínez-Muñoz L, Serrano-Gómez D, Lopez-Bravo M, Sierra-Filardi E, Fernández-Ruiz E, Ruiz-Velasco N, Ardavín C, Groner Y, Tandon N, Corbí AL, Vega MA. RUNX3 negatively regulates CD36 expression in myeloid cell lines. THE JOURNAL OF IMMUNOLOGY 2006; 177:2107-14. [PMID: 16887969 DOI: 10.4049/jimmunol.177.4.2107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD36 is a member of the scavenger receptor type B family implicated in the binding of lipoproteins, phosphatidylserine, thrombospondin-1, and the uptake of long-chain fatty acids. On mononuclear phagocytes, recognition of apoptotic cells by CD36 contributes to peripheral tolerance and prevention of autoimmunity by impairing dendritic cell (DC) maturation. Besides, CD36 acts as a coreceptor with TLR2/6 for sensing microbial diacylglycerides, and its deficiency leads to increased susceptibility to Staphylococcus aureus infections. The RUNX3 transcription factor participates in reprogramming DC transcription after pathogen recognition, and its defective expression leads to abnormally accelerated DC maturation. We present evidence that CD36 expression is negatively regulated by the RUNX3 transcription factor during myeloid cell differentiation and activation. In molecular terms, RUNX3 impairs the activity of the proximal regulatory region of the CD36 gene in myeloid cells through in vitro recognition of two functional RUNX-binding elements. Moreover, RUNX3 occupies the CD36 gene proximal regulatory region in vivo, and its overexpression in myeloid cells results in drastically diminished CD36 expression. The down-regulation of CD36 expression by RUNX3 implies that this transcription factor could impair harmful autoimmune responses by contributing to the loss of pathogen- and apoptotic cell-recognition capabilities by mature DCs.
Collapse
Affiliation(s)
- Amaya Puig-Kröger
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Burger A, Amemiya Y, Kitching R, Seth AK. Novel RING E3 ubiquitin ligases in breast cancer. Neoplasia 2006; 8:689-95. [PMID: 16925951 PMCID: PMC1601945 DOI: 10.1593/neo.06469] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Defects in ubiquitin E3 ligases are implicated in the pathogenesis of several human diseases, including cancer, because of their central role in the control of diverse signaling pathways. RING E3 ligases promote the ubiquitination of proteins that are essential to a variety of cellular events. Identification of which ubiquitin ligases specifically affect distinct cellular processes is essential to the development of targeted therapeutics for these diseases. Here we discuss two novel RING E3 ligases, BCA2 and RNF11, that are closely linked to human breast cancer. BCA2 E3 ligase is coregulated with estrogen receptor and plays a role in the regulation of epidermal growth factor receptor (EGF-R) trafficking. RNF11 is a small RING E3 ligase that affects transforming growth factorbeta and EGF-R signaling and is overexpressed in invasive breast cancers. These two proteins demonstrate the complexity of RING E3 ligase interactions in breast cancer and are potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Angelika Burger
- Sunnybrook Research Institute and Department of Anatomic Pathology, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
106
|
Alarcón-Riquelme ME. The genetics of systemic lupus erythematosus: understanding how SNPs confer disease susceptibility. ACTA ACUST UNITED AC 2006; 28:109-17. [PMID: 16964481 DOI: 10.1007/s00281-006-0033-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 05/30/2006] [Indexed: 01/22/2023]
Abstract
The identification of genes for autoimmune diseases is just the first step towards our understanding of disease pathogenesis. In investigating how mutations, deletions or other types of polymorphic defects occur, it is important to determine the pathways and the mechanisms through which susceptibility leads to disease. In this review I touch on three examples of studies that have attempted to understand the mechanisms of genetic susceptibility in three genes identified recently for systemic lupus erythematosus: PDCD1, PTPN22 and IRF5. We are just beginning to comprehend and much needs to be done.
