101
|
SRGAP1, a crucial target of miR-340 and miR-124, functions as a potential oncogene in gastric tumorigenesis. Oncogene 2017; 37:1159-1174. [PMID: 29234151 PMCID: PMC5861093 DOI: 10.1038/s41388-017-0029-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Slit-Robo GTPase-activating protein 1 (SRGAP1) functions as a GAP for Rho-family GTPases and downstream of Slit-Robo signaling. We aim to investigate the biological function of SRGAP1 and reveal its regulation by deregulated microRNAs (miRNAs) in gastric cancer (GC). mRNA and protein expression of SRGAP1 were examined by quantitative reverse transcription PCR (qRT-PCR) and western blot. The biological role of SRGAP1 was demonstrated through siRNA-mediated knockdown experiments. The regulation of SRGAP1 by miR-340 and miR-124 was confirmed by western blot, dual luciferase activity assays and rescue experiments. SRGAP1 is overexpressed in 9 out of 12 (75.0%) GC cell lines. In primary GC samples from TCGA cohort, SRGAP1 shows gene amplification in 5/258 (1.9%) of cases and its mRNA expression demonstrates a positive correlation with copy number gain. Knockdown of SRGAP1 in GC cells suppressed cell proliferation, reduced colony formation, and significantly inhibited cell invasion and migration. Luciferase reporter assays revealed that SRGAP1 knockdown significantly inhibited Wnt/β-catenin pathway. In addition, SRGAP1 was found to be a direct target of two tumor-suppressive miRNAs, miR-340 and miR-124. Concordantly, these two miRNAs were downregulated in primary gastric tumors and these decreasing levels w5ere associated with poor outcomes. Expression of miR-340 and SRGAP1 displayed a reverse relationship in primary samples and re-expressed SRGAP1, rescued the anti-cancer effects of miR-340. Taken together, these data strongly suggest that, apart from gene amplification and mutation, the activation of SRGAP1 in GC is partly due to the downregulation of tumor-suppressive miRNAs, miR-340 and miR-124. Thus SRGAP1 is overexpressed in gastric carcinogenesis and plays an oncogenic role through activating Wnt/β-catenin pathway.
Collapse
|
102
|
Donnelly SK, Cabrera R, Mao SPH, Christin JR, Wu B, Guo W, Bravo-Cordero JJ, Condeelis JS, Segall JE, Hodgson L. Rac3 regulates breast cancer invasion and metastasis by controlling adhesion and matrix degradation. J Cell Biol 2017; 216:4331-4349. [PMID: 29061650 PMCID: PMC5716284 DOI: 10.1083/jcb.201704048] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/28/2017] [Accepted: 09/25/2017] [Indexed: 01/21/2023] Open
Abstract
The initial step of metastasis is the local invasion of tumor cells into the surrounding tissue. Invadopodia are actin-based protrusions that mediate the matrix degradation necessary for invasion and metastasis of tumor cells. We demonstrate that Rac3 GTPase is critical for integrating the adhesion of invadopodia to the extracellular matrix (ECM) with their ability to degrade the ECM in breast tumor cells. We identify two pathways at invadopodia important for integrin activation and delivery of matrix metalloproteinases: through the upstream recruiter CIB1 as well as the downstream effector GIT1. Rac3 activity, at and surrounding invadopodia, is controlled by Vav2 and βPIX. These guanine nucleotide exchange factors regulate the spatiotemporal dynamics of Rac3 activity, impacting GIT1 localization. Moreover, the GTPase-activating function of GIT1 toward the vesicular trafficking regulator Arf6 GTPase is required for matrix degradation. Importantly, Rac3 regulates the ability of tumor cells to metastasize in vivo. The Rac3-dependent mechanisms we show in this study are critical for balancing proteolytic activity and adhesive activity to achieve a maximally invasive phenotype.
Collapse
Affiliation(s)
- Sara K Donnelly
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | - Ramon Cabrera
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Serena P H Mao
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
| | - John R Christin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Bin Wu
- Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Wenjun Guo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Medical Oncology, Icahn School of Medicine, Tisch Cancer Institute at Mount Sinai, New York, NY
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | - Jeffrey E Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
103
|
Lam JGT, Vadia S, Pathak-Sharma S, McLaughlin E, Zhang X, Swanson J, Seveau S. Host cell perforation by listeriolysin O (LLO) activates a Ca 2+-dependent cPKC/Rac1/Arp2/3 signaling pathway that promotes Listeria monocytogenes internalization independently of membrane resealing. Mol Biol Cell 2017; 29:270-284. [PMID: 29187576 PMCID: PMC5996962 DOI: 10.1091/mbc.e17-09-0561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 01/20/2023] Open
Abstract
Host cell invasion is an indispensable step for a successful infection by intracellular pathogens. Recent studies identified pathogen-induced host cell plasma membrane perforation as a novel mechanism used by diverse pathogens (Trypanosoma cruzi, Listeria monocytogenes, and adenovirus) to promote their internalization into target cells. It was concluded that T. cruzi and adenovirus damage the host cell plasma membrane to hijack the endocytic-dependent membrane resealing machinery, thereby invading the host cell. We studied L. monocytogenes and its secreted pore-forming toxin listeriolysin O (LLO) to identify key signaling events activated upon plasma membrane perforation that lead to bacterial internalization. Using various approaches, including fluorescence resonance energy transfer imaging, we found that the influx of extracellular Ca2+ subsequent to LLO-mediated plasma membrane perforation is required for the activation of a conventional protein kinase C (cPKC). cPKC is positioned upstream of Rac1 and the Arp2/3 complex, which activation leads to F-actin--dependent bacterial internalization. Inhibition of this pathway did not prevent membrane resealing, revealing that perforation-dependent L. monocytogenes endocytosis is distinct from the resealing machinery. These studies identified the LLO-dependent endocytic pathway of L. monocytogenes and support a novel model for pathogen uptake promoted by plasma membrane injury that is independent of membrane resealing.
Collapse
Affiliation(s)
- Jonathan G T Lam
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210.,Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Stephen Vadia
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Sarika Pathak-Sharma
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Eric McLaughlin
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Joel Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5624
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210 .,Department of Microbiology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
104
|
Banisch TU, Maimon I, Dadosh T, Gilboa L. Escort cells generate a dynamic compartment for germline stem cell differentiation via combined Stat and Erk signalling. Development 2017; 144:1937-1947. [PMID: 28559239 DOI: 10.1242/dev.143727] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 04/21/2017] [Indexed: 01/01/2023]
Abstract
Two different compartments support germline stem cell (GSC) self-renewal and their timely differentiation: the classical niche provides maintenance cues, while a differentiation compartment, formed by somatic escort cells (ECs), is required for proper GSC differentiation. ECs extend long protrusions that invade between tightly packed germ cells, and alternate between encapsulating and releasing them. How ECs achieve this dynamic balance has not been resolved. By combining live imaging and genetic analyses in Drosophila, we have characterised EC shapes and their dynamic changes. We show that germ cell encapsulation by ECs is a communal phenomenon, whereby EC-EC contacts stabilise an extensive meshwork of protrusions. We further show that Signal Transducer and Activator of Transcription (Stat) and Epidermal Growth Factor Receptor (Egfr) signalling sustain EC protrusiveness and flexibility by combinatorially affecting the activity of different RhoGTPases. Our results reveal how a complex signalling network can determine the shape of a cell and its dynamic behaviour. It also explains how the differentiation compartment can establish extensive contacts with germ cells, while allowing a continual posterior movement of differentiating GSC daughters.
Collapse
Affiliation(s)
- Torsten U Banisch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Iris Maimon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tali Dadosh
- Electron Microscopy Unit, Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lilach Gilboa
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
105
|
Xu XH, Liu QY, Li T, Liu JL, Chen X, Huang L, Qiang WA, Chen X, Wang Y, Lin LG, Lu JJ. Garcinone E induces apoptosis and inhibits migration and invasion in ovarian cancer cells. Sci Rep 2017; 7:10718. [PMID: 28878295 PMCID: PMC5587559 DOI: 10.1038/s41598-017-11417-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignant tumor. In this study, 24 xanthones were isolated and identified from the pericarps of mangosteen (Garcinia mangostana), and their anti-proliferative activities were tested in ovarian cancer cells. Garcinone E (GE) was found to exhibit excellent anti-proliferative effects among the tested xanthones. It significantly inhibited the proliferation in HEY, A2780, and A2780/Taxol cells as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release assay, Hoechst 33342 staining, annexin V/PI staining, and JC-1 staining. It induced endoplasmic reticulum (ER) stress and activated the protective inositol-requiring kinase (IRE)-1α pathway. Knocking down IRE-1α further activated the caspase cascade and caused an increase in cell death. Moreover, GE eliminated the migratory ability of HEY cells by reducing the expression of RhoA and Rac. It also blocked the invasion, which might be related to downregulation of matrix metalloproteinases (MMPs), i.e., MMP-9 and MMP-2, and upregulation of tissue inhibitors of metalloproteinase (TIMP) -1 and TIMP-2. In summary, GE exerts anticancer activities by inducing apoptosis and suppressing migration and invasion in ovarian cancer cells, which indicates its therapeutic potential for ovarian cancer.
