101
|
Goswami SK, Kashyap AS, Kumar R, Gujjar RS, Singh A, Manzar N. Harnessing Rhizospheric Microbes for Eco-friendly and Sustainable Crop Production in Saline Environments. Curr Microbiol 2023; 81:14. [PMID: 38006515 DOI: 10.1007/s00284-023-03538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Soil salinization is a global issue that negatively impacts crop yield and has become a prime concern for researchers worldwide. Many important crop plants are susceptible to salinity-induced stresses, including ionic and osmotic stress. Approximately, 20% of the world's cultivated and 33% of irrigated land is affected by salt. While various agricultural practices have been successful in alleviating salinity stress, they can be costly and not environment-friendly. Therefore, there is a need for cost-effective and eco-friendly practices to improve soil health. One promising approach involves utilizing microbes found in the vicinity of plant roots to mitigate the effects of salinity stress and enhance plant growth as well as crop yield. By exploiting the salinity tolerance of plants and their associated rhizospheric microorganisms, which have plant growth-promoting properties, it is possible to reduce the adverse effects of salt stress on crop plants. The soil salinization is a common problem in the world, due to which we are unable to use the saline land. To make proper use of this land for different crops, microorganisms can play an important role. Looking at the increasing population of the world, this will be an appreciated effort to make the best use of the wasted land for food security. The updated information on this issue is needed. In this context, this article provides a concise review of the latest research on the use of salt-tolerant rhizospheric microorganisms to mitigate salinity stress in crop plants.
Collapse
Affiliation(s)
- Sanjay K Goswami
- ICAR-Indian Institute of Sugarcane Research, Rai Bareli Road, Dilkusha, Lucknow, Uttar Pradesh, 220026, India
| | - Abhijeet S Kashyap
- ICAR-National Bureau of Agriculturally Important Microorganism, Mau, 275103, India
| | - Rajeev Kumar
- ICAR-Indian Institute of Sugarcane Research, Rai Bareli Road, Dilkusha, Lucknow, Uttar Pradesh, 220026, India
| | - Ranjit Singh Gujjar
- ICAR-Indian Institute of Sugarcane Research, Rai Bareli Road, Dilkusha, Lucknow, Uttar Pradesh, 220026, India.
| | - Arjun Singh
- ICAR-CSSRI Regional Research Station, Rai Bareli Road, Dilkusha, Lucknow, Uttar Pradesh, 220026, India
| | - Nazia Manzar
- ICAR-National Bureau of Agriculturally Important Microorganism, Mau, 275103, India
| |
Collapse
|
102
|
Hasan MN, Mosharaf MP, Uddin KS, Das KR, Sultana N, Noorunnahar M, Naim D, Mollah MNH. Genome-Wide Identification and Characterization of Major RNAi Genes Highlighting Their Associated Factors in Cowpea ( Vigna unguiculata (L.) Walp.). BIOMED RESEARCH INTERNATIONAL 2023; 2023:8832406. [PMID: 38046903 PMCID: PMC10691899 DOI: 10.1155/2023/8832406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
In different regions of the world, cowpea (Vigna unguiculata (L.) Walp.) is an important vegetable and an excellent source of protein. It lessens the malnutrition of the underprivileged in developing nations and has some positive effects on health, such as a reduction in the prevalence of cancer and cardiovascular disease. However, occasionally, certain biotic and abiotic stresses caused a sharp fall in cowpea yield. Major RNA interference (RNAi) genes like Dicer-like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) are essential for the synthesis of their associated factors like domain, small RNAs (sRNAs), transcription factors, micro-RNAs, and cis-acting factors that shield plants from biotic and abiotic stresses. In this study, applying BLASTP search and phylogenetic tree analysis with reference to the Arabidopsis RNAi (AtRNAi) genes, we discovered 28 VuRNAi genes, including 7 VuDCL, 14 VuAGO, and 7 VuRDR genes in cowpea. We looked at the domains, motifs, gene structures, chromosomal locations, subcellular locations, gene ontology (GO) terms, and regulatory factors (transcription factors, micro-RNAs, and cis-acting elements (CAEs)) to characterize the VuRNAi genes and proteins in cowpea in response to stresses. Predicted VuDCL1, VuDCL2(a, b), VuAGO7, VuAGO10, and VuRDR6 genes might have an impact on cowpea growth, development of the vegetative and flowering stages, and antiviral defense. The VuRNAi gene regulatory features miR395 and miR396 might contribute to grain quality improvement, immunity boosting, and pathogen infection resistance under salinity and drought conditions. Predicted CAEs from the VuRNAi genes might play a role in plant growth and development, improving grain quality and production and protecting plants from biotic and abiotic stresses. Therefore, our study provides crucial information about the functional roles of VuRNAi genes and their associated components, which would aid in the development of future cowpeas that are more resilient to biotic and abiotic stress. The manuscript is available as a preprint at this link: doi:10.1101/2023.02.15.528631v1.
Collapse
Affiliation(s)
- Mohammad Nazmol Hasan
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Parvez Mosharaf
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Khandoker Saif Uddin
- Department of Quantitative Science (Statistics), International University of Business Agriculture and Technology (IUBAT), Uttara, Bangladesh
| | - Keya Rani Das
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Nasrin Sultana
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Mst. Noorunnahar
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Darun Naim
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
- Bioinformatics Lab, Department of Statistics, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
103
|
Peel MD, Anower MR, Wu Y. Breeding Efficiency for Salt Tolerance in Alfalfa. Life (Basel) 2023; 13:2188. [PMID: 38004328 PMCID: PMC10672560 DOI: 10.3390/life13112188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Alfalfa (Medicago sativa L.), one of the most extensively grown forage crops, is sensitive to saline soils. We measured the breeding efficiency for increased salt tolerance in alfalfa by comparing lines selected from BC79S, CS, and SII populations with their unselected parental means for forage mass and associated changes in stem length, leaf-to-stem ratio (LSR), number of nodes per stem, crude protein (CP) content, and neutral detergent fiber (NDF) content. The overall forage mass in the non-salt-stressed test (9562 kg ha-1) was greater (p < 0.001) than under salt stress (5783 kg ha-1), with a 40% production advantage. In the non-salt-stressed test, the BC79S and CS lines averaged at a 4% lower production than their parents, while SII lines had on average a 9% greater production. Conversely, in the salt-stressed test, all lines showed a 20% overall greater seasonal production than their parents. Some selected lines produced more forage mass in both the non-stressed and salt-stressed tests than their parents. The stem length, LSR, node number, CP content, and NDF content of the selected lines varied with respect to non-stressed vs. stressed, but they tended not to differ greatly from their respective parental means under either non- or salt-stressed conditions. The selection protocol provided a universal increase in forage mass under salt-stressed field conditions of the selected lines. Furthermore, we identified lines with forage mass values greater than their parental means under non- and salt-stressed field conditions.
Collapse
Affiliation(s)
| | | | - Yajun Wu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
104
|
Braat J, Jaonina M, David P, Leschevin M, Légeret B, D’Alessandro S, Beisson F, Havaux M. The response of Arabidopsis to the apocarotenoid β-cyclocitric acid reveals a role for SIAMESE-RELATED 5 in root development and drought tolerance. PNAS NEXUS 2023; 2:pgad353. [PMID: 37954155 PMCID: PMC10638494 DOI: 10.1093/pnasnexus/pgad353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
New regulatory functions in plant development and environmental stress responses have recently emerged for a number of apocarotenoids produced by enzymatic or nonenzymatic oxidation of carotenoids. β-Cyclocitric acid (β-CCA) is one such compound derived from β-carotene, which triggers defense mechanisms leading to a marked enhancement of plant tolerance to drought stress. We show here that this response is associated with an inhibition of root growth affecting both root cell elongation and division. Remarkably, β-CCA selectively induced cell cycle inhibitors of the SIAMESE-RELATED (SMR) family, especially SMR5, in root tip cells. Overexpression of the SMR5 gene in Arabidopsis induced molecular and physiological changes that mimicked in large part the effects of β-CCA. In particular, the SMR5 overexpressors exhibited an inhibition of root development and a marked increase in drought tolerance which is not related to stomatal closure. SMR5 up-regulation induced changes in gene expression that strongly overlapped with the β-CCA-induced transcriptomic changes. Both β-CCA and SMR5 led to a down-regulation of many cell cycle activators (cyclins, cyclin-dependent kinases) and a concomitant up-regulation of genes related to water deprivation, cellular detoxification, and biosynthesis of lipid biopolymers such as suberin and lignin. This was correlated with an accumulation of suberin lipid polyesters in the roots and a decrease in nonstomatal leaf transpiration. Taken together, our results identify the β-CCA-inducible and drought-inducible SMR5 gene as a key component of a stress-signaling pathway that reorients root metabolism from growth to multiple defense mechanisms leading to drought tolerance.
Collapse
Affiliation(s)
- Jeanne Braat
- Aix Marseille University, CEA, CNRS UMR 7265, Bioscience and Biotechnology Institute of Aix Marseille, CEA/Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Meryl Jaonina
- Aix Marseille University, CEA, CNRS UMR 7265, Bioscience and Biotechnology Institute of Aix Marseille, CEA/Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Pascale David
- Aix Marseille University, CEA, CNRS UMR 7265, Bioscience and Biotechnology Institute of Aix Marseille, CEA/Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Maïté Leschevin
- Aix Marseille University, CEA, CNRS UMR 7265, Bioscience and Biotechnology Institute of Aix Marseille, CEA/Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Bertrand Légeret
- Aix Marseille University, CEA, CNRS UMR 7265, Bioscience and Biotechnology Institute of Aix Marseille, CEA/Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Stefano D’Alessandro
- Universita di Torino, Scienze Della Vita e Biologia dei Sistemi, Torino 10123, Italy
| | - Frédéric Beisson
- Aix Marseille University, CEA, CNRS UMR 7265, Bioscience and Biotechnology Institute of Aix Marseille, CEA/Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Michel Havaux
- Aix Marseille University, CEA, CNRS UMR 7265, Bioscience and Biotechnology Institute of Aix Marseille, CEA/Cadarache, Saint-Paul-lez-Durance 13115, France
| |
Collapse
|
105
|
Woźniak M, Tyśkiewicz R, Siebielec S, Gałązka A, Jaroszuk-Ściseł J. Metabolic Profiling of Endophytic Bacteria in Relation to Their Potential Application as Components of Multi-Task Biopreparations. MICROBIAL ECOLOGY 2023; 86:2527-2540. [PMID: 37392205 PMCID: PMC10640448 DOI: 10.1007/s00248-023-02260-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Agricultural crops are exposed to various abiotic and biotic stresses that can constrain crop productivity. Focusing on a limited subset of key groups of organisms has the potential to facilitate the monitoring of the functions of human-managed ecosystems. Endophytic bacteria can enhance plant stress resistance and can help plants to cope with the negative impacts of stress factors through the induction of different mechanisms, influencing plant biochemistry and physiology. In this study, we characterise endophytic bacteria isolated from different plants based on their metabolic activity and ability to synthesise 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD), the activity of hydrolytic exoenzymes, the total phenolic compounds (TPC) and iron-complexing compounds (ICC). Test GEN III MicroPlate indicated that the evaluated endophytes are highly metabolically active, and the best used substrates were amino acids, which may be important in selecting potential carrier components for bacteria in biopreparations. The ACCD activity of strain ES2 (Stenotrophomonas maltophilia) was the highest, whereas that of strain ZR5 (Delftia acidovorans) was the lowest. Overall, the obtained results indicated that ∼91.3% of the isolates were capable of producing at least one of the four hydrolytic enzymes. In addition, most of the tested strains produced ICC and TPC, which play a significant role in reducing stress in plants. The results of this study suggest that the tested endophytic bacterial strains can potentially be used to mitigate climate change-associated stresses in plants and to inhibit plant pathogens.
Collapse
Affiliation(s)
- Małgorzata Woźniak
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100, Pulawy, Poland.
| | - Renata Tyśkiewicz
- Analytical Laboratory, Łukasiewicz Research Network-New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110, Pulawy, Poland
| | - Sylwia Siebielec
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100, Pulawy, Poland
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100, Pulawy, Poland
| | - Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
106
|
Fu Y, Xin L, Mounkaila Hamani AK, Sun W, Wang H, Amin AS, Wang X, Qin A, Gao Y. Foliar Application of Melatonin Positively Affects the Physio-Biochemical Characteristics of Cotton ( Gossypium hirsutum L.) under the Combined Effects of Low Temperature and Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3730. [PMID: 37960086 PMCID: PMC10649641 DOI: 10.3390/plants12213730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Low temperature and soil salinization during cotton sowing and seedling adversely affect cotton productivity. Exogenous melatonin (MT) can alleviate the damage caused to plants under non-biological stress; thus, applying MT is a means to improve the growth condition of crops under stress. However, achieving this goal requires a thorough understanding of the physiological regulatory mechanisms of MT on cotton seedlings under low temperature and salinity stress. This study could bring new knowledge on physio-biochemical mechanisms that improve the tolerance of cotton seedlings to combined effects of low temperature and salt stress using an exogenous foliar application of MT. The phytotron experiment comprised two temperature levels of cold stress and control and five MT treatments of 0, 50, 100, 150, and 200 μM and two salinity levels of 0 and 150 mM NaCl. Compared with the control treatments (non-salinity stress under cold stress and control), the combined stress of salt and low temperature reduced cotton seedlings' biomass and net photosynthetic rate (Pn), aggravated the membrane damage, reduced the potassium (K+) content, and increased the sodium (Na+) accumulation in the leaves and roots. Under NaCl stress, exogenously sprayed 50-150 μM MT increased the biomass and gas exchange parameters of cotton seedlings under salt and low temperature combined with salt stress, reduced the degree of membrane damage, and regulated the antioxidant enzyme, ion homeostasis, transport, and absorption of cotton seedlings. The pairwise correlation analysis of each parameter using MT shows that the parameters with higher correlation with MT at cold stress are mainly malondialdehyde (MDA), peroxidase (POD), and catalase (CAT). The highest correlation coefficient at 25 °C is observed between the K+ and Na+ content in cotton seedlings. The conclusion indicates that under salt and low-temperature stress conditions, exogenous application of MT primarily regulates the levels of Pn, superoxide dismutase (SOD), andPOD in cotton seedlings, reduces Na+ and MDA content, alleviates damage to cotton seedlings. Moreover, the most significant effect was observed when an exogenous application of 50-150 μM of MT was administered under these conditions. The current study's findings could serve as a scientific foundation for salinity and low-temperature stress alleviation during the seedling stage of cotton growth.