Collapse
Affiliation(s)
- Marta E Alarcón-Riquelme
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.
| |
Collapse
|
107
|
Bennet AM, Alarcón-Riquelme M, Wiman B, de Faire U, Prokunina-Olsson L. Decreased Risk for Myocardial Infarction and Lower Tumor Necrosis Factor–α Levels in Carriers of Variants of the PDCD1 Gene. Hum Immunol 2006; 67:700-5. [PMID: 17002900 DOI: 10.1016/j.humimm.2006.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 05/17/2006] [Indexed: 11/17/2022]
Abstract
Increasing interest has been directed toward the inflammatory mechanisms involved in the pathogenesis of myocardial infarction (MI). In the search for genetic mechanisms underlying these inflammatory components, we studied variants of programmed cell death-1 (PDCD1), an immunoinhibitory receptor that inhibits lymphocyte activation and cytokine production, previously shown to be associated with several autoimmune disorders. The PD1.1, PD1.3, and PD1.6 polymorphisms of the PDCD1 gene were typed in the Stockholm Heart Epidemiology Program, a population-based clinical material consisting of 1179 first-time MI case patients and 1528 unaffected control subjects. Individual alleles and haplotypes were studied for association with levels of the inflammatory cytokines tumor necrosis factor-alpha (TNF-alpha), interleukin-6, and C-reactive protein and risk for MI. We observed a weak protective effect of PD1.3A allele for MI (odds ratio: 0.78, 95% confidence interval: 0.61-0.98). We also observed decreased levels of TNF-alpha in carriers of the PD1.1A/PD1.3G/PD1.6A haplotype, which is consistent with our previous observation that this haplotype may be protective from autoimmune conditions. Carriers of variants of the PDCD1 gene exhibit a decreased risk for nonfatal myocardial infarction, and PDCD1 mediates variation in TNF-alpha levels.
Collapse
Affiliation(s)
- Anna M Bennet
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
108
|
Differential regulation of osteoadherin (OSAD) by TGF-beta1 and BMP-2. Biochem Biophys Res Commun 2006; 349:1057-64. [PMID: 16970923 DOI: 10.1016/j.bbrc.2006.08.133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 11/24/2022]
Abstract
Osteoadherin (OSAD) is a member of the small leucine rich-repeat proteoglycan (SLRP) family. SLRPs are normally found in extracellular matrices, but OSAD is the only member restricted to mineralized tissues. We investigated the promoter region of OSAD by in silico analysis and found that the proximal promoter region contains sites for Smad-3, Smad-4, and AP-1. All are effectors of TGF-beta family signalling. We tested sensitivity of the promoter to the two TGF-beta family members TGF-beta1 and BMP-2. We found TGF-beta1 to down regulate OSAD, while BMP-2 up regulates OSAD. As a consequence of how OSAD is regulated by TGF-beta1 and BMP-2 and its temporal expression pattern in osteoblasts and bone development, we can conclude OSAD as an early marker for terminally differentiated matrix producing osteoblasts.
Collapse
|
109
|
Hecht J, Seitz V, Urban M, Wagner F, Robinson PN, Stiege A, Dieterich C, Kornak U, Wilkening U, Brieske N, Zwingman C, Kidess A, Stricker S, Mundlos S. Detection of novel skeletogenesis target genes by comprehensive analysis of a Runx2(-/-) mouse model. Gene Expr Patterns 2006; 7:102-12. [PMID: 16829211 DOI: 10.1016/j.modgep.2006.05.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 05/26/2006] [Accepted: 05/29/2006] [Indexed: 01/06/2023]
Abstract
Runx2 is an essential factor for skeletogenesis and heterozygous loss causes cleidocranial dysplasia in humans and a corresponding phenotype in the mouse. Homozygous Runx2-deficient mice lack hypertrophic cartilage and bone. We compared the expression profiles of E14.5 wildtype and Runx2(-/-) murine embryonal humeri to identify new transcripts potentially involved in cartilage and bone development. Seventy-one differentially expressed genes were identified by two independent oligonucleotide-microarray hybridizations and quantitative RT-PCR experiments. Gene Ontology analysis demonstrated an enrichment of the differentially regulated genes in annotations to terms such as extracellular, skeletal development, and ossification. In situ hybridization on E15.5 limb sections was performed for all 71 differentially regulated genes. For 54 genes conclusive in situ hybridization results were obtained and all of them showed skeletal expression. Co-expression with Runx2 was demonstrated for 44 genes. While 41 of the 71 differentially expressed genes have a known role in bone and cartilage, we identified 21 known genes that have not yet been implicated in skeletal development and 9 entirely new transcripts. Expression in the developing skeleton was demonstrated for 21 of these genes.