Collapse
Affiliation(s)
- Xiao-Huang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qian-Yu Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Guangdong Medical Device Quality Surveillance and Test Institute, Guangzhou, Guangdong, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian-Lin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Li Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wen-An Qiang
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
106
|
Kourtidis A, Lu R, Pence LJ, Anastasiadis PZ. A central role for cadherin signaling in cancer. Exp Cell Res 2017; 358:78-85. [PMID: 28412244 PMCID: PMC5544584 DOI: 10.1016/j.yexcr.2017.04.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022]
Abstract
Cadherins are homophilic adhesion molecules with important functions in cell-cell adhesion, tissue morphogenesis, and cancer. In epithelial cells, E-cadherin accumulates at areas of cell-cell contact, coalesces into macromolecular complexes to form the adherens junctions (AJs), and associates via accessory partners with a subcortical ring of actin to form the apical zonula adherens (ZA). As a master regulator of the epithelial phenotype, E-cadherin is essential for the overall maintenance and homeostasis of polarized epithelial monolayers. Its expression is regulated by a host of genetic and epigenetic mechanisms related to cancer, and its function is modulated by mechanical forces at the junctions, by direct binding and phosphorylation of accessory proteins collectively termed catenins, by endocytosis, recycling and degradation, as well as, by multiple signaling pathways and developmental processes, like the epithelial to mesenchymal transition (EMT). Nuclear signaling mediated by the cadherin associated proteins β-catenin and p120 promotes growth, migration and pluripotency. Receptor tyrosine kinase, PI3K/AKT, Rho GTPase, and HIPPO signaling, are all regulated by E-cadherin mediated cell-cell adhesion. Finally, the recruitment of the microprocessor complex to the ZA by PLEKHA7, and the subsequent regulation of a small subset of miRNAs provide an additional mechanism by which the state of epithelial cell-cell adhesion affects translation of target genes to maintain the homeostasis of polarized epithelial monolayers. Collectively, the data indicate that loss of E-cadherin function, especially at the ZA, is a common and crucial step in cancer progression.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ruifeng Lu
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Lindy J Pence
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
107
|
Chang HY, Chang HM, Wu TJ, Chaing CY, Tzai TS, Cheng HL, Raghavaraju G, Chow NH, Liu HS. The role of Lutheran/basal cell adhesion molecule in human bladder carcinogenesis. J Biomed Sci 2017; 24:61. [PMID: 28841878 PMCID: PMC6389174 DOI: 10.1186/s12929-017-0360-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/03/2017] [Indexed: 11/25/2022] Open
Abstract
Background Lutheran/basal cell adhesion molecule (Lu/BCAM) is a membrane bound glycoprotein. This study was performed to investigate the role and downstream signaling pathway of Lu/BCAM in human bladder tumorigenesis. Methods Five human bladder cancer (E6, RT4, TSGH8301, TCCSUP and J82), one stable mouse fibroblast cell line (NIH-Lu) expressing Lu/BCAM transgene and sixty human uroepithelial carcinoma specimens were analyzed by real-time PCR, immunohistochemistry (IHC), immunofluorescence (IFA) staining, Western blotting and promoter luciferase assay for Lu/BCAM, respectively. The tumorigenicity of Lu/BCAM was demonstrated by focus formation, colony-forming ability, tumour formation, cell adhesion and migration. Results H-rasV12 was revealed to up-regulate Lu/BCAM at both transcriptional and translation levels. Lu/BCAM expression was detected on the membrane of primary human bladder cancer cells. Over-expression of Lu/BCAM in NIH-Lu stable cells increased focus number, colony formation and cell adhesion accompanied with F-actin rearrangement and decreased cell migration compared with parental NIH3T3 fibroblasts. In the presence of laminin ligand, Lu/BCAM overexpression further suppressed cell migration accompanied with increased cell adhesion. We further revealed that laminin-Lu/BCAM-induced cell adhesion and F-actin rearrangement were through increased Erk phosphorylation with an increase of RhoA and a decrease of Rac1 activity. Similarly, high Lu/BCAM expression was detected in the tumors of human renal pelvis, ureter and bladder, and was significantly associated with advanced tumor stage (p = 0.02). Patients with high Lu/BCAM expression showed a trend toward larger tumor size (p = 0.07) and lower disease-specific survival (p = 0.08), although not reaching statistical significance. Conclusion This is the first report showing that Lu/BCAM, in the presence of its ligand laminin, is oncogenic in human urothelial cancers and may have potential as a novel therapeutic target. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0360-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong-Yi Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Hsin-Mei Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Tsung-Jung Wu
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Chang-Yao Chaing
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Tzong-Shin Tzai
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Hong-Lin Cheng
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Giri Raghavaraju
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Nan-Haw Chow
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.
| | - Hsiao-Sheng Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.
| |
Collapse
|
108
|
Schillaci O, Fontana S, Monteleone F, Taverna S, Di Bella MA, Di Vizio D, Alessandro R. Exosomes from metastatic cancer cells transfer amoeboid phenotype to non-metastatic cells and increase endothelial permeability: their emerging role in tumor heterogeneity. Sci Rep 2017; 7:4711. [PMID: 28680152 PMCID: PMC5498501 DOI: 10.1038/s41598-017-05002-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/23/2017] [Indexed: 01/03/2023] Open
Abstract
The goal of this study was to understand if exosomes derived from high-metastatic cells may influence the behavior of less aggressive cancer cells and the properties of the endothelium. We found that metastatic colon cancer cells are able to transfer their amoeboid phenotype to isogenic primary cancer cells through exosomes, and that this morphological transition is associated with the acquisition of a more aggressive behavior. Moreover, exosomes from the metastatic line (SW620Exos) exhibited higher ability to cause endothelial hyperpermeability than exosomes from the non metastatic line (SW480Exos). SWATH-based quantitative proteomic analysis highlighted that SW620Exos are significantly enriched in cytoskeletal-associated proteins including proteins activating the RhoA/ROCK pathway, known to induce amoeboid properties and destabilization of endothelial junctions. In particular, thrombin was identified as a key mediator of the effects induced by SW620Exos in target cells, in which we also found a significant increase of RhoA activity. Overall, our results demonstrate that in a heterogeneous context exosomes released by aggressive sub-clones can contribute to accelerate tumor progression by spreading malignant properties that affect both the tumor cell plasticity and the endothelial cell behavior.
Collapse
Affiliation(s)
- Odessa Schillaci
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Simona Fontana
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy.
| | - Francesca Monteleone
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Simona Taverna
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | | | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Riccardo Alessandro
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| |
Collapse
|
109
|
Marei H, Malliri A. Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases 2017; 8:139-163. [PMID: 27442895 PMCID: PMC5584733 DOI: 10.1080/21541248.2016.1211398] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
Abnormal Rac1 signaling is linked to a number of debilitating human diseases, including cancer, cardiovascular diseases and neurodegenerative disorders. As such, Rac1 represents an attractive therapeutic target, yet the search for effective Rac1 inhibitors is still underway. Given the adverse effects associated with Rac1 signaling perturbation, cells have evolved several mechanisms to ensure the tight regulation of Rac1 signaling. Thus, characterizing these mechanisms can provide invaluable information regarding major cellular events that lead to aberrant Rac1 signaling. Importantly, this information can be utilized to further facilitate the development of effective pharmacological modulators that can restore normal Rac1 signaling. In this review, we focus on the pathological role of Rac1 signaling, highlighting the benefits and potential drawbacks of targeting Rac1 in a clinical setting. Additionally, we provide an overview of available compounds that target key Rac1 regulatory mechanisms and discuss future therapeutic avenues arising from our understanding of these mechanisms.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
110
|
Ramos CJ, Antonetti DA. The role of small GTPases and EPAC-Rap signaling in the regulation of the blood-brain and blood-retinal barriers. Tissue Barriers 2017. [PMID: 28632993 DOI: 10.1080/21688370.2017.1339768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Maintenance and regulation of the vascular endothelial cell junctional complex is critical for proper barrier function of the blood-brain barrier (BBB) and the highly related blood-retinal barrier (BRB) that help maintain proper neuronal environment. Recent research has demonstrated that the junctional complex is actively maintained and can be dynamically regulated. Studies focusing on the mechanisms of barrier formation, maintenance, and barrier disruption have been of interest to understanding development of the BBB and BRB and identifying a means for therapeutic intervention for diseases ranging from brain tumors and dementia to blinding eye diseases. Research has increasingly revealed that small GTPases play a critical role in both barrier formation and disruption mechanisms. This review will summarize the current data on small GTPases in barrier regulation with an emphasis on the EPAC-Rap1 signaling pathway to Rho in endothelial barriers, as well as explore its potential involvement in paracellular flux and transcytosis regulation.
Collapse
Affiliation(s)
- Carla J Ramos
- a Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , MI USA
| | - David A Antonetti
- a Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , MI USA
| |
Collapse
|
111
|
Denisov EV, Skryabin NA, Gerashchenko TS, Tashireva LA, Wilhelm J, Buldakov MA, Sleptcov AA, Lebedev IN, Vtorushin SV, Zavyalova MV, Cherdyntseva NV, Perelmuter VM. Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44 +CD24 - stemness. Oncotarget 2017; 8:61163-61180. [PMID: 28977854 PMCID: PMC5617414 DOI: 10.18632/oncotarget.18022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/20/2017] [Indexed: 12/28/2022] Open
Abstract
Intratumor morphological heterogeneity in breast cancer is represented by different morphological structures (tubular, alveolar, solid, trabecular, and discrete) and contributes to poor prognosis; however, the mechanisms involved remain unclear. In this study, we performed 3D imaging, laser microdissection-assisted array comparative genomic hybridization and gene expression microarray analysis of different morphological structures and examined their association with the standard immunohistochemistry scorings and CD44+CD24- cancer stem cells. We found that the intratumor morphological heterogeneity is not associated with chromosomal aberrations. By contrast, morphological structures were characterized by specific gene expression profiles and signaling pathways and significantly differed in progesterone receptor and Ki-67 expression. Most importantly, we observed significant differences between structures in the number of expressed genes of the epithelial and mesenchymal phenotypes and the association with cancer invasion pathways. Tubular (tube-shaped) and alveolar (spheroid-shaped) structures were transcriptionally similar and demonstrated co-expression of epithelial and mesenchymal markers. Solid (large shapeless) structures retained epithelial features but demonstrated an increase in mesenchymal traits and collective cell migration hallmarks. Mesenchymal genes and cancer invasion pathways, as well as Ki-67 expression, were enriched in trabecular (one/two rows of tumor cells) and discrete groups (single cells and/or arrangements of 2-5 cells). Surprisingly, the number of CD44+CD24- cells was found to be the lowest in discrete groups and the highest in alveolar and solid structures. Overall, our findings indicate the association of intratumor morphological heterogeneity in breast cancer with the epithelial-mesenchymal transition and CD44+CD24- stemness and the appeal of this heterogeneity as a model for the study of cancer invasion.