Collapse
Affiliation(s)
- Yuanyuan Fu
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (Y.F.); (L.X.); (H.W.); (X.W.)
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
| | - Lang Xin
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (Y.F.); (L.X.); (H.W.); (X.W.)
| | | | - Weihao Sun
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
| | - Hongbo Wang
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (Y.F.); (L.X.); (H.W.); (X.W.)
| | - Abubakar Sunusi Amin
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
| | - Xingpeng Wang
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (Y.F.); (L.X.); (H.W.); (X.W.)
| | - Anzhen Qin
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
| | - Yang Gao
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
107
|
Li Y, Tian M, Feng Z, Zhang J, Lu J, Fu X, Ma L, Wei H, Wang H. GhDof1.7, a Dof Transcription Factor, Plays Positive Regulatory Role under Salinity Stress in Upland Cotton. PLANTS (BASEL, SWITZERLAND) 2023; 12:3740. [PMID: 37960096 PMCID: PMC10649836 DOI: 10.3390/plants12213740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Salt stress is a major abiotic stressor that can severely limit plant growth, distribution, and crop yield. DNA-binding with one finger (Dof) is a plant-specific transcription factor that plays a crucial role in plant growth, development, and stress response. In this study, the function of a Dof transcription factor, GhDof1.7, was investigated in upland cotton. The GhDof1.7 gene has a coding sequence length of 759 base pairs, encoding 252 amino acids, and is mainly expressed in roots, stems, leaves, and inflorescences. Salt and abscisic acid (ABA) treatments significantly induced the expression of GhDof1.7. The presence of GhDof1.7 in Arabidopsis may have resulted in potential improvements in salt tolerance, as suggested by a decrease in H2O2 content and an increase in catalase (CAT) and superoxide dismutase (SOD) activities. The GhDof1.7 protein was found to interact with GhCAR4 (C2-domain ABA-related 4), and the silencing of either GhDof1.7 or GhCAR4 resulted in reduced salt tolerance in cotton plants. These findings demonstrate that GhDof1.7 plays a crucial role in improving the salt tolerance of upland cotton and provide insight into the regulation of abiotic stress response by Dof transcription factors.
Collapse
Affiliation(s)
- Yi Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Miaomiao Tian
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Zhen Feng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Jingjing Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Jianhua Lu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Xiaokang Fu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Liang Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Hengling Wei
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Hantao Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of CAAS, Anyang 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
108
|
Gou C, Huang Q, Rady MM, Wang L, Ihtisham M, El-Awady HH, Seif M, Alazizi EMY, Eid RSM, Yan K, Tahri W, Li J, Desoky ESM, El-Sappah AH. Integrative application of silicon and/or proline improves Sweet corn (Zea mays L. saccharata) production and antioxidant defense system under salt stress condition. Sci Rep 2023; 13:18315. [PMID: 37880216 PMCID: PMC10600099 DOI: 10.1038/s41598-023-45003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023] Open
Abstract
Silicon (Si) and/or proline (Pro) are natural supplements that are considered to induce plants' stress tolerance against various abiotic stresses. Sweet corn (Zea mays L. saccharata) production is severely afflicted by salinity stress. Therefore, two field tests were conducted to evaluate the potential effects of Si and/or Pro (6mM) used as seed soaking (SS) and/or foliar spray (FS) on Sweet corn plant growth and yield, physio-biochemical attributes, and antioxidant defense systems grown in a saline (EC = 7.14dS m-1) soil. The Si and/or Pro significantly increased growth and yield, photosynthetic pigments, free proline, total soluble sugars (TSS), K+/Na+ratios, relative water content (RWC), membrane stability index (MSI), α-Tocopherol (α-TOC), Ascorbate (AsA), glutathione (GSH), enzymatic antioxidants activities and other anatomical features as compared to controls. In contrast, electrolytes, such as SS and/or FS under salt stress compared to controls (SS and FS using tap water) were significantly decreased. The best results were obtained when SS was combined with FS via Si or Pro. These alterations are brought about by the exogenous application of Si and/or Pro rendering these elements potentially useful in aiding sweet corn plants to acclimate successfully to saline soil.
Collapse
Affiliation(s)
- Caiming Gou
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Mostafa M Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Linghui Wang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Muhammad Ihtisham
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Hamada H El-Awady
- College of Horticulture, Northwest A&F University, Xianyang, 712100, China
| | - Mohamed Seif
- Toxicology and Food Contaminants Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Esmail M Y Alazizi
- Sichuan University of Science and Engineering, Yibin, 643000, Sichuan, China
| | - Rania S M Eid
- Agricultural Botany Department, Faculty of Agriculture, Benha University, Banha, 13518, Egypt
| | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Walid Tahri
- International Faculty of Applied Technology, Yibin University, Yibin, 644000, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China.
| | - El-Sayed M Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China.
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
109
|
Liang Y, Liu H, Fu Y, Li P, Li S, Gao Y. Regulatory effects of silicon nanoparticles on the growth and photosynthesis of cotton seedlings under salt and low-temperature dual stress. BMC PLANT BIOLOGY 2023; 23:504. [PMID: 37864143 PMCID: PMC10589941 DOI: 10.1186/s12870-023-04509-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Silicon nanoparticles (SiO2-NPs) play a crucial role in plants mitigating abiotic stress. However, the regulatory mechanism of SiO2-NPs in response to multiple stress remains unclear. The objectives of this study were to reveal the regulatory mechanism of SiO2-NPs on the growth and photosynthesis in cotton seedlings under salt and low-temperature dual stress. It will provide a theoretical basis for perfecting the mechanism of crop resistance and developing the technology of cotton seedling preservation and stable yield in arid and high salt areas. RESULTS The results showed that the salt and low-temperature dual stress markedly decreased the plant height, leaf area, and aboveground biomass of cotton seedlings by 9.58%, 15.76%, and 39.80%, respectively. While SiO2-NPs alleviated the damage of the dual stress to cotton seedling growth. In addition to reduced intercellular CO2 concentration, SiO2-NPs significantly improved the photosynthetic rate, stomatal conductance, and transpiration rate of cotton seedling leaves. Additionally, stomatal length, stomatal width, and stomatal density increased with the increase in SiO2-NPs concentration. Notably, SiO2-NPs not only enhanced chlorophyll a, chlorophyll b, and total chlorophyll content, but also slowed the decrease of maximum photochemical efficiency, actual photochemical efficiency, photochemical quenching of variable chlorophyll, and the increase in non-photochemical quenching. Moreover, SiO2-NPs enhanced the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase, improved leaf water potential, and decreased abscisic acid and malondialdehyde content. All the parameters obtained the optimal effects at a SiO2-NPs concentration of 100 mg L- 1, and significantly increased the plant height, leaf area, and aboveground biomass by 7.68%, 5.37%, and 43.00%, respectively. Furthermore, significant correlation relationships were observed between photosynthetic rate and stomatal conductance, stomatal length, stomatal width, stomatal density, chlorophyll content, maximum photochemical efficiency, actual photochemical efficiency, photochemical quenching of variable chlorophyll, and Rubisco activity. CONCLUSION The results suggested that the SiO2-NPs improved the growth and photosynthesis of cotton seedlings might mainly result from regulating the stomatal state, improving the light energy utilization efficiency and electron transport activity of PSII reaction center, and inducing the increase of Rubisco activity to enhance carbon assimilation under the salt and low-temperature dual stress.
Collapse
Affiliation(s)
- Yueping Liang
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Hao Liu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Yuanyuan Fu
- College of Agronomy, Tarim University, Alaer, 843300, China
| | - Penghui Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Shuang Li
- Shandong Academy of Agricultural Machinery Science, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yang Gao
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China.
| |
Collapse
|
110
|
Qi W, Ma H, Li S, Wu H, Zhao D. Seed Germination and Seedling Growth in Suaeda salsa (Linn.) Pall. ( Amaranthaceae) Demonstrate Varying Salinity Tolerance among Different Provenances. BIOLOGY 2023; 12:1343. [PMID: 37887053 PMCID: PMC10604373 DOI: 10.3390/biology12101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Salinity is a pressing and widespread abiotic stress, adversely affecting agriculture productivity and plant growth worldwide. Seed germination is the most critical stage to seedling growth and establishing plant species in harsh environments, including saline stress. However, seed germination characteristics and stress tolerance may vary among geographical locations, such as various provenances. Suaeda salsa (Linn.) Pall. (S. salsa) is a halophytic plant that exhibits high salt tolerance and is often considered a pioneer species for the restoration of grasslands. Understanding the germination characteristics and stress tolerance of the species could be helpful in the vegetation restoration of saline-alkali land. In this study, we collected S. salsa seeds from seven different saline-alkali habitats (S1-S7) in the Songnen Plain region to assess the germination and seedling growth responses to NaCl, Na2CO3, and NaHCO3, and to observe the recovery of seed germination after relieving the salt stress. We observed significant differences in germination and seedling growth under three salt stresses and among seven provenances. Resistance to Na2CO3 and NaHCO3 stress was considerably higher during seedling growth than seed germination, while the opposite responses were observed for NaCl resistance. Seeds from S1 and S7 showed the highest tolerance to all three salt stress treatments, while S6 exhibited the lowest tolerance. Seeds from S2 exhibited low germination under control conditions, while low NaCl concentration and pretreatment improved germination. Ungerminated seeds under high salt concentrations germinated after relieving the salt stress. Germination of ungerminated seeds after the abatement of salt stress is an important adaptation strategy for black S. salsa seeds. While seeds from most provenances regerminated under NaCl, under Na2CO3 and NaHCO3, only seeds from S4 and S7 regerminated. These findings highlight the importance of soil salinity in the maternal environment for successful seed germination and seedling growth under various salinity-alkali stresses. Therefore, seed sources and provenance should be considered for vegetation restoration.
Collapse
Affiliation(s)
- Wenwen Qi
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (W.Q.); (H.M.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyuan Ma
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (W.Q.); (H.M.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoyang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (W.Q.); (H.M.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (W.Q.); (H.M.); (S.L.)
