101
|
Lapouge M, Meloche S. YES, a novel therapeutic target in hepatocellular carcinoma. Mol Cell Oncol 2022; 9:2069993. [PMID: 35529900 PMCID: PMC9067521 DOI: 10.1080/23723556.2022.2069993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Identification of dominant, actionable oncogenic signaling pathways is key to guide the development of new targeted treatments for advanced-stage hepatocellular carcinoma (HCC). We have recently unveiled a novel YES-YAP/TAZ signaling axis involved in liver cancer development. Our study identifies the tyrosine kinase YES as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Marjorie Lapouge
- Signaling and Cell Growth Laboratory, Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Signaling and Cell Growth Laboratory, Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
102
|
Bandela M, Belvitch P, Garcia JGN, Dudek SM. Cortactin in Lung Cell Function and Disease. Int J Mol Sci 2022; 23:4606. [PMID: 35562995 PMCID: PMC9101201 DOI: 10.3390/ijms23094606] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cortactin (CTTN) is an actin-binding and cytoskeletal protein that is found in abundance in the cell cortex and other peripheral structures of most cell types. It was initially described as a target for Src-mediated phosphorylation at several tyrosine sites within CTTN, and post-translational modifications at these tyrosine sites are a primary regulator of its function. CTTN participates in multiple cellular functions that require cytoskeletal rearrangement, including lamellipodia formation, cell migration, invasion, and various other processes dependent upon the cell type involved. The role of CTTN in vascular endothelial cells is particularly important for promoting barrier integrity and inhibiting vascular permeability and tissue edema. To mediate its functional effects, CTTN undergoes multiple post-translational modifications and interacts with numerous other proteins to alter cytoskeletal structures and signaling mechanisms. In the present review, we briefly describe CTTN structure, post-translational modifications, and protein binding partners and then focus on its role in regulating cellular processes and well-established functional mechanisms, primarily in vascular endothelial cells and disease models. We then provide insights into how CTTN function affects the pathophysiology of multiple lung disorders, including acute lung injury syndromes, COPD, and asthma.
Collapse
Affiliation(s)
- Mounica Bandela
- Department of Biomedical Engineering, College of Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA;
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
103
|
Cavariani MM, de Mello Santos T, Chuffa LGDA, Pinheiro PFF, Scarano WR, Domeniconi RF. Maternal Protein Restriction Alters the Expression of Proteins Related to the Structure and Functioning of the Rat Offspring Epididymis in an Age-Dependent Manner. Front Cell Dev Biol 2022; 10:816637. [PMID: 35517501 PMCID: PMC9061959 DOI: 10.3389/fcell.2022.816637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Nutrition is an environmental factor able to activate physiological interactions between fetus and mother. Maternal protein restriction is able to alter sperm parameters associated with epididymal functions. Since correct development and functioning of the epididymides are fundamental for mammalian reproductive success, this study investigated the effects of maternal protein restriction on epididymal morphology and morphometry in rat offspring as well as on the expression of Src, Cldn-1, AR, ER, aromatase p450, and 5α-reductase in different stages of postnatal epididymal development. For this purpose, pregnant females were allocated to normal-protein (NP—17% protein) and low-protein (LP—6% protein) groups that received specific diets during gestation and lactation. After weaning, male offspring was provided only normal-protein diet until the ages of 21, 44, and 120 days, when they were euthanized and their epididymides collected. Maternal protein restriction decreased genital organs weight as well as crown-rump length and anogenital distance at all ages. Although the low-protein diet did not change the integrity of the epididymal epithelium, we observed decreases in tubular diameter, epithelial height and luminal diameter of the epididymal duct in 21-day-old LP animals. The maternal low-protein diet changed AR, ERα, ERβ, Src 416, and Src 527 expression in offspring epididymides in an age-dependent manner. Finally, maternal protein restriction increased Cldn-1 expression throughout the epididymides at all analyzed ages. Although some of these changes did not remain until adulthood, the insufficient supply of proteins in early life altered the structure and functioning of the epididymis in important periods of postnatal development.
Collapse
|
104
|
Lv W, Jin S, Cao D, Wang N, Jin X, Zhang Y. Effects of Luteinizing Hormone Releasing Hormone A2 on Gonad Development in Juvenile Amur Sturgeon, Acipenser schrenckii, Revealed by Transcriptome Profiling Analysis. Front Genet 2022; 13:859965. [PMID: 35401695 PMCID: PMC8989137 DOI: 10.3389/fgene.2022.859965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Acipenser schrenckii is an economically important aquatic species whose gonads require particularly long times to reach sexual maturity. Luteinizing hormone plays important roles in gonad development, and luteinizing hormone releasing hormone A2 (LH-A2) is used as an oxytocin to promote ovulation in aquaculture of A. schrenckii. In this study, we aimed to determine the effects of LH-A2 on gonad development in juvenile A. schrenckii through transcriptome profiling analysis of the pituitary and gonads after LH-A2 treatment at a dose of 3 μg/kg. The 17β-estradiol (E2) levels gradually increased with LH-A2 treatment time, and significantly differed from those of the control group on days 5 and 7 (p < 0.01). However, the content of testosterone (Testo) gradually decreased with LH-A2 treatment time and showed significant differences on day 3 (p < 0.05), and on days 5 and 7 (p < 0.01), compared to those in the control group. Thus, LH-A2 promotes the secretion of E2 and inhibits the secretion of Testo. Transcriptome profiling analysis revealed a total of 2,883 and 8,476 differentially expressed genes (DEGs) in the pituitary and gonads, respectively, thus indicating that LH-A2 has more regulatory effects on the gonads than the pituitary in A. schrenckii. Signal transduction, global and overview maps, immune system, endocrine system and lipid metabolism were the main enriched metabolic pathways in both the pituitary and gonads. Sixteen important genes were selected from these metabolic pathways. Seven genes were co-DEGs enriched in both signal transduction and endocrine system metabolic pathways. The other co-DEGs were selected from the immune system and lipid metabolism metabolic pathways, and showed mRNA expression changes of >7.0. The expression of five DEGs throughout LH-A2 treatment was verified to show the same patterns of change as those observed with RNA-seq, indicating the accuracy of the RNA-seq in this study. Our findings provide valuable evidence of the regulation of gonad development of juvenile A. schrenckii by LH-A2 and may enable the establishment of artificial techniques to regulate gonad development in this species.
Collapse
Affiliation(s)
- Weihua Lv
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shubo Jin
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Dingchen Cao
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Nianmin Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xing Jin
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Ying Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
105
|
Combined Targeting of AKT and mTOR Inhibits Tumor Formation of EpCAM+ and CD90+ Human Hepatocellular Carcinoma Cells in an Orthotopic Mouse Model. Cancers (Basel) 2022; 14:cancers14081882. [PMID: 35454789 PMCID: PMC9024696 DOI: 10.3390/cancers14081882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) and Thy-1 cell surface antigen (CD90) have been implicated as cancer stem cell (CSC) markers in hepatocellular carcinoma (HCC). Expression of EpCAM and CD90 on HCC cells is associated with increased tumorigenicity, metastasis and poor prognosis. In this study, we demonstrate that combined treatment with AKT and mTOR inhibitors—i.e., MK2206 and RAD001—results in a synergistic reduction in proliferation of EpCAM+ and CD90+ HCC cells cultured either as adherent cells or as tumoroids in vitro. In addition, tumor growth was reduced by combined treatment with AKT and mTOR inhibitors in an orthotopic xenograft mouse model of an EpCAM+ HCC cell line (Huh7) and primary patient-derived EpCAM+ HCC cells (HCC1) as well as a CD90+ HCC-related cell line (SK-HEP1) in vivo. However, during AKT/mTOR treatment, outgrowth of therapy-resistant tumors was observed in all mice analyzed within a few weeks. Resistance was associated in most cases with restoration of AKT signaling in the tumors, intrahepatic metastases and distant metastases. In addition, an upregulation of the p38 MAPK pathway was identified in the AKT/mTOR inhibitor-resistant tumor cells by kinome profiling. The development of resistant cells during AKT/mTOR therapy was further analyzed by red-green-blue (RGB) marking of HCC cells, which revealed an outgrowth of a large number of Huh7 cells over a period of 6 months. In summary, our data demonstrate that combined treatment with AKT and mTOR inhibitors exhibits synergistic effects on proliferation of EpCAM+ as well as CD90+ HCC cells in vitro. However, the fast development of large numbers of resistant clones under AKT/mTOR therapy observed in vitro and in the orthotopic xenotransplantation mouse model in vivo strongly suggests that this therapy alone will not be sufficient to eliminate EpCAM+ or CD90+ cancer stem cells from HCC patients.
Collapse
|
106
|
Bonar NA, Gittin DI, Petersen CP. Src acts with WNT/FGFRL signaling to pattern the planarian anteroposterior axis. Development 2022; 149:274880. [PMID: 35297964 PMCID: PMC8995084 DOI: 10.1242/dev.200125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/03/2022] [Indexed: 01/18/2023]
Abstract
Tissue identity determination is crucial for regeneration, and the planarian anteroposterior (AP) axis uses positional control genes expressed from body wall muscle to determine body regionalization. Canonical Wnt signaling establishes anterior versus posterior pole identities through notum and wnt1 signaling, and two Wnt/FGFRL signaling pathways control head and trunk domains, but their downstream signaling mechanisms are not fully understood. Here, we identify a planarian Src homolog that restricts head and trunk identities to anterior positions. src-1(RNAi) animals formed enlarged brains and ectopic eyes and also duplicated trunk tissue, similar to a combination of Wnt/FGFRL RNAi phenotypes. src-1 was required for establishing territories of positional control gene expression in Schmidtea mediterranea, indicating that it acts at an upstream step in patterning the AP axis. Double RNAi experiments and eye regeneration assays suggest src-1 can act in parallel to at least some Wnt and FGFRL factors. Co-inhibition of src-1 with other posterior-promoting factors led to dramatic patterning changes and a reprogramming of Wnt/FGFRLs into controlling new positional outputs. These results identify src-1 as a factor that promotes robustness of the AP positional system that instructs appropriate regeneration.
Collapse
Affiliation(s)
- Nicolle A Bonar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - David I Gittin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.,Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
107
|
Phosphorylation of Focal Adhesion Kinase at Y925: Role in Glia-Dependent and Independent Migration through Regulating Cofilin and N-Cadherin. Mol Neurobiol 2022; 59:3467-3484. [PMID: 35325397 DOI: 10.1007/s12035-022-02773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
The adult neocortex is a six-layered structure, consisting of nearly continuous layers of neurons that are generated in a temporally strictly coordinated order. During development, cortical neurons originating from the ventricular zone migrate toward the Reelin-containing marginal zone in an inside-out arrangement. Focal adhesion kinase (FAK), one tyrosine kinase localizing to focal adhesions, has been shown to be phosphorylated at tyrosine 925 (Y925) by Src, an important downstream molecule of Reelin signaling. Up to date, the precise molecular mechanisms of FAK and its phosphorylation at Y925 during neuronal migration are still unclear. Combining in utero electroporation with immunohistochemistry and live imaging, we examined the function of FAK in regulating neuronal migration. We show that phosphorylated FAK is colocalized with Reelin positive Cajal-Retzius cells in the developing neocortex and hippocampus. Phosphorylation of FAK at Y925 is significantly reduced in reeler mice. Overexpression and dephosphorylation of FAK impair locomotion and translocation, resulting in migration inhibition and dislocation of both late-born and early-born neurons. These migration defects are highly correlated to the function of FAK in regulating cofilin phosphorylation and N-Cadherin expression, both are involved in Reelin signaling pathway. Thus, fine-tuned phosphorylation of focal adhesion kinase at Y925 is crucial for both glia-dependent and independent neuronal migration.