Collapse
Affiliation(s)
- Evgeny V Denisov
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050, Tomsk, Russian Federation.,Department of Organic Chemistry, Tomsk State University, 634050, Tomsk, Russian Federation
| | - Nikolay A Skryabin
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Laboratory of Human Ontogenetics, Tomsk State University, 634050, Tomsk, Russian Federation
| | - Tatiana S Gerashchenko
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050, Tomsk, Russian Federation
| | - Lubov A Tashireva
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation
| | - Jochen Wilhelm
- Department of Internal Medicine, German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, D-35392, Giessen, Germany
| | - Mikhail A Buldakov
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050, Tomsk, Russian Federation
| | - Aleksei A Sleptcov
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation
| | - Igor N Lebedev
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Laboratory of Human Ontogenetics, Tomsk State University, 634050, Tomsk, Russian Federation
| | - Sergey V Vtorushin
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Department of Pathological Anatomy, Siberian State Medical University, 634050, Tomsk, Russian Federation
| | - Marina V Zavyalova
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050, Tomsk, Russian Federation.,Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Department of Pathological Anatomy, Siberian State Medical University, 634050, Tomsk, Russian Federation
| | - Nadezhda V Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050, Tomsk, Russian Federation
| | - Vladimir M Perelmuter
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Department of Pathological Anatomy, Siberian State Medical University, 634050, Tomsk, Russian Federation
| |
Collapse
|
112
|
Abdallah BM, Figeac F, Larsen KH, Ditzel N, Keshari P, Isa A, Jafari A, Andersen TL, Delaisse JM, Goshima Y, Ohshima T, Kassem M. CRMP4 Inhibits Bone Formation by Negatively Regulating BMP and RhoA Signaling. J Bone Miner Res 2017; 32:913-926. [PMID: 28019696 DOI: 10.1002/jbmr.3069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 11/10/2022]
Abstract
We identified the neuroprotein collapsing response mediator protein-4 (CRMP4) as a noncanonical osteogenic factor that regulates the differentiation of mouse bone marrow skeletal stem cells (bone marrow stromal stem cells [mBMSCs]) into osteoblastic cells. CRMP4 is the only member of the CRMP1-CRMP5 family to be expressed by mBMSCs and in osteoprogenitors of both adult mouse and human bones. In vitro gain-of-function and loss-of-function of CRMP4 in murine stromal cells revealed its inhibitory effect on osteoblast differentiation. In addition, Crmp4-deficient mice (Crmp4-/- ) displayed a 40% increase in bone mass, increased mineral apposition rate, and bone formation rate, compared to wild-type controls. Increased bone mass in Crmp4-/- mice was associated with enhanced BMP2 signaling and BMP2-induced osteoblast differentiation in Crmp4-/- osteoblasts (OBs). Furthermore, Crmp4-/- OBs exhibited enhanced activation of RhoA/focal adhesion kinase (FAK) signaling that led to cytoskeletal changes with increased cell spreading. In addition, Crmp4-/- OBs exhibited increased cell proliferation that was mediated via inhibiting cyclin-dependent kinase inhibitor 1B, p27Kip1 and upregulating cyclin D1 expression which are targets of RhoA signaling pathway. Our findings identify CRMP4 as a novel negative regulator of osteoblast differentiation. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Basem M Abdallah
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark.,Department of Biological Sciences, College of Science, King Faisal University, Hofuf, Saudi Arabia.,Faculty of Science, Helwan University, Cairo, Egypt
| | - Florence Figeac
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Kenneth H Larsen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Nicholas Ditzel
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Pankaj Keshari
- Department of Neurology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Adiba Isa
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, DanStem (Danish Stem Cell Center), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Thomas L Andersen
- Department of Clinical Cell Biology, Vejle/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - Jean-Marie Delaisse
- Department of Clinical Cell Biology, Vejle/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark.,Department of Cellular and Molecular Medicine, DanStem (Danish Stem Cell Center), Panum Institute, University of Copenhagen, Copenhagen, Denmark.,Stem Cell Unit, Department of Anatomy, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
113
|
Valenti D, de Bari L, Vigli D, Lacivita E, Leopoldo M, Laviola G, Vacca RA, De Filippis B. Stimulation of the brain serotonin receptor 7 rescues mitochondrial dysfunction in female mice from two models of Rett syndrome. Neuropharmacology 2017; 121:79-88. [PMID: 28419872 DOI: 10.1016/j.neuropharm.2017.04.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/21/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that neurobehavioral and brain molecular alterations can be rescued in a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family, crucially involved in the regulation of brain structural plasticity and cognitive processes, can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective agonist. The present study extends previous findings by demonstrating that LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues mitochondrial respiratory chain impairment, oxidative phosphorylation deficiency and the reduced energy status in the brain of heterozygous female mice from two highly validated mouse models of RTT (MeCP2-308 and MeCP2-Bird mice). Moreover, LP-211 treatment completely restored the radical species overproduction by brain mitochondria in the MeCP2-308 model and partially recovered the oxidative imbalance in the more severely affected MeCP2-Bird model. These results provide the first evidence that RTT brain mitochondrial dysfunction can be rescued targeting the brain 5-HT7R and add compelling preclinical evidence of the potential therapeutic value of LP-211 as a pharmacological approach for this devastating neurodevelopmental disorder.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Enza Lacivita
- Dept. Pharmacy, University of Bari "A. Moro", via Orabona 4, 70125 Bari, Italy
| | - Marcello Leopoldo
- Dept. Pharmacy, University of Bari "A. Moro", via Orabona 4, 70125 Bari, Italy
| | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
114
|
p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation. Nat Commun 2017; 8:14382. [PMID: 28176763 PMCID: PMC5309857 DOI: 10.1038/ncomms14382] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 12/22/2016] [Indexed: 12/17/2022] Open
Abstract
The mechanisms regulating hematopoietic stem and progenitor cell (HSPC) fate choices remain ill-defined. Here, we show that a signalling network of p190-B RhoGAP-ROS-TGF-β-p38MAPK balances HSPC self-renewal and differentiation. Upon transplantation, HSPCs express high amounts of bioactive TGF-β1 protein, which is associated with high levels of p38MAPK activity and loss of HSC self-renewal in vivo. Elevated levels of bioactive TGF-β1 are associated with asymmetric fate choice in vitro in single HSPCs via p38MAPK activity and this is correlated with the asymmetric distribution of activated p38MAPK. In contrast, loss of p190-B, a RhoGTPase inhibitor, normalizes TGF-β levels and p38MAPK activity in HSPCs and is correlated with increased HSC self-renewal in vivo. Loss of p190-B also promotes symmetric retention of multi-lineage capacity in single HSPC myeloid cell cultures, further suggesting a link between p190-B-RhoGAP and non-canonical TGF-β signalling in HSPC differentiation. Thus, intracellular cytokine signalling may serve as ‘fate determinants' used by HSPCs to modulate their activity. The success of hematopoietic stem cell (HSC) transplantation relies on understanding what regulates the fate decision to self-renew. Here, the authors show using both in vitro assays and in vivo transplantation that loss of the RhoGAP p190-B enhances self-renewal by inhibiting TGFβ/p38 signalling.
Collapse
|
115
|
Cao M, Shikama Y, Kimura H, Noji H, Ikeda K, Ono T, Ogawa K, Takeishi Y, Kimura J. Mechanisms of Impaired Neutrophil Migration by MicroRNAs in Myelodysplastic Syndromes. THE JOURNAL OF IMMUNOLOGY 2017; 198:1887-1899. [PMID: 28130497 DOI: 10.4049/jimmunol.1600622] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 12/30/2016] [Indexed: 12/14/2022]
Abstract
In myelodysplastic syndromes (MDS), functional defects of neutrophils result in high mortality because of infections; however, the molecular basis remains unclear. We recently found that miR-34a and miR-155 were significantly increased in MDS neutrophils. To clarify the effects of the aberrant microRNA expression on neutrophil functions, we introduced miR-34a, miR-155, or control microRNA into neutrophil-like differentiated HL60 cells. Ectopically introduced miR-34a and miR-155 significantly attenuated migration toward chemoattractants fMLF and IL-8, but enhanced degranulation. To clarify the mechanisms for inhibition of migration, we studied the effects of miR-34a and miR-155 on the migration-regulating Rho family members, Cdc42 and Rac1. The introduced miR-34a and miR-155 decreased the fMLF-induced active form of Cdc42 to 29.0 ± 15.9 and 39.7 ± 4.8% of that in the control cells, respectively, although Cdc42 protein levels were not altered. miR-34a decreased a Cdc42-specific guanine nucleotide exchange factor (GEF), dedicator of cytokinesis (DOCK) 8, whereas miR-155 reduced another Cdc42-specific GEF, FYVE, RhoGEF, and PH domain-containing (FGD) 4. The knockdown of DOCK8 and FGD4 by small interfering RNA suppressed Cdc42 activation and fMLF/IL-8-induced migration. miR-155, but not miR-34a, decreased Rac1 protein, and introduction of Rac1 small interfering RNA attenuated Rac1 activation and migration. Neutrophils from patients showed significant attenuation in migration compared with healthy cells, and protein levels of DOCK8, FGD4, and Rac1 were well correlated with migration toward fMLF (r = 0.642, 0.686, and 0.436, respectively) and IL-8 (r = 0.778, 0.659, and 0.606, respectively). Our results indicated that reduction of DOCK8, FGD4, and Rac1 contributes to impaired neutrophil migration in MDS.
Collapse
Affiliation(s)
- Meiwan Cao
- Department of Pharmacology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yayoi Shikama
- Department of Pharmacology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; .,Center for Medical Education and Career Development, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideo Kimura
- Department of Hematology, Kita-Fukushima Medical Center, Date 960-0502, Japan
| | - Hideyoshi Noji
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan.,Department of Medical Oncology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; and
| | - Kazuhiko Ikeda
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan.,Department of Blood Transfusion and Transplantation Immunology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Tomoyuki Ono
- Department of Pharmacology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Kazuei Ogawa
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yasuchika Takeishi
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Junko Kimura
- Department of Pharmacology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
116
|
He W, Wu Y, Tang X, Xia Y, He G, Min Z, Li C, Xiong S, Shi Z, Lu Y, Yuan Z. HDAC inhibitors suppress c-Jun/Fra-1-mediated proliferation through transcriptionally downregulating MKK7 and Raf1 in neuroblastoma cells. Oncotarget 2017; 7:6727-47. [PMID: 26734995 PMCID: PMC4872745 DOI: 10.18632/oncotarget.6797] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022] Open
Abstract
Activator protein 1 (AP-1) is a transcriptional factor composed of the dimeric members of bZIP proteins, which are frequently deregulated in human cancer cells. In this study, we aimed to identify an oncogenic AP-1 dimer critical for the proliferation of neuroblastoma cells and to investigate whether histone deacetylase inhibitors (HDACIs), a new generation of anticancer agents, could target the AP-1 dimer. We report here that HDACIs including trichostatin A, suberoylanilidehydroxamic acid, valproic acid and M344 can transcriptionally suppress both c-Jun and Fra-1, preceding their inhibition of cell growth. c-Jun preferentially interacting with Fra-1 as a heterodimer is responsible for AP-1 activity and critical for cell growth. Mechanistically, HDACIs suppress Fra-1 expression through transcriptionally downregulating Raf1 and subsequently decreasing MEK1/2-ERK1/2 activity. Unexpectedly, HDACI treatment caused MKK7 downregulation at both the protein and mRNA levels. Deletion analysis of the 5′-flanking sequence of the MKK7 gene revealed that a major element responsible for the downregulation by HDACI is located at −149 to −3 relative to the transcriptional start site. Knockdown of MKK7 but not MKK4 remarkably decreased JNK/c-Jun activity and proliferation, whereas ectopic MKK7-JNK1 reversed HDACI-induced c-Jun suppression. Furthermore, suppression of both MKK-7/c-Jun and Raf-1/Fra-1 activities was involved in the tumor growth inhibitory effects induced by SAHA in SH-SY5Y xenograft mice. Collectively, these findings demonstrated that c-Jun/Fra-1 dimer is critical for neuroblastoma cell growth and that HDACIs act as effective suppressors of the two oncogenes through transcriptionally downregulating MKK7 and Raf1.
Collapse
Affiliation(s)
- Weiwen He
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yanna Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yong Xia
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Guozhen He
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Zhiqun Min
- Clinical Laboratory Center of Molecular Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chun Li
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Shiqiu Xiong
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Zhi Shi
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yongjian Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Zhongmin Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
117
|
Tanja Mierke C. Physical role of nuclear and cytoskeletal confinements in cell migration mode selection and switching. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
118
|
Zhan JS, Gao K, Chai RC, Jia XH, Luo DP, Ge G, Jiang YW, Fung YWW, Li L, Yu ACH. Astrocytes in Migration. Neurochem Res 2017; 42:272-282. [PMID: 27837318 DOI: 10.1007/s11064-016-2089-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/30/2022]
Abstract
Cell migration is a fundamental phenomenon that underlies tissue morphogenesis, wound healing, immune response, and cancer metastasis. Great progresses have been made in research methodologies, with cell migration identified as a highly orchestrated process. Brain is considered the most complex organ in the human body, containing many types of neural cells with astrocytes playing crucial roles in monitoring normal functions of the central nervous system. Astrocytes are mostly quiescent under normal physiological conditions in the adult brain but become migratory after injury. Under most known pathological conditions in the brain, spinal cord and retina, astrocytes are activated and become hypertrophic, hyperplastic, and up-regulating GFAP based on the grades of severity. These three observations are the hallmark in glia scar formation-astrogliosis. The reactivation process is initiated with structural changes involving cell process migration and ended with cell migration. Detailed mechanisms in astrocyte migration have not been studied extensively and remain largely unknown. Here, we therefore attempt to review the mechanisms in migration of astrocytes.