| | - Dandan Zhao
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou 256603, China;
| |
Collapse
|
111
|
Ali Q, Shabaan M, Ashraf S, Kamran M, Zulfiqar U, Ahmad M, Zahir ZA, Sarwar MJ, Iqbal R, Ali B, Ali MA, Elshikh MS, Arslan M. Comparative efficacy of different salt tolerant rhizobial inoculants in improving growth and productivity of Vigna radiata L. under salt stress. Sci Rep 2023; 13:17442. [PMID: 37838750 PMCID: PMC10576803 DOI: 10.1038/s41598-023-44433-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
Worldwide, salinity severely affects agricultural production of crops such as mung bean in arid and semi-arid regions. In saline conditions, various species of Rhizobium can be used to enhance nodulation and induce salinity tolerance in maize. The present study conducted a pot experiment to determine the efficiency of three rhizobial isolates under different salinity conditions, such as 1.41, 4 and 6 dS m-1, on mung bean growth parameters, antioxidant status and yield. Results revealed that salt stress imparted adverse effects on the growth, antioxidants, yield and nodulation of mung bean. Under high salt stress conditions, fresh weights were reduced for roots (78.24%), shoots (64.52%), pods (58.26%) and height (32.33%) as compared to un-inoculated control plants. However, an increase in proline content (46.14%) was observed in high salt stressed plants. Three Rhizobium isolates (Mg1, Mg2, and Mg3), on the other hand, mitigated the negative effects of salt stress after inoculation. However, effects of Mg3 inoculation were prominent at 6 dS m-1 and it enhanced the plant height (45.10%), fresh weight of shoot (58.68%), root (63.64%), pods fresh weight (34.10%), pods number per plant (92.04%), and grain nitrogen concentration (21%) than un-inoculated control. Rhizobium strains Mg1, and Mg2 expressed splendid results at 1.41 and 4 dS m-1 salinity stress. The growth promotion effects might be due to improvement in mineral uptake and ionic balance that minimized the inhibitory effects caused by salinity stress. Thus, inoculating with these strains may boost mung bean growth and yield under salinity stress.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Shabaan
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Sana Ashraf
- College of Earth and Environmental Sciences, Quaid-e-Azam Campus, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Kamran
- Pakistan Council for Science and Technology, Ministry of Science and Technology, Islamabad, 44000, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Maqshoof Ahmad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Junaid Sarwar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Arslan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| |
Collapse
|
112
|
Ntanasi T, Karavidas I, Zioviris G, Ziogas I, Karaolani M, Fortis D, Conesa MÀ, Schubert A, Savvas D, Ntatsi G. Assessment of Growth, Yield, and Nutrient Uptake of Mediterranean Tomato Landraces in Response to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3551. [PMID: 37896015 PMCID: PMC10610299 DOI: 10.3390/plants12203551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Salinity is a major stress factor that compromises vegetable production in semi-arid climates such as the Mediterranean. The accumulation of salts in the soil can be attributed to limited water availability, which can be exacerbated by changes in rainfall patterns and rising temperatures. These factors can alter soil moisture levels and evaporation rates, ultimately leading to an increase in soil salinity, and, concomitantly, the extent to which crop yield is affected by salinity stress is considered cultivar-dependent. In contrast to tomato hybrids, tomato landraces often exhibit greater genetic diversity and resilience to environmental stresses, constituting valuable resources for breeding programs seeking to introduce new tolerance mechanisms. Therefore, in the present study, we investigated the effects of mild salinity stress on the growth, yield, and nutritional status of sixteen Mediterranean tomato landraces of all size types that had been pre-selected as salinity tolerant in previous screening trials. The experiment was carried out in the greenhouse facilities of the Laboratory of Vegetable Production at the Agricultural University of Athens. To induce salinity stress, plants were grown hydroponically and irrigated with a nutrient solution containing NaCl at a concentration that could maintain the NaCl level in the root zone at 30 mM, while the non-salt-treated plants were irrigated with a nutrient solution containing 0.5 mM NaCl. Various plant growth parameters, including dry matter content and fruit yield (measured by the number and weight of fruits per plant), were evaluated to assess the impact of salinity stress. In addition, the nutritional status of the plants was assessed by determining the concentrations of macro- and micronutrients in the leaves, roots, and fruit of the plants. The key results of this study reveal that cherry-type tomato landraces exhibit the highest tolerance to salinity stress, as the landraces 'Cherry-INRAE (1)', 'Cherry-INRAE (3)', and 'Cherry-INRAE (4)' did not experience a decrease in yield when exposed to salinity stress. However, larger landraces such as 'de Ramellet' also exhibit mechanisms conferring tolerance to salinity, as their yield was not compromised by the stress applied. The identified tolerant and resistant varieties could potentially be used in breeding programs to develop new varieties and hybrids that are better adapted to salinity-affected environments. The identification and utilization of tomato varieties that are adapted to salinity stress is an important strategy for promoting agriculture sustainability, particularly in semi-arid regions where salinity stress is a major challenge.
Collapse
Affiliation(s)
- Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.Z.); (I.Z.); (M.K.); (D.F.); (D.S.)
| | - Ioannis Karavidas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.Z.); (I.Z.); (M.K.); (D.F.); (D.S.)
| | - Georgios Zioviris
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.Z.); (I.Z.); (M.K.); (D.F.); (D.S.)
| | - Ioannis Ziogas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.Z.); (I.Z.); (M.K.); (D.F.); (D.S.)
| | - Melini Karaolani
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.Z.); (I.Z.); (M.K.); (D.F.); (D.S.)
| | - Dimitrios Fortis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.Z.); (I.Z.); (M.K.); (D.F.); (D.S.)
| | - Miquel À. Conesa
- INAGEA-PlantMed, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, E-07122 Palma, Illes Balears, Spain;
| | - Andrea Schubert
- Plant Stress Lab, Department of Agriculture, Forestry and Food Sciences DISAFA, Turin University, 10095 Grugliasco, Italy;
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.Z.); (I.Z.); (M.K.); (D.F.); (D.S.)
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.Z.); (I.Z.); (M.K.); (D.F.); (D.S.)
| |
Collapse
|
113
|
Hidri R, Metoui‐Ben Mahmoud O, Zorrig W, Azcon R, Abdelly C, Debez A. The halotolerant rizhobacterium Glutamicibacter sp. alleviates salt impact on Phragmites australis by producing exopolysaccharides and limiting plant sodium uptake. PLANT DIRECT 2023; 7:e535. [PMID: 37901595 PMCID: PMC10600829 DOI: 10.1002/pld3.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 08/03/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023]
Abstract
Salinity is a widespread abiotic stress, which has strong adverse effects on plant growth and crop productivity. Exopolysaccharides (EPS) play a crucial role in plant growth-promoting rhizobacteria (PGPR)-mediated improvement of plant stress tolerance. This study aimed to assess whether Glutamicibacter sp. strain producing large amounts of EPS may promote tolerance of common reed, Phragmites australis (Cav.) Trin. ex Steud., towards salt stress. This halotolerant rizhobacterium showed tolerance to salinity (up to 1 M NaCl) when cultivated on Luria-Bertani (LB) medium. Exposure to high salinity (300 mM NaCl) significantly impacted the plant growth parameters, but this adverse effect was mitigated following inoculation with Glutamicibacter sp., which triggered higher number of leaves and tillers, shoot fresh weight/dry weight, and root fresh weight as compared to non-inoculated plants. Salt stress increased the accumulation of malondialdehyde (MDA), polyphenols, total soluble sugars (TSSs), and free proline in shoots. In comparison, the inoculation with Glutamicibacter sp. further increased shoot polyphenol content, while decreasing MDA and free proline contents. Besides, this bacterial strain increased tissue Ca+ and K+ content concomitant to lower shoot Na+ and root Cl- accumulation, thus further highlighting the beneficial effect of Glutamicibacter sp. strain on the plant behavior under salinity. As a whole, our study provides strong arguments for a potential utilization of EPS-producing bacteria as a useful microbial inoculant to alleviate the deleterious effects of salinity on plants.
Collapse
Affiliation(s)
- Rabaa Hidri
- Laboratory of Extremophile PlantsCentre of Biotechnology of Borj Cedria (CBBC)Hammam‐LifTunisia
| | | | - Walid Zorrig
- Laboratory of Extremophile PlantsCentre of Biotechnology of Borj Cedria (CBBC)Hammam‐LifTunisia
| | - Rozario Azcon
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| | - Chedly Abdelly
- Laboratory of Extremophile PlantsCentre of Biotechnology of Borj Cedria (CBBC)Hammam‐LifTunisia
| | - Ahmed Debez
- Laboratory of Extremophile PlantsCentre of Biotechnology of Borj Cedria (CBBC)Hammam‐LifTunisia
| |
Collapse
|
114
|
Saifi SK, Passricha N, Tuteja R, Nath M, Gill R, Gill SS, Tuteja N. OsRuvBL1a DNA helicase boost salinity and drought tolerance in transgenic indica rice raised by in planta transformation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111786. [PMID: 37419328 DOI: 10.1016/j.plantsci.2023.111786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
RuvBL, is a member of SF6 superfamily of helicases and is conserved among the various model systems. Recently, rice (Oryza sativa L.) homolog of RuvBL has been biochemically characterized for its ATPase and DNA helicase activities; however its involvement in stress has not been studied so far. Present investigation reports the detailed functional characterization of OsRuvBL under abiotic stresses through genetic engineering. An efficient Agrobacterium-mediated in planta transformation protocol was developed in indica rice to generate the transgenic lines and study was focused on optimization of factors to achieve maximum transformation efficiency. Overexpressing OsRuvBL1a transgenic lines showed enhanced tolerance under in vivo salinity stress as compared to WT plants. The physiological and biochemical analysis of the OsRuvBL1a transgenic lines showed better performance under salinity and drought stresses. Several stress responsive interacting partners of OsRuvBL1a were identified using Y2H system revealed to its role in stress tolerance. Functional mechanism for boosting stress tolerance by OsRuvBL1a has been proposed in this study. This integration of OsRuvBL1a gene in rice genome using in planta transformation method helped to achieve the abiotic stress resilient smart crop. This study is the first direct evidence to show the novel function of RuvBL in boosting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Shabnam K Saifi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nishat Passricha
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Nath
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh 173213, India
| | - Ritu Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India
| | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India.
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
115
|
Bayomy HM, Alamri ES, Alharbi BM, Foudah SH, Genaidy EA, Atteya AK. Response of Moringa oleifera trees to salinity stress conditions in Tabuk region, Kingdom of Saudi Arabia. Saudi J Biol Sci 2023; 30:103810. [PMID: 37766885 PMCID: PMC10519853 DOI: 10.1016/j.sjbs.2023.103810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Moringa oleifera is an amazing tree with various applications. Salinity is a world major barrier to crop productivity. This study was conducted to investigate salinity and seaweed extract's effect on Moringa oleifera's growth and yields. Measurements were made of growth characteristics, fresh and dried leaf, inflorescence, mature pod and seed weight, and yield per tree, as well as chemical parameters. Seasons had no substantial effect on any of these traits. In terms of seaweed concentrations, the treatment containing 20% seaweed outperformed the treatment containing 0% seaweed in all measurements. Concerning the salinity levels, the maximum level of all studied attributes was at 18.75 mmol/L NaCl, while the level of 70.31 mmol/L NaCl has the lowest values. The interaction between salinity levels and seaweed revealed that T4 (18.75 mmol/L NaCl plus 20 % seaweed) was the highest for all traits and T9 (70.31 mmol/L NaCl plus 0 % seaweed) was the lowest for all traits except for the potassium content. Concerning potassium content, T7 (54.69 mmol/L NaCl plus 0 % seaweed) was the lowest. These findings could help to develop efficient breeding methods for Moringa oleifera in the future.
Collapse
Affiliation(s)
- Hala M. Bayomy
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Eman S. Alamri
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Shaden H. Foudah
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Esmail A. Genaidy
- Pomology Department, Agricultural and Biology Research Institute, National Research Centre, Giza 12622, Egypt
| | - Amira K. Atteya
- Horticulture Department, Damanhour University, Damanhour 22516, Egypt
| |
Collapse
|
116
|
Chinachanta K, Shutsrirung A, Santasup C, Pathom-Aree W, Luu DT, Herrmann L, Lesueur D, Prom-u-thai C. Rhizoactinobacteria Enhance Growth and Antioxidant Activity in Thai Jasmine Rice ( Oryza sativa) KDML105 Seedlings under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3441. [PMID: 37836181 PMCID: PMC10574518 DOI: 10.3390/plants12193441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Salinity is one of the most devastating abiotic stresses hampering the growth and production of rice. Nine indole-3-acetic acid (IAA)-producing salt-tolerant plant-growth-promoting rhizobacteria (ST-PGPR) were inoculated into Thai jasmine rice (Oryza sativa L.) variety Khao Dawk Mali 105 (KDML105) seedlings grown under different concentrations of NaCl (0, 50, 100, and 150 mM). The ST-PGPR strains significantly promoted the growth parameters, chlorophyll content, nutrient uptake (N, P, K, Ca, and Mg), antioxidant activity, and proline accumulation in the seedlings under both normal and saline conditions compared to the respective controls. The K+/Na+ ratio of the inoculated seedlings was much higher than that of the controls, indicating greater salt tolerance. The most salt-tolerant and IAA-producing strain, Sinomonas sp. ORF15-23, yielded the highest values for all the parameters, particularly at 50 mM NaCl. The percentage increases in these parameters relative to the controls ranged from >90% to 306%. Therefore, Sinomonas sp. ORF15-23 was considered a promising ST-PGPR to be developed as a bioinoculant for enhancing the growth, salt tolerance, and aroma of KDML105 rice in salt-affected areas. Environmentally friendly technologies such as ST-PGPR bioinoculants could also support the sustainability of KDML105 geographical indication (GI) products. However, the efficiency of Sinomonas sp. ORF15-23 should be evaluated under field conditions for its effect on rice nutrient uptake and growth, including the 2AP level.
Collapse
Affiliation(s)
- Kawiporn Chinachanta
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Arawan Shutsrirung
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
| | - Choochad Santasup
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
| | - Wasu Pathom-Aree
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Doan Trung Luu
- IPSiM, CNRS, INRAE, Institute Agro, University of Montpellier, 34060 Montpellier, France;
| | - Laetitia Herrmann
- Alliance of Bioversity International and Centre International of Tropical Agriculture (CIAT), Asia Hub, Common Microbial Biotechnology Platform (CMBP), Hanoi 10000, Vietnam; (L.H.); (D.L.)
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, VIC 3125, Australia
| | - Didier Lesueur
- Alliance of Bioversity International and Centre International of Tropical Agriculture (CIAT), Asia Hub, Common Microbial Biotechnology Platform (CMBP), Hanoi 10000, Vietnam; (L.H.); (D.L.)