Collapse
|
108
|
The Pyrazolo[3,4-d]Pyrimidine Derivative Si306 Encapsulated into Anti-GD2-Immunoliposomes as Therapeutic Treatment of Neuroblastoma. Biomedicines 2022; 10:biomedicines10030659. [PMID: 35327462 PMCID: PMC8945814 DOI: 10.3390/biomedicines10030659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Si306, a pyrazolo[3,4-d]pyrimidine derivative recently identified as promising anticancer agent, has shown favorable in vitro and in vivo activity profile against neuroblastoma (NB) models by acting as a competitive inhibitor of c-Src tyrosine kinase. Nevertheless, Si306 antitumor activity is associated with sub-optimal aqueous solubility, which might hinder its further development. Drug delivery systems were here developed with the aim to overcome this limitation, obtaining suitable formulations for more efficacious in vivo use. Si306 was encapsulated in pegylated stealth liposomes, undecorated or decorated with a monoclonal antibody able to specifically recognize and bind to the disialoganglioside GD2 expressed by NB cells (LP[Si306] and GD2-LP[Si306], respectively). Both liposomes possessed excellent morphological and physio-chemical properties, maintained over a period of two weeks. Compared to LP[Si306], GD2-LP[Si306] showed in vitro specific cellular targeting and increased cytotoxic activity against NB cell lines. After intravenous injection in healthy mice, pharmacokinetic profiles showed increased plasma exposure of Si306 when delivered by both liposomal formulations, compared to that obtained when Si306 was administered as free form. In vivo tumor homing and cytotoxic effectiveness of both liposomal formulations were finally tested in an orthotopic animal model of NB. Si306 tumor uptake resulted significantly higher when encapsulated in GD2-LP, compared to Si306, either free or encapsulated into untargeted LP. This, in turn, led to a significant increase in survival of mice treated with GD2-LP[Si306]. These results demonstrate a promising antitumor efficacy of Si306 encapsulated into GD2-targeted liposomes, supporting further therapeutic developments in pre-clinical trials and in the clinic for NB.
Collapse
|
109
|
Alves SR, da Cruz e Silva C, Martins I, Henriques AG, da Cruz e Silva OA. A Bioinformatics Approach Toward Unravelling the Synaptic Molecular Crosstalk Between Alzheimer’s Disease and Diabetes. J Alzheimers Dis 2022; 86:1917-1933. [PMID: 35253743 PMCID: PMC9108712 DOI: 10.3233/jad-215059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Increasing evidence links impaired brain insulin signaling and insulin resistance to the development of Alzheimer’s disease (AD). Objective: This evidence prompted a search for molecular players common to AD and diabetes mellitus (DM). Methods: The work incorporated studies based on a primary care-based cohort (pcb-Cohort) and a bioinformatics analysis to identify central nodes, that are key players in AD and insulin signaling (IS) pathways. The interactome for each of these key proteins was retrieved and network maps were developed for AD and IS. Synaptic enrichment was performed to reveal synaptic common hubs. Results: Cohort analysis showed that individuals with DM exhibited a correlation with poor performance in the Mini-Mental State Examination (MMSE) cognitive test. Additionally, APOE ɛ2 allele carriers appear to potentially be relatively more protected against both DM and cognitive deficits. Ten clusters were identified in this network and 32 key synaptic proteins were common to AD and IS. Given the relevance of signaling pathways, another network was constructed focusing on protein kinases and protein phosphatases, and the top 6 kinase nodes (LRRK2, GSK3B, AKT1, EGFR, MAPK1, and FYN) were further analyzed. Conclusion: This allowed the elaboration of signaling cascades directly impacting AβPP and tau, whereby distinct signaling pathway play a major role and strengthen an AD-IS link at a molecular level.
Collapse
Affiliation(s)
- Steven R. Alves
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | | | - Ilka Martins
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Odete A.B. da Cruz e Silva
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
110
|
Daday C, de Buhr S, Mercadante D, Gräter F. Mechanical force can enhance c-Src kinase activity by impairing autoinhibition. Biophys J 2022; 121:684-691. [PMID: 35120901 PMCID: PMC8943751 DOI: 10.1016/j.bpj.2022.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
Cellular mechanosensing is pivotal for virtually all biological processes, and many molecular mechano-sensors and their way of function are being uncovered. In this work, we suggest that c-Src kinase acts as a direct mechano-sensor. c-Src is responsible for, among others, cell proliferation, and shows increased activity in stretched cells. In its native state, c-Src has little basal activity, because its kinase domain binds to an SH2 and SH3 domain. However, it is known that c-Src can bind to p130Cas, through which force can be transmitted to the membrane. Using molecular dynamics simulations, we show that force acting between the membrane-bound N-terminus of the SH3 domain and p130Cas induces partial SH3 unfolding, thereby impeding rebinding of the kinase domain onto SH2/SH3 and effectively enhancing kinase activity. Forces involved in this process are slightly lower or similar to the forces required to pull out c-Src from the membrane through the myristoyl linker, and key interactions involved in this anchoring are salt bridges between negative lipids and nearby basic residues in c-Src. Thus, c-Src appears to be a candidate for an intriguing mechanosensing mechanism of impaired kinase inhibition, which can be potentially tuned by membrane composition and other environmental factors.
Collapse
Affiliation(s)
- Csaba Daday
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Svenja de Buhr
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | | | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, Heidelberg, Germany.
| |
Collapse
|
111
|
Wang C, Chen Z, Yang X, Zhang W, Zhou J, Zhang H, Ding X, Ye J, Wu H, Wu Y, Zheng Y, Song X. Identification of Biomarkers Related to Regulatory T Cell Infiltration in Oral Squamous Cell Carcinoma Based on Integrated Bioinformatics Analysis. Int J Gen Med 2022; 15:2361-2376. [PMID: 35264874 PMCID: PMC8900811 DOI: 10.2147/ijgm.s349379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is one of the most prevalent malignancies worldwide. More recently, the administration of immune checkpoint inhibitors has opened up more possibilities for cancer treatment. Methods We utilized a weighted gene co-expression network and the single sample gene set enrichment analysis (ssGSEA) algorithm in the TCGA database and identified a module highly correlated with regulatory T cell (Treg) abundance in OSCC. Subsequently, we verified the results by tissue microarrays and utilized immunohistochemical staining (IHC) to test the relationship between the expression level and clinicopathological staging. CCK-8, transwell, and wound healing assays were utilized to detect the functions of OSCC cells. Results LCK, IL10RA, and TNFRSF1B were selected as biomarkers related to regulatory T cell infiltration. IHC staining showed significantly increased expression of LCK, IL10RA or TNFRSF1B in OSCC patients, and the expression levels were associated with tumor stage, lymph node metastasis, pathological stage, clinical status and the overall survival. In vitro experiments showed that LCK, IL10RA or TNFRSF1B knockdown efficiently impaired the proliferative, migrative, and invasive capacity in OSCC cell lines. Conclusion We performed a series of bioinformatics analyses in OSCC and identified three oncogenic indicators: LCK, IL10RA, TNFRSF1B. These findings uncovered the potential prognostic values of hub genes, thus laying foundations for in-depth research in OSCC.
Collapse
Affiliation(s)
- Chao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhihong Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xueming Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Stomatology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Hongchuang Zhang
- Department of Stomatology, Xuzhou No. 1 People's Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Heming Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yang Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai, People’s Republic of China
- Yang Zheng, Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, No.639, Zhizaoju Road, 200011, Shanghai, People’s Republic of China, Tel +86-21-23271699, Email
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Correspondence: Xiaomeng Song, Jiangsu Key Laboratory of Oral Diseases and Stomatological Institute of Nanjing medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu, 210029, People’s Republic of China, Tel +86-25-69593100, Email
| |
Collapse
|
112
|
Kato G. Regulatory Roles of the N-Terminal Intrinsically Disordered Region of Modular Src. Int J Mol Sci 2022; 23:2241. [PMID: 35216357 PMCID: PMC8874404 DOI: 10.3390/ijms23042241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Src, the prototype of Src family kinases (SFKs), is a modular protein consisting of SH4 (SH4) and unique (UD) domains in an N-terminal intrinsically disordered region (IDR), and SH3, SH2, and kinase (KD) folded domains conserved among SFKs. Src functions as a pleiotropic signaling hub in proliferating and post-mitotic cells, and it is related to cancer and neurological diseases. However, its regulatory mechanism is unclear because the existing canonical model is derived from crystallographic analyses of folded constructs lacking the IDR. This work reviews nuclear magnetic resonance analyses of partially structured lipid-binding segments in the flexible UD and the fuzzy intramolecular complex (FIMC) comprising IDR and SH3 domains, which interacts with lipid membranes and proteins. Furthermore, recently determined IDR-related Src characteristics are discussed, including dimerization, SH4/KD intramolecular fastener bundling of folded domains, and the sorting of adhesive structures. Finally, the modulatory roles of IDR phosphorylation in Src activities involving the FIMC are explored. The new regulatory roles of IDRs are integrated with the canonical model to elucidate the functions of full-length Src. This review presents new aspects of Src regulation, and provides a future direction for studies on the structure and function of Src, and their implications for pathological processes.
Collapse
Affiliation(s)
- Goro Kato
- Laboratory of Biological Chemistry, Center for Medical Education and Sciences, University of Yamanashi, 1110 Shimokato, Chuo 409-3898, Yamanashi, Japan
| |
Collapse
|
113
|
Ye Z, Izadi A, Gurkoff GG, Rickerl K, Sharp F, Ander B, Bauer SZ, Lui A, Lyeth BG, Liu D. Combined Inhibition of Fyn and c-Src Protects Hippocampal Neurons and Improves Spatial Memory via ROCK after Traumatic Brain Injury. J Neurotrauma 2022; 39:520-529. [PMID: 35109711 PMCID: PMC8978569 DOI: 10.1089/neu.2021.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Our previous studies demonstrated that TBI and ventricular administration of thrombin caused hippocampal neuron loss and cognitive dysfunction via activation of Src family kinases (SFKs). Based on SFK localization in brain, we hypothesized SFK subtypes Fyn and c-Src as well as SFK downstream molecule Rho-associated protein kinase (ROCK) contribute to cell death and cognitive dysfunction after TBI. We administered nanoparticle wrapped siRNA-Fyn and siRNA-c-Src, or ROCK inhibitor Y-27632 to adult rats subjected to moderate lateral fluid percussion (LFP) induced TBI. Spatial memory function was assessed from 12 to 16 days, and NeuN stained hippocampal neurons were assessed 16 days after TBI. The combination of siRNA-Fyn and siRNA-c-Src, but neither alone, prevented hippocampal neuron loss and spatial memory deficits after TBI. The ROCK inhibitor Y-27632 also prevented hippocampal neuronal loss and spatial memory deficits after TBI. The data suggest that the combined actions of three kinases (Fyn, c-Src, ROCK) mediate hippocampal neuronal cell death and spatial memory deficits produced by LFP-TBI, and that inhibiting this pathway prevents the TBI-induced cell death and memory deficits.