Collapse
Affiliation(s)
- J Hecht
- Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin,Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 2006; 16:251-63. [PMID: 15871923 DOI: 10.1016/j.cytogfr.2005.01.009] [Citation(s) in RCA: 665] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Accepted: 01/20/2005] [Indexed: 12/25/2022]
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGF-beta) superfamily, bind to two different serine/threonine kinase receptors, and mediate their signals through Smad-dependent and Smad-independent pathways. Receptor regulated-Smad (R-Smad) proteins specific for the BMP pathways interact with various proteins, including transcription factor Runx, and transmit specific signals in target cells. The recent development of DNA microarray techniques has allowed us to identify many BMP target genes. BMP signaling is modulated by various molecules, including inhibitory Smads (I-Smads). Moreover, recent findings have revealed that BMP pathways interact with other signaling pathways, and such signaling cross-talk plays pivotal roles in growth and differentiation of target cells.
Collapse
Affiliation(s)
- Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
111
|
Xiao YQ, Freire-de-Lima CG, Janssen WJ, Morimoto K, Lyu D, Bratton DL, Henson PM. Oxidants selectively reverse TGF-beta suppression of proinflammatory mediator production. THE JOURNAL OF IMMUNOLOGY 2006; 176:1209-17. [PMID: 16394011 DOI: 10.4049/jimmunol.176.2.1209] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although TGF-beta inhibits the production of proinflammatory mediators in vitro and in vivo, its anti-inflammatory activities may be ineffective in early or severe acute inflammatory circumstances. In this study, we suggest a role for oxidative stress on TGF-beta signaling, leading to prevention of its normal anti-inflammatory effects but leaving its Smad-driven effects on cellular differentiation or matrix production unaffected. Stimulation of the RAW 264.7 macrophage cells, human or mouse alveolar macrophages with LPS led to NF-kappaB-driven production of proinflammatory mediators, which were inhibited by TGF-beta. This inhibition was prevented in the presence of hydrogen peroxide. We found that hydrogen peroxide acted by inducing p38 MAPK activation, which then prevented the ERK activation and MAPK phosphatase-1 up-regulation normally induced by TGF-beta. This was mediated through Src tyrosine kinases and protein phosphatase-1/2A. By contrast, hydrogen peroxide had no effects on TGF-beta-induced Smad2 phosphorylation and SBE-luc reporter gene transcription.
Collapse
Affiliation(s)
- Yi Qun Xiao
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Soma T, Ishimatsu-Tsuji Y, Tajima M, Kishimoto J. Runx1 transcription factor is involved in the regulation of KAP5 gene expression in human hair follicles. J Dermatol Sci 2006; 41:221-4. [PMID: 16442267 DOI: 10.1016/j.jdermsci.2005.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/14/2005] [Accepted: 12/19/2005] [Indexed: 11/28/2022]
|
113
|
Knippenberg M, Helder MN, Zandieh Doulabi B, Wuisman PIJM, Klein-Nulend J. Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem Biophys Res Commun 2006; 342:902-8. [PMID: 16500625 DOI: 10.1016/j.bbrc.2006.02.052] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 02/04/2006] [Indexed: 01/11/2023]
Abstract
Bone morphogenetic proteins (BMPs) initiate, promote, and maintain chondrogenesis and osteogenesis. We hypothesize that BMP-2 induces an osteogenic, and BMP-7 a chondrogenic phenotype in adipose tissue-derived mesenchymal stem cells (AT-MSCs). We compared the effects of a short 15min BMP-2 or BMP-7 (10ng/ml) treatment on osteogenic and chondrogenic differentiation of AT-MSCs. Gene expression was studied 4 and 14 days after BMP-treatment. At day 4 BMP-2, but not BMP-7, stimulated runx-2 and osteopontin gene expression, and at day 14 BMP-7 down-regulated expression of these genes. At day 4 BMP-2 and BMP-7 stimulated biglycan gene expression, which was down-regulated by BMP-7 at day 14. BMP-7 stimulated aggrecan gene expression at day 14. Our data indicate that BMP-2 treatment for 15min induces osteogenic differentiation, whereas BMP-7 stimulates a chondrogenic phenotype of AT-MSCs. Therefore, AT-MSCs triggered for only 15min with BMP-2 or BMP-7 provide a feasible tool for bone and cartilage tissue engineering.