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, VIC 3125, Australia
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR Eco&Sols, Hanoi 10000, Vietnam
- Eco & Sols, CIRAD, INRAE, Institut de Recherche pour le Développement (IRD), Montpellier SupAgro, Université de Montpellier (UMR), 34060 Montpellier, France
- Chinese Academy of Tropical Agricultural Sciences, Rubber Research Institute, Haikou 571101, China
| | - Chanakan Prom-u-thai
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
117
|
Fan Y, Peng F, Cui R, Wang S, Cui Y, Lu X, Huang H, Ni K, Liu X, Jiang T, Feng X, Liu M, Lei Y, Chen W, Meng Y, Han M, Wang D, Yin Z, Chen X, Wang J, Li Y, Guo L, Zhao L, Ye W. GhIMP10D, an inositol monophosphates family gene, enhances ascorbic acid and antioxidant enzyme activities to confer alkaline tolerance in Gossypium hirsutum L. BMC PLANT BIOLOGY 2023; 23:447. [PMID: 37736713 PMCID: PMC10515029 DOI: 10.1186/s12870-023-04462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Inositol monophosphates (IMP) are key enzymes in the ascorbic acid (AsA) synthesis pathways, which play vital roles in regulating plant growth and development and stresses tolerance. To date, no comprehensive analysis of the expression profile of IMP genes and their functions under abiotic stress in cotton has been reported. RESULTS In this study, the genetic characteristics, phylogenetic evolution, cis-acting elements and expression patterns of IMP gene family in cotton were systematically analyzed. A total of 28, 27, 13 and 13 IMP genes were identified in Gossypium hirsutum (G. hirsutum), Gossypium barbadense (G. barbadense), Gossypium arboreum (G. arboreum), and Gossypium raimondii (G. raimondii), respectively. Phylogenetic analysis showed that IMP family genes could cluster into 3 clades. Structure analysis of genes showed that GhIMP genes from the same subgroup had similar genetic structure and exon number. And most GhIMP family members contained hormone-related elements (abscisic acid response element, MeJA response element, gibberellin response element) and stress-related elements (low temperature response element, defense and stress response element, wound response element). After exogenous application of abscisic acid (ABA), some GhIMP genes containing ABA response elements positively responded to alkaline stress, indicating that ABA response elements played an important role in response to alkaline stress. qRT-PCR showed that most of GhIMP genes responded positively to alkaline stress, and GhIMP10D significantly upregulated under alkaline stress, with the highest up-regulated expression level. Virus-induced gene silencing (VIGS) experiment showed that compared with 156 plants, MDA content of pYL156:GhIMP10D plants increased significantly, while POD, SOD, chlorophyII and AsA content decreased significantly. CONCLUSIONS This study provides a thorough overview of the IMP gene family and presents a new perspective on the evolution of this gene family. In particular, some IMP genes may be involved in alkaline stress tolerance regulation, and GhIMP10D showed high expression levels in leaves, stems and roots under alkaline stress, and preliminary functional verification of GhIMP10D gene suggested that it may regulate tolerance to alkaline stress by regulating the activity of antioxidant enzymes and the content of AsA. This study contributes to the subsequent broader discussion of the structure and alkaline resistance of IMP genes in cotton.
Collapse
Affiliation(s)
- Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Hunan, 415101, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Xiaoyu Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Tiantian Jiang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Xixian Feng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Yuqian Lei
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Zujun Yin
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Yujun Li
- Hunan Institute of Cotton Science, Hunan, 415101, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China.
| |
Collapse
|
118
|
Du J, Zhu X, He K, Kui M, Zhang J, Han X, Fu Q, Jiang Y, Hu Y. CONSTANS interacts with and antagonizes ABF transcription factors during salt stress under long-day conditions. PLANT PHYSIOLOGY 2023; 193:1675-1694. [PMID: 37379562 DOI: 10.1093/plphys/kiad370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
CONSTANS (CO) is a critical regulator of flowering that combines photoperiodic and circadian signals in Arabidopsis (Arabidopsis thaliana). CO is expressed in multiple tissues, including seedling roots and young leaves. However, the roles and underlying mechanisms of CO in modulating physiological processes outside of flowering remain obscure. Here, we show that the expression of CO responds to salinity treatment. CO negatively mediated salinity tolerance under long-day (LD) conditions. Seedlings from co-mutants were more tolerant to salinity stress, whereas overexpression of CO resulted in plants with reduced tolerance to salinity stress. Further genetic analyses revealed the negative involvement of GIGANTEA (GI) in salinity tolerance requires a functional CO. Mechanistic analysis demonstrated that CO physically interacts with 4 critical basic leucine zipper (bZIP) transcription factors; ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTOR1 (ABF1), ABF2, ABF3, and ABF4. Disrupting these ABFs made plants hypersensitive to salinity stress, demonstrating that ABFs enhance salinity tolerance. Moreover, ABF mutations largely rescued the salinity-tolerant phenotype of co-mutants. CO suppresses the expression of several salinity-responsive genes and influences the transcriptional regulation function of ABF3. Collectively, our results show that the LD-induced CO works antagonistically with ABFs to modulate salinity responses, thus revealing how CO negatively regulates plant adaptation to salinity stress.
Collapse
Affiliation(s)
- Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiang Zhu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
119
|
Peng S, Ma T, Ma T, Chen K, Dai Y, Ding J, He P, Yu S. Effects of Salt Tolerance Training on Multidimensional Root Distribution and Root-Shoot Characteristics of Summer Maize under Brackish Water Irrigation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3329. [PMID: 37765493 PMCID: PMC10534383 DOI: 10.3390/plants12183329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
To investigate the impact of brackish water irrigation on the multidimensional root distribution and root-shoot characteristics of summer maize under different salt-tolerance-training modes, a micro-plot experiment was conducted from June to October in 2022 at the experimental station in Hohai University, China. Freshwater irrigation was used as the control (CK), and different concentrations of brackish water (S0: 0.08 g·L-1, S1: 2.0 g·L-1, S2: 4.0 g·L-1, S3: 6.0 g·L-1) were irrigated at six-leaf stage, ten-leaf stage, and tasseling stage, constituting different salt tolerance training modes, referred to as S0-2-3, S0-3-3, S1-2-3, S1-3-3, S2-2-3, and S2-3-3. The results showed that although their fine root length density (FRLD) increased, the S0-2-3 and S0-3-3 treatments reduced the limit of root extension in the horizontal direction, causing the roots to be mainly distributed near the plants. This resulted in decreased leaf area and biomass accumulation, ultimately leading to significant yield reduction. Additionally, the S2-2-3 and S2-3-3 treatments stimulated the adaptive mechanism of maize roots, resulting in boosted fine root growth to increase the FRLD and develop into deeper soil layers. However, due to the prolonged exposure to a high level of salinity, their roots below 30 cm depth senesced prematurely, leading to an inhibition in shoot growth and also resulting in yield reduction of 10.99% and 11.75%, compared to CK, respectively. Furthermore, the S1-2-3 and S1-3-3 treatments produced more reasonable distributions of FRLD, which did not boost fine root growth but established fewer weak areas (FLRD < 0.66 cm-3) in their root systems. Moreover, the S1-2-3 treatment contributed to increasing leaf development and biomass accumulation, compared to CK, whereas it allowed for minimizing yield reduction. Therefore, our study proposed the S1-2-3 treatment as the recommended training mode for summer maize while utilizing brackish water resources.
Collapse
Affiliation(s)
- Suhan Peng
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Tao Ma
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Teng Ma
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
| | - Kaiwen Chen
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
| | - Yan Dai
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
| | - Jihui Ding
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
| | - Pingru He
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
| | - Shuang’en Yu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
| |
Collapse
|
120
|
Atta K, Mondal S, Gorai S, Singh AP, Kumari A, Ghosh T, Roy A, Hembram S, Gaikwad DJ, Mondal S, Bhattacharya S, Jha UC, Jespersen D. Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. FRONTIERS IN PLANT SCIENCE 2023; 14:1241736. [PMID: 37780527 PMCID: PMC10540871 DOI: 10.3389/fpls.2023.1241736] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
Improper use of water resources in irrigation that contain a significant amount of salts, faulty agronomic practices such as improper fertilization, climate change etc. are gradually increasing soil salinity of arable lands across the globe. It is one of the major abiotic factors that inhibits overall plant growth through ionic imbalance, osmotic stress, oxidative stress, and reduced nutrient uptake. Plants have evolved with several adaptation strategies at morphological and molecular levels to withstand salinity stress. Among various approaches, harnessing the crop genetic variability across different genepools and developing salinity tolerant crop plants offer the most sustainable way of salt stress mitigation. Some important major genetic determinants controlling salinity tolerance have been uncovered using classical genetic approaches. However, its complex inheritance pattern makes breeding for salinity tolerance challenging. Subsequently, advances in sequence based breeding approaches and functional genomics have greatly assisted in underpinning novel genetic variants controlling salinity tolerance in plants at the whole genome level. This current review aims to shed light on physiological, biochemical, and molecular responses under salt stress, defense mechanisms of plants, underlying genetics of salt tolerance through bi-parental QTL mapping and Genome Wide Association Studies, and implication of Genomic Selection to breed salt tolerant lines.
Collapse
Affiliation(s)
- Kousik Atta
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Saptarshi Mondal
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | - Shouvik Gorai
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Aditya Pratap Singh
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
- School of Agriculture, GIET University, Gunupur, Rayagada, Odisha, India
| | - Amrita Kumari
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Tuhina Ghosh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arkaprava Roy
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR- National Institute of Biotic Stress Management, Raipur, India
| | - Suryakant Hembram
- WBAS (Research), Government of West Bengal, Field Crop Research Station, Burdwan, India
| | | | - Subhasis Mondal
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | | | | | - David Jespersen
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| |
Collapse
|
121
|
Guo B, Arndt SK, Miller RE, Szota C, Farrell C. How does leaf succulence relate to plant drought resistance in woody shrubs? TREE PHYSIOLOGY 2023; 43:1501-1513. [PMID: 37208014 PMCID: PMC10652328 DOI: 10.1093/treephys/tpad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Succulence describes the amount of water stored in cells or organs, regardless of plant life-form, including woody and herbaceous plants. In dry environments, plants with greater survival often have greater leaf succulence. However, it is unclear how leaf succulence relates to plant drought resistance strategies, including isohydry (closing stomata to maintain leaf water status) and anisohydry (adjusting cell turgor to tolerate low leaf water status), which exist on a continuum that can be quantified by hydroscape area (larger hydroscape area indicates more anisohydric). We evaluated 12 woody species with differing leaf succulence in a glasshouse dry-down experiment to determine relationships among leaf succulence (degree of leaf succulence, leaf succulent quotient and leaf thickness) and plant drought response (hydroscape area, plant water use, turgor loss point and predawn leaf water potential when transpiration ceased). Hydroscape areas ranged from 0.72 (Carpobrotus modestus S.T.Blake; crassulacean acid metabolism (CAM) plants) to 7.01 MPa2 (Rhagodia spinescens R.Br.; C3 plants), suggesting that C. modestus was more isohydric and R. spinescens was more anisohydric. More isohydric species C. modestus, Carpobrotus rossii (Haw.) Schwantes and Disphyma crassifolium (L.) L.Bolus (CAM plants) had greater leaf succulence, lower root allocation, used stored water and ceased transpiration at higher predawn leaf water potential, shortly after reaching their turgor loss point. The remaining nine species that are not CAM plants had larger hydroscape areas and ceased transpiration at lower predawn leaf water potential. Greater leaf succulence was not related to cumulative water loss until transpiration ceased in drying soils. All 12 species had high turgor loss points (-1.32 to -0.59 MPa), but turgor loss point was not related to hydroscape area or leaf succulence. Our data suggest that overall greater leaf succulence was related to isohydry, but this may have been influenced by the fact that these species were also CAM plants.
Collapse
Affiliation(s)
- Bihan Guo
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria 3121, Australia
| | - Stefan K Arndt
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria 3121, Australia
| | - Rebecca E Miller
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria 3121, Australia
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004, Australia
| | - Christopher Szota
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria 3121, Australia
| | - Claire Farrell
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria 3121, Australia
| |
Collapse
|
122
|
Yang H, Fang R, Luo L, Yang W, Huang Q, Yang C, Hui W, Gong W, Wang J. Uncovering the mechanisms of salicylic acid-mediated abiotic stress tolerance in horticultural crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1226041. [PMID: 37701800 PMCID: PMC10494719 DOI: 10.3389/fpls.2023.1226041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/14/2023]
Abstract
Salicylic acid (SA) has been recognized as a promising molecule for improving abiotic stress tolerance in plants due to its ability to enhance antioxidant defense system, and promote root architecture system. Recent research has focused on uncovering the mechanisms by which SA confers abiotic stress tolerance in horticultural crops. SA has been shown to act as a signaling molecule that triggers various physiological and morphological responses in plants. SA regulates the production of reactive oxygen species (ROS). Moreover, it can also act as signaling molecule that regulate the expression of stress-responsive genes. SA can directly interact with various hormones, proteins and enzymes involved in abiotic stress tolerance. SA regulates the antioxidant enzymes activities that scavenge toxic ROS, thereby reducing oxidative damage in plants. SA can also activate protein kinases that phosphorylate and activate transcription factors involved in stress responses. Understanding these mechanisms is essential for developing effective strategies to improve crop resilience in the face of changing environmental conditions. Current information provides valuable insights for farmers and plant researchers, offering new strategies to enhance crop resilience and productivity in the face of environmental challenges. By harnessing the power of SA and its signaling pathways, farmers can develop more effective stress management techniques and optimize crop performance. Plant researchers can also explore innovative approaches to breed or engineer crops with enhanced stress tolerance, thereby contributing to sustainable agriculture and food security.