Collapse
Affiliation(s)
- Zhouheng Ye
- University of California at Davis Medical Center, Department of Neurology, Davis, California, United States;
| | - Ali Izadi
- University of California, Davis, Neurological Surgery, 1515 Newton Ct, Room 502, Davis, California, United States, 95618;
| | - Gene Gabriel Gurkoff
- University of California, Davis, Neurological Surgery, 1515 Newton Ct, Room 502, Davis, California, United States, 95618;
| | - Kaitlin Rickerl
- University of California at Davis Medical Center, Department of Neurology, Davis, California, United States;
| | - Frank Sharp
- University of California Davis, MIND Institute, Davis, United States;
| | - Bradley Ander
- University of California at Davis Medical Center, Department of Neurology and the M.I.N.D. Institute, Sacramento, California, United States;
| | - Sawyer Z Bauer
- University of California at Davis Medical Center, Department of Neurology, Davis, California, United States;
| | - Austin Lui
- University of California at Davis Medical Center, Department of Neurology, Davis, California, United States;
| | - Bruce G Lyeth
- U.C. Davis, Neurological Surgery, One Shields Ave, Davis, California, United States, 95616;
| | - DaZhi Liu
- University of California at Davis Medical Center, Department of Neurology, Davis, California, United States;
| |
Collapse
|
114
|
Yao K, Zhou E, Cheng C. A B-Raf V600E gene signature for melanoma predicts prognosis and reveals sensitivity to targeted therapies. Cancer Med 2022; 11:1232-1243. [PMID: 35044091 PMCID: PMC8855909 DOI: 10.1002/cam4.4491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND B-Raf V600E mutations account for about half of all skin cutaneous melanoma cases, and patients with this mutation are sensitive to BRAF inhibitors. However, aberrations in other genes in the MAPK/ERK pathway may cascade a similar effect as B-Raf V600E mutations, rendering those patients sensitive to BRAF inhibitors. We rationalized that defining a signature based on B-Raf pathway activity may be more informative for prognosis and drug sensitivity prediction than a binary indicator such as mutation status. METHODS In this study, we defined a B-Raf signature score using RNA-seq data from TCGA. A higher score is shown to not only predict B-Raf mutation status, but also predict other aberrations that could similarly activate the MAPK/ERK pathway, such as B-Raf amplification, RAS mutation, and EGFR amplification. RESULTS We showed that patients dichotomized by the median B-Raf score is more significantly stratified than by other metrics of measuring B-Raf aberration, such as mutation status, gene expression, and protein expression. We also demonstrated that high B-Raf score predicts higher sensitivity to B-Raf inhibitors SB590885 and PLX4720, as expected, but also correlated with sensitivity to drugs targeting other relevant oncogenic pathways. CONCLUSION The BRAF signature may better help guide targeted therapy for melanoma, and such a framework can be applied to other cancers and mutations to provide more information than mutation status alone.
Collapse
Affiliation(s)
- Kevin Yao
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTexasUSA
| | - Emily Zhou
- Department of BiosciencesRice UniversityHoustonTexasUSA
| | - Chao Cheng
- Department of MedicineBaylor College of MedicineHoustonTexasUSA
- Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA
- Institute for Clinical and Transcriptional ResearchBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
115
|
Hrkac S, Novak R, Salai G, Grazio S, Vlahovic T, Grgurevic L. Heterotopic ossification vs. fracture healing: Extracellular vesicle cargo proteins shed new light on bone formation. Bone Rep 2022; 16:101177. [PMID: 35252484 PMCID: PMC8892095 DOI: 10.1016/j.bonr.2022.101177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an extremely rare disease in which bone tissue forms in extraskeletal sites, which is known as heterotopic ossification (HO). Extracellular vesicles (EVs) are small phospholipid-enclosed particles released by various cells which have an emerging, but not completely understood role in various (patho)physiological processes. In order to further study the pathophysiology of FOP we conducted a small observational study comparing the proteomic profiles of EV cargo, derived from pooled plasma of four patient groups: FOP patient (N = 1) during active disease phase (flare-up), FOP patients during remission (N = 2), patients after long bone fracture (N = 20) and healthy controls (N = 10). After isolation of EVs – their protein cargo was determined using liquid chromatography / mass spectrometry, after which a functional gene enrichment analysis was performed. Our results show a sizeable difference of the proteomics profiles in which EVs from the bone fracture group show significant activity of integrin interactions, Wnt, VEGF, IGF-1 and PDGF pathways; conversely, FOP patients' EVs indicate that HO occurs via processes of innate immunity and the Ephrin B signaling pathway. We hypothesize that the Ephrin B signaling (expressed in EVs) contributes to HO by aiding in mesenchymal stem cell recruitment and osteogenic differentiation, as well as by contributing to the inflammatory response, including macrophage chemotaxis and activation. This is, to our knowledge, the first published analysis of EV protein cargo in FOP. Proteomics-based analysis of extracellular vesicles’ protein cargo in FOP patients, bone fracture healing and controls. Marked differences in signaling pathways expressed in extracellular vesicles in FOP vs. patients with bone fractures. Ephrin B signaling pathway expressed in extracellular vesicles identified as a likely cogwheel in heterotopic ossification.
Collapse
|
116
|
Zhang C, Chen Y, Zeng T, Zhang C, Chen L. Deep latent space fusion for adaptive representation of heterogeneous multi-omics data. Brief Bioinform 2022; 23:6515231. [PMID: 35079777 DOI: 10.1093/bib/bbab600] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 01/01/2023] Open
Abstract
The integration of multi-omics data makes it possible to understand complex biological organisms at the system level. Numerous integration approaches have been developed by assuming a common underlying data space. Due to the noise and heterogeneity of biological data, the performance of these approaches is greatly affected. In this work, we propose a novel deep neural network architecture, named Deep Latent Space Fusion (DLSF), which integrates the multi-omics data by learning consistent manifold in the sample latent space for disease subtypes identification. DLSF is built upon a cycle autoencoder with a shared self-expressive layer, which can naturally and adaptively merge nonlinear features at each omics level into one unified sample manifold and produce adaptive representation of heterogeneous samples at the multi-omics level. We have assessed DLSF on various biological and biomedical datasets to validate its effectiveness. DLSF can efficiently and accurately capture the intrinsic manifold of the sample structures or sample clusters compared with other state-of-the-art methods, and DLSF yielded more significant outcomes for biological significance, survival prognosis and clinical relevance in application of cancer study in The Cancer Genome Atlas. Notably, as a deep case study, we determined a new molecular subtype of kidney renal clear cell carcinoma that may benefit immunotherapy in the viewpoint of multi-omics, and we further found potential subtype-specific biomarkers from multiple omics data, which were validated by independent datasets. In addition, we applied DLSF to identify potential therapeutic agents of different molecular subtypes of chronic lymphocytic leukemia, demonstrating the scalability of DLSF in diverse omics data types and application scenarios.
Collapse
Affiliation(s)
- Chengming Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Yabin Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tao Zeng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Guangzhou Laboratory, Guangzhou, China
| | - Chuanchao Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China
| |
Collapse
|
117
|
Guégan JP, Lapouge M, Voisin L, Saba-El-Leil MK, Tanguay PL, Lévesque K, Brégeon J, Mes-Masson AM, Lamarre D, Haibe-Kains B, Trinh VQ, Soucy G, Bilodeau M, Meloche S. Signaling by the tyrosine kinase Yes promotes liver cancer development. Sci Signal 2022; 15:eabj4743. [PMID: 35041461 DOI: 10.1126/scisignal.abj4743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most patients with hepatocellular carcinoma (HCC) are diagnosed at a late stage and have few therapeutic options and a poor prognosis. This is due to the lack of clearly defined underlying mechanisms or a dominant oncogene that can be targeted pharmacologically, unlike in other cancer types. Here, we report the identification of a previously uncharacterized oncogenic signaling pathway in HCC that is mediated by the tyrosine kinase Yes. Using genetic and pharmacological interventions in cellular and mouse models of HCC, we showed that Yes activity was necessary for HCC cell proliferation. Transgenic expression of activated Yes in mouse hepatocytes was sufficient to induce liver tumorigenesis. Yes phosphorylated the transcriptional coactivators YAP and TAZ (YAP/TAZ), promoting their nuclear accumulation and transcriptional activity in HCC cells and liver tumors. We also showed that YAP/TAZ were effectors of the Yes-dependent oncogenic transformation of hepatocytes. Src family kinase activation correlated with the tyrosine phosphorylation and nuclear localization of YAP in human HCC and was associated with increased tumor burden in mice. Specifically, high Yes activity predicted shorter overall survival in patients with HCC. Thus, our findings identify Yes as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
| | - Marjorie Lapouge
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Laure Voisin
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | | | - Pierre-Luc Tanguay
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Kim Lévesque
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Jérémy Brégeon
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Anne-Marie Mes-Masson
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, Quebec, Canada
| | - Daniel Lamarre
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, Quebec, Canada
| | - Benjamin Haibe-Kains
- Departments of Medical Biophysiscs and Computer Science, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Vincent Q Trinh
- Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, Quebec, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Geneviève Soucy
- Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, Quebec, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Marc Bilodeau
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
118
|
Alvandi Z, Opas M. Osteogenic Differentiation from Mouse Embryonic Stem Cells. Methods Mol Biol 2022; 2520:261-264. [PMID: 34611818 DOI: 10.1007/7651_2021_436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Embryonic stem cells (ESCs) are a unique model that allows the study of molecular pathways underlying commitment and differentiation. We have studied signaling pathways and their contributions to osteogenic differentiation. In addition to our previously published protocol where we recommended the addition of retinoic acid with later addition of dexamethasone to boost osteogenic lineage cells, here we describe an optimized protocol for osteogenic differentiation from R1 ESCs with suggestions for inhibition of Src activity.
Collapse
Affiliation(s)
- Zahra Alvandi
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Michal Opas
- Department of Lab Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
119
|
Adderley J, O'Donoghue F, Doerig C, Davis S. MAPPINGS, a tool for network analysis of large phospho-signalling datasets: application to host erythrocyte response to Plasmodium infection. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100149. [PMID: 35909628 PMCID: PMC9325900 DOI: 10.1016/j.crmicr.2022.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The complexity of signal transduction networks in eukaryotic cells, superimposed to very large datasets generated by “omics” approaches (notably phosphor-proteomics), calls for tools to identify pathways that are mobilised under specific conditions, including infection by intracellular pathogens. This has become a bottleneck in various biology fields, from cancer through developmental biology to infectious diseases. We developed MAPPINGS, a computational tool to extract meaning from large phosphosignalling datasets, and used it to analyse host erythrocyte response to infection with malaria parasites, leading to the identification of host cell pathways that are activated by Plasmodium. MAPPINGS uses random walks to identify chains of phosphorylation events occurring much more or much less frequently than expected, and highlights pathways of phosphorylation that work synergistically, providing a rapid interpretation of the most critical pathways in any phosphosiganlling dataset.