Collapse
Affiliation(s)
- M Knippenberg
- Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam (ACTA)-UvA and Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
114
|
Qiao M, Shapiro P, Fosbrink M, Rus H, Kumar R, Passaniti A. Cell cycle-dependent phosphorylation of the RUNX2 transcription factor by cdc2 regulates endothelial cell proliferation. J Biol Chem 2006; 281:7118-28. [PMID: 16407259 DOI: 10.1074/jbc.m508162200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RUNX2 is a member of the runt family of DNA-binding transcription factors. RUNX2 mediates endothelial cell migration and invasion during tumor angiogenesis and is expressed in metastatic breast and prostate tumors. Our published studies showed that RUNX2 DNA-binding activity is low during growth arrest, but elevated in proliferating endothelial cells. To investigate its role in cell proliferation and cell cycle regulation, RUNX2 was depleted in human bone marrow endothelial cells using RNA interference. Specific RUNX2 depletion inhibited DNA-binding activity as measured by electrophoretic mobility shift assay resulting in inhibition of cell proliferation. Cells were synchronized at the G(1)/S boundary with excess thymidine or in mitosis (M phase) with nocodazole. Endogenous or ectopic RUNX2 activity was maximal at late G(2) and during M phase. Inhibition of RUNX2 expression by RNA interference delayed entry into and exit out of the G(2)/M phases of the cell cycle. RUNX2 was coimmunoprecipitated with cyclin B1 in mitotic cells, which further supported a role for RUNX2 in cell cycle progression. Moreover, in vitro kinase assays using recombinant cdc2 kinase showed that RUNX2 was phosphorylated at Ser(451). The cdc2 inhibitor roscovitine dose dependently inhibited in vivo RUNX2 DNA-binding activity during mitosis and the RUNX2 mutant S451A exhibited lower DNA-binding activity and reduced stimulation of anchorage-independent growth relative to wild type RUNX2. These results suggest for the first time that RUNX2 phosphorylation by cdc2 may facilitate cell cycle progression possibly through regulation of G(2) and M phases, thus promoting endothelial cell proliferation required for tumor angiogenesis.
Collapse
Affiliation(s)
- Meng Qiao
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
115
|
Affiliation(s)
- Susan X Hsiong
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
116
|
Puig-Kröger A, Corbí A. RUNX3: A new player in myeloid gene expression and immune response. J Cell Biochem 2006; 98:744-56. [PMID: 16598764 DOI: 10.1002/jcb.20813] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RUNX transcription factors function as scaffolds for interaction with various coregulatory proteins during developmental processes such as hematopoiesis, neurogenesis, and osteogenesis. The current view places RUNX proteins within the TGF-beta signaling pathway, although each one exhibits cell- and tissue-specific functions. In the case of RUNX3, recent data have suggested its function as a tumor suppressor factor and highlighted its involvement in immune cell differentiation and activation. The molecular mechanisms for the pleiotropic effects of Runx3 deficiency are not completely understood. The present article will summarize the known functional activities of RUNX3, emphasizing its role in myeloid cell gene expression and its potential contribution to the migratory and adhesive capabilities of this cell lineage.
Collapse
|
117
|
Bae SC, Lee YH. Phosphorylation, acetylation and ubiquitination: the molecular basis of RUNX regulation. Gene 2005; 366:58-66. [PMID: 16325352 DOI: 10.1016/j.gene.2005.10.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 09/23/2005] [Accepted: 10/15/2005] [Indexed: 12/19/2022]
Abstract
The RUNX family members play pivotal roles in normal development and neoplasia. RUNX1 and RUNX2 are essential for hematopoiesis and osteogenesis, respectively, while RUNX3 is involved in neurogenesis, thymopoiesis and functions as a tumor suppressor. Inappropriate levels of RUNX activity are associated with leukemia, autoimmune disease, cleidocranial dysplasia, craniosynostosis and various solid tumors. Therefore, RUNX activity must be tightly regulated to prevent tumorigenesis and maintain normal cell differentiation. Recent work indicates that RUNX activity is controlled by various extracellular signaling pathways, and that phosphorylation, acetylation and ubiquitination are important post-translational modifications of RUNX that affect its stability and activity. Defining the precise roles, these modifications that play in the regulation of RUNX function may reveal not only how the RUNX proteins are regulated but also how they are assembled into other regulatory machineries.