Collapse
Affiliation(s)
- Hua Yang
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| | - Rui Fang
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| | - Ling Luo
- School of Environment, Sichuan Agricultural University, Chengdu, China
| | - Wei Yang
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| | - Qiong Huang
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| | - Chunlin Yang
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| | - Wenkai Hui
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| | - Wei Gong
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| | - Jingyan Wang
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| |
Collapse
|
123
|
Liu H, Chong P, Liu Z, Bao X, Tan B. Exogenous hydrogen sulfide improves salt stress tolerance of Reaumuria soongorica seedlings by regulating active oxygen metabolism. PeerJ 2023; 11:e15881. [PMID: 37641597 PMCID: PMC10460565 DOI: 10.7717/peerj.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023] Open
Abstract
Hydrogen sulfide (H2S), as an endogenous gas signaling molecule, plays an important role in plant growth regulation and resistance to abiotic stress. This study aims to investigate the mechanism of exogenous H2S on the growth and development of Reaumuria soongorica seedlings under salt stress and to determine the optimal concentration for foliar application. To investigate the regulatory effects of exogenous H2S (donor sodium hydrosulfide, NaHS) at concentrations ranging from 0 to 1 mM on reactive oxygen species (ROS), antioxidant system, and osmoregulation in R. soongorica seedlings under 300 mM NaCl stress. The growth of R. soongorica seedlings was inhibited by salt stress, which resulted in a decrease in the leaf relative water content (LRWC), specific leaf area (SLA), and soluble sugar content in leaves, elevated activity levels of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); and accumulated superoxide anion (O2-), proline, malondialdehyde (MDA), and soluble protein content in leaves; and increased L-cysteine desulfhydrase (LCD) activity and endogenous H2S content. This indicated that a high level of ROS was produced in the leaves of R. soongorica seedlings and seriously affected the growth and development of R. soongorica seedlings. The exogenous application of different concentrations of NaHS reduced the content of O 2-, proline and MDA, increased the activity of antioxidant enzymes and the content of osmoregulators (soluble sugars and soluble proteins), while the LCD enzyme activity and the content of endogenous H2S were further increased with the continuous application of exogenous H2S. The inhibitory effects of salt stress on the growth rate of plant height and ground diameter, the LRWC, biomass, and SLA were effectively alleviated. A comprehensive analysis showed that the LRWC, POD, and proline could be used as the main indicators to evaluate the alleviating effect of exogenous H2S on R. soongorica seedlings under salt stress. The optimal concentration of exogenous H2S for R. soongorica seedlings under salt stress was 0.025 mM. This study provides an important theoretical foundation for understanding the salt tolerance mechanism of R. soongorica and for cultivating high-quality germplasm resources.
Collapse
Affiliation(s)
| | | | - Zehua Liu
- Gansu Agricultural University, Lanzhou, China
| | | | | |
Collapse
|
124
|
Bonnin M, Favreau B, Soriano A, Leonhardt N, Oustric J, Lourkisti R, Ollitrault P, Morillon R, Berti L, Santini J. Insight into Physiological and Biochemical Determinants of Salt Stress Tolerance in Tetraploid Citrus. Antioxidants (Basel) 2023; 12:1640. [PMID: 37627635 PMCID: PMC10451669 DOI: 10.3390/antiox12081640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Citrus are classified as salt-sensitive crops. However, a large diversity has been observed regarding the trends of tolerance among citrus. In the present article, physiological and biochemical studies of salt stress tolerance were carried out according to the level of polyploidy of different citrus genotypes. We particularly investigated the impact of tetraploidy in trifoliate orange (Poncirus trifoliata (L.) Raf.) (PO4x) and Cleopatra mandarin (Citrus reshni Hort. Ex Tan.) (CL4x) on the tolerance to salt stress compared to their respective diploids (PO2x and CL2x). Physiological parameters such as gas exchange, ions contents in leaves and roots were analyzed. Roots and leaves samples were collected to measure polyphenol, malondialdehyde (MDA), ascorbate and H2O2 contents but also to measure the activities of enzymes involved in the detoxification of active oxygen species (ROS). Under control conditions, the interaction between genotype and ploidy allowed to discriminate different behavior in terms of photosynthetic and antioxidant capacities. These results were significantly altered when salt stress was applied when salt stress was applied. Contrary to the most sensitive genotype, that is to say the diploid trifoliate orange PO2x, PO4x was able to maintain photosynthetic activity under salt stress and had better antioxidant capacities. The same observation was made regarding the CL4x genotype known to be more tolerant to salt stress. Our results showed that tetraploidy may be a factor that could enhance salt stress tolerance in citrus.
Collapse
Affiliation(s)
- Marie Bonnin
- CNRS, Equipe d’Adaptation des Végétaux Aux Changements Globaux, Projet Ressources Naturelles, UMR 6134 SPE, Universite de Corse, Corte, 20250 Corsica, France; (M.B.); (J.O.); (R.L.); (L.B.)
| | - Bénédicte Favreau
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (UMR AGAP) Institut, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement (CIRAD), av Agropolis, 34000 Montpellier, France; (B.F.); (A.S.); (P.O.); (R.M.)
| | - Alexandre Soriano
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (UMR AGAP) Institut, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement (CIRAD), av Agropolis, 34000 Montpellier, France; (B.F.); (A.S.); (P.O.); (R.M.)
| | - Nathalie Leonhardt
- CEA, CNRS, BIAM, UMR7265, Aix Marseille Université, 13108 Saint Paul-Lez-Durance, France;
| | - Julie Oustric
- CNRS, Equipe d’Adaptation des Végétaux Aux Changements Globaux, Projet Ressources Naturelles, UMR 6134 SPE, Universite de Corse, Corte, 20250 Corsica, France; (M.B.); (J.O.); (R.L.); (L.B.)
| | - Radia Lourkisti
- CNRS, Equipe d’Adaptation des Végétaux Aux Changements Globaux, Projet Ressources Naturelles, UMR 6134 SPE, Universite de Corse, Corte, 20250 Corsica, France; (M.B.); (J.O.); (R.L.); (L.B.)
| | - Patrick Ollitrault
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (UMR AGAP) Institut, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement (CIRAD), av Agropolis, 34000 Montpellier, France; (B.F.); (A.S.); (P.O.); (R.M.)
| | - Raphaël Morillon
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (UMR AGAP) Institut, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement (CIRAD), av Agropolis, 34000 Montpellier, France; (B.F.); (A.S.); (P.O.); (R.M.)
| | - Liliane Berti
- CNRS, Equipe d’Adaptation des Végétaux Aux Changements Globaux, Projet Ressources Naturelles, UMR 6134 SPE, Universite de Corse, Corte, 20250 Corsica, France; (M.B.); (J.O.); (R.L.); (L.B.)
| | - Jérémie Santini
- CNRS, Equipe d’Adaptation des Végétaux Aux Changements Globaux, Projet Ressources Naturelles, UMR 6134 SPE, Universite de Corse, Corte, 20250 Corsica, France; (M.B.); (J.O.); (R.L.); (L.B.)
| |
Collapse
|
125
|
Farzana T, Guo Q, Rahman MS, Rose TJ, Barkla BJ. Salinity and nitrogen source affect productivity and nutritional value of edible halophytes. PLoS One 2023; 18:e0288547. [PMID: 37582102 PMCID: PMC10427017 DOI: 10.1371/journal.pone.0288547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023] Open
Abstract
Saline agriculture may contribute to food production in the face of the declining availability of fresh water and an expanding area of salinized soils worldwide. However, there is currently little known about the biomass and nutrient/antinutrient accumulation response of many edible halophytes to increasing levels of salinity and nitrogen source. To address this, two glass house experiments were carried out. The first to study the shoot biomass, and nutrient accumulation response, measured by ICP-MS analysis, of edible halophyte species, including Mesembryanthemum crystallinum (ice plant), Salsola komarovii (Land seaweed), Enchylaena tomentosa (Ruby Saltbush), Crithmum maritimum (Rock Samphire), Crambe maritima (Sea Kale) and Mertensia maritima (Oyster Plant), under increasing levels of salinity (0 to 800 mM). The second experiment studied the effects of nitrogen source combined with salinity, on levels of oxalate, measured by HPLC, in ice plant and ruby saltbush. Species differences for biomass and sodium (Na), potassium (K), chloride (Cl), nitrogen (N) and phosphorus (P) accumulation were observed across the range of salt treatments (0 to 800mM). Shoot concentrations of the anti-nutrient oxalate decreased significantly in ice plant and ruby saltbush with an increase in the proportion of N provided as NH4+ (up to 100%), while shoot oxalate concentrations in ice plant and ruby saltbush grown in the absence of NaCl were not significantly different to oxalate concentrations in plants treated with 200 mM or 400 mM NaCl. However, the lower shoot oxalate concentrations observed with the increase in NH4+ came with concurrent reductions in shoot biomass. Results suggest that there will need to be a calculated tradeoff between oxalate levels and biomass when growing these plants for commercial purposes.
Collapse
Affiliation(s)
- Tania Farzana
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Qi Guo
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Md. Sydur Rahman
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Terry J. Rose
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Bronwyn J. Barkla
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
126
|
Afzal S, Bakhat HF, Shahid M, Shah GM, Abbas G. Assessment of lithium bioaccumulation by quinoa (Chenopodium quinoa willd.) and its implication for human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6517-6532. [PMID: 37330432 DOI: 10.1007/s10653-023-01659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Lithium (Li) is the lightest alkali metal and 27th most abundant element in the earth crust. In traces, the element has medicinal value for various disorders in humans, however, its higher concentrations may lead to treatment-resistant depression and altered thyroid functioning. Quinoa (Chenopodium quinoa) has gained popularity owing to its halophytic nature and its potential use as an alternative to the traditional staple foods. However, quinoa response to Li-salt in terms of growth, Li accumulation potential and health risks associated with consumption of the quinoa seeds grown on Li-contaminated soils has not been explored yet. During this study, quinoa was exposed to various concentrations of Li (0, 2, 4, 8 and 16 mM) at germination as well as seedling stages. The results showed that seed germination was the highest (64% higher than control) at Li concentration of 8 mM. Similarly, at 8 mM doses of Li shoot length, shoot dry weight, root length, root dry weight and grain yield were increased by 130%, 300%, 244%, 858% and 185% than control. It was also revealed that Li increased the accumulation of calcium and sodium in quinoa shoots. Carotenoids contents were increased, but chlorophyll contents remained un-changed under Li application. The activities of antioxidants viz. Peroxide dismutase, catalase and super oxide dismutase were also increased with an increase in the levels of Li in the soil. Estimated daily intake and hazard quotient of Li in quinoa were less than the threshold level. It was concluded that Li concentration of 8 mM is useful for quinoa growth and it can be successfully grown on Li contaminated soils without causing any human health risks.
Collapse
Affiliation(s)
- Saira Afzal
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Hafiz Faiq Bakhat
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Ghulam Abbas
- Centre for Climate Research and Development, COMSATS University Islamabad, Islamabad, 45550, Pakistan.
| |
Collapse
|
127
|
Wang J, Song J, Qi H, Zhang H, Wang L, Zhang H, Cui C, Ji G, Muhammad S, Sun G, Xu Z, Zhang H. Overexpression of 2-Cys Peroxiredoxin alleviates the NaHCO 3 stress-induced photoinhibition and reactive oxygen species damage of tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107876. [PMID: 37413942 DOI: 10.1016/j.plaphy.2023.107876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Plant 2-cysteine peroxiredoxin (2-Cys Prx) is a mercaptan peroxidase localized in chloroplasts and has unique catalytic properties. To explore the salt stress tolerance mechanisms of 2-Cys Prx in plants, we analyzed the effects of overexpressing the 2-CysPrx gene on the physiological and biochemical metabolic processes of tobacco under NaHCO3 stress through joint physiological and transcriptomic analysis. These parameters included growth phenotype, chlorophyll, photosynthesis, and antioxidant system. After NaHCO3 stress treatment, a total of 5360 differentially expressed genes (DEGs) were identified in 2-Cysprx overexpressed (OE) plants, and the number of DEGs was significantly lower than 14558 in wild-type (WT) plants. KEGG enrichment analysis showed that DEGs were mainly enriched in photosynthetic pathways, photosynthetic antenna proteins, and porphyrin and chlorophyll metabolism. Overexpressing 2-CysPrx significantly reduced the growth inhibition of tobacco induced by NaHCO3 stress, alleviating the down-regulation of the DEGs related to chlorophyll synthesis, photosynthetic electron transport and the Calvin cycle and the up-regulation of those related to chlorophyll degradation. In addition, it also interacted with other redox systems such as thioredoxins (Trxs) and the NADPH-dependent Trx reductase C (NTRC), and mediated the positive regulation of the activities of antioxidant enzymes such as peroxidase (POD) and catalase (CAT) and the expression of related genes, thereby reducing the accumulation of superoxide anion (O2·-), hydrogen peroxide (H2O2) and malondialdehyde (MDA). In conclusion, 2-CysPrx overexpression could alleviate the NaHCO3 stress-induced photoinhibition and oxidative damage by regulating chlorophyll metabolism, promoting photosynthesis and participating in the regulation of antioxidant enzymes, and thus improve the ability of plants to resist salt stress damage.