Large datasets of phosphorylation interactions are constantly being generated, but deciphering the complex network structure hidden in these datasets remains challenging. Many phosphorylation interactions occurring in human cells have been identified and constitute the basis for the known phosphorylation interaction network. We overlayed onto this network phosphorylation datasets obtained from an antibody microarray approach aimed at determining changes in phospho-signalling of host erythrocytes, during infection with the malaria parasite Plasmodium falciparum. We designed a pathway analysis tool denoted MAPPINGS that uses random walks to identify chains of phosphorylation events occurring much more or much less frequently than expected. MAPPINGS highlights pathways of phosphorylation that work synergistically, providing a rapid interpretation of the most critical pathways in each dataset. MAPPINGS confirmed several signalling interactions previously shown to be modulated by infection, and revealed additional interactions which could form the basis of numerous future studies. The MAPPINGS analysis strategy described here is widely applicable to comparative phosphorylation datasets in any context, such as response of cells to infection, treatment, or comparison between differentiation stages of any cellular population.
Collapse
Affiliation(s)
- Jack Adderley
- School of Health and Biomedical Sciences, RMIT University, Bundoora VIC 3083, Australia
- Corresponding authors.
| | - Finn O'Donoghue
- School of Science, RMIT University, Melbourne, VIC 3053, Australia
| | - Christian Doerig
- School of Health and Biomedical Sciences, RMIT University, Bundoora VIC 3083, Australia
- Corresponding authors.
| | - Stephen Davis
- School of Science, RMIT University, Melbourne, VIC 3053, Australia
| |
Collapse
|
120
|
Banesh S, Layek S, Trivedi DV. Hemin acts as CD36 ligand to activate down-stream signalling to disturb immune responses and cytokine secretion from macrophages. Immunol Lett 2022; 243:1-18. [DOI: 10.1016/j.imlet.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
|
121
|
Babatunde KA, Ayuso JM, Kerr SC, Huttenlocher A, Beebe DJ. Microfluidic Systems to Study Neutrophil Forward and Reverse Migration. Front Immunol 2021; 12:781535. [PMID: 34899746 PMCID: PMC8653704 DOI: 10.3389/fimmu.2021.781535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
During infection, neutrophils are the most abundantly recruited innate immune cells at sites of infection, playing critical roles in the elimination of local infection and healing of the injury. Neutrophils are considered to be short-lived effector cells that undergo cell death at infection sites and in damaged tissues. However, recent in vitro and in vivo evidence suggests that neutrophil behavior is more complex and that they can migrate away from the inflammatory site back into the vasculature following the resolution of inflammation. Microfluidic devices have contributed to an improved understanding of the interaction and behavior of neutrophils ex vivo in 2D and 3D microenvironments. The role of reverse migration and its contribution to the resolution of inflammation remains unclear. In this review, we will provide a summary of the current applications of microfluidic devices to investigate neutrophil behavior and interactions with other immune cells with a focus on forward and reverse migration in neutrophils.
Collapse
Affiliation(s)
| | - Jose M Ayuso
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | - Sheena C Kerr
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - David J Beebe
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
122
|
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225:113768. [PMID: 34450497 DOI: 10.1016/j.ejmech.2021.113768] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy. Different kinase inhibitor agents which target EGFR, VEGFR, c-Met, CDK, PDK and other targets were merged into hybrids with conventional chemotherapeutics such as tubulin polymerization and topoisomerase inhibitors. Other hybrids were designed gathering kinase inhibitors with targeted cancer therapy such as HDAC, PARP, HSP 90 inhibitors. Nitric oxide donor molecules were also merged with kinase inhibitors for cancer therapy. The current review presents the hybrids designed in the past five years discussing their design principles, results and highlights their future perspectives.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, Minia, Egypt
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| |
Collapse
|
123
|
Kazim N, Yen A. Evidence of off-target effects of bosutinib that promote retinoic acid-induced differentiation of non-APL AML cells. Cell Cycle 2021; 20:2638-2651. [PMID: 34836491 DOI: 10.1080/15384101.2021.2005275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In the present study, we determined the effects of the Src family kinase (SFK) inhibitor, Bosutinib, and the engineered loss of the Lyn SFK on all-trans retinoic acid-induced leukemic cell differentiation. Retinoic acid (RA) is an embryonic morphogen and dietary factor that demonstrates chemotherapeutic efficacy in inducing differentiation of a non-APL AML cell model, the HL-60 human myeloblastic (FAB-M2) leukemia cell line, via activation of a novel signalsome containing an ensemble of signaling molecules that drive differentiation. Bosutinib is an inhibitor of SFKs used to treat myeloid leukemias where prominent high expression of SFKs, in particular Lyn, has been observed. Using either Bosutinib or loss of Lyn expression due to shRNA promoted RA-induced phenotypic differentiation, G0 arrest, and respiratory burst (functional differentiation) of HL-60 cells. Signaling events putatively seminal to RA-induced differentiation, the expression of Fgr, Cbl, Slp-76 and Vav, and the phosphorylation of c-Raf (pS259), Vav (p-tyr), and Slp76 (p-tyr) were not inhibited by Bosutinib or loss of Lyn. Nor was RA-induced upregulation of p-tyr phosphorylation of p47phox, a member of the NADPH complex that produces ROS, a putative phosphorylation dependent signaling regulator. Surprisingly, Bosutinib still works in the absence of Lyn to enhance RA-induced differentiation and neither compromised RA-induced expression, nor phosphorylation of signaling molecules that drive differentiation. These findings suggested there is a novel, off-target, Lyn-independent effect of Bosutinib that is of therapeutic significance to differentiation therapy.
Collapse
Affiliation(s)
- Noor Kazim
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Andrew Yen
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
124
|
Fujihara M, Shien T, Shien K, Suzawa K, Takeda T, Zhu Y, Mamori T, Otani Y, Yoshioka R, Uno M, Suzuki Y, Abe Y, Hatono M, Tsukioki T, Takahashi Y, Kochi M, Iwamoto T, Taira N, Doihara H, Toyooka S. YES1 as a Therapeutic Target for HER2-Positive Breast Cancer after Trastuzumab and Trastuzumab-Emtansine (T-DM1) Resistance Development. Int J Mol Sci 2021; 22:ijms222312809. [PMID: 34884609 PMCID: PMC8657782 DOI: 10.3390/ijms222312809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/16/2023] Open
Abstract
Trastuzumab-emtansine (T-DM1) is a therapeutic agent molecularly targeting human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC), and it is especially effective for MBC with resistance to trastuzumab. Although several reports have described T-DM1 resistance, few have examined the mechanism underlying T-DM1 resistance after the development of acquired resistance to trastuzumab. We previously reported that YES1, a member of the Src family, plays an important role in acquired resistance to trastuzumab in HER2-amplified breast cancer cells. We newly established a trastuzumab/T-DM1-dual-resistant cell line and analyzed the resistance mechanisms in this cell line. At first, the T-DM1 effectively inhibited the YES1-amplified trastuzumab-resistant cell line, but resistance to T-DM1 gradually developed. YES1 amplification was further enhanced after acquired resistance to T-DM1 became apparent, and the knockdown of the YES1 or the administration of the Src inhibitor dasatinib restored sensitivity to T-DM1. Our results indicate that YES1 is also strongly associated with T-DM1 resistance after the development of acquired resistance to trastuzumab, and the continuous inhibition of YES1 is important for overcoming resistance to T-DM1.
Collapse
Affiliation(s)
- Miwa Fujihara
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Tadahiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
- Correspondence: ; Tel.: +81-86-235-7265
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Tatsuaki Takeda
- Departments of Pharmacy, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Yidan Zhu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Tomoka Mamori
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Yusuke Otani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Ryo Yoshioka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Maya Uno
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Yoko Suzuki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Yuko Abe
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Minami Hatono
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Takahiro Tsukioki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Yuko Takahashi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Mariko Kochi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Takayuki Iwamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Naruto Taira
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Hiroyoshi Doihara
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.F.); (K.S.); (K.S.); (Y.Z.); (T.M.); (Y.O.); (R.Y.); (M.U.); (Y.S.); (Y.A.); (M.H.); (T.T.); (Y.T.); (M.K.); (T.I.); (N.T.); (H.D.); (S.T.)
| |
Collapse
|
125
|
Nie L, Jiang L, Quinn JP, Grubb BD, Wang M. TRPA1-Mediated Src Family Kinases Activity Facilitates Cortical Spreading Depression Susceptibility and Trigeminovascular System Sensitization. Int J Mol Sci 2021; 22:12273. [PMID: 34830154 PMCID: PMC8620265 DOI: 10.3390/ijms222212273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) plays a role in migraine and is proposed as a promising target for migraine therapy. However, TRPA1-induced signaling in migraine pathogenesis is poorly understood. In this study, we explored the hypothesis that Src family kinases (SFKs) transmit TRPA1 signaling in regulating cortical spreading depression (CSD), calcitonin gene-related peptide (CGRP) release and neuroinflammation. CSD was monitored in mouse brain slices via intrinsic optical imaging, and in rats using electrophysiology. CGRP level and IL-1β gene expression in mouse trigeminal ganglia (TG) was detected using Enzyme-linked Immunosorbent Assay and Quantitative Polymerase Chain Reaction respectively. The results showed a SFKs activator, pYEEI (EPQY(PO3H2)EEEIPIYL), reversed the reduced cortical susceptibility to CSD by an anti-TRPA1 antibody in mouse brain slices. Additionally, the increased cytosolic phosphorylated SFKs at Y416 induced by CSD in rat ipsilateral cerebral cortices was attenuated by pretreatment of the anti-TRPA1 antibody perfused into contralateral ventricles. In mouse TG, a SFKs inhibitor, saracatinib, restored the CGRP release and IL-1β mRNA level increased by a TRPA1 activator, umbellulone. Moreover, umbellulone promoted SFKs phosphorylation, which was reduced by a PKA inhibitor, PKI (14-22) Amide. These data reveal a novel mechanism of migraine pathogenesis by which TRPA1 transmits signaling to SFKs via PKA facilitating CSD susceptibility and trigeminovascular system sensitization.
Collapse
Affiliation(s)
- Lingdi Nie
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Liwen Jiang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Blair D. Grubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Minyan Wang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| |
Collapse
|
126
|
Singh JKD, Darley E, Ridone P, Gaston JP, Abbas A, Wickham SFJ, Baker MAB. Binding of DNA origami to lipids: maximizing yield and switching via strand displacement. Nucleic Acids Res 2021; 49:10835-10850. [PMID: 34614184 PMCID: PMC8565350 DOI: 10.1093/nar/gkab888] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
Liposomes are widely used as synthetic analogues of cell membranes and for drug delivery. Lipid-binding DNA nanostructures can modify the shape, porosity and reactivity of liposomes, mediated by cholesterol modifications. DNA nanostructures can also be designed to switch conformations by DNA strand displacement. However, the optimal conditions to facilitate stable, high-yield DNA–lipid binding while allowing controlled switching by strand displacement are not known. Here, we characterized the effect of cholesterol arrangement, DNA structure, buffer and lipid composition on DNA–lipid binding and strand displacement. We observed that binding was inhibited below pH 4, and above 200 mM NaCl or 40 mM MgCl2, was independent of lipid type, and increased with membrane cholesterol content. For simple motifs, binding yield was slightly higher for double-stranded DNA than single-stranded DNA. For larger DNA origami tiles, four to eight cholesterol modifications were optimal, while edge positions and longer spacers increased yield of lipid binding. Strand displacement achieved controlled removal of DNA tiles from membranes, but was inhibited by overhang domains, which are used to prevent cholesterol aggregation. These findings provide design guidelines for integrating strand displacement switching with lipid-binding DNA nanostructures. This paves the way for achieving dynamic control of membrane morphology, enabling broader applications in nanomedicine and biophysics.