Collapse
Affiliation(s)
- Jiang Shan Zhan
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Gao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Rui Chao Chai
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Xi Hua Jia
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Dao Peng Luo
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, 550025, Guizhou, China
| | - Guo Ge
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, 550025, Guizhou, China
| | - Yu Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yin-Wan Wendy Fung
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Lina Li
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
| | - Albert Cheung Hoi Yu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Laboratory of Translational Medicine, Institute of Systems Biomedicine, Peking University, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
| |
Collapse
|
119
|
Liu R, Molkentin JD. Regulation of cardiac hypertrophy and remodeling through the dual-specificity MAPK phosphatases (DUSPs). J Mol Cell Cardiol 2016; 101:44-49. [PMID: 27575022 PMCID: PMC5154921 DOI: 10.1016/j.yjmcc.2016.08.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 01/19/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play a critical role in regulating cardiac hypertrophy and remodeling in response to increased workload or pathological insults. The spatiotemporal activities and inactivation of MAPKs are tightly controlled by a family of dual-specificity MAPK phosphatases (DUSPs). Over the past 2 decades, we and others have determined the critical role for selected DUSP family members in controlling MAPK activity in the heart and the ensuing effects on ventricular growth and remodeling. More specifically, studies from mice deficient for individual Dusp genes as well as heart-specific inducible transgene-mediated overexpression have implicated select DUSPs as essential signaling effectors in the heart that function by dynamically regulating the level, subcellular and temporal activities of the extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs) and p38 MAPKs. This review summarizes recent literature on the physiological and pathological roles of MAPK-specific DUSPs in regulating MAPK signaling in the heart and the effect on cardiac growth and remodeling.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA; Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jeffery D Molkentin
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
120
|
Peña E, de la Torre R, Arderiu G, Slevin M, Badimon L. mCRP triggers angiogenesis by inducing F3 transcription and TF signalling in microvascular endothelial cells. Thromb Haemost 2016; 117:357-370. [PMID: 27808345 DOI: 10.1160/th16-07-0524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/16/2016] [Indexed: 01/18/2023]
Abstract
Inflammation contributes to vascular disease progression. However, the role of circulating inflammatory molecules on microvascular endothelial cell (mECs) is not fully elucidated. The aim of this study was to investigate the effects of the short pentraxin CRP on microvascular endothelial cell angiogenic function. Subcutaneously implanted collagen plugs seeded with human mECs exposed to monomeric CRP (mCRP) in mice showed formation of an extended network of microvessels both in the plug and the overlying skin tissue, while mECs exposure to pentameric native CRP (nCRP) induced a much milder effect. To understand the mechanisms behind this angiogenic effects, mECs were exposed to both CRP forms and cell migration, wound repair and tube-like formation were investigated. nCRP effects were moderate and of slow-onset whereas mCRP induced rapid, and highly significant effects. We investigated how circulating nCRP is transformed into mCRP by confocal microscopy and western blot. nCRP is transformed into mCRP on the mECs membranes in a time dependent fashion. This transformation is specific and in part receptor dependent, and the formed mCRP triggers F3 gene transcription and TF-protein expression in mECs to induce angiogenesis. F3-silenced mECs are unable to form angiotubes. In agreement, mCRP induced upregulation of the TF signalling pathway in mECs with downstream phosphorylation of AKT and activation of the transcription factor ETS1 leading to increased CCL2 release. The circulating pentraxin nCRP with little pro-angiogenic effect when dissociated into mCRP on the surface of mECs is able to trigger potent proangiogenic effects by inducing F3-gene upregulation and TF signalling.
Collapse
Affiliation(s)
| | | | | | | | - Lina Badimon
- Prof. Lina Badimon, Cardiovascular Research Center, Hospital de la Santa Creu i Sant Pau, C/ Sant Antoni Mª Claret 167, 08025 Barcelona, Spain, Tel.: +34 93 556 58 80, Fax: +34 93 556 55 59, E-mail:
| |
Collapse
|
121
|
Bouchet J, McCaffrey MW, Graziani A, Alcover A. The functional interplay of Rab11, FIP3 and Rho proteins on the endosomal recycling pathway controls cell shape and symmetry. Small GTPases 2016; 9:310-315. [PMID: 27533792 PMCID: PMC5997156 DOI: 10.1080/21541248.2016.1224288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several families of small GTPases regulate a variety of fundamental cellular processes, encompassing growth factor signal transduction, vesicular trafficking and control of the cytoskeleton. Frequently, their action is hierarchical and complementary, but much of the detail of their functional interactions remains to be clarified. It is well established that Rab family members regulate a variety of intracellular vesicle trafficking pathways. Moreover, Rho family GTPases are pivotal for the control of the actin and microtubule cytoskeleton. However, the interplay between these 2 types of GTPases has been rarely reported. We discuss here our recent findings showing that Rab11, a key regulator of endosomal recycling, and Rac1, a central actin cytoskeleton regulator involved in lamellipodium formation and cell migration, interplay on endosomes through the Rab11 effector FIP3. In the context of the rapidly reactive T lymphocytes, Rab11-Rac1 endosomal functional interplay is important to control cell shape changes and cell symmetry during lymphocyte spreading and immunological synapse formation and ultimately modulate T cell activation.
Collapse
Affiliation(s)
- Jérôme Bouchet
- a Institut Pasteur, Department of Immunology , Lymphocyte Cell Biology Unit , Paris , France.,b INSERM U1221 , Paris , France.,c Institut Cochin, INSERM U1016, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Mary W McCaffrey
- d Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College , Cork , Ireland
| | | | - Andrés Alcover
- a Institut Pasteur, Department of Immunology , Lymphocyte Cell Biology Unit , Paris , France.,b INSERM U1221 , Paris , France
| |
Collapse
|
122
|
Zhang T, Gong T, Xie J, Lin S, Liu Y, Zhou T, Lin Y. Softening Substrates Promote Chondrocytes Phenotype via RhoA/ROCK Pathway. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22884-91. [PMID: 27534990 DOI: 10.1021/acsami.6b07097] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Tao Gong
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Jing Xie
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Shiyu Lin
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Yao Liu
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Tengfei Zhou
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
123
|
Lusthaus JA, Goldberg I. Investigational and experimental drugs for intraocular pressure reduction in ocular hypertension and glaucoma. Expert Opin Investig Drugs 2016; 25:1201-8. [DOI: 10.1080/13543784.2016.1223042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
124
|
Vav1: A Dr. Jekyll and Mr. Hyde protein--good for the hematopoietic system, bad for cancer. Oncotarget 2016; 6:28731-42. [PMID: 26353933 PMCID: PMC4745688 DOI: 10.18632/oncotarget.5086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/07/2015] [Indexed: 01/10/2023] Open
Abstract
Many deregulated signal transducer proteins are involved in various cancers at numerous stages of tumor development. One of these, Vav1, is normally expressed exclusively in the hematopoietic system, where it functions as a specific GDP/GTP nucleotide exchange factor (GEF), strictly regulated by tyrosine phosphorylation. Vav was first identified in an NIH3T3 screen for oncogenes. Although the oncogenic form of Vav1 identified in the screen has not been detected in clinical human tumors, its wild-type form has recently been implicated in mammalian malignancies, including neuroblastoma, melanoma, pancreatic, lung and breast cancers, and B-cell chronic lymphocytic leukemia. In addition, it was recently identified as a mutated gene in human cancers of various origins. However, the activity and contribution to cancer of these Vav1 mutants is still unclear. This review addresses the physiological function of wild-type Vav1 and its activity as an oncogene in human cancer. It also discusses the novel mutations identified in Vav1 in various cancers and their potential contribution to cancer development as oncogenes or tumor suppressor genes.
Collapse
|
125
|
Dong JM, Tay FPL, Swa HLF, Gunaratne J, Leung T, Burke B, Manser E. Proximity biotinylation provides insight into the molecular composition of focal adhesions at the nanometer scale. Sci Signal 2016; 9:rs4. [PMID: 27303058 DOI: 10.1126/scisignal.aaf3572] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Focal adhesions are protein complexes that link metazoan cells to the extracellular matrix through the integrin family of transmembrane proteins. Integrins recruit many proteins to these complexes, referred to as the "adhesome." We used proximity-dependent biotinylation (BioID) in U2OS osteosarcoma cells to label proteins within 15 to 25 nm of paxillin, a cytoplasmic focal adhesion protein, and kindlin-2, which directly binds β integrins. Using mass spectrometry analysis of the biotinylated proteins, we identified 27 known adhesome proteins and 8 previously unknown components close to paxillin. However, only seven of these proteins interacted directly with paxillin, one of which was the adaptor protein Kank2. The proteins in proximity to β integrin included 15 of the adhesion proteins identified in the paxillin BioID data set. BioID also correctly established kindlin-2 as a cell-cell junction protein. By focusing on this smaller data set, new partners for kindlin-2 were found, namely, the endocytosis-promoting proteins liprin β1 and EFR3A, but, contrary to previous reports, not the filamin-binding protein migfilin. A model adhesome based on both data sets suggests that focal adhesions contain fewer components than previously suspected and that paxillin lies away from the plasma membrane. These data not only illustrate the power of using BioID and stable isotope-labeled mass spectrometry to define macromolecular complexes but also enable the correct identification of therapeutic targets within the adhesome.
Collapse
Affiliation(s)
- Jing-Ming Dong
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Felicia Pei-Ling Tay
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Hannah Lee-Foon Swa
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore. Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Thomas Leung
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Brian Burke
- Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos Building, Singapore 138648, Singapore
| | - Ed Manser
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore. Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos Building, Singapore 138648, Singapore. Department of Pharmacology, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
126
|
Liu R, van Berlo JH, York AJ, Vagnozzi RJ, Maillet M, Molkentin JD. DUSP8 Regulates Cardiac Ventricular Remodeling by Altering ERK1/2 Signaling. Circ Res 2016; 119:249-60. [PMID: 27225478 DOI: 10.1161/circresaha.115.308238] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/25/2016] [Indexed: 01/05/2023]
Abstract
RATIONALE Mitogen-activated protein kinase (MAPK) signaling regulates the growth response of the adult myocardium in response to increased cardiac workload or pathological insults. The dual-specificity phosphatases (DUSPs) are critical effectors, which dephosphorylate the MAPKs to control the basal tone, amplitude, and duration of MAPK signaling. OBJECTIVE To examine DUSP8 as a regulator of MAPK signaling in the heart and its impact on ventricular and cardiac myocyte growth dynamics. METHODS AND RESULTS Dusp8 gene-deleted mice and transgenic mice with inducible expression of DUSP8 in the heart were used here to investigate how this MAPK-phosphatase might regulate intracellular signaling and cardiac growth dynamics in vivo. Dusp8 gene-deleted mice were mildly hypercontractile at baseline with a cardiac phenotype of concentric ventricular remodeling, which protected them from progressing towards heart failure in 2 surgery-induced disease models. Cardiac-specific overexpression of DUSP8 produced spontaneous eccentric remodeling and ventricular dilation with heart failure. At the cellular level, adult cardiac myocytes from Dusp8 gene-deleted mice were thicker and shorter, whereas DUSP8 overexpression promoted cardiac myocyte lengthening with a loss of thickness. Mechanistically, activation of extracellular signal-regulated kinases 1/2 were selectively increased in Dusp8 gene-deleted hearts at baseline and following acute pathological stress stimulation, whereas p38 MAPK and c-Jun N-terminal kinases were mostly unaffected. CONCLUSIONS These results indicate that DUSP8 controls basal and acute stress-induced extracellular signal-regulated kinases 1/2 signaling in adult cardiac myocytes that then alters the length-width growth dynamics of individual cardiac myocytes, which further alters contractility, ventricular remodeling, and disease susceptibility.