Collapse
Affiliation(s)
- Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hongling Qi
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Hongjiao Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Lu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Salman Muhammad
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhiru Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
128
|
Saeed S, Ullah A, Ullah S, Elshikh MS, Noor J, Eldin SM, Zeng F, Amin F, Ali MA, Ali I. Salicylic Acid and α-Tocopherol Ameliorate Salinity Impact on Wheat. ACS OMEGA 2023; 8:26122-26135. [PMID: 37521660 PMCID: PMC10373184 DOI: 10.1021/acsomega.3c02166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Background: Soil salinity negatively impacts agricultural productivity. Consequently, strategies should be developed to inculcate a salinity tolerance in crops for sustainable food production. Growth regulators play a vital role in regulating salinity stress tolerance. Methods: Thus, we examined the effect of exogenous salicylic acid (SA) and alpha-tocopherol (TP) (100 mg/L) on the morphophysio-biochemical responses of two wheat cultivars (Pirsabak-15 and Shankar) to salinity stress (0 and 40 mM). Results: Both Pirsabak-15 and Shankar cultivars were negatively affected by salinity stress. For instance, salinity reduced growth attributes (i.e., leaf fresh and dry weight, leaf moisture content, leaf area ratio, shoot and root dry weight, shoot and root length, as well as root-shoot ratio), pigments (chlorophyll a, chlorophyll a, and carotenoids) but increased hydrogen peroxide (H2O2), malondialdehyde (MDA), and endogenous TP in both cultivars. Among the antioxidant enzymes, salinity enhanced the activity of peroxidase (POD) and polyphenol oxidase (PPO) in Pirsabak-15; glutathione reductase (GR) and PPO in Shankar, while ascorbate peroxidase (APOX) was present in both cultivars. SA and TP could improve the salinity tolerance by improving growth and photosynthetic pigments and reducing MDA and H2O2. In general, the exogenous application did not have a positive effect on antioxidant enzymes; however, it increased PPO in Pirsabak-15 and SOD in the Shankar cultivar. Conclusions: Consequently, we suggest that SA and TP could have enhanced the salinity tolerance of our selected wheat cultivars by modulating their physiological mechanisms in a manner that resulted in improved growth. Future molecular studies can contribute to a better understanding of the mechanisms by which SA and TP regulate the selected wheat cultivars underlying salinity tolerance mechanisms.
Collapse
Affiliation(s)
- Saleha Saeed
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Abd Ullah
- Xinjiang
Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration,
Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele
National Station of Observation and Research for Desert-Grassland
Ecosystems, Cele 848300, China
| | - Sami Ullah
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Mohamed S Elshikh
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javaria Noor
- Department
of Botany, Islamia College Peshawar, Peshawar, KP 19650, Pakistan
| | - Sayed M. Eldin
- Center
of
Research, Faculty of Engineering, Future
University in Egypt, New Cairo 18939, Egypt
| | - Fanjiang Zeng
- Xinjiang
Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration,
Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele
National Station of Observation and Research for Desert-Grassland
Ecosystems, Cele 848300, China
| | - Fazal Amin
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Mohammad Ajmal Ali
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Iftikhar Ali
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
- Department
of Genetics and Development, Columbia University
Irving Medical Center, New York,New York 10032, United States
- School
of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
129
|
Radwan AM, Ahmed EA, Donia AM, Mustafa AE, Balah MA. Priming of Citrullus lanatus var. Colocynthoides seeds in seaweed extract improved seed germination, plant growth and performance under salinity conditions. Sci Rep 2023; 13:11884. [PMID: 37482594 PMCID: PMC10363529 DOI: 10.1038/s41598-023-38711-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023] Open
Abstract
Citrullus lanatus var. Colocynthoide "Gurum" is an unconventional crop that can be utilized as a new source of edible oil and has the ability to grow in a variety of harsh conditions. To mitigate the adverse effects of salinity on seed germination and plant performance of C. lanatus, seeds were primed in the aqueous extracts of the seaweed Ulva lactuca before planting under greenhouse conditions. The aqueous extract of U. lactuca at 8% w/v led to maximal seed germination percentage and seedling growth of C. lanatus. Moreover, U. lactuca extract counteracted the negative effects of salt stress on the plant by significantly increasing the activity of SOD, CAT, and POD. The bioactive components of U. lactuca, e.g. glycine betaine and phenolic compounds can account for such beneficial role of algal extract on C. lanatus. Thus, priming of C. lanatus seeds in U. lactuca extract with various concentrations of U. lactuca extract can be employed as an effective practice for successful seed germination, improved plant growth and enhanced salt resistance, probably as a result of increased antioxidant enzymes activity and photosynthetic pigments.
Collapse
Affiliation(s)
- Asmaa M Radwan
- Botany and Microbiology Department, Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
| | - Entesar A Ahmed
- Botany and Microbiology Department, Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
| | - Abdelraheim M Donia
- Medicinal and Aromatic Plants Department, Desert Research Center, Cairo, Egypt
| | - Abeer E Mustafa
- Botany and Microbiology Department, Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
| | - Mohamed A Balah
- Plants Protection Department, Desert Research Center, Cairo, Egypt.
| |
Collapse
|
130
|
Fu H, Yang Y. How Plants Tolerate Salt Stress. Curr Issues Mol Biol 2023; 45:5914-5934. [PMID: 37504290 PMCID: PMC10378706 DOI: 10.3390/cimb45070374] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Soil salinization inhibits plant growth and seriously restricts food security and agricultural development. Excessive salt can cause ionic stress, osmotic stress, and ultimately oxidative stress in plants. Plants exclude excess salt from their cells to help maintain ionic homeostasis and stimulate phytohormone signaling pathways, thereby balancing growth and stress tolerance to enhance their survival. Continuous innovations in scientific research techniques have allowed great strides in understanding how plants actively resist salt stress. Here, we briefly summarize recent achievements in elucidating ionic homeostasis, osmotic stress regulation, oxidative stress regulation, and plant hormonal responses under salt stress. Such achievements lay the foundation for a comprehensive understanding of plant salt-tolerance mechanisms.
Collapse
Affiliation(s)
- Haiqi Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Sciences, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
131
|
Fgaier S, Aarrouf J, Lopez-Lauri F, Lizzi Y, Poiroux F, Urban L. Effect of high salinity and of priming of non-germinated seeds by UV-C light on photosynthesis of lettuce plants grown in a controlled soilless system. FRONTIERS IN PLANT SCIENCE 2023; 14:1198685. [PMID: 37469782 PMCID: PMC10352585 DOI: 10.3389/fpls.2023.1198685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
High salinity results in a decrease in plant photosynthesis and crop productivity. The aim of the present study was to evaluate the effect of UV-C priming treatments of lettuce seeds on photosynthesis of plants grown at high salinity. Non-primed and primed seeds were grown in an hydroponic system, with a standard nutrient solution, either supplemented with 100 mM NaCl (high salinity), or not (control). Considering that leaf and root K+ concentrations remained constant and that chlorophyll fluorescence parameters and root growth were not affected negatively in the high salinity treatment, we conclude that the latter was at the origin of a moderate stress only. A substantial decrease in leaf net photosynthetic assimilation (Anet) was however observed as a consequence of stomatal and non-stomatal limitations in the high salinity treatment. This decrease in Anet translated into a decrease in growth parameters; it may be attributed partially to the high salinity-associated increase in leaf concentration in abscisic acid and decrease in stomatal conductance. Priming by UV-C light resulted in an increase in total photosynthetic electron transport rate and Anet in the leaves of plants grown at high salinity. The increase of the latter translated into a moderate increase in growth parameters. It is hypothesized that the positive effect of UV-C priming on Anet and growth of the aerial part of lettuce plants grown at high salinity, is mainly due to its stimulating effect on leaf concentration in salicylic acid. Even though leaf cytokinins' concentration was higher in plants from primed seeds, maintenance of the cytokinins-to-abscisic acid ratio also supports the idea that UV-C priming resulted in protection of plants exposed to high salinity.
Collapse
Affiliation(s)
- Salah Fgaier
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
- Nova Genetic, Zone Anjou Actiparc de Jumelles, Longué-Jumelles, France
| | - Jawad Aarrouf
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| | - Félicie Lopez-Lauri
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| | - Yves Lizzi
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| | - Florine Poiroux
- Nova Genetic, Zone Anjou Actiparc de Jumelles, Longué-Jumelles, France
| | - Laurent Urban
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| |
Collapse
|
132
|
Ruiz-Pérez FS, Ruiz-Castilla FJ, Leal C, Martínez JL, Ramos J. Sodium and lithium exert differential effects on the central carbon metabolism of Debaryomyces hansenii through the glyoxylate shunt regulation. Yeast 2023; 40:265-275. [PMID: 37170862 DOI: 10.1002/yea.3856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
Debaryomyces hansenii is a halotolerant/halophilic yeast usually found in salty environments. The yeast accumulated sodium at high concentrations, which improved growth in salty media. In contrast, lithium was toxic even at low concentrations and its presence prevented cell proliferation. To analyse the responses to both cations, metabolite levels, enzymatic activities and gene expression were determined, showing that NaCl and LiCl trigger different cellular responses. At high concentrations of NaCl (0.5 or 1.5 M) cells accumulated higher amounts of the intermediate metabolites glyoxylate and malate and, at the same time, the levels of intracellular oxoglutarate decreased. Additionally, 0.5 M NaCl increased the activity of the enzymes isocitrate lyase and malate synthase involved in the synthesis of glyoxylate and malate respectively and decreased the activity of isocitrate dehydrogenase. Moreover, transcription of the genes coding for isocitrate lyase and malate synthase was activated by NaCl. Also, cells accumulated phosphate upon NaCl exposure. None of these effects was provoked when LiCl (0.1 or 0.3 M) was used instead of NaCl. Lithium induced accumulation of higher amounts of oxoglutarate and decreased the concentrations of glyoxylate and malate to non-detectable levels. Cells incubated with lithium also showed higher activity of the isocitrate dehydrogenase and neither increased isocitrate lyase and malate synthase activities nor the transcription of the corresponding genes. In summary, we show that sodium, but not lithium, up regulates the shunt of the glyoxylic acid in D. hansenii and we propose that this is an important metabolic adaptation to thrive in salty environments.
Collapse
Affiliation(s)
- Francisco S Ruiz-Pérez
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, Spain
| | - Francisco J Ruiz-Castilla
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, Spain
| | - Carlos Leal
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, Spain
| | - José L Martínez
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Lyngby, Denmark
| | - José Ramos
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, Spain
| |
Collapse
|
133
|
DiCara C, Gedan K. Distinguishing the Effects of Stress Intensity and Stress Duration in Plant Responses to Salinity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2522. [PMID: 37447083 DOI: 10.3390/plants12132522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Species-specific variation in response to stress is a key driver of ecological patterns. As climate change alters stress regimes, coastal plants are experiencing intensifying salinity stress due to sea-level rise and more intense storms. This study investigates the variation in species' responses to presses and pulses of salinity stress in five glycophytic and five halophytic species to determine whether salinity intensity, duration, or their interaction best explain patterns of survival and performance. In salinity stress exposure experiments, we manipulated the intensity and duration of salinity exposure to challenge species' expected salinity tolerances. Salinity intensity best explained patterns of survival in glycophytic species, while the interaction between intensity and duration was a better predictor of survival in halophytic species. The interaction between intensity and duration also best explained biomass and chlorophyll production for all tested species. There was interspecific variability in the magnitude of the interactive effect of salinity intensity and duration, with some glycophytic species (Persicaria maculosa, Sorghum bicolor, and Glycine max) having a more pronounced, negative biomass response. For the majority of species, prolonged stress duration exacerbated the negative effect of salinity intensity on biomass. We also observed an unexpected, compensatory response in chlorophyll production in two species, Phragmites australis and Kosteletzkya virginica, for which the effect of salinity intensity on chlorophyll became more positive with increasing duration. We found the regression coefficient of salinity intensity versus biomass at the highest stress duration, i.e., as a press stressor, to be a useful indicator of salinity tolerance, for which species' salinity-tolerance levels matched those in the literature. In conclusion, by measuring species-specific responses to stress exposure, we were able to visualize the independent and interactive effects of two components of a salinity stress regime, intensity, and duration, to reveal how species' responses vary in magnitude and by tolerance class.
Collapse
Affiliation(s)
- Caitlin DiCara
- Department of Biological Sciences, Columbian College of Arts & Sciences, The George Washington University, Washington, DC 20052, USA
| | - Keryn Gedan
- Department of Biological Sciences, Columbian College of Arts & Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
134
|
Kumar D, Punetha A, Chauhan A, Suryavanshi P, Padalia RC, Kholia S, Singh S. Growth, oil and physiological parameters of three mint species grown under saline stress levels. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1061-1072. [PMID: 37649882 PMCID: PMC10462551 DOI: 10.1007/s12298-023-01337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
Salinity stress is known to have a detrimental effect on mint plants. The aim of the present work was to investigate the possible effects of salinity stress on Mentha spicata, Mentha piperita and Mentha arvensis. Plants were exposed to salinity stress using different concentrations of NaCl (0, 50, 100, 150 mM). Under salinity stress, plant growth, oil yield, content and composition, as well as physiological parameters were adversely affected. Among the studied species, M. arvensis experienced the maximum loss in terms of oil percentage. Physiological characteristics and oil composition were significantly affected with intensification of salt stress. For instance, in M. spicata, with increasing salinity stress, piperitone oxide was decreased from 78.4% in control to 38.0% in 150 mM NaCl, whereas menthol was increased from 1.0 to 37.1%. Moreover, in M. piperita, menthone, isomenthone and limonene were all increased in low stress and then were decreased in high stress conditions. In M. arvensis, the major compound; menthol was not affected but the content of menthone increased. It could be concluded that the salinity stress is detrimental but might be useful and may be recommended as an appropriate approach in improving the oil quality or to producing specific compounds under mild or moderate stress.