Collapse
Affiliation(s)
- Suk-Chul Bae
- Department of Biochemistry, College of Medicine and Institute for Tumor Research, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea.
| | | |
Collapse
|
118
|
van Grunsven LA, Verstappen G, Huylebroeck D, Verschueren K. Smads and chromatin modulation. Cytokine Growth Factor Rev 2005; 16:495-512. [PMID: 15979924 DOI: 10.1016/j.cytogfr.2005.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 05/11/2005] [Indexed: 12/29/2022]
Abstract
Smad proteins are critical intracellular effector proteins and regulators of transforming growth factor type beta (TGFbeta) modulated gene transcription. They directly convey signals that initiate at ligand-bound receptor complexes and end in the nucleus with changes in programs of gene expression. Activated Smad proteins seem to recruit chromatin modifying proteins to target genes besides cooperating with DNA-bound transcription factors. We survey here the current and still emerging knowledge on Smad-binding factors, and their different mechanisms of chromatin modification in particular, in Smad-dependent TGFbeta signaling.
Collapse
Affiliation(s)
- Leo A van Grunsven
- Department of Developmental Biology (VIB7), Flanders Interuniversity Institute for Biotechnology (VIB) and Laboratory of Molecular Biology (Celgen), University of Leuven, Belgium
| | | | | | | |
Collapse
|
119
|
Kantola AK, Keski-Oja J, Koli K. Induction of human LTBP-3 promoter activity by TGF-beta1 is mediated by Smad3/4 and AP-1 binding elements. Gene 2005; 363:142-50. [PMID: 16223572 DOI: 10.1016/j.gene.2005.07.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 07/28/2005] [Accepted: 07/30/2005] [Indexed: 11/15/2022]
Abstract
Latent TGF-beta binding proteins (LTBPs) are extracellular matrix glycoproteins, which are essential for the targeting and activation of TGF-betas. LTBP-3 regulates the bioavailability of TGF-beta especially in the bone. To understand the regulation of LTBP-3 expression, we have isolated and characterized the promoter region of human LTBP-3 gene. The GC-rich TATA-less promoter contained several transcription initiation sites and putative binding sites for multiple sequence specific transcription factors including Sp1, AP-1, c-Ets, MZF-1, Runx1 and members of the GATA-family. Reporter gene analyses of the promoter indicated that it was more active in MG-63 than in Saos-2 osteosarcoma cells, suggesting that it is regulated as the endogenous gene. TGF-beta1 stimulated the transcriptional activity of LTBP-3 promoter in MG-63 cells, while certain other bone-derived growth factors and hormones were ineffective. TGF-beta1 increased LTBP-3 mRNA levels accordingly. Analyses of deletion constructs of the promoter and mutational deletion of specific transcription factor binding sites indicated that Smad3/4 and AP-1 binding sites mediated the TGF-beta1 response. The involvement of AP-1 activity was further indicated by decreased TGF-beta responsiveness of the LTBP-3 promoter in the presence of a MEK/Erk signaling pathway inhibitor. Our results suggest an important new role for TGF-beta1 in the regulation of its binding protein, LTBP-3.
Collapse
Affiliation(s)
- Anna K Kantola
- Department of Virology, Haartman Institute and Helsinki University Hospital, University of Helsinki, Biomedicum Rm A506, P.O.Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | | | | |
Collapse
|
120
|
Miura Y, Miura M, Gronthos S, Allen MR, Cao C, Uveges TE, Bi Y, Ehirchiou D, Kortesidis A, Shi S, Zhang L. Defective osteogenesis of the stromal stem cells predisposes CD18-null mice to osteoporosis. Proc Natl Acad Sci U S A 2005; 102:14022-7. [PMID: 16172402 PMCID: PMC1236524 DOI: 10.1073/pnas.0409397102] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Osteogenesis by the bone marrow stromal stem cells (BMSSCs) supports continuous bone formation and the homeostasis of the bone marrow microenvironment. The mechanism that controls the proliferation and differentiation of BMSSCs is not fully understood. Here, we report that CD18, a surface protein present primarily on hematopoietic cells, but not on differentiated mesenchymal cells, is expressed by the stromal stem cells and plays a critical role in the osteogenic process. Constitutive expression of CD18 on BMSSCs using a retroviral promoter significantly enhances bone formation in vivo, whereas genetic inactivation of CD18 in mice leads to defective osteogenesis due to decreased expression of the osteogenic master regulator Runx2/Cbfa1. The defective osteogenesis of the CD18-null BMSSCs can be restored by expressing full-length, but not cytoplasmic domain-truncated, CD18. Radiographic analyses with dual-energy x-ray absorptiometry and 3D microcomputed tomography show that mice lacking CD18 have decreased bone mineral density and exhibit certain features of osteoporosis. Altogether, this work demonstrates that CD18 functions critically in the osteogenesis of BMSSCs, and thus lack of CD18 expression in the leukocyte adhesion deficiency patients may predispose them to osteoporosis.