Collapse
Affiliation(s)
- Ruijie Liu
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Jop H van Berlo
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Allen J York
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Ronald J Vagnozzi
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Marjorie Maillet
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Jeffery D Molkentin
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.).
| |
Collapse
|
127
|
Monin MB, Krause P, Stelling R, Bocuk D, Niebert S, Klemm F, Pukrop T, Koenig S. The anthelmintic niclosamide inhibits colorectal cancer cell lines via modulation of the canonical and noncanonical Wnt signaling pathway. J Surg Res 2016; 203:193-205. [PMID: 27338550 DOI: 10.1016/j.jss.2016.03.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Wnt/β-catenin signaling is known to play an important role in colorectal cancer (CRC). Niclosamide, a salicylamide derivative used in the treatment of tapeworm infections, targets the Wnt/β-catenin pathway. The objective of this study was to investigate niclosamide as a therapeutic agent against CRC. METHODS The antiproliferative effects of 1, 3, 10, and 50 μM concentrations of niclosamide on human (SW480 and SW620) and rodent (CC531) CRC cell lines were determined by MTS assay and direct cell count. The lymphoid enhancer-binding factor 1/transcription factor (LEF/TCF) reporter assay monitored the activity of Wnt signaling. Immunofluorescence staining demonstrated the expression pattern of active β-catenin. Gene expression of canonical and noncanonical Wnt signaling components was analyzed using qRT-PCR. Western blot analysis was performed with antibodies detecting nuclear localization of β-catenin and c-jun. RESULTS Cell proliferation in CRC cell lines was blocked dose dependently after 12 and 24 h of incubation. The Wnt promoter activity of LEF/TCF significantly decreased with niclosamide concentrations of 10 and 50 μM after 12 h of incubation. Active β-catenin did not shift from the nuclear to the cytosolic pool. However, canonical target genes (met, MMP7, and cyclin D1) as well as the coactivating factor Bcl9 were downregulated, whereas the noncanonical key player c-jun was clearly activated. CONCLUSIONS Niclosamide treatment is associated with an inhibitory effect on CRC development and reduced Wnt activity. It may exert its effect by interfering with the nuclear β-catenin-Bcl9-LEF/TCF triple-complex and by upregulation of c-jun representing noncanonical Wnt/JNK signaling. Thus, our findings warrant further research into this substance as a treatment option for patients with advanced CRC.
Collapse
Affiliation(s)
- Malte B Monin
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Petra Krause
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Robin Stelling
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Derya Bocuk
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Sabine Niebert
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Florian Klemm
- Department of Haematology and Oncology, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany
| | - Tobias Pukrop
- Department of Haematology and Oncology, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany; Department for Internal Medicine III, Hematology/Oncology, University Clinic Regensburg, Regensburg, Germany
| | - Sarah Koenig
- Department of General, Visceral and Paediatric Surgery, University Medical Centre, Georg-August-University Goettingen, Göttingen, Germany; University Hospital Wuerzburg, Julius-Maximilians-University Wuerzburg, Chair of Medical Teaching and Medical Education Research, Josef-Schneider-Str. 2/D6, D-97080 Wuerzburg, Germany.
| |
Collapse
|
128
|
Wei B, Hercyk BS, Mattson N, Mohammadi A, Rich J, DeBruyne E, Clark MM, Das M. Unique spatiotemporal activation pattern of Cdc42 by Gef1 and Scd1 promotes different events during cytokinesis. Mol Biol Cell 2016; 27:1235-45. [PMID: 26941334 PMCID: PMC4831878 DOI: 10.1091/mbc.e15-10-0700] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/23/2016] [Indexed: 11/11/2022] Open
Abstract
The Rho-family GTPase Cdc42 regulates cell polarity and localizes to the cell division site. Cdc42 is activated by guanine nucleotide exchange factors (GEFs). We report that Cdc42 promotes cytokinesis via a unique spatiotemporal activation pattern due to the distinct action of its GEFs, Gef1 and Scd1, in fission yeast. Before cytokinetic ring constriction, Cdc42 activation, is Gef1 dependent, and after ring constriction, it is Scd1 dependent. Gef1 localizes to the actomyosin ring immediately after ring assembly and promotes timely onset of ring constriction. Gef1 is required for proper actin organization during cytokinesis, distribution of type V myosin Myo52 to the division site, and timely recruitment of septum protein Bgs1. In contrast, Scd1 localizes to the broader region of ingressing membrane during cytokinetic furrowing. Scd1 promotes normal septum formation, andscd1Δcells display aberrant septa with reduced Bgs1 localization. Thus we define unique roles of the GEFs Gef1 and Scd1 in the regulation of distinct events during cytokinesis. Gef1 localizes first to the cytokinetic ring and promotes timely constriction, whereas Scd1 localizes later to the ingressing membrane and promotes septum formation. Our findings are consistent with reports that complexity in GTPase signaling patterns enables exquisite precision over the control of cellular processes.
Collapse
Affiliation(s)
- Bin Wei
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Brian S Hercyk
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Nicholas Mattson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Ahmad Mohammadi
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Julie Rich
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Erica DeBruyne
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Mikayla M Clark
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Maitreyi Das
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
129
|
Si H, Rittenour WR, Harris SD. Roles of Aspergillus nidulans Cdc42/Rho GTPase regulators in hyphal morphogenesis and development. Mycologia 2016; 108:543-55. [PMID: 26932184 DOI: 10.3852/15-232] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/20/2015] [Indexed: 02/03/2023]
Abstract
The Rho-related family of GTPases are pivotal regulators of morphogenetic processes in diverse eukaryotic organisms. In the filamentous fungi two related members of this family, Cdc42 and Rac1, perform particularly important roles in the establishment and maintenance of hyphal polarity. The activity of these GTPases is tightly controlled by two sets of regulators: guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Despite the importance of Cdc42 and Rac1 in polarized hyphal growth, the morphogenetic functions of their cognate GEFs and GAPs have not been widely characterized in filamentous fungi outside the Saccharomycotina. Here we present a functional analysis of the Aspergillus nidulans homologs of the yeast GEF Cdc24 and the yeast GAP Rga1. We show that Cdc24 is required for the establishment of hyphal polarity and localizes to hyphal tips. We also show that Rga1 is necessary for the suppression of branching in developing conidiophores. During asexual development Rga1 appears to act primarily via Cdc42 and in doing so serves as a critical determinant of conidiophore architecture. Our results provide new insight into the roles of Cdc42 during development in A nidulans.
Collapse
Affiliation(s)
- Haoyu Si
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68588-0660
| | - William R Rittenour
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68588-0660
| | - Steven D Harris
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68588-0660
| |
Collapse
|
130
|
Schill EM, Lake JI, Tusheva OA, Nagy N, Bery SK, Foster L, Avetisyan M, Johnson SL, Stenson WF, Goldstein AM, Heuckeroth RO. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol 2016; 409:473-88. [PMID: 26586201 PMCID: PMC4862364 DOI: 10.1016/j.ydbio.2015.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 12/17/2022]
Abstract
Hirschsprung Disease (HSCR) is a potentially deadly birth defect characterized by the absence of the enteric nervous system (ENS) in distal bowel. Although HSCR has clear genetic causes, no HSCR-associated mutation is 100% penetrant, suggesting gene-gene and gene-environment interactions determine HSCR occurrence. To test the hypothesis that certain medicines might alter HSCR risk we treated zebrafish with medications commonly used during early human pregnancy and discovered that ibuprofen caused HSCR-like absence of enteric neurons in distal bowel. Using fetal CF-1 mouse gut slice cultures, we found that ibuprofen treated enteric neural crest-derived cells (ENCDC) had reduced migration, fewer lamellipodia and lower levels of active RAC1/CDC42. Additionally, inhibiting ROCK, a RHOA effector and known RAC1 antagonist, reversed ibuprofen effects on migrating mouse ENCDC in culture. Ibuprofen also inhibited colonization of Ret+/- mouse bowel by ENCDC in vivo and dramatically reduced bowel colonization by chick ENCDC in culture. Interestingly, ibuprofen did not affect ENCDC migration until after at least three hours of exposure. Furthermore, mice deficient in Ptgs1 (COX 1) and Ptgs2 (COX 2) had normal bowel colonization by ENCDC and normal ENCDC migration in vitro suggesting COX-independent effects. Consistent with selective and strain specific effects on ENCDC, ibuprofen did not affect migration of gut mesenchymal cells, NIH3T3, or WT C57BL/6 ENCDC, and did not affect dorsal root ganglion cell precursor migration in zebrafish. Thus, ibuprofen inhibits ENCDC migration in vitro and bowel colonization by ENCDC in vivo in zebrafish, mouse and chick, but there are cell type and strain specific responses. These data raise concern that ibuprofen may increase Hirschsprung disease risk in some genetically susceptible children.
Collapse
Affiliation(s)
- Ellen Merrick Schill
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jonathan I Lake
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Olga A Tusheva
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA; Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Saya K Bery
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Lynne Foster
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Marina Avetisyan
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Stephen L Johnson
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - William F Stenson
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
131
|
Huang T, Kang W, Cheng ASL, Yu J, To KF. The emerging role of Slit-Robo pathway in gastric and other gastro intestinal cancers. BMC Cancer 2015; 15:950. [PMID: 26674478 PMCID: PMC4682238 DOI: 10.1186/s12885-015-1984-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/08/2015] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancer-related deaths. Due to the high frequency of metastasis, it is still one of the most lethal malignancies in which kinds of signaling pathways are involved in. The Roundabout (ROBO) receptors and their secreted SLIT glycoprotein ligands, which were originally identified as important axon guidance molecules, have implication in the regulation of neurons and glia, leukocytes, and endothelial cells migration. Recent researches also put high emphasis on the important roles of the Slit-Robo pathway in tumorigenesis, cancer progression and metastasis. Herein we provide a comprehensive review on the role of these molecules and their associated signaling pathway in gastric and other gastrointestinal cancers. Improved knowledge of the Slit-Robo signaling pathway in gastric carcinoma will be useful for deep understanding the mechanisms of tumor development and identifying ideal targets of anticancer therapy in gastric carcinoma.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| | - Alfred S L Cheng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, PR China.