Collapse
Affiliation(s)
- Jasleen Kaur Daljit Singh
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia.,School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Esther Darley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Pietro Ridone
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - James P Gaston
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Ali Abbas
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Shelley F J Wickham
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, Australia.,School of Physics, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew A B Baker
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.,CSIRO Synthetic Biology Future Science Platform, Brisbane, Australia
| |
Collapse
|
127
|
Gage M, Putra M, Gomez-Estrada C, Golden M, Wachter L, Gard M, Thippeswamy T. Differential Impact of Severity and Duration of Status Epilepticus, Medical Countermeasures, and a Disease-Modifier, Saracatinib, on Brain Regions in the Rat Diisopropylfluorophosphate Model. Front Cell Neurosci 2021; 15:772868. [PMID: 34720886 PMCID: PMC8555467 DOI: 10.3389/fncel.2021.772868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
Acute organophosphate (OP) toxicity poses a significant threat to both military and civilian personnel as it can lead to a variety of cholinergic symptoms including the development of status epilepticus (SE). Depending on its severity, SE can lead to a spectrum of neurological changes including neuroinflammation and neurodegeneration. In this study, we determined the impact of SE severity and duration on disease promoting parameters such as gliosis and neurodegeneration and the efficacy of a disease modifier, saracatinib (AZD0530), a Src/Fyn tyrosine kinase inhibitor. Animals were exposed to 4 mg/kg diisopropylfluorophosphate (DFP, s.c.) followed by medical countermeasures. We had five experimental groups: controls (no DFP), animals with no continuous convulsive seizures (CS), animals with ∼20-min continuous CS, 31-60-min continuous CS, and > 60-min continuous CS. These groups were then assessed for astrogliosis, microgliosis, and neurodegeneration 8 days after DFP exposure. The 31-60-min and > 60-min groups, but not ∼20-min group, had significantly upregulated gliosis and neurodegeneration in the hippocampus compared to controls. In the piriform cortex and amygdala, however, all three continuous CS groups had significant upregulation in both gliosis and neurodegeneration. In a separate cohort of animals that had ∼20 and > 60-min of continuous CS, we administered saracatinib for 7 days beginning three hours after DFP. There was bodyweight loss and mortality irrespective of the initial SE severity and duration. However, in survived animals, saracatinib prevented spontaneous recurrent seizures (SRS) during the first week in both severity groups. In the ∼20-min CS group, compared to the vehicle, saracatinib significantly reduced neurodegeneration in the piriform cortex and amygdala. There were no significant differences in the measured parameters between the naïve control and saracatinib on its own (without DFP) groups. Overall, this study demonstrates the differential effects of the initial SE severity and duration on the localization of gliosis and neurodegeneration. We have also demonstrated the disease-modifying potential of saracatinib. However, its’ dosing regimen should be optimized based on initial severity and duration of CS during SE to maximize therapeutic effects and minimize toxicity in the DFP model as well as in other OP models such as soman.
Collapse
Affiliation(s)
- Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Crystal Gomez-Estrada
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Madison Golden
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Logan Wachter
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Megan Gard
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
128
|
Khan AQ, Rashid K, AlAmodi AA, Agha MV, Akhtar S, Hakeem I, Raza SS, Uddin S. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids. Biomed Pharmacother 2021; 143:112142. [PMID: 34536761 DOI: 10.1016/j.biopha.2021.112142] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species play crucial role in biological homeostasis and pathogenesis of human diseases including cancer. In this line, now it has become evident that ROS level/concentration is a major factor in the growth, progression and stemness of cancer cells. Moreover, cancer cells maintain a delicate balance between ROS and antioxidants to promote pathogenesis and clinical challenges via targeting a battery of signaling pathways converging to cancer hallmarks. Recent findings also entail the therapeutic importance of ROS for the better clinical outcomes in cancer patients as they induce apoptosis and autophagy. Moreover, poor clinical outcomes associated with cancer therapies are the major challenge and use of natural products have been vital in attenuation of these challenges due to their multitargeting potential with less adverse effects. In fact, most available drugs are derived from natural resources, either directly or indirectly and available evidence show the clinical importance of natural products in the management of various diseases, including cancer. ROS play a critical role in the anticancer actions of natural products, particularly phytochemicals. Benzophenanthridine alkaloids of the benzyl isoquinoline family of alkaloids, such as sanguinarine, possess several pharmacological properties and are thus being studied for the treatment of different human diseases, including cancer. In this article, we review recent findings, on how benzophenanthridine alkaloid-induced ROS play a critical role in the attenuation of pathological changes and stemness features associated with human cancers. In addition, we highlight the role of ROS in benzophenanthridine alkaloid-mediated activation of the signaling pathway associated with cancer cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid Rashid
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Maha Victor Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ishrat Hakeem
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
129
|
Temps C, Lietha D, Webb ER, Li XF, Dawson JC, Muir M, Macleod KG, Valero T, Munro AF, Contreras-Montoya R, Luque-Ortega JR, Fraser C, Beetham H, Schoenherr C, Lopalco M, Arends MJ, Frame MC, Qian BZ, Brunton VG, Carragher NO, Unciti-Broceta A. A Conformation Selective Mode of Inhibiting SRC Improves Drug Efficacy and Tolerability. Cancer Res 2021; 81:5438-5450. [PMID: 34417202 PMCID: PMC7611940 DOI: 10.1158/0008-5472.can-21-0613] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Despite the approval of several multikinase inhibitors that target SRC and the overwhelming evidence of the role of SRC in the progression and resistance mechanisms of many solid malignancies, inhibition of its kinase activity has thus far failed to improve patient outcomes. Here we report the small molecule eCF506 locks SRC in its native inactive conformation, thereby inhibiting both enzymatic and scaffolding functions that prevent phosphorylation and complex formation with its partner FAK. This mechanism of action resulted in highly potent and selective pathway inhibition in culture and in vivo. Treatment with eCF506 resulted in increased antitumor efficacy and tolerability in syngeneic murine cancer models, demonstrating significant therapeutic advantages over existing SRC/ABL inhibitors. Therefore, this mode of inhibiting SRC could lead to improved treatment of SRC-associated disorders. SIGNIFICANCE: Small molecule-mediated inhibition of SRC impairing both catalytic and scaffolding functions confers increased anticancer properties and tolerability compared with other SRC/ABL inhibitors.
Collapse
Affiliation(s)
- Carolin Temps
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Lietha
- Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Emily R Webb
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Xue-Feng Li
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - John C Dawson
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Morwenna Muir
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenneth G Macleod
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Teresa Valero
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison F Munro
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Rafael Contreras-Montoya
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Juan R Luque-Ortega
- Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Craig Fraser
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Henry Beetham
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Christina Schoenherr
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Lopalco
- Edinburgh Innovations Ltd., Edinburgh, United Kingdom
| | - Mark J Arends
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Bin-Zhi Qian
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
130
|
Trends in kinase drug discovery: targets, indications and inhibitor design. Nat Rev Drug Discov 2021; 20:839-861. [PMID: 34354255 DOI: 10.1038/s41573-021-00252-y] [Citation(s) in RCA: 441] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
The FDA approval of imatinib in 2001 was a breakthrough in molecularly targeted cancer therapy and heralded the emergence of kinase inhibitors as a key drug class in the oncology area and beyond. Twenty years on, this article analyses the landscape of approved and investigational therapies that target kinases and trends within it, including the most popular targets of kinase inhibitors and their expanding range of indications. There are currently 71 small-molecule kinase inhibitors (SMKIs) approved by the FDA and an additional 16 SMKIs approved by other regulatory agencies. Although oncology is still the predominant area for their application, there have been important approvals for indications such as rheumatoid arthritis, and one-third of the SMKIs in clinical development address disorders beyond oncology. Information on clinical trials of SMKIs reveals that approximately 110 novel kinases are currently being explored as targets, which together with the approximately 45 targets of approved kinase inhibitors represent only about 30% of the human kinome, indicating that there are still substantial unexplored opportunities for this drug class. We also discuss trends in kinase inhibitor design, including the development of allosteric and covalent inhibitors, bifunctional inhibitors and chemical degraders.
Collapse
|
131
|
Liu B, Stone OJ, Pablo M, Herron JC, Nogueira AT, Dagliyan O, Grimm JB, Lavis LD, Elston TC, Hahn KM. Biosensors based on peptide exposure show single molecule conformations in live cells. Cell 2021; 184:5670-5685.e23. [PMID: 34637702 PMCID: PMC8556369 DOI: 10.1016/j.cell.2021.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022]
Abstract
We describe an approach to study the conformation of individual proteins during single particle tracking (SPT) in living cells. "Binder/tag" is based on incorporation of a 7-mer peptide (the tag) into a protein where its solvent exposure is controlled by protein conformation. Only upon exposure can the peptide specifically interact with a reporter protein (the binder). Thus, simple fluorescence localization reflects protein conformation. Through direct excitation of bright dyes, the trajectory and conformation of individual proteins can be followed. Simple protein engineering provides highly specific biosensors suitable for SPT and FRET. We describe tagSrc, tagFyn, tagSyk, tagFAK, and an orthogonal binder/tag pair. SPT showed slowly diffusing islands of activated Src within Src clusters and dynamics of activation in adhesions. Quantitative analysis and stochastic modeling revealed in vivo Src kinetics. The simplicity of binder/tag can provide access to diverse proteins.
Collapse
Affiliation(s)
- Bei Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Orrin J Stone
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Pablo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Cody Herron
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ana T Nogueira
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Onur Dagliyan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan B Grimm
- Janelia Research Campus, The Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, The Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
132
|
Ferrao Blanco MN, Domenech Garcia H, Legeai-Mallet L, van Osch GJVM. Tyrosine kinases regulate chondrocyte hypertrophy: promising drug targets for Osteoarthritis. Osteoarthritis Cartilage 2021; 29:1389-1398. [PMID: 34284112 DOI: 10.1016/j.joca.2021.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a major health problem worldwide that affects the joints and causes severe disability. It is characterized by pain and low-grade inflammation. However, the exact pathogenesis remains unknown and the therapeutic options are limited. In OA articular chondrocytes undergo a phenotypic transition becoming hypertrophic, which leads to cartilage damage, aggravating the disease. Therefore, a therapeutic agent inhibiting hypertrophy would be a promising disease-modifying drug. The therapeutic use of tyrosine kinase inhibitors has been mainly focused on oncology, but the Food and Drug Administration (FDA) approval of the Janus kinase inhibitor Tofacitinib in Rheumatoid Arthritis has broadened the applicability of these compounds to other diseases. Interestingly, tyrosine kinases have been associated with chondrocyte hypertrophy. In this review, we discuss the experimental evidence that implicates specific tyrosine kinases in signaling pathways promoting chondrocyte hypertrophy, highlighting their potential as therapeutic targets for OA.