Collapse
Affiliation(s)
- Yasuo Miura
- Department of Physiology, University of Maryland School of Medicine, Rockville, MD 20855, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
During the past 10 years, it has been firmly established that Smad pathways are central mediators of signals from the receptors for transforming growth factor β (TGF-β) superfamily members to the nucleus. However, growing biochemical and developmental evidence supports the notion that alternative, non-Smad pathways also participate in TGF-β signalling. Non-Smad signalling proteins have three general mechanisms by which they contribute to physiological responses to TGF-β: (1) non-Smad signalling pathways directly modify (e.g. phosphorylate) the Smads and thus modulate the activity of the central effectors; (2) Smads directly interact and modulate the activity of other signalling proteins (e.g. kinases), thus transmitting signals to other pathways; and (3) the TGF-β receptors directly interact with or phosphorylate non-Smad proteins, thus initiating parallel signalling that cooperates with the Smad pathway in eliciting physiological responses. Thus, non-Smad signal transducers under the control of TGF-β provide quantitative regulation of the signalling pathway, and serve as nodes for crosstalk with other major signalling pathways, such as tyrosine kinase, G-protein-coupled or cytokine receptors.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
| | | |
Collapse
|
122
|
Klüppel M, Wight TN, Chan C, Hinek A, Wrana JL. Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis. Development 2005; 132:3989-4003. [PMID: 16079159 DOI: 10.1242/dev.01948] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycosaminoglycans (GAGs) such as heparan sulfate and chondroitin sulfate are polysaccharide chains that are attached to core proteins to form proteoglycans. The biosynthesis of GAGs is a multistep process that includes the attachment of sulfate groups to specific positions of the polysaccharide chains by sulfotransferases. Heparan-sulfate and heparan sulfate-sulfotransferases play important roles in growth factor signaling and animal development. However, the biological importance of chondroitin sulfation during mammalian development and growth factor signaling is poorly understood. We show that a gene trap mutation in the BMP-induced chondroitin-4-sulfotransferase 1 (C4st1) gene (also called carbohydrate sulfotransferase 11 - Chst11), which encodes an enzyme specific for the transfer of sulfate groups to the 4-O-position in chondroitin, causes severe chondrodysplasia characterized by a disorganized cartilage growth plate as well as specific alterations in the orientation of chondrocyte columns. This phenotype is associated with a chondroitin sulfation imbalance, mislocalization of chondroitin sulfate in the growth plate and an imbalance of apoptotic signals. Analysis of several growth factor signaling pathways that are important in cartilage growth plate development showed that the C4st1(gt/gt) mutation led to strong upregulation of TGFbeta signaling with concomitant downregulation of BMP signaling, while Indian hedgehog (Ihh) signaling was unaffected. These results show that chondroitin 4-O-sulfation by C4st1 is required for proper chondroitin sulfate localization, modulation of distinct signaling pathways and cartilage growth plate morphogenesis. Our study demonstrates an important biological role of differential chondroitin sulfation in mammalian development.
Collapse
Affiliation(s)
- Michael Klüppel
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | |
Collapse
|
123
|
Wei D, Gong W, Oh SC, Li Q, Kim WD, Wang L, Le X, Yao J, Wu TT, Huang S, Xie K. Loss of RUNX3 expression significantly affects the clinical outcome of gastric cancer patients and its restoration causes drastic suppression of tumor growth and metastasis. Cancer Res 2005; 65:4809-16. [PMID: 15930301 DOI: 10.1158/0008-5472.can-04-3741] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Identification of precise prognostic marker and effective therapeutic target is pivotal in the treatment of gastric cancer. In the present study, we determined the level of RUNX3 expression in gastric cancer cells and gastric cancer specimens and the impact of its alteration on cancer biology and clinical outcome. There was a loss or substantial decrease of RUNX3 protein expression in 86 cases of gastric tumors as compared with that in normal gastric mucosa (P < 0.0001), which was significantly associated with inferior survival duration (P = 0.0005). In a Cox proportional hazards model, RUNX3 expression independently predicted better survival (P = 0.036). Moreover, various human gastric cancer cell lines also exhibited loss or drastic decrease of RUNX3 expression. Enforced restoration of RUNX3 expression led to down-regulation of cyclin D1 but to up-regulation of p27, caspase 3, 7, and 8 expression, cell cycle arrest, and apoptosis in vitro, and dramatic attenuation of tumor growth and abrogation of metastasis in animal models. Therefore, we offered both clinical and mechanistic evidence that RUNX3 was an independent prognostic factor and a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Daoyan Wei
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Sepsis--the most common cause of death in hospitalized patients--affects over 18 million people worldwide and has an expected 1% increase of incidence per year. Recent clinical trials indicate that therapeutic approaches effective in diseases with similar pathogenesis have a modest effect against sepsis. Although the reason for this failure remains controversial, recent studies provide new insights and promising experimental strategies. We propose that the current definition of sepsis is too broad and encompasses heterogeneous groups of patients suffering similar, but different, syndromes that are historically grouped under the general diagnosis of sepsis. Future clinical trials might define patient populations and therapeutic strategies according to the profile of expression of cytokines.