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, PR China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| |
Collapse
|
132
|
RasGRP3 regulates the migration of glioma cells via interaction with Arp3. Oncotarget 2015; 6:1850-64. [PMID: 25682201 PMCID: PMC4359336 DOI: 10.18632/oncotarget.2575] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM), the most aggressive primary brain tumors, are highly infiltrative. Although GBM express high Ras activity and Ras proteins have been implicated in gliomagenesis, Ras-activating mutations are not frequent in these tumors. RasGRP3, an important signaling protein responsive to diacylglycerol (DAG), increases Ras activation. Here, we examined the expression and functions of RasGRP3 in GBM and glioma cells. RasGRP3 expression was upregulated in GBM specimens and glioma stem cells compared with normal brains and neural stem cells, respectively. RasGRP3 activated Ras and Rap1 in glioma cells and increased cell migration and invasion partially via Ras activation. Using pull-down assay and mass spectroscopy we identified the actin-related protein, Arp3, as a novel interacting protein of RasGRP3. The interaction of RasGRP3 and Arp3 was validated by immunofluorescence staining and co-immunoprecipitation, and PMA, which activates RasGRP3 and induces its translocation to the peri-nuclear region, increased the association of Arp3 and RasGRP3. Arp3 was upregulated in GBM, regulated cell spreading and migration and its silencing partially decreased these effects of RasGRP3 in glioma cells. In summary, RasGRP3 acts as an important integrating signaling protein of the DAG and Ras signaling pathways and actin polymerization and represents an important therapeutic target in GBM.
Collapse
|
133
|
|
134
|
Pérez-Coria M, Lugo-Trampe JJ, Zamudio-Osuna M, Rodríguez-Sánchez IP, Lugo-Trampe A, de la Fuente-Cortez B, Campos-Acevedo LD, Martínez-de-Villarreal LE. Identification of novel mutations in Mexican patients with Aarskog-Scott syndrome. Mol Genet Genomic Med 2015; 3:197-202. [PMID: 26029706 PMCID: PMC4444161 DOI: 10.1002/mgg3.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/30/2014] [Accepted: 01/08/2015] [Indexed: 12/25/2022] Open
Abstract
Aarskog-Scott syndrome (AAS), also known as faciogenital dysplasia (FGD, OMIM # 305400), is an X-linked disorder of recessive inheritance, characterized by short stature and facial, skeletal, and urogenital abnormalities. AAS is caused by mutations in the FGD1 gene (Xp11.22), with over 56 different mutations identified to date. We present the clinical and molecular analysis of four unrelated families of Mexican origin with an AAS phenotype, in whom FGD1 sequencing was performed. This analysis identified two stop mutations not previously reported in the literature: p.Gln664* and p.Glu380*. Phenotypically, every male patient met the clinical criteria of the syndrome, whereas discrepancies were found between phenotypes in female patients. Our results identify two novel mutations in FGD1, broadening the spectrum of reported mutations; and provide further delineation of the phenotypic variability previously described in AAS.
Collapse
Affiliation(s)
- Mariana Pérez-Coria
- Departamento de Genética, Facultad de Medicina y Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León (UANL) Monterrey, Nuevo Leon, México
| | - José J Lugo-Trampe
- Departamento de Genética, Facultad de Medicina y Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León (UANL) Monterrey, Nuevo Leon, México
| | - Michell Zamudio-Osuna
- Departamento de Genética, Facultad de Medicina y Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León (UANL) Monterrey, Nuevo Leon, México
| | - Iram P Rodríguez-Sánchez
- Departamento de Genética, Facultad de Medicina y Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León (UANL) Monterrey, Nuevo Leon, México
| | - Angel Lugo-Trampe
- Centro Mesoamericano de Estudios en Salud Pública y Desastres, Universidad Autónoma de Chiapas (UNACH) Tapachula, Chis, México
| | - Beatriz de la Fuente-Cortez
- Departamento de Genética, Facultad de Medicina y Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León (UANL) Monterrey, Nuevo Leon, México
| | - Luis D Campos-Acevedo
- Departamento de Genética, Facultad de Medicina y Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León (UANL) Monterrey, Nuevo Leon, México
| | - Laura E Martínez-de-Villarreal
- Departamento de Genética, Facultad de Medicina y Hospital Universitario "José E. González", Universidad Autónoma de Nuevo León (UANL) Monterrey, Nuevo Leon, México
| |
Collapse
|
135
|
Tejada-Simon MV. Modulation of actin dynamics by Rac1 to target cognitive function. J Neurochem 2015; 133:767-79. [PMID: 25818528 DOI: 10.1111/jnc.13100] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/11/2015] [Accepted: 03/14/2015] [Indexed: 12/14/2022]
Abstract
The small GTPase Rac1 is well known for regulating actin cytoskeleton reorganization in cells. Formation of extensions at the surface of the cell is required for migration and even for cell invasion and metastases. Because an elevated level and hyperactivation of this protein has been associated with metastasis in cancer, direct regulators of Rac1 are currently envisioned as a potential strategy to treat certain cancers. Less research, however, has been done regarding the role of this small GTP-binding protein in brain development, where it has an important role in dendritic spine morphogenesis through the regulation of actin. Alteration of dendritic development and spinogenesis has been often associated with mental disorders. Rac1 is associated with and required for learning and the formation of memories in the brain. Rac1 appears to be dysregulated in certain neurodevelopmental disorders that present all these three alterations: mental retardation, atypical synaptic plasticity and aberrant spine morphology. Thus, to develop novel therapies for rescuing cognitive impairment, a reasonable approach might be to target this protein, Rac1, which plays a pivotal role in directing signals that regulate actin dynamics, which in turn might have an effect in spine cytoarchitecture and synaptic function. It is possible that novel drugs that regulate Rac1 activation and function could modulate actin cytoskeleton and spine dynamics, representing potential candidates to repair intellectual disability in disorders associated with spine abnormalities. Herein, we present a list of the current Rac1 inhibitors that might fulfill this role together with a summary of the latest findings concerning their function as they relate to neuronal studies. While the small GTPase Rac1 is well known for regulating actin cytoskeleton reorganization in different type of cells, it appears to be also required for learning and the formation of memories in the brain. Abnormal regulation of this protein has been associated with cognitive disabilities, atypical synaptic plasticity and abnormal morphology of dendritic spines in certain neurodevelopmental disorders. Thus, modulation of Rac1 activity using novel inhibitors might be a strategy to reestablish cognitive function.
Collapse
Affiliation(s)
- Maria V Tejada-Simon
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA.,Department of Biology, University of Houston, Houston, Texas, USA.,Department of Psychology, University of Houston, Houston, Texas, USA.,Biology of Behavior Institute (BoBI), University of Houston, Houston, Texas, USA
| |
Collapse
|
136
|
Gerasimcik N, Dahlberg CIM, Baptista MAP, Massaad MJ, Geha RS, Westerberg LS, Severinson E. The Rho GTPase Cdc42 Is Essential for the Activation and Function of Mature B Cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:4750-8. [PMID: 25870239 DOI: 10.4049/jimmunol.1401634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
The Rho GTPase Cdc42 coordinates regulation of the actin and the microtubule cytoskeleton by binding and activating the Wiskott-Aldrich syndrome protein. We sought to define the role of intrinsic expression of Cdc42 by mature B cells in their activation and function. Mice with inducible deletion of Cdc42 in mature B cells formed smaller germinal centers and had a reduced Ab response, mostly of low affinity to T cell-dependent Ag, compared with wild-type (WT) controls. Spreading formation of long protrusions that contain F-actin, microtubules, and Cdc42-interacting protein 4, and assumption of a dendritic cell morphology in response to anti-CD40 plus IL-4 were impaired in Cdc42-deficient B cells compared with WT B cells. Cdc42-deficient B cells had an intact migratory response to chemokine in vitro, but their homing to the B cell follicles in the spleen in vivo was significantly impaired. Cdc42-deficient B cells induced a skewed cytokine response in CD4(+) T cells, compared with WT B cells. Our results demonstrate a critical role for Cdc42 in the motility of mature B cells, their cognate interaction with T cells, and their differentiation into Ab-producing cells.
Collapse
Affiliation(s)
- Natalija Gerasimcik
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Carin I M Dahlberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Marisa A P Baptista
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Michel J Massaad
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115; and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115; and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Eva Severinson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| |
Collapse
|
137
|
Del Ry S, Moscato S, Bianchi F, Morales MA, Dolfi A, Burchielli S, Cabiati M, Mattii L. Altered expression of connexin 43 and related molecular partners in a pig model of left ventricular dysfunction with and without dipyrydamole therapy. Pharmacol Res 2015; 95-96:92-101. [PMID: 25836920 DOI: 10.1016/j.phrs.2015.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 01/14/2023]
Abstract
Gap junctions (GJ) mediate electrical coupling between cardiac myocytes, allowing the spreading of the electrical wave responsible for synchronized contraction. GJ function can be regulated by modulation of connexon densities on membranes, connexin (Cx) phosphorylation, trafficking and degradation. Recent studies have shown that adenosine (A) involves Cx43 turnover in A1 receptor-dependent manner, and dipyridamole increases GJ coupling and amount of Cx43 in endothelial cells. As the abnormalities in GJ organization and regulation have been described in diseased myocardium, the aim of the present study was to assess the regional expression of molecules involved in GJ regulation in a model of left ventricular dysfunction (LVD). For this purpose the distribution and quantitative expression of Cx43, its phosphorylated form pS368-Cx43, PKC phosphorylated substrates, RhoA and A receptors, were investigated in experimental models of right ventricular-pacing induced LVD, undergoing concomitant dipyridamole therapy or placebo, and compared with those obtained in the myocardium from sham-operated minipigs. Results demonstrate that an altered pattern of factors involved in Cx43-made GJ regulation is present in myocardium of a dysfunctioning left ventricle. Furthermore, dipyridamole treatment, which shows a mild protective role on left ventricular function, seems to act through modulating the expression and activation of these factors as confirmed by in vitro experiments on cardiomyoblastic cell line H9c2 cells.
Collapse
Affiliation(s)
- Silvia Del Ry
- CNR Institute of Clinical Physiology, Laboratory Biochemistry and Molecular Biology, CNR, Italy Clinical Physiology, Pisa, Italy
| | - Stefania Moscato
- Department of Clinic and Experimental Medicine, Section Histology, University of Pisa, Pisa, Italy
| | - Francesco Bianchi
- Department of Clinic and Experimental Medicine, Section Histology, University of Pisa, Pisa, Italy
| | - Maria Aurora Morales
- CNR Institute of Clinical Physiology, Laboratory Biochemistry and Molecular Biology, CNR, Italy Clinical Physiology, Pisa, Italy
| | - Amelio Dolfi
- Department of Clinic and Experimental Medicine, Section Histology, University of Pisa, Pisa, Italy
| | | | - Manuela Cabiati
- CNR Institute of Clinical Physiology, Laboratory Biochemistry and Molecular Biology, CNR, Italy Clinical Physiology, Pisa, Italy
| | - Letizia Mattii
- Department of Clinic and Experimental Medicine, Section Histology, University of Pisa, Pisa, Italy.