Collapse
Affiliation(s)
- M N Ferrao Blanco
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - H Domenech Garcia
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - L Legeai-Mallet
- Université de Paris, INSERM U1163, Institut Imagine, Paris, France.
| | - G J V M van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
133
|
Vasilev F, Ezhova Y, Chun JT. Signaling Enzymes and Ion Channels Being Modulated by the Actin Cytoskeleton at the Plasma Membrane. Int J Mol Sci 2021; 22:ijms221910366. [PMID: 34638705 PMCID: PMC8508623 DOI: 10.3390/ijms221910366] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
A cell should deal with the changing external environment or the neighboring cells. Inevitably, the cell surface receives and transduces a number of signals to produce apt responses. Typically, cell surface receptors are activated, and during this process, the subplasmalemmal actin cytoskeleton is often rearranged. An intriguing point is that some signaling enzymes and ion channels are physically associated with the actin cytoskeleton, raising the possibility that the subtle changes of the local actin cytoskeleton can, in turn, modulate the activities of these proteins. In this study, we reviewed the early and new experimental evidence supporting the notion of actin-regulated enzyme and ion channel activities in various cell types including the cells of immune response, neurons, oocytes, hepatocytes, and epithelial cells, with a special emphasis on the Ca2+ signaling pathway that depends on the synthesis of inositol 1,4,5-trisphosphate. Some of the features that are commonly found in diverse cells from a wide spectrum of the animal species suggest that fine-tuning of the activities of the enzymes and ion channels by the actin cytoskeleton may be an important strategy to inhibit or enhance the function of these signaling proteins.
Collapse
Affiliation(s)
- Filip Vasilev
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Rue St Denis, Montreal, QC H2X 0A9, Canada
- Correspondence: (F.V.); (J.T.C.); Tel.: +1-514-249-5862 (F.V.); +39-081-583-3407 (J.T.C.)
| | - Yulia Ezhova
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada;
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Correspondence: (F.V.); (J.T.C.); Tel.: +1-514-249-5862 (F.V.); +39-081-583-3407 (J.T.C.)
| |
Collapse
|
134
|
Curcumin and Its New Derivatives: Correlation between Cytotoxicity against Breast Cancer Cell Lines, Degradation of PTP1B Phosphatase and ROS Generation. Int J Mol Sci 2021; 22:ijms221910368. [PMID: 34638706 PMCID: PMC8508995 DOI: 10.3390/ijms221910368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023] Open
Abstract
Breast cancer is the most common cancer of women—it affects more than 2 million women worldwide. PTP1B phosphatase can be one of the possible targets for new drugs in breast cancer therapy. In this paper, we present new curcumin derivatives featuring a 4-piperidone ring as PTP1B inhibitors and ROS inducers. We performed cytotoxicity analysis for twelve curcumin derivatives against breast cancer MCF-7 and MDA-MB-231 cell lines and the human keratinocyte HaCaT cell line. Furthermore, because curcumin is a known antioxidant, we assessed antioxidant effects in its derivatives. For the most potent cytotoxic compounds, we determined intracellular ROS and PTP1B phosphatase levels. Moreover, for curcumin and its derivatives, we performed real-time microscopy to observe the photosensitizing effect. Finally, computational analysis was performed for the curcumin derivatives with an inhibitory effect against PTP1B phosphatase to assess the potential binding mode of new inhibitors within the allosteric site of the enzyme. We observed that two tested compounds are better anticancer agents than curcumin. Moreover, we suggest that blocking the -OH group in phenolic compounds causes an increase in the cytotoxicity effect, even at a low concentration. Furthermore, due to this modification, a higher level of ROS is induced, which correlates with a lower level of PTP1B.
Collapse
|
135
|
Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia-From Molecular Mechanisms to Clinical Relevance. Cancers (Basel) 2021; 13:cancers13194820. [PMID: 34638304 PMCID: PMC8508378 DOI: 10.3390/cancers13194820] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic myeloid leukemia (CML) is a myeloproliferative neoplasia associated with a molecular alteration, the fusion gene BCR-ABL1, that encodes the tyrosine kinase oncoprotein BCR-ABL1. This led to the development of tyrosine kinase inhibitors (TKI), with Imatinib being the first TKI approved. Although the vast majority of CML patients respond to Imatinib, resistance to this targeted therapy contributes to therapeutic failure and relapse. Here we review the molecular mechanisms and other factors (e.g., patient adherence) involved in TKI resistance, the methodologies to access these mechanisms, and the possible therapeutic approaches to circumvent TKI resistance in CML. Abstract Resistance to targeted therapies is a complex and multifactorial process that culminates in the selection of a cancer clone with the ability to evade treatment. Chronic myeloid leukemia (CML) was the first malignancy recognized to be associated with a genetic alteration, the t(9;22)(q34;q11). This translocation originates the BCR-ABL1 fusion gene, encoding the cytoplasmic chimeric BCR-ABL1 protein that displays an abnormally high tyrosine kinase activity. Although the vast majority of patients with CML respond to Imatinib, a tyrosine kinase inhibitor (TKI), resistance might occur either de novo or during treatment. In CML, the TKI resistance mechanisms are usually subdivided into BCR-ABL1-dependent and independent mechanisms. Furthermore, patients’ compliance/adherence to therapy is critical to CML management. Techniques with enhanced sensitivity like NGS and dPCR, the use of artificial intelligence (AI) techniques, and the development of mathematical modeling and computational prediction methods could reveal the underlying mechanisms of drug resistance and facilitate the design of more effective treatment strategies for improving drug efficacy in CML patients. Here we review the molecular mechanisms and other factors involved in resistance to TKIs in CML and the new methodologies to access these mechanisms, and the therapeutic approaches to circumvent TKI resistance.
Collapse
|
136
|
Zhang T, Wang Y, Chen Y, Jin S, Gao Y, Zhang D, Wu Y. Evaluation of the Oncogene Function of GOLPH3 and Correlated Regulatory Network in Lung Adenocarcinoma. Front Oncol 2021; 11:669684. [PMID: 34497755 PMCID: PMC8419434 DOI: 10.3389/fonc.2021.669684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background Golgi phosphoprotein 3 (GOLPH3) is an oncoprotein localized in the Golgi apparatus. Abnormal GOLPH3 expression is potentially related to carcinogenesis. However, the potential biological regulation network of GOLPH3 in lung adenocarcinoma (LUAD) remains to be determined. Methods Expression of GOLPH3 was identified in LUAD via TIMER, Oncomine, Lung Cancer Explorer (LCE), Human Protein Atlas (HPA), and UALCAN database. Survival analysis was performed using the Kaplan–Meier plotter. GOLPH3 alterations were analyzed through cBioPortal. LinkedOmics was used to perform functional analysis and predict interacted targets. The protein–protein interaction network was constructed by GeneMANIA. In addition, candidate miRNAs and lncRNAs targeting GOLPH3 were generated to construct competing endogenous RNA (ceRNA) network, and survival analysis of ceRNA was performed using LnCeVar. The mRNA or protein expression of TUG1, miR-142-5p, and GOLPH3 in Beas-2B and LUAD cells was verified using qPCR or Western blotting. CCK-8 assay, wound healing assay, and transwell assay were used to detect the ability of cell proliferation, migration, and invasion. Results Overexpression of GOLPH3 was identified in LUAD. UALCAN analysis showed that upregulated GOLPH3 was linked to different pathological features of LUAD patients. Importantly, high GOLPH3 expression indicated a negative correlation with the first progression (FP) in LUAD patients. GOLPH3 alterations were also found. Moreover, co-expressed genes with GOLPH3 were analyzed; and they were involved in ribosome and oxidative phosphorylation pathways. Functional network analysis indicated GOLPH3 regulated T-cell receptor signaling pathway and interferon signaling pathway with kinase and transcription factor targets. Notably, TUG1/miR-142-5p/GOLPH3 affected overall survival of LUAD patients. GOLPH3 expression was decreased in the cells with overexpression of miR-142-5p and TUG1 knockdown. GOLPH3 reduction inhibited cell proliferation, migration, and invasion. Conclusions Upregulation of GOLPH3 has a positive correlation with clinicopathological subtypes and poor FP in LUAD. GOLPH3 promoted LUAD progression. Moreover, TUG1 may act as ceRNA to regulate GOLPH3 expression by competitive binding miR-142-5p.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Yangyang Chen
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Shuo Jin
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Gao
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Dan Zhang
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Yonghui Wu
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
137
|
Khalil M, Wang D, Hashemi E, Terhune SS, Malarkannan S. Implications of a 'Third Signal' in NK Cells. Cells 2021; 10:cells10081955. [PMID: 34440725 PMCID: PMC8393955 DOI: 10.3390/cells10081955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Innate and adaptive immune systems are evolutionarily divergent. Primary signaling in T and B cells depends on somatically rearranged clonotypic receptors. In contrast, NK cells use germline-encoded non-clonotypic receptors such as NCRs, NKG2D, and Ly49H. Proliferation and effector functions of T and B cells are dictated by unique peptide epitopes presented on MHC or soluble humoral antigens. However, in NK cells, the primary signals are mediated by self or viral proteins. Secondary signaling mediated by various cytokines is involved in metabolic reprogramming, proliferation, terminal maturation, or memory formation in both innate and adaptive lymphocytes. The family of common gamma (γc) cytokine receptors, including IL-2Rα/β/γ, IL-7Rα/γ, IL-15Rα/β/γ, and IL-21Rα/γ are the prime examples of these secondary signals. A distinct set of cytokine receptors mediate a ‘third’ set of signaling. These include IL-12Rβ1/β2, IL-18Rα/β, IL-23R, IL-27R (WSX-1/gp130), IL-35R (IL-12Rβ2/gp130), and IL-39R (IL-23Rα/gp130) that can prime, activate, and mediate effector functions in lymphocytes. The existence of the ‘third’ signal is known in both innate and adaptive lymphocytes. However, the necessity, context, and functional relevance of this ‘third signal’ in NK cells are elusive. Here, we define the current paradigm of the ‘third’ signal in NK cells and enumerate its clinical implications.
Collapse
Affiliation(s)
- Mohamed Khalil
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| |
Collapse
|
138
|
Perdomo D, Bubis J. Purification of a Src family tyrosine protein kinase from bovine retinas. ACTA ACUST UNITED AC 2021; 76:273-283. [PMID: 33125342 DOI: 10.1515/znc-2020-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/16/2020] [Indexed: 11/15/2022]
Abstract
Since tyrosine phosphorylation appears to play important functions in photoreceptor cells, we searched here for retinal nonreceptor tyrosine kinases of the Src family. We demonstrated that Src family tyrosine kinases were present in the cytosolic fraction of extracted bovine retinas. A Src family tyrosine kinase with an apparent molecular mass of about 62 kDa was purified to homogeneity from the soluble fraction of dark-adapted bovine retinas after three consecutive purification steps: ω-aminooctyl-agarose hydrophobic chromatography, Cibacron blue 3GA-agarose pseudo-affinity chromatography, and α-casein-agarose affinity chromatography. The purified protein was subjected to N-terminal amino acid sequencing and the sequence Gly-Ile-Ile-Lys-Ser-Glu-Glu was obtained, which displayed homology with the first seven residues of the Src family tyrosine kinase c-Yes from Bos taurus (Gly-Cys-Ile-Lys-Ser-Lys-Glu). Although the cytosolic fraction from dark-adapted retinas contained tyrosine kinases of the Src family capable of phosphorylating the α-subunit of transducin, which is the heterotrimeric G protein involved in phototransduction, the purified tyrosine kinase was not capable of using transducin as a substrate. The cellular role of this retinal Src family member remains to be found.