Collapse
Affiliation(s)
- Luis Ulloa
- Center of Immunology and Inflammation, North Shore-LIJ Research Institute, 350 Community Drive, Manhasset, NY 11030, USA.
| | | |
Collapse
|
125
|
Inman CK, Li N, Shore P. Oct-1 counteracts autoinhibition of Runx2 DNA binding to form a novel Runx2/Oct-1 complex on the promoter of the mammary gland-specific gene beta-casein. Mol Cell Biol 2005; 25:3182-93. [PMID: 15798204 PMCID: PMC1069618 DOI: 10.1128/mcb.25.8.3182-3193.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The transcription factor Runx2 is essential for the expression of a number of bone-specific genes and is primarily considered a master regulator of bone development. Runx2 is also expressed in mammary epithelial cells, but its role in the mammary gland has not been established. Here we show that Runx2 forms a novel complex with the ubiquitous transcription factor Oct-1 to regulate the expression of the mammary gland-specific gene beta-casein. The Runx2/Oct-1 complex forms on a Runx/octamer element which is highly conserved in casein promoters. Chromatin immunoprecipitation, RNA interference, promoter mutagenesis, and transient expression analyses were used to demonstrate that the Runx2/Oct-1 complex contributes to the transcriptional regulation of the beta-casein gene. Analysis of the complex revealed autoinhibitory domains for DNA binding in both the N-terminal and the C-terminal regions of Runx2. Oct-1 stimulates the recruitment of Runx2 to the beta-casein promoter by interacting with the C-terminal region of Runx2, suggesting that Oct-1 stimulates Runx2 recruitment by relieving the autoinhibition of Runx2 DNA binding. These findings demonstrate that Runx2 collaborates with Oct-1 and contributes to the expression of a mammary gland-specific gene.
Collapse
Affiliation(s)
- Claire K Inman
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Rd., Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
126
|
Luo X, Ding L, Xu J, Chegini N. Gene expression profiling of leiomyoma and myometrial smooth muscle cells in response to transforming growth factor-beta. Endocrinology 2005; 146:1097-118. [PMID: 15604209 DOI: 10.1210/en.2004-1377] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Altered expression of the TGF-beta system is recognized to play a central role in various fibrotic disorders, including leiomyoma. In this study we performed microarray analysis to characterize the gene expression profile of leiomyoma and matched myometrial smooth muscle cells (LSMC and MSMC, respectively) in response to the time-dependent action of TGF-beta and, after pretreatment with TGF-beta type II receptor (TGF-beta RII) antisense oligomer-blocking/reducing TGF-beta autocrine/paracrine actions. Unsupervised and supervised assessments of the gene expression values with a false discovery rate selected at P < or = 0.001 identified 310 genes as differentially expressed and regulated in LSMC and MSMC in a cell- and time-dependent manner by TGF-beta. Pretreatment with TGF-beta RII antisense resulted in changes in the expression of many of the 310 genes regulated by TGF-beta, with 54 genes displaying a response to TGF-beta treatment. Comparative analysis of the gene expression profile in TGF-beta RII antisense- and GnRH analog-treated cells indicated that these treatments target the expression of 222 genes in a cell-specific manner. Gene ontology assigned these genes functions as cell cycle regulators, transcription factors, signal transducers, tissue turnover, and apoptosis. We validated the expression and TGF-beta time-dependent regulation of IL-11, TGF-beta-induced factor, TGF-beta-inducible early gene response, early growth response 3, CITED2 (cAMP response element binding protein-binding protein/p300-interacting transactivator with ED-rich tail), Nur77, Runx1, Runx2, p27, p57, growth arrest-specific 1, and G protein-coupled receptor kinase 5 in LSMC and MSMC using real-time PCR. Together, the results provide the first comprehensive assessment of the LSMC and MSMC molecular environment targeted by autocrine/paracrine action of TGF-beta, highlighting potential involvement of specific genes whose products may influence the outcome of leiomyoma growth and fibrotic characteristics by regulating inflammatory response, cell growth, apoptosis, and tissue remodeling.