| |
Collapse
|
138
|
Integrin mediated adhesion of osteoblasts to connective tissue growth factor (CTGF/CCN2) induces cytoskeleton reorganization and cell differentiation. PLoS One 2015; 10:e0115325. [PMID: 25714841 PMCID: PMC4340870 DOI: 10.1371/journal.pone.0115325] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 11/22/2014] [Indexed: 02/05/2023] Open
Abstract
Pre-osteoblast adhesion and interaction with extracellular matrix (ECM) proteins through integrin receptors result in activation of signaling pathways regulating osteoblast differentiation. Connective tissue growth factor (CTGF/CCN2) is a matricellular protein secreted into the ECM. Prior studies in various cell types have shown that cell adhesion to CTGF via integrin receptors results in activation of specific signaling pathways that regulate cell functions, such as differentiation and cytoskeletal reorganization. To date, there are no studies that have examined whether CTGF can serve as an adhesive substrate for osteoblasts. In this study, we used the MC3T3-E1 cell line to demonstrate that CTGF serves as an adhesive matrix for osteoblasts. Anti-integrin blocking experiments and co-immunoprecipitation assays demonstrated that the integrin αvβ1 plays a key role in osteoblast adhesion to a CTGF matrix. Immunofluorescence staining of osteoblasts cultured on a CTGF matrix confirmed actin cytoskeletal reorganization, enhanced spreading, formation of focal adhesions, and activation of Rac1. Alkaline phosphatase (ALP) staining and activity assays, as well as Alizarin red staining demonstrated that osteoblast attachment to CTGF matrix enhanced maturation, bone nodule formation and matrix mineralization. To investigate whether the effect of CTGF on osteoblast differentiation involves integrin-mediated activation of specific signaling pathways, we performed Western blot, chromatin immunoprecipitation (ChIP) and qPCR assays. Osteoblasts cultured on a CTGF matrix showed increased total and phosphorylated (activated) forms of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Inhibition of ERK blocked osteogenic differentiation in cells cultured on a CTGF matrix. There was an increase in runt-related transcription factor 2 (Runx2) binding to the osteocalcin gene promoter, and in the expression of osteogenic markers regulated by Runx2. Collectively, the results of this study are the first to demonstrate CTGF serves as a suitable matrix protein, enhancing osteoblast adhesion (via αvβ1 integrin) and promoting cell spreading via cytoskeletal reorganization and Rac1 activation. Furthermore, integrin-mediated activation of ERK signaling resulted in increased osteoblast differentiation accompanied by an increase in Runx2 binding to the osteocalcin promoter and in the expression of osteogenic markers.
Collapse
|
139
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
140
|
Bonfrate L, Procino G, Wang DQH, Svelto M, Portincasa P. A novel therapeutic effect of statins on nephrogenic diabetes insipidus. J Cell Mol Med 2015; 19:265-282. [PMID: 25594563 PMCID: PMC4407600 DOI: 10.1111/jcmm.12422] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022] Open
Abstract
Statins competitively inhibit hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase, resulting in reduced plasma total and low-density lipoprotein cholesterol levels. Recently, it has been shown that statins exert additional 'pleiotropic' effects by increasing expression levels of the membrane water channels aquaporin 2 (AQP2). AQP2 is localized mainly in the kidney and plays a critical role in determining cellular water content. This additional effect is independent of cholesterol homoeostasis, and depends on depletion of mevalonate-derived intermediates of sterol synthetic pathways, i.e. farnesylpyrophosphate and geranylgeranylpyrophosphate. By up-regulating the expression levels of AQP2, statins increase water reabsorption by the kidney, thus opening up a new avenue in treating patients with nephrogenic diabetes insipidus (NDI), a hereditary disease that yet lacks high-powered and limited side effects therapy. Aspects related to water balance determined by AQP2 in the kidney, as well as standard and novel therapeutic strategies of NDI are discussed.
Collapse
Affiliation(s)
- Leonilde Bonfrate
- Department of Biomedical Sciences and Human Oncology, Internal Medicine, University Medical SchoolBari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo MoroBari, Italy
| | - David Q-H Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of MedicineSt. Louis, MO, USA
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo MoroBari, Italy
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Internal Medicine, University Medical SchoolBari, Italy
| |
Collapse
|
141
|
Meighan CM, Kelly VE, Krahe EC, Gaeta AJ. α integrin cytoplasmic tails can rescue the loss of Rho-family GTPase signaling in the C. elegans somatic gonad. Mech Dev 2015; 136:111-22. [PMID: 25576691 DOI: 10.1016/j.mod.2014.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/02/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
Integrin signaling relies on multiple, distinct pathways to impact a diverse set of cell behaviors. The Rho family of GTPases are well-established downstream signaling partners of integrins that regulate cell shape, polarity, and migration. The nematode C. elegans provides a simple in vivo system for studying both integrins and the Rho family. Our previous work showed that the C. elegans α integrin cytoplasmic tails have tissue-specific functions during development. Here, we use chimeric α integrins to show that the cytoplasmic tails can rescue the loss of the Rho family of GTPases in three cell types in the somatic gonad. Knockdown of rho-1 by RNAi causes defects in sheath cell actin organization, ovulation, and vulva morphology. Chimeric α integrin ina-1 with the pat-2 cytoplasmic tail can rescue both actin organization and ovulation after rho-1 RNAi, yet cannot restore vulva morphology. Knockdown of cdc-42 by RNAi causes defects in sheath cell actin organization, ovulation, vulva morphology, and distal tip cell migration. Chimeric α integrin pat-2 with the ina-1 cytoplasmic tail can rescue vulva morphology defects and distal tip cell migration after cdc-42 RNAi, yet cannot restore sheath cell actin organization or ovulation. Disruption of Rac yields the same phenotype in distal tip cells regardless of α integrin cytoplasmic tail composition. Taken together, the cytoplasmic tails of α integrins can bypass signaling from members of the Rho family of GTPases during development.
Collapse
Affiliation(s)
| | - Victoria E Kelly
- Christopher Newport University, Newport News, VA 23606, United States
| | - Elena C Krahe
- Christopher Newport University, Newport News, VA 23606, United States
| | - Adriel J Gaeta
- Christopher Newport University, Newport News, VA 23606, United States
| |
Collapse
|
142
|
Hwang PY, Chen J, Jing L, Hoffman BD, Setton LA. The role of extracellular matrix elasticity and composition in regulating the nucleus pulposus cell phenotype in the intervertebral disc: a narrative review. J Biomech Eng 2014; 136:021010. [PMID: 24390195 DOI: 10.1115/1.4026360] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/26/2013] [Indexed: 01/07/2023]
Abstract
Intervertebral disc (IVD) disorders are a major contributor to disability and societal health care costs. Nucleus pulposus (NP) cells of the IVD exhibit changes in both phenotype and morphology with aging-related IVD degeneration that may impact the onset and progression of IVD pathology. Studies have demonstrated that immature NP cell interactions with their extracellular matrix (ECM) may be key regulators of cellular phenotype, metabolism and morphology. The objective of this article is to review our recent experience with studies of NP cell-ECM interactions that reveal how ECM cues can be manipulated to promote an immature NP cell phenotype and morphology. Findings demonstrate the importance of a soft (<700 Pa), laminin-containing ECM in regulating healthy, immature NP cells. Knowledge of NP cell-ECM interactions can be used for development of tissue engineering or cell delivery strategies to treat IVD-related disorders.
Collapse
|
143
|
Krstić J, Obradović H, Jauković A, Okić-Đorđević I, Trivanović D, Kukolj T, Mojsilović S, Ilić V, Santibañez JF, Bugarski D. Urokinase type plasminogen activator mediates Interleukin-17-induced peripheral blood mesenchymal stem cell motility and transendothelial migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:431-44. [PMID: 25433194 DOI: 10.1016/j.bbamcr.2014.11.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) have the potential to migrate toward damaged tissues increasing tissue regeneration. Interleukin-17 (IL-17) is a proinflammatory cytokine with pleiotropic effects associated with many inflammatory diseases. Although IL-17 can modulate MSC functions, its capacity to regulate MSC migration is not well elucidated so far. Here, we studied the role of IL-17 on peripheral blood (PB) derived MSC migration and transmigration across endothelial cells. IL-17 increased PB-MSC migration in a wound healing assay as well as cell mobilization from collagen gel. Concomitantly IL-17 induced the expression of urokinase type plasminogen activator (uPA) without affecting matrix metalloproteinase expression. The incremented uPA expression mediated the capacity of IL-17 to enhance PB-MSC migration in a ERK1,2 MAPK dependent way. Also, IL-17 induced PB-MSC migration alongside with changes in cell polarization and uPA localization in cell protrusions. Moreover, IL-17 increased PB-MSC adhesion to endothelial cells and transendothelial migration, as well as increased the capacity of PB-MSC adhesion to fibronectin, in an uPA-dependent fashion. Therefore, our data suggested that IL-17 may act as chemotropic factor for PB-MSCs by incrementing cell motility and uPA expression during inflammation development.
Collapse
Affiliation(s)
- Jelena Krstić
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Vesna Ilić
- Laboratory for Immunology, Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| | - Juan F Santibañez
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia.
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11129 Belgrade, Serbia
| |
Collapse
|
144
|
Accumulating evidence for a role of oxidized phospholipids in infectious diseases. Cell Mol Life Sci 2014; 72:1059-71. [PMID: 25410378 PMCID: PMC7079780 DOI: 10.1007/s00018-014-1780-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 12/14/2022]
Abstract
Oxidized phospholipids (OxPL) were originally discovered as by-products and mediators of chronic inflammation such as in atherosclerosis. Over the last years, an increasing body of evidence led to the notion that OxPL not only contribute to the pathogenesis of chronic inflammatory processes but in addition play an integral role as modulators of inflammation during acute infections. Thereby, host defense mechanisms involve the generation of oxygen radicals that oxidize ubiquitously present phospholipids, which in turn act as danger-associated molecular patterns (DAMPs). These OxPL-derived DAMPs can exhibit both pro- and anti-inflammatory functions that ultimately alter the host response to pathogens. In this review, we summarize the currently available data on the role of OxPL in infectious diseases.
Collapse
|
145
|
Li YJ, Zhang J, Han J, DU ZJ, Wang P, Guo Y. Ras-related C3 botulinum toxin substrate 1 activation is involved in the pathogenesis of diabetic retinopathy. Exp Ther Med 2014; 9:89-97. [PMID: 25452781 PMCID: PMC4247314 DOI: 10.3892/etm.2014.2081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022] Open
Abstract
This study used a streptozotocin (STZ)-induced rat model of diabetes to investigate whether Ras-related C3 botulinum toxin substrate 1 (Rac1) was involved in the pathogenesis of diabetic retinopathy. The effects of Rac1 inhibition on vascular endothelial (VE)-cadherin and β-catenin expression in high glucose-induced rat retinal endothelial cells (RRECs) were additionally examined. Rac1 activation in the retinas from STZ-induced diabetic rats and in high glucose-induced RRECs was measured by reverse transcription-quantitative polymerase chain reaction analysis, immunohistochemistry and western blot analysis. The expression levels of VE-cadherin and β-catenin were also examined with or without Rac1 inhibition through small interfering (si)RNA transfection. STZ-induced diabetes was associated with an increase in the vascular permeability of the retina. Furthermore, Rac1 activation was increased in the retina of STZ-induced diabetic rats and in high glucose-induced RRECs compared with that in the controls. Immunohistochemistry showed that immunostaining of Rac1 was localized in the outer plexiform, inner nuclear, inner plexiform and ganglion cell layers and in the retinal microvasculature of rats. The expression of β-catenin was increased in the retinas of the diabetic rats at four, eight and 12 weeks after the induction of diabetes compared with that in the controls. Additionally, Rac1 activation was required for the high glucose-induced VE-cadherin expression decrease and for β-catenin expression in high glucose-induced RRECs. Rac1 inhibition by Rac1-siRNA transfection effectively prevented hyperpermeability, β-catenin expression and the VE-cadherin expression decrease in high glucose-induced RRECs. In conclusion, diabetes affects the expression of Rac1 in the retina. Rac1 may be involved in the diabetes-induced damage and/or alterations to the blood-retinal barrier through changes in VE-cadherin and β-catenin expression.