Collapse
Affiliation(s)
- Deisy Perdomo
- Departamento de Biología Celular, Universidad Simón Bolívar, Valle de Sartenejas, Baruta, Caracas, Venezuela
| | - José Bubis
- Departamento de Biología Celular, Universidad Simón Bolívar, Valle de Sartenejas, Baruta, Caracas, Venezuela
| |
Collapse
|
139
|
Mohammed S, Shamseddine AA, Newcomb B, Chavez RS, Panzner TD, Lee AH, Canals D, Okeoma CM, Clarke CJ, Hannun YA. Sublethal doxorubicin promotes migration and invasion of breast cancer cells: role of Src Family non-receptor tyrosine kinases. Breast Cancer Res 2021; 23:76. [PMID: 34315513 PMCID: PMC8317414 DOI: 10.1186/s13058-021-01452-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Doxorubicin (Dox) is a widely used chemotherapy, but its effectiveness is limited by dose-dependent side effects. Although lower Dox doses reduce this risk, studies have reported higher recurrence of local disease with no improvement in survival rate in patients receiving low doses of Dox. To effectively mitigate this, a better understanding of the adverse effects of suboptimal Dox doses is needed. METHODS Effects of sublethal dose of Dox on phenotypic changes were assessed with light and confocal microscopy. Migratory and invasive behavior were assessed by wound healing and transwell migration assays. MTT and LDH release assays were used to analyze cell growth and cytotoxicity. Flow cytometry was employed to detect cell surface markers of cancer stem cell population. Expression and activity of matrix metalloproteinases were probed with qRT-PCR and zymogen assay. To identify pathways affected by sublethal dose of Dox, exploratory RNAseq was performed and results were verified by qRT-PCR in multiple cell lines (MCF7, ZR75-1 and U-2OS). Regulation of Src Family kinases (SFK) by key players in DNA damage response was assessed by siRNA knockdown along with western blot and qRT-PCR. Dasatinib and siRNA for Fyn and Yes was employed to inhibit SFKs and verify their role in increased migration and invasion in MCF7 cells treated with sublethal doses of Dox. RESULTS The results show that sublethal Dox treatment leads to increased migration and invasion in otherwise non-invasive MCF7 breast cancer cells. Mechanistically, these effects were independent of the epithelial mesenchymal transition, were not due to increased cancer stem cell population, and were not observed with other chemotherapies. Instead, sublethal Dox induces expression of multiple SFK-including Fyn, Yes, and Src-partly in a p53 and ATR-dependent manner. These effects were validated in multiple cell lines. Functionally, inhibiting SFKs with Dasatinib and specific downregulation of Fyn suppressed Dox-induced migration and invasion of MCF7 cells. CONCLUSIONS Overall, this study demonstrates that sublethal doses of Dox activate a pro-invasive, pro-migration program in cancer cells. Furthermore, by identifying SFKs as key mediators of these effects, our results define a potential therapeutic strategy to mitigate local invasion through co-treatment with Dasatinib.
Collapse
Affiliation(s)
- Samia Mohammed
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794- 8430, USA
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Achraf A Shamseddine
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Benjamin Newcomb
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Ronald S Chavez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794- 8430, USA
| | - Tyler D Panzner
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA
| | - Allen H Lee
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA
| | - Daniel Canals
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Chioma M Okeoma
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA
| | - Christopher J Clarke
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA.
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA.
| | - Yusuf A Hannun
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794- 8430, USA.
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA.
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA.
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA.
- The Northport Veterans Affairs Hospital, Northport, NY, 11768, USA.
| |
Collapse
|
140
|
Muscella A, Stefàno E, Calabriso N, De Pascali SA, Fanizzi FP, Marsigliante S. Role of epidermal growth factor receptor signaling in a Pt(II)-resistant human breast cancer cell line. Biochem Pharmacol 2021; 192:114702. [PMID: 34324869 DOI: 10.1016/j.bcp.2021.114702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Platinum complexes are currently used for breast cancer therapy, but, as with other drug classes, a series of intrinsic and acquired resistance mechanisms hinder their efficacy. To better understand the mechanisms underlying platinum complexes resistance in breast cancer, we generated a [Pt(O,O'-acac)(γ-acac)(DMS)]-resistant MCF-7, denoted as [Pt(acac)2]R. [Pt(O,O'-acac)(γ-acac)(DMS)] was chosen as previous works showed that it has distinct mechanisms of action from cisplatin, especially with regard to cellular targets. [Pt(acac)2]R cells are characterized by increased proliferation rates and aggressiveness with higher PKC-δ, BCL-2, MMP-9 and EGFR protein expressions and also by increased expression of various genes covering cell cycle regulation, invasion, survival, and hormone receptors. These [Pt(acac)2]R cells also displayed high levels of activated signaling kinases Src, AKT and ERK/2. [Pt(acac)2]R cells incubated with [Pt(O,O'-acac)(γ-acac)(DMS)], showed a relevant EGFR activation due to PKC-δ and Src phosphorylation that provoked proliferation and survival through MERK1/2/ERK1/2 and PI3K/Akt pathways. In addition, EGFR shuttled from the plasma membrane to the nucleus maybe acting as co-transcriptional factor. The data suggest that growth and survival of resistant cells rely upon a remarkable increase in EGFR level which, in collaboration with an enhanced role of PKC-δ and Src kinases support [Pt(acac)2]R cell. It could therefore be assumed that combination treatments targeting both EGFR and PKC-δ/Src can improve therapy for breast cancer patients.
Collapse
Affiliation(s)
- A Muscella
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy.
| | - E Stefàno
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy
| | - N Calabriso
- National Research Council (CNR), Campus Ecotekne, Institute of Clinical Physiology (IFC), University of Salento, Via Prov le Lecce-Monteroni, 73100 Lecce, Italy
| | - S A De Pascali
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy
| | - F P Fanizzi
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy
| | - S Marsigliante
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
141
|
Maternal Ethanol Exposure Acutely Elevates Src Family Kinase Activity in the Fetal Cortex. Mol Neurobiol 2021; 58:5210-5223. [PMID: 34272687 PMCID: PMC8497457 DOI: 10.1007/s12035-021-02467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
Fetal alcohol syndrome (FAS) is characterized by disrupted fetal brain development and postnatal cognitive impairment. The targets of alcohol are diverse, and it is not clear whether there are common underlying molecular mechanisms producing these disruptions. Prior work established that acute ethanol exposure causes a transient increase in tyrosine phosphorylation of multiple proteins in cultured embryonic cortical cells. In this study, we show that a similar tyrosine phosphorylation transient occurs in the fetal brain after maternal dosing with ethanol. Using phospho-specific antibodies and immunohistochemistry, we mapped regions of highest tyrosine phosphorylation in the fetal cerebral cortex and found that areas of dendritic and axonal growth showed elevated tyrosine phosphorylation 10 min after maternal ethanol exposure. These were also areas of Src expression and Src family kinase (SFK) activation loop phosphorylation (pY416) expression. Importantly, maternal pretreatment with the SFK inhibitor dasatinib completely prevents both the pY416 increase and the tyrosine phosphorylation response. The phosphorylation response was observed in the perisomatic region and neurites of immature migrating and differentiating primary neurons. Importantly, the initial phosphotyrosine transient (~ 30 min) targets both Src and Dab1, two critical elements in Reelin signaling, a pathway required for normal cortical development. This initial phosphorylation response is followed by sustained reduction in Ser3 phosphorylation of n-cofilin, a critical actin severing protein and an identified downstream effector of Reelin signaling. This biochemical disruption is associated with sustained reduction of F-actin content and disrupted Golgi apparatus morphology in developing cortical neurons. The finding outlines a model in which the initial activation of SFKs by ethanol has the potential to disrupt multiple developmentally important signaling systems for several hours after maternal exposure.
Collapse
|
142
|
Penatzer JA, Miller JV, Prince N, Shaw M, Lynch C, Newman M, Hobbs GR, Boyd JW. Differential phosphoprotein signaling in the cortex in mouse models of Gulf War Illness using corticosterone and acetylcholinesterase inhibitors. Heliyon 2021; 7:e07552. [PMID: 34307952 PMCID: PMC8287240 DOI: 10.1016/j.heliyon.2021.e07552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Veterans from the 1990–91 Gulf War were exposed to acetylcholinesterase inhibitors (AChEIs), and, following service, an estimated one-third began suffering from a medically unexplained, multi-symptom illness termed Gulf War Illness (GWI). Previous research has developed validated rodent models that include exposure to exogenous corticosterone (CORT) and AChEIs to simulate high stress and chemical exposures encountered in theater. This combination of exposures in mice resulted in a marked increase in neuroinflammation, which is a common symptom of veterans suffering from GWI. To further elucidate the mechanisms associated with these mouse models of GWI, an investigation into intracellular responses in the cortex were performed to characterize the early cellular signaling changes associated with this exposure-initiated neuroinflammation. Main methods Adult male C57BL/6J mice were exposed to CORT in the drinking water (200 μg/mL) for 7 days followed by a single intraperitoneal injection of diisopropyl fluorophosphate (DFP; 4.0 mg/kg) or chlorpyrifos oxon (CPO; 8.0 mg/kg), on day 8 and euthanized 0.5, 2, and 24 h post-injection. Eleven post-translationally modified protein targets were measured using a multiplexed ELISA. Key findings Phosphoprotein responses were found to be exposure specific following AChEI insult, with and without CORT. Specifically, CORT + CPO exposure was found to sequentially activate several phosphoproteins involved in mitogen activated protein kinase signaling (p-MEK1/2, p-ERK1/2, and p-JNK). DFP alone similarly increased proteins in this pathway (p-RPS6, and p-JNK), but the addition of CORT ameliorated these affects. Significance The results of this study provide insight into differentially activated pathways depending on AChEI in these GWI models.
Collapse
Affiliation(s)
- Julia A Penatzer
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morvantown, WV, USA
| | | | - Nicole Prince
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morvantown, WV, USA
| | - Misa Shaw
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA.,Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Cayla Lynch
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Mackenzie Newman
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Gerald R Hobbs
- Department of Statistics, West Virginia University, Morgantown, WV, USA
| | - Jonathan W Boyd
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
143
|
Kordbacheh F, Farah CS. Molecular Pathways and Druggable Targets in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:3453. [PMID: 34298667 PMCID: PMC8307423 DOI: 10.3390/cancers13143453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
Head and neck cancers are a heterogeneous group of neoplasms, affecting an ever increasing global population. Despite advances in diagnostic technology and surgical approaches to manage these conditions, survival rates have only marginally improved and this has occurred mainly in developed countries. Some improvements in survival, however, have been a result of new management and treatment approaches made possible because of our ever-increasing understanding of the molecular pathways triggered in head and neck oncogenesis, and the growing understanding of the abundant heterogeneity of this group of cancers. Some important pathways are common to other solid tumours, but their impact on reducing the burden of head and neck disease has been less than impressive. Other less known and little-explored pathways may hold the key to the development of potential druggable targets. The extensive work carried out over the last decade, mostly utilising next generation sequencing has opened up the development of many novel approaches to head and neck cancer treatment. This paper explores our current understanding of the molecular pathways of this group of tumours and outlines associated druggable targets which are deployed as therapeutic approaches in head and neck oncology with the ultimate aim of improving patient outcomes and controlling the personal and economic burden of head and neck cancer.