Collapse
Affiliation(s)
- Dipender Kumar
- Research Centre, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Pantnagar, Uttarakhand 263149 India
| | - Arjita Punetha
- Research Centre, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Pantnagar, Uttarakhand 263149 India
| | - Amit Chauhan
- Research Centre, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Pantnagar, Uttarakhand 263149 India
| | - Priyanka Suryavanshi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh 226015 India
| | - R. C. Padalia
- Research Centre, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Pantnagar, Uttarakhand 263149 India
| | - Sushma Kholia
- Research Centre, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Pantnagar, Uttarakhand 263149 India
| | - Sonveer Singh
- Research Centre, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Pantnagar, Uttarakhand 263149 India
| |
Collapse
|
135
|
Ding J, McDowell N, Fang Y, Ward N, Kirwan ML, Regier P, Megonigal P, Zhang P, Zhang H, Wang W, Li W, Pennington SC, Wilson SJ, Stearns A, Bailey V. Modeling the mechanisms of conifer mortality under seawater exposure. THE NEW PHYTOLOGIST 2023. [PMID: 37376720 DOI: 10.1111/nph.19076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
Relative sea level rise (SLR) increasingly impacts coastal ecosystems through the formation of ghost forests. To predict the future of coastal ecosystems under SLR and changing climate, it is important to understand the physiological mechanisms underlying coastal tree mortality and to integrate this knowledge into dynamic vegetation models. We incorporate the physiological effect of salinity and hypoxia in a dynamic vegetation model in the Earth system land model, and used the model to investigate the mechanisms of mortality of conifer forests on the west and east coast sites of USA, where trees experience different form of sea water exposure. Simulations suggest similar physiological mechanisms can result in different mortality patterns. At the east coast site that experienced severe increases in seawater exposure, trees loose photosynthetic capacity and roots rapidly, and both storage carbon and hydraulic conductance decrease significantly within a year. Over time, further consumption of storage carbon that leads to carbon starvation dominates mortality. At the west coast site that gradually exposed to seawater through SLR, hydraulic failure dominates mortality because root loss impacts on conductance are greater than the degree of storage carbon depletion. Measurements and modeling focused on understanding the physiological mechanisms of mortality is critical to reducing predictive uncertainty.
Collapse
Affiliation(s)
- Junyan Ding
- Biological Sciences Division, Pacific Northwest National Lab, PO Box 999, Richland, WA, 99352, USA
| | - Nate McDowell
- Biological Sciences Division, Pacific Northwest National Lab, PO Box 999, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | - Yilin Fang
- Earth Systems Science Division, Pacific Northwest National Lab, Richland, WA, 99352, USA
| | - Nicholas Ward
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, 98382, USA
| | - Matthew L Kirwan
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, 23062, USA
| | - Peter Regier
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, 98382, USA
| | - Patrick Megonigal
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Peipei Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hongxia Zhang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wenzhi Wang
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Weibin Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Stephanie C Pennington
- Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, 20740, USA
| | | | - Alice Stearns
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Vanessa Bailey
- Biological Sciences Division, Pacific Northwest National Lab, PO Box 999, Richland, WA, 99352, USA
| |
Collapse
|
136
|
Pitsili E, Rodriguez-Trevino R, Ruiz-Solani N, Demir F, Kastanaki E, Dambire C, de Pedro-Jové R, Vercammen D, Salguero-Linares J, Hall H, Mantz M, Schuler M, Tuominen H, Van Breusegem F, Valls M, Munné-Bosch S, Holdsworth MJ, Huesgen PF, Rodriguez-Villalon A, Coll NS. A phloem-localized Arabidopsis metacaspase (AtMC3) improves drought tolerance. THE NEW PHYTOLOGIST 2023. [PMID: 37320971 DOI: 10.1111/nph.19022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
Increasing drought phenomena pose a serious threat to agricultural productivity. Although plants have multiple ways to respond to the complexity of drought stress, the underlying mechanisms of stress sensing and signaling remain unclear. The role of the vasculature, in particular the phloem, in facilitating inter-organ communication is critical and poorly understood. Combining genetic, proteomic and physiological approaches, we investigated the role of AtMC3, a phloem-specific member of the metacaspase family, in osmotic stress responses in Arabidopsis thaliana. Analyses of the proteome in plants with altered AtMC3 levels revealed differential abundance of proteins related to osmotic stress pointing into a role of the protein in water-stress-related responses. Overexpression of AtMC3 conferred drought tolerance by enhancing the differentiation of specific vascular tissues and maintaining higher levels of vascular-mediated transportation, while plants lacking the protein showed an impaired response to drought and inability to respond effectively to the hormone abscisic acid. Overall, our data highlight the importance of AtMC3 and vascular plasticity in fine-tuning early drought responses at the whole plant level without affecting growth or yield.
Collapse
Affiliation(s)
- Eugenia Pitsili
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Department of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Flanders Institute for Biotechnology, Ghent University, 9052, Ghent, Belgium
| | - Ricardo Rodriguez-Trevino
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092, Zurich, Switzerland
| | - Nerea Ruiz-Solani
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), Department of Chemistry, University of Cologne, Medical Faculty and University Hospital, Institute of Biochemistry, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Elizabeth Kastanaki
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092, Zurich, Switzerland
| | - Charlene Dambire
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Roger de Pedro-Jové
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Dominique Vercammen
- Department of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Flanders Institute for Biotechnology, Ghent University, 9052, Ghent, Belgium
| | - Jose Salguero-Linares
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Hardy Hall
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87, Umeå, Sweden
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), Department of Chemistry, University of Cologne, Medical Faculty and University Hospital, Institute of Biochemistry, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Martin Schuler
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092, Zurich, Switzerland
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87, Umeå, Sweden
| | - Frank Van Breusegem
- Department of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Flanders Institute for Biotechnology, Ghent University, 9052, Ghent, Belgium
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Department of Genetics, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
- Institute of Research in Biodiversity (IRBio-UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | | | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), Department of Chemistry, University of Cologne, Medical Faculty and University Hospital, Institute of Biochemistry, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Antia Rodriguez-Villalon
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092, Zurich, Switzerland
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001, Barcelona, Spain
| |
Collapse
|
137
|
Balasubramaniam T, Shen G, Esmaeili N, Zhang H. Plants' Response Mechanisms to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2253. [PMID: 37375879 DOI: 10.3390/plants12122253] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl-, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops' salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.
Collapse
Affiliation(s)
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Nardana Esmaeili
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
138
|
Briones-May Y, Quijano-Medina T, Pérez-Niño B, Benrey B, Turlings TCJ, Bustos-Segura C, Abdala-Roberts L. Soil salinization disrupts plant-plant signaling effects on extra-floral nectar induction in wild cotton. Oecologia 2023:10.1007/s00442-023-05395-w. [PMID: 37278768 DOI: 10.1007/s00442-023-05395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Plant-plant interactions via volatile organic compounds (VOCs) have received much attention, but how abiotic stresses affect these interactions is poorly understood. We tested the effect of VOCs exposure from damaged conspecifics on the production of extra-floral nectar (EFN) in wild cotton plants (Gossypium hirsutum), a coastal species in northern Yucatan (Mexico), and whether soil salinization affected these responses. We placed plants in mesh cages, and within each cage assigned plants as emitters or receivers. We exposed emitters to either ambient or augmented soil salinity to simulate a salinity shock, and within each group subjected half of the emitters to no damage or artificial leaf damage with caterpillar regurgitant. Damage increased the emission of sesquiterpenes and aromatic compounds under ambient but not under augmented salinity. Correspondingly, exposure to VOCs from damaged emitters had effect on receiver EFN induction, but this effect was contingent on salinization. Receivers produced more EFN in response to damage after being exposed to VOCs from damaged emitters when the latter were grown under ambient salinity, but not when they were subjected to salinization. These results suggest complex effects of abiotic factors on VOC-mediated plant interactions.
Collapse
Affiliation(s)
- Yeyson Briones-May
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, México
| | - Teresa Quijano-Medina
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, México
| | - Biiniza Pérez-Niño
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, México
| | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE Lab), Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Carlos Bustos-Segura
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE Lab), Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, México.
| |
Collapse
|
139
|
Li H, Duijts K, Pasini C, van Santen JE, Lamers J, de Zeeuw T, Verstappen F, Wang N, Zeeman SC, Santelia D, Zhang Y, Testerink C. Effective root responses to salinity stress include maintained cell expansion and carbon allocation. THE NEW PHYTOLOGIST 2023; 238:1942-1956. [PMID: 36908088 DOI: 10.1111/nph.18873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/25/2023] [Indexed: 05/04/2023]
Abstract
Acclimation of root growth is vital for plants to survive salt stress. Halophytes are great examples of plants that thrive even under severe salinity, but their salt tolerance mechanisms, especially those mediated by root responses, are still largely unknown. We compared root growth responses of the halophyte Schrenkiella parvula with its glycophytic relative species Arabidopsis thaliana under salt stress and performed transcriptomic analysis of S. parvula roots to identify possible gene regulatory networks underlying their physiological responses. Schrenkiella parvula roots do not avoid salt and experience less growth inhibition under salt stress. Salt-induced abscisic acid levels were higher in S. parvula roots compared with Arabidopsis. Root transcriptomic analysis of S. parvula revealed the induction of sugar transporters and genes regulating cell expansion and suberization under salt stress. 14 C-labeled carbon partitioning analyses showed that S. parvula continued allocating carbon to roots from shoots under salt stress while carbon barely allocated to Arabidopsis roots. Further physiological investigation revealed that S. parvula roots maintained root cell expansion and enhanced suberization under severe salt stress. In summary, roots of S. parvula deploy multiple physiological and developmental adjustments under salt stress to maintain growth, providing new avenues to improve salt tolerance of plants using root-specific strategies.
Collapse
Affiliation(s)
- Hongfei Li
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Kilian Duijts
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Carlo Pasini
- Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Joyce E van Santen
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Jasper Lamers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Thijs de Zeeuw
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Francel Verstappen
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Nan Wang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| |
Collapse
|
140
|
Sheoran P, Kamboj P, Kumar A, Kumar A, Singh RK, Barman A, Prajapat K, Mandal S, Yousuf DJ, Narjary B, Kumar S. Matching N supply for yield maximization in salt-affected wheat agri-food systems: On-farm participatory assessment and validation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162573. [PMID: 36871711 DOI: 10.1016/j.scitotenv.2023.162573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Driven by the UN-SDGs of achieving food security and agricultural sustainability, it remains more challenging in degraded ecosystems to simultaneously improve the crop performance without creating unintended favour for excessive fertilization and associated environmental consequences. We assessed the N-use pattern of 105 wheat-growers in sodicity affected Ghaghar Basin of Haryana, India, and then experimented upon to optimize and identify indicators of efficient N use in contrasting wheat cultivars for sustainable production. The survey results revealed that majority of farmers (88%) have increased their reliance on N nutrition (∼18 % extra N), and even extended their duration of N scheduling (12-15 days) for better plant adaptation and yield insurance in sodicity stressed wheat; albeit to a greater extent in moderately sodic soils applying 192 kg N ha-1 in 62 days. The participatory trials validated the farmers' perception of using more than the recommended N in sodic lands. This could realize the transformative improvements in plant physiological [higher photosynthetic rate (Pn; 5 %) and transpiration rate (E; 9 %)] and yield [more tillers (ET; 3 %), grains spike-1 (GS; 6 %) and healthier grains (TGW; 3 %)] traits culminating in ∼20 % higher yield at 200 kg N ha-1 (N200). However, further incremental N application had no apparent yield advantage or monetary benefits. At N200, every additional kilogram of N captured by the crop beyond the recommended N improved grain yields by 36.1 kg ha-1 in KRL 210 and 33.7 kg ha-1 in HD 2967. Further, the varietal differences for N requirements, with 173 kg ha-1 in KRL 210 and 188 kg ha-1 in HD 2967, warrants the need of applying balanced fertilizer dose and advocate revision of existing N recommendations to cope up the sodicity induced agricultural vulnerability. Principal Component Analysis (PCA) and correlation matrix showed N uptake efficiency (NUpE) and total N uptake (TNUP) as the highly weighted variables illustrating strong positive association with grain yield, and potentially deciding the fate of proper N utilization in sodicity stressed wheat. Key insights suggested that combining participatory research with farmers' knowledge and local perspective could be decisive in better integration of technologies, and serving to adapt the real-time soil sodicity stress and sustaining wheat yields with economized farm profits.