Collapse
Affiliation(s)
- Xiaoping Luo
- Department of Obstetrics and Gynecology, University of Florida College of Medicine, Box 100294, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
127
|
Naiki Y, Michelsen KS, Zhang W, Chen S, Doherty TM, Arditi M. Transforming Growth Factor-β Differentially Inhibits MyD88-dependent, but Not TRAM- and TRIF-dependent, Lipopolysaccharide-induced TLR4 Signaling. J Biol Chem 2005; 280:5491-5. [PMID: 15623538 DOI: 10.1074/jbc.c400503200] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) is a multifunctional, potent anti-inflammatory cytokine produced by many cell types that regulates cell proliferation, apoptosis, and immune responses. Toll-like receptors (TLRs) recognize various pathogen-associated molecular patterns and are therefore a pivotal component of the innate immune system. In this study we show that TGF-beta1 blocks the NF-kappaB activation and cytokine release that is stimulated by ligands for TLRs 2, 4, and 5. We further show that TGF-beta1 can specifically interfere with TLR2, -4, or -5 ligand-induced responses involving the adaptor molecule MyD88 (myeloid differentiation factor 88) but not the TRAM/TRIF signaling pathway by decreasing MyD88 protein levels in a dose- and time-dependent manner without altering its mRNA expression. The proteasome inhibitor epoxomicin abolished the MyD88 degradation induced by TGF-beta1. Furthermore, TGF-beta1 resulted in ubiquitination of MyD88 protein, suggesting that TGF-beta1 facilitates ubiquitination and proteasomal degradation of MyD88 and thereby attenuates MyD88-dependent signaling by decreasing cellular levels of MyD88 protein. These findings importantly contribute to our understanding of molecular mechanisms mediating anti-inflammatory modulation of immune responses by TGF-beta1.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/biosynthesis
- Adaptor Proteins, Vesicular Transport/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Cell Line
- Chemokine CCL5/metabolism
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Humans
- Interferon-gamma/metabolism
- Ligands
- Lipopolysaccharides/pharmacology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/metabolism
- Myeloid Differentiation Factor 88
- NF-kappa B/metabolism
- Proteasome Endopeptidase Complex/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction/drug effects
- Toll-Like Receptor 2
- Toll-Like Receptor 4
- Toll-Like Receptors
- Transforming Growth Factor beta/pharmacology
- Transforming Growth Factor beta1
- Tumor Necrosis Factor-alpha/metabolism
- Ubiquitin/metabolism
Collapse
Affiliation(s)
- Yoshikazu Naiki
- Department of Pediatric Infectious Diseases, Cedars-Sinai Medical Center, University of California Los Angeles, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | | | | | | | | | | |
Collapse
|
128
|
Raveh E, Cohen S, Levanon D, Groner Y, Gat U. Runx3 is involved in hair shape determination. Dev Dyn 2005; 233:1478-87. [PMID: 15937937 DOI: 10.1002/dvdy.20453] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transcriptional regulators of the Runx family play critical roles in normal organ development and, when mutated, lead to genetic diseases and cancer. Runx3 functions during cell lineage decisions in thymopoiesis and neurogenesis and mediates transforming growth factor-beta signaling in dendritic cells. Here, we study the function of Runx3 in the skin and its appendages, primarily the hair follicle, during mouse development. Runx3 is expressed predominantly in the dermal compartment of the hair follicles as they form and during the hair cycle, as well as in the nail and sweat gland skin appendages. Distinct expression is also detected periodically in isolated cells of the epidermis and in melanocytes, populating the hair bulb. Runx3-deficient mice display a perturbation of the normal hair coat, which we show to be due to hair type and hair shape changes. Thus, one of the functions of Runx3 in skin may be to regulate the formation of the epithelial derived structural hair by affecting dermal to epidermal interactions.
Collapse
Affiliation(s)
- Eli Raveh
- Department of Cell and Animal Biology, Silberman Life Sciences Institute, Edmond Safra Campus at Givat-Ram, The Hebrew University, Jerusalem, Israel
| | | | | | | | | |
Collapse
|