Collapse
Affiliation(s)
- Farzaneh Kordbacheh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | - Camile S. Farah
- The Australian Centre for Oral Oncology Research & Education, Perth, WA 6009, Australia
- Genomics for Life, Brisbane, QLD 4064, Australia
- Anatomical Pathology, Australian Clinical Labs, Subiaco, WA 6008, Australia
- Peter MacCallum Cancer Centre, Head and Neck Cancer Signalling Laboratory, Melbourne, VIC 3000, Australia
| |
Collapse
|
144
|
Ortiz MA, Mikhailova T, Li X, Porter BA, Bah A, Kotula L. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Commun Signal 2021; 19:67. [PMID: 34193161 PMCID: PMC8247114 DOI: 10.1186/s12964-021-00750-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Over a century of scientific inquiry since the discovery of v-SRC but still no final judgement on SRC function. However, a significant body of work has defined Src family kinases as key players in tumor progression, invasion and metastasis in human cancer. With the ever-growing evidence supporting the role of epithelial-mesenchymal transition (EMT) in invasion and metastasis, so does our understanding of the role SFKs play in mediating these processes. Here we describe some key mechanisms through which Src family kinases play critical role in epithelial homeostasis and how their function is essential for the propagation of invasive signals. Video abstract.
Collapse
Affiliation(s)
- Maria A. Ortiz
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Tatiana Mikhailova
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Baylee A. Porter
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Leszek Kotula
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| |
Collapse
|
145
|
Noe O, Filipiak L, Royfman R, Campbell A, Lin L, Hamouda D, Stanbery L, Nemunaitis J. Adenomatous polyposis coli in cancer and therapeutic implications. Oncol Rev 2021; 15:534. [PMID: 34267890 PMCID: PMC8256374 DOI: 10.4081/oncol.2021.534] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Inactivating mutations of the adenomatous polyposis coli (APC) gene and consequential upregulation of the Wnt signaling pathway are critical initiators in the development of colorectal cancer (CRC), the third most common cancer in the United States for both men and women. Emerging evidence suggests APCmutations are also found in gastric, breast and other cancers. The APC gene, located on chromosome 5q, is responsible for negatively regulating the b-catenin/Wnt pathway by creating a destruction complex with Axin/Axin2, GSK-3b, and CK1. In the event of an APC mutation, b-catenin accumulates, translocates to the cell nucleus and increases the transcription of Wnt target genes that have carcinogenic consequences in gastrointestinal epithelial stem cells. A literature review was conducted to highlight carcinogenesis related to APC mutations, as well as preclinical and clinical studies for potential therapies that target steps in inflammatory pathways, including IL-6 transduction, and Wnt pathway signaling regulation. Although a range of molecular targets have been explored in murine models, relatively few pharmacological agents have led to substantial increases in survival for patients with colorectal cancer clinically. This article reviews a range of molecular targets that may be efficacious targets for tumors with APC mutations.
Collapse
Affiliation(s)
- Olivia Noe
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Louis Filipiak
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Rachel Royfman
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Austin Campbell
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Laura Stanbery
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
146
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
147
|
Kao TI, Chen PJ, Wang YH, Tseng HH, Chang SH, Wu TS, Yang SH, Lee YT, Hwang TL. Bletinib ameliorates neutrophilic inflammation and lung injury by inhibiting Src family kinase phosphorylation and activity. Br J Pharmacol 2021; 178:4069-4084. [PMID: 34131920 PMCID: PMC8518616 DOI: 10.1111/bph.15597] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/07/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Neutrophil overactivation is crucial in the pathogenesis of acute lung injury (ALI). Bletinib (3,3'-dihydroxy-2',6'-bis(p-hydroxybenzyl)-5-methoxybibenzyl), a natural bibenzyl, extracted from the Bletilla plant, exhibits anti-inflammatory, antibacterial, and antimitotic effects. In this study, we evaluated the therapeutic effects of bletinib in human neutrophilic inflammation and LPS-mediated ALI in mice. EXPERIMENTAL APPROACH In human neutrophils activated with the formyl peptide (fMLP), we assessed integrin expression, superoxide anion production, degranulation, neutrophil extracellular trap (NET) formation, and adhesion through flow cytometry, spectrophotometry, and immunofluorescence microscopy. Immunoblotting was used to measure phosphorylation of Src family kinases (SFKs) and downstream proteins. Finally, a LPS-induced ALI model in male BALB/c mice was used to investigate the potential therapeutic effects of bletinib treatment. KEY RESULTS In activated human neutrophils, bletinib reduced degranulation, respiratory burst, NET formation, adhesion, migration, and integrin expression; suppressed the enzymic activity of SFKs, including Src, Lyn, Fgr, and Hck; and inhibited the phosphorylation of SFKs as well as Vav and Bruton's tyrosine kinase (Btk). In mice with ALI, the pulmonary sections demonstrated considerable amelioration of prominent inflammatory changes, such as haemorrhage, pulmonary oedema, and neutrophil infiltration, after bletinib treatment. CONCLUSION AND IMPLICATIONS Bletinib regulates neutrophilic inflammation by inhibiting the SFK-Btk-Vav pathway. Bletinib ameliorates LPS-induced ALI in mice. Further biochemical optimisation of bletinib may be a promising strategy for the development of novel therapeutic agents for inflammatory diseases.
Collapse
Affiliation(s)
- Ting-I Kao
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hui Tseng
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tian-Shung Wu
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Sien-Hung Yang
- Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yen-Tung Lee
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Cosmetic Science, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Chinese Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
148
|
Close DA, Kirkwood JM, Fecek RJ, Storkus WJ, Johnston PA. Unbiased High-Throughput Drug Combination Pilot Screening Identifies Synergistic Drug Combinations Effective against Patient-Derived and Drug-Resistant Melanoma Cell Lines. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:712-729. [PMID: 33208016 PMCID: PMC8128935 DOI: 10.1177/2472555220970917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe the development, optimization, and validation of 384-well growth inhibition assays for six patient-derived melanoma cell lines (PDMCLs), three wild type (WT) for BRAF and three with V600E-BRAF mutations. We conducted a pilot drug combination (DC) high-throughput screening (HTS) of 45 pairwise 4×4 DC matrices prepared from 10 drugs in the PDMCL assays: two B-Raf inhibitors (BRAFi), a MEK inhibitor (MEKi), and a methylation agent approved for melanoma; cytotoxic topoisomerase II and DNA methyltransferase chemotherapies; and drugs targeting the base excision DNA repair enzyme APE1 (apurinic/apyrimidinic endonuclease-1/redox effector factor-1), SRC family tyrosine kinases, the heat shock protein 90 (HSP90) molecular chaperone, and histone deacetylases.Pairwise DCs between dasatinib and three drugs approved for melanoma therapy-dabrafenib, vemurafenib, or trametinib-were flagged as synergistic in PDMCLs. Exposure to fixed DC ratios of the SRC inhibitor dasatinib with the BRAFis or MEKis interacted synergistically to increase PDMCL sensitivity to growth inhibition and enhance cytotoxicity independently of PDMCL BRAF status. These DCs synergistically inhibited the growth of mouse melanoma cell lines that either were dabrafenib-sensitive or had acquired resistance to dabrafenib with cross resistance to vemurafenib, trametinib, and dasatinib. Dasatinib DCs with dabrafenib, vemurafenib, or trametinib activated apoptosis and increased cell death in melanoma cells independently of their BRAF status or their drug resistance phenotypes. These preclinical in vitro studies provide a data-driven rationale for the further investigation of DCs between dasatinib and BRAFis or MEKis as candidates for melanoma combination therapies with the potential to improve outcomes and/or prevent or delay the emergence of disease resistance.
Collapse
Affiliation(s)
- David A. Close
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John M. Kirkwood
- Departments of Medicine, Dermatology, Translational Science, and Melanoma and Skin Cancer Program University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Ronald J. Fecek
- Department of Microbiology, Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| | - Walter J. Storkus
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Departments of Dermatology, Immunology, Bioengineering and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Paul A. Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
149
|
Salinas-Garcia MC, Plaza-Garrido M, Camara-Artigas A. The impact of oncogenic mutations of the viral Src kinase on the structure and stability of the SH3 domain. Acta Crystallogr D Struct Biol 2021; 77:854-866. [PMID: 34076598 PMCID: PMC8171063 DOI: 10.1107/s2059798321004344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/22/2021] [Indexed: 03/26/2023] Open
Abstract
Src kinase belongs to the family of Src-related nonreceptor tyrosine kinases. Because of its physiological role in cell growth and proliferation, its activity is strictly controlled by several mechanisms. Nevertheless, in viral Src kinase (v-Src) some of these mechanisms fail, and its uncontrolled activity is responsible for the occurrence of cancer. Here, the crystal structures of three SH3-domain mutants of v-Src were determined to unveil the effects of these oncogenic mutations in this regulatory domain. Mutations in the n-Src and distal loops have a low impact on the overall structure of the domain and its capacity to form intertwined dimers. However, mutations in the RT loop compromise the stability of the domain and make the protein very prone to aggregation. Additionally, these mutations prevent the formation of intertwined dimers. The results show a synergistic effect between mutations in the RT loop and those in the n-Src and distal loops. Analysis of the structures of the v-Src SH3-domain mutants and the closed inactive conformation of cellular Src kinase (c-Src) point to a loss of the interactions that are required to establish the compact inactive form of the kinase. Nevertheless, an analysis of structures of the c-Src SH3 domain complexed with class I and II peptides points to minor changes in the interactions between the v-Src SH3 domain and these peptides. In this way, the structures reported here indicate that mutations in the RT loop might impair the kinase regulation mechanism without affecting the recognition of short proline-rich motifs in the target proteins of the kinase, thus explaining the oncogenic behaviour of the protein.
Collapse
Affiliation(s)
- M. Carmen Salinas-Garcia
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almeria, Carretera de Sacramento s/n, 04120 Almeria, Spain
| | - Marina Plaza-Garrido
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almeria, Carretera de Sacramento s/n, 04120 Almeria, Spain
| | - Ana Camara-Artigas
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almeria, Carretera de Sacramento s/n, 04120 Almeria, Spain
| |
Collapse
|
150
|
Shi Y, Xiang Z, Yang H, Khan S, Li R, Zhou S, Ullah S, Zhang J, Liu B. Pharmacological targeting of TNS3 with histone deacetylase inhibitor as a therapeutic strategy in esophageal squamous cell carcinoma. Aging (Albany NY) 2021; 13:15336-15352. [PMID: 34047714 PMCID: PMC8221360 DOI: 10.18632/aging.203091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/06/2021] [Indexed: 01/19/2023]
Abstract
Histone acetylation which regulates about 2-10% of genes has been demonstrated to be involved in tumorigenesis of esophageal squamous cell carcinoma (ESCC). In this study, we investigated the treatment response of ESCC to selective histone deacetylase inhibitor (HDACi) LMK-235 and potential biomarker predicting the treatment sensitivity. We identified tensin-3 (TNS3) which was highly over-expressed in ESCC as one of the down-regulated genes in response to LMK-235 treatment. TNS3 was found positively correlated with the tumor malignancy and poor prognosis in the patients. Silencing TNS3 significantly inhibited ESCC cell proliferation both in vitro and in vivo, sensitizing the treatment response to LMK-235. Our findings provide an insight into understanding the oncogenic role of TNS3 in ESCC and its clinical application for HDAC targeted therapy of ESCC.
Collapse
Affiliation(s)
- Yang Shi
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Zheng Xiang
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Huiyu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ruizhe Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Siran Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Saif Ullah
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Jiyu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Bingrong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|