Collapse
Affiliation(s)
- Yang-Jun Li
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University of the PLA, Xian, Shaanxi 710038, P.R. China
| | - Jie Zhang
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University of the PLA, Xian, Shaanxi 710038, P.R. China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University of the PLA, Xian, Shaanxi 710038, P.R. China
| | - Zhao-Jiang DU
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University of the PLA, Xian, Shaanxi 710038, P.R. China
| | - Ping Wang
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University of the PLA, Xian, Shaanxi 710038, P.R. China
| | - Yong Guo
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University of the PLA, Xian, Shaanxi 710038, P.R. China
| |
Collapse
|
146
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76:208-26. [PMID: 25157786 DOI: 10.1016/j.freeradbiomed.2014.07.046] [Citation(s) in RCA: 524] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS). Numerous homologue-specific mechanisms control the activity of this enzyme family involving calcium, free fatty acids, protein-protein interactions, intracellular trafficking, and posttranslational modifications such as phosphorylation, acetylation, or sumoylation. After a brief review on the classic pathways of Nox activation, this article will focus on novel mechanisms of homologue-specific activity control and on cell-specific aspects which govern Nox activity. From these findings of the recent years it must be concluded that the activity control of Nox enzymes is much more complex than anticipated. Moreover, depending on the cellular activity state, Nox enzymes are selectively activated or inactivated. The complex upstream signaling aspects of these events make the development of "intelligent" Nox inhibitors plausible, which selectively attenuate disease-related Nox-mediated ROS formation without altering physiological signaling ROS. This approach might be of relevance for Nox-mediated tissue injury in ischemia-reperfusion and inflammation and also for chronic Nox overactivation as present in cancer initiation and cardiovascular disease.
Collapse
Affiliation(s)
- Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- ECCPS, Justus-Liebig-Universität, Member of the DZL, Giessen, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
147
|
Ko HK, Guo LW, Su B, Gao L, Gelman IH. Suppression of chemotaxis by SSeCKS via scaffolding of phosphoinositol phosphates and the recruitment of the Cdc42 GEF, Frabin, to the leading edge. PLoS One 2014; 9:e111534. [PMID: 25356636 PMCID: PMC4214753 DOI: 10.1371/journal.pone.0111534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/28/2014] [Indexed: 01/09/2023] Open
Abstract
Chemotaxis is controlled by interactions between receptors, Rho-family GTPases, phosphatidylinositol 3-kinases, and cytoskeleton remodeling proteins. We investigated how the metastasis suppressor, SSeCKS, attenuates chemotaxis. Chemotaxis activity inversely correlated with SSeCKS levels in mouse embryo fibroblasts (MEF), DU145 and MDA-MB-231 cancer cells. SSeCKS loss induced chemotactic velocity and linear directionality, correlating with replacement of leading edge lamellipodia with fascin-enriched filopodia-like extensions, the formation of thickened longitudinal F-actin stress fibers reaching to filopodial tips, relative enrichments at the leading edge of phosphatidylinositol (3,4,5)P3 (PIP3), Akt, PKC-ζ, Cdc42-GTP and active Src (SrcpoY416), and a loss of Rac1. Leading edge lamellipodia and chemotaxis inhibition in SSeCKS-null MEF could be restored by full-length SSeCKS or SSeCKS deleted of its Src-binding domain (ΔSrc), but not by SSeCKS deleted of its three MARCKS (myristylated alanine-rich C kinase substrate) polybasic domains (ΔPBD), which bind PIP2 and PIP3. The enrichment of activated Cdc42 in SSeCKS-null leading edge filopodia correlated with recruitment of the Cdc42-specific guanine nucleotide exchange factor, Frabin, likely recruited via multiple PIP2/3-binding domains. Frabin knockdown in SSeCKS-null MEF restores leading edge lamellipodia and chemotaxis inhibition. However, SSeCKS failed to co-immunoprecipitate with Rac1, Cdc42 or Frabin. Consistent with the notion that chemotaxis is controlled by SSeCKS-PIP (vs. -Src) scaffolding activity, constitutively-active phosphatidylinositol 3-kinase could override the ability of the Src inhibitor, SKI-606, to suppress chemotaxis and filopodial enrichment of Frabin in SSeCKS-null MEF. Our data suggest a role for SSeCKS in controlling Rac1 vs. Cdc42-induced cellular dynamics at the leading chemotactic edge through the scaffolding of phospholipids and signal mediators, and through the reorganization of the actin cytoskeleton controlling directional movement.
Collapse
Affiliation(s)
- Hyun-Kyung Ko
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Li-wu Guo
- Div. of Genetic & Reproductive Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, United States of America
| | - Bing Su
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Lingqiu Gao
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Irwin H. Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
148
|
Castillo-Pichardo L, Humphries-Bickley T, De La Parra C, Forestier-Roman I, Martinez-Ferrer M, Hernandez E, Vlaar C, Ferrer-Acosta Y, Washington AV, Cubano LA, Rodriguez-Orengo J, Dharmawardhane S. The Rac Inhibitor EHop-016 Inhibits Mammary Tumor Growth and Metastasis in a Nude Mouse Model. Transl Oncol 2014; 7:546-55. [PMID: 25389450 PMCID: PMC4225654 DOI: 10.1016/j.tranon.2014.07.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/14/2014] [Accepted: 07/18/2014] [Indexed: 01/19/2023] Open
Abstract
Metastatic disease still lacks effective treatments, and remains the primary cause of cancer mortality. Therefore, there is a critical need to develop better strategies to inhibit metastatic cancer. The Rho family GTPase Rac is an ideal target for anti-metastatic cancer therapy, because Rac is a key molecular switch that is activated by a myriad of cell surface receptors to promote cancer cell migration/invasion and survival. Previously, we reported the design and development of EHop-016, a small molecule compound, which inhibits Rac activity of metastatic cancer cells with an IC50 of 1 μM. EHop-016 also inhibits the activity of the Rac downstream effector p21-activated kinase (PAK), lamellipodia extension, and cell migration in metastatic cancer cells. Herein, we tested the efficacy of EHop-016 in a nude mouse model of experimental metastasis, where EHop-016 administration at 25 mg/kg body weight (BW) significantly reduced mammary fat pad tumor growth, metastasis, and angiogenesis. As quantified by UPLC MS/MS, EHop-016 was detectable in the plasma of nude mice at 17 to 23 ng/ml levels at 12 h following intraperitoneal (i.p.) administration of 10 to 25 mg/kg BW EHop-016. The EHop-016 mediated inhibition of angiogenesis In Vivo was confirmed by immunohistochemistry of excised tumors and by In Vitro tube formation assays of endothelial cells. Moreover, EHop-016 affected cell viability by down-regulating Akt and Jun kinase activities and c-Myc and Cyclin D expression, as well as increasing caspase 3/7 activities in metastatic cancer cells. In conclusion, EHop-016 has potential as an anticancer compound to block cancer progression via multiple Rac-directed mechanisms.
Collapse
Affiliation(s)
- Linette Castillo-Pichardo
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico ; Department of Pathology and Laboratory Medicine, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico
| | - Tessa Humphries-Bickley
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Columba De La Parra
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Ingrid Forestier-Roman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Magaly Martinez-Ferrer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Eliud Hernandez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Cornelis Vlaar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | | | | | - Luis A Cubano
- Department of Anatomy and Cell Biology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico
| | - Jose Rodriguez-Orengo
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
149
|
De Filippis B, Nativio P, Fabbri A, Ricceri L, Adriani W, Lacivita E, Leopoldo M, Passarelli F, Fuso A, Laviola G. Pharmacological stimulation of the brain serotonin receptor 7 as a novel therapeutic approach for Rett syndrome. Neuropsychopharmacology 2014; 39:2506-18. [PMID: 24809912 PMCID: PMC4207333 DOI: 10.1038/npp.2014.105] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 01/01/2023]
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG-binding protein 2 gene (MECP2) cause >95% of classic cases, and currently there is no cure for this devastating disorder. The serotonin receptor 7 (5-HT7R) is linked to neuro-physiological regulation of circadian rhythm, mood, cognition, and synaptic plasticity. We presently report that 5-HT7R density is consistently reduced in cortical and hippocampal brain areas of symptomatic MeCP2-308 male mice, a RTT model. Systemic repeated treatment with LP-211 (0.25 mg/kg once/day for 7 days), a brain-penetrant selective 5-HT7R agonist, was able to rescue RTT-related defective performance: anxiety-related profiles in a Light/Dark test, motor abilities in a Dowel test, the exploratory behavior in the Marble Burying test, as well as memory in the Novelty Preference task. In the brain of RTT mice, LP-211 also reversed the abnormal activation of PAK and cofilin (key regulators of actin cytoskeleton dynamics) and of the ribosomal protein (rp) S6, whose reduced activation in MECP2 mutant neurons by mTOR is responsible for the altered protein translational control. Present findings indicate that pharmacological targeting of 5-HT7R improves specific behavioral and molecular manifestations of RTT, thus representing a first step toward the validation of an innovative systemic treatment. Beyond RTT, the latter might be extended to other disorders associated with intellectual disability.
Collapse
Affiliation(s)
- Bianca De Filippis
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Nativio
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessia Fabbri
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Ricceri
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Adriani
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Enza Lacivita
- Department of Pharmacy, University of Bari ‘A Moro', Bari, Italy
| | | | | | - Andrea Fuso
- Department of Psychology, Section of Neuroscience, Sapienza University of Rome, Rome, Italy
- European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giovanni Laviola
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
150
|
Payne LJ, Eves RL, Jia L, Mak AS. p53 Down regulates PDGF-induced formation of circular dorsal ruffles in rat aortic smooth muscle cells. PLoS One 2014; 9:e108257. [PMID: 25247424 PMCID: PMC4172730 DOI: 10.1371/journal.pone.0108257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/27/2014] [Indexed: 01/15/2023] Open
Abstract
The tumor suppressor, p53, negatively regulates cell migration and invasion in addition to its role in apoptosis, cell cycle regulation and senescence. Here, we study the roles of p53 in PDGF-induced circular dorsal ruffle (CDR) formation in rat aortic smooth muscle (RASM) cells. In primary and immortalized RASM cells, up-regulation of p53 expression or increase in activity with doxorubicin inhibits CDR formation. In contrast, shRNA-knockdown of p53 or inhibition of its activity with pifithrin α promotes CDR formation. p53 acts by up-regulating PTEN expression, which antagonizes Rac and Cdc42 activation. Both lipid and protein phosphatase activities of PTEN are required for maximal suppression of CDR, but the lipid activity clearly plays the dominant role. N-WASP, the downstream effector of Cdc42, is the major positive contributor to CDR formation in RASM, and is an indirect target of p53. The Rac effector, WAVE2, appears to also play a minor role, while WAVE1 has no significant effect in CDR formation. In sum, we propose that p53 suppresses PDGF-induced CDR formation in RASM cells by upregulating PTEN leading mainly to the inhibition of the Cdc42-N-WASP pathway.
Collapse
Affiliation(s)
- Laura J. Payne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Robert L. Eves
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Lilly Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alan S. Mak
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|