Collapse
Affiliation(s)
| | - Paras Kamboj
- ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal, India.
| | - Ashwani Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal, India.
| | - Ranjay K Singh
- ICAR-Central Soil Salinity Research Institute, Karnal, India.
| | - Arijit Barman
- ICAR-Central Soil Salinity Research Institute, Karnal, India; ICAR-National Bureau of Soil Survey & Land Use Planning, Regional Station, Jorhat, Assam, India.
| | | | - Subhasis Mandal
- ICAR-Central Soil Salinity Research Institute, Karnal, India
| | | | - Bhaskar Narjary
- ICAR-Central Soil Salinity Research Institute, Karnal, India.
| | - Satyendra Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal, India.
| |
Collapse
|
141
|
Sghayar S, Debez A, Lucchini G, Abruzzese A, Zorrig W, Negrini N, Morgutti S, Abdelly C, Sacchi GA, Pecchioni N, Vaccino P. Seed priming mitigates high salinity impact on germination of bread wheat ( Triticum aestivum L.) by improving carbohydrate and protein mobilization. PLANT DIRECT 2023; 7:e497. [PMID: 37284466 PMCID: PMC10239762 DOI: 10.1002/pld3.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/22/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023]
Abstract
Salinity is increasingly considered as a major environmental issue, which threatens agricultural production by decreasing yield traits of crops. Seed priming is a useful and cost-effective technique to alleviate the negative effects of salinity and to enable a fast and uniform germination. In this context, we quantified the effects of priming with gibberellic acid (GP), calcium chloride (CP), and mannitol (MP) on seed germination of three bread wheat cultivars and investigated their response when grown at high salinity conditions (200 mM NaCl). Salt exposure strongly repressed seed imbibition and germination potential and extended germination time, whereas priming enhanced uniformity and seed vigor. Seed preconditioning alleviated the germination disruption caused by salt stress to varying degrees. Priming mitigating effect was agent-dependent with regard to water status (CP and MP), ionic imbalance (CP), and seed reserve mobilization (GP). Na+ accumulation in seedling tissues significantly impaired carbohydrate and protein mobilization by inhibiting amylase and proteases activities but had lesser effects on primed seeds. CP attenuated ionic imbalance by limiting sodium accumulation. Gibberellic acid was the most effective priming treatment for promoting the germination of wheat seeds under salt stress. Moreover, genotypic differences in wheat response to salinity stress were observed between varieties used in this study. Ardito, the oldest variety, seems to tolerate better salinity in priming-free conditions; Aubusson resulted the most salt-sensitive cultivar but showed a high germination recovery under priming conditions; Bologna showed an intermediate behavior.
Collapse
Affiliation(s)
- Souhir Sghayar
- CREA‐CI, Consiglio per la Ricerca in Agricoltura e l'Analisi dell' Economia Agraria, Centro di Ricerca Cerealicoltura e Colture IndustrialiVercelliItaly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj‐CédriaHammam‐lifTunisia
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Ahmed Debez
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj‐CédriaHammam‐lifTunisia
| | - Giorgio Lucchini
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Alessandro Abruzzese
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Walid Zorrig
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj‐CédriaHammam‐lifTunisia
| | - Noemi Negrini
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Silvia Morgutti
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj‐CédriaHammam‐lifTunisia
| | - Gian Attilio Sacchi
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
| | - Nicola Pecchioni
- CREA‐CI, Consiglio per la Ricerca in Agricoltura e l'Analisi dell' Economia Agraria, Centro di Ricerca Cerealicoltura e Colture IndustrialiVercelliItaly
| | - Patrizia Vaccino
- CREA‐CI, Consiglio per la Ricerca in Agricoltura e l'Analisi dell' Economia Agraria, Centro di Ricerca Cerealicoltura e Colture IndustrialiVercelliItaly
| |
Collapse
|
142
|
Yan H, Liu X, Ding H, Dai Z, Niu X, Zhao L. Hormonal Balance, Photosynthesis, and Redox Reactions in the Leaves of Caragana korshinskii Kom. under Water Deficit. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112076. [PMID: 37299056 DOI: 10.3390/plants12112076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
To evaluate the physiological responses of Korshinsk peashrub (Caragana korshinskii Kom.) to water deficit, photosynthetic gas exchange, chlorophyll fluorescence, and the levels of superoxide anion (O2•-), hydrogen peroxide (H2O2), malondialdehyde (MDA), antioxidant enzymes, and endogenous hormones in its leaves were investigated under different irrigation strategies during the entire growth period. The results showed that leaf growth-promoting hormones were maintained at a higher level during the stages of leaf expansion and vigorous growth, and zeatin riboside (ZR) and gibberellic acid (GA) gradually decreased with an increase in water deficit. At the leaf-shedding stage, the concentration of abscisic acid (ABA) dramatically increased, and the ratio of ABA to growth-promoting hormones increased to a high level, which indicated that the rate of leaf senescence and shedding was accelerated. At the stages of leaf expansion and vigorous growth, the actual efficiency of photosystem II (PSII) (ΦPSii) was downregulated with an increment in non-photochemical quenching (NPQ) under moderate water deficit. Excess excitation energy was dissipated, and the maximal efficiency of PSII (Fv/Fm) was maintained. However, with progressive water stress, the photo-protective mechanism was inadequate to avoid photo-damage; Fv/Fm was decreased and photosynthesis was subject to non-stomatal inhibition under severe water deficit. At the leaf-shedding stage, non-stomatal factors became the major factors in limiting photosynthesis under moderate and severe water deficits. In addition, the generation of O2•- and H2O2 in the leaves of Caragana was accelerated under moderate and severe water deficits, which caused an enhancement of antioxidant enzyme activities to maintain the oxidation-reduction balance. However, when the protective enzymes were insufficient in eliminating excessive reactive oxygen species (ROS), the activity of catalase (CAT) was reduced at the leaf-shedding stage. Taken all together, Caragana has strong drought resistance at the leaf expansion and vigorous growth stages, but weak drought resistance at the leaf-shedding stage.
Collapse
Affiliation(s)
- Hui Yan
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaoli Liu
- Science and Technology Development Office, Henan University of Science and Technology, Luoyang 471000, China
| | - Hao Ding
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhiguang Dai
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaoli Niu
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Long Zhao
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
143
|
Li H, Lv CT, Li YT, Gao GY, Meng YF, You YL, Tian Q, Liang KQ, Chen Y, Chen H, Xia C, Rui XY, Zheng HL, Wei MY. RNA-sequencing transcriptome analysis of Avicennia marina (Forsk.) Vierh. leaf epidermis defines tissue-specific transcriptional response to salinity treatment. Sci Rep 2023; 13:7614. [PMID: 37165000 PMCID: PMC10172313 DOI: 10.1038/s41598-023-34095-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Avicennia marina (Forsk.) Vierh. is a typical mangrove plant. Its epidermis contains salt glands, which can secrete excess salts onto the leaf surfaces, improving the salt tolerance of the plants. However, knowledge on the epidermis-specific transcriptional responses of A. marina to salinity treatment is lacking. Thus, physiological and transcriptomic techniques were applied to unravel the salt tolerance mechanism of A. marina. Our results showed that 400 mM NaCl significantly reduced the plant height, leaf area, leaf biomass and photosynthesis of A. marina. In addition, 1565 differentially expressed genes were identified, of which 634 and 931 were up- and down-regulated. Based on Kyoto Encyclopedia of Genes and Genomes metabolic pathway enrichment analysis, we demonstrated that decreased gene expression, especially that of OEE1, PQL2, FDX3, ATPC, GAPDH, PRK, FBP and RPE, could explain the inhibited photosynthesis caused by salt treatment. Furthermore, the ability of A. marina to cope with 400 mM NaCl treatment was dependent on appropriate hormone signalling and potential sulfur-containing metabolites, such as hydrogen sulfide and cysteine biosynthesis. Overall, the present study provides a theoretical basis for the adaption of A. marina to saline habitats and a reference for studying the salt tolerance mechanism of other mangrove plants.
Collapse
Affiliation(s)
- Huan Li
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Chao-Tian Lv
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yun-Tao Li
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Guo-Yv Gao
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Ya-Fei Meng
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yv-Le You
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Qi Tian
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Kun-Qi Liang
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yu Chen
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Hao Chen
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Chao Xia
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Xiang-Yun Rui
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China.
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Ming-Yue Wei
- School of Ecology, Resources and Environment, Dezhou University, DeZhou, Shandong, 253000, People's Republic of China.
| |
Collapse
|
144
|
Acevedo O, Contreras RA, Stange C. The Carrot Phytoene Synthase 2 ( DcPSY2) Promotes Salt Stress Tolerance through a Positive Regulation of Abscisic Acid and Abiotic-Related Genes in Nicotiana tabacum. PLANTS (BASEL, SWITZERLAND) 2023; 12:1925. [PMID: 37653842 PMCID: PMC10220825 DOI: 10.3390/plants12101925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 08/13/2023]
Abstract
Background: Carotenoids, which are secondary metabolites derived from isoprenoids, play a crucial role in photo-protection and photosynthesis, and act as precursors for abscisic acid, a hormone that plays a significant role in plant abiotic stress responses. The biosynthesis of carotenoids in higher plants initiates with the production of phytoene from two geranylgeranyl pyrophosphate molecules. Phytoene synthase (PSY), an essential catalytic enzyme in the process, regulates this crucial step in the pathway. In Daucus carota L. (carrot), two PSY genes (DcPSY1 and DcPSY2) have been identified but only DcPSY2 expression is induced by ABA. Here we show that the ectopic expression of DcPSY2 in Nicotiana tabacum L. (tobacco) produces in L3 and L6 a significant increase in total carotenoids and chlorophyll a, and a significant increment in phytoene in the T1L6 line. Tobacco transgenic T1L3 and T1L6 lines subjected to chronic NaCl stress showed an increase of between 2 and 3- and 6-fold in survival rate relative to control lines, which correlates directly with an increase in the expression of endogenous carotenogenic and abiotic-related genes, and with ABA levels. Conclusions: These results provide evidence of the functionality of DcPSY2 in conferring salt stress tolerance in transgenic tobacco T1L3 and T1L6 lines.
Collapse
Affiliation(s)
- Orlando Acevedo
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
- Laboratorio de Biología Vegetal e Innovación en Sistemas Agroalimentario, Instituto de Nutrición de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago 7750000, Chile
| | - Rodrigo A. Contreras
- Research Unit, Department of R&D, The Not Company SpA (NotCo), Avenida Quilin 3550, Macul, Santiago 7750000, Chile
| | - Claudia Stange
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| |
Collapse
|
145
|
Gajardo HA, Gómez-Espinoza O, Boscariol Ferreira P, Carrer H, Bravo LA. The Potential of CRISPR/Cas Technology to Enhance Crop Performance on Adverse Soil Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091892. [PMID: 37176948 PMCID: PMC10181257 DOI: 10.3390/plants12091892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Worldwide food security is under threat in the actual scenery of global climate change because the major staple food crops are not adapted to hostile climatic and soil conditions. Significant efforts have been performed to maintain the actual yield of crops, using traditional breeding and innovative molecular techniques to assist them. However, additional strategies are necessary to achieve the future food demand. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) technology, as well as its variants, have emerged as alternatives to transgenic plant breeding. This novelty has helped to accelerate the necessary modifications in major crops to confront the impact of abiotic stress on agriculture systems. This review summarizes the current advances in CRISPR/Cas applications in crops to deal with the main hostile soil conditions, such as drought, flooding and waterlogging, salinity, heavy metals, and nutrient deficiencies. In addition, the potential of extremophytes as a reservoir of new molecular mechanisms for abiotic stress tolerance, as well as their orthologue identification and edition in crops, is shown. Moreover, the future challenges and prospects related to CRISPR/Cas technology issues, legal regulations, and customer acceptance will be discussed.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| | - Olman Gómez-Espinoza
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Pedro Boscariol Ferreira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| |
Collapse
|
146
|
Lino G, Espigul P, Nogués S, Serrat X. Arundo donax L. growth potential under different abiotic stress. Heliyon 2023; 9:e15521. [PMID: 37131434 PMCID: PMC10149249 DOI: 10.1016/j.heliyon.2023.e15521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
Arundo donax L. (giant reed) is a fast-growing, vegetatively multiplying, and rhizomatous perennial grass. It is considered a leading crop for biomass production on marginal and degraded lands under different adverse conditions such as drought, salinity, waterlogging, high and low temperatures, and heavy metal stress. The giant reed tolerance to those stresses is reviewed based on its effects on photosynthetic capacity and biomass production. Possible explanations for the giant reed tolerance against each particular stress were elucidated, as well as changes shown by the plant at a biochemical, physiological and morphological level, that may directly affect its biomass production. The use of giant reed in other areas of interest such as bioconstruction, phytoremediation, and bioremediation, is also reviewed. Arundo donax can be key for circular economy and global warming mitigation.
Collapse
Affiliation(s)
- Gladys Lino
- Universitat de Barcelona, Department de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal., Av. Diagonal 643, 08028, Barcelona, Spain
- Universidad Científica del Sur, Facultad de Ciencias Ambientales, Panamericana Sur Km. 19, 15067, Lima, Peru
| | - Paula Espigul
- Universitat de Barcelona, Department de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal., Av. Diagonal 643, 08028, Barcelona, Spain
| | - Salvador Nogués
- Universitat de Barcelona, Department de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal., Av. Diagonal 643, 08028, Barcelona, Spain
| | - Xavier Serrat
- Universitat de Barcelona, Department de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal., Av. Diagonal 643, 08028, Barcelona, Spain
- Corresponding author.
| |
Collapse
|
147
|
Gobbo F, Corriale MJ, Gázquez A, Bordenave CD, Bilenca D, Menéndez A. Arbuscular mycorrhizae reduce the response of important plant functional traits to drought and salinity. A meta-analysis study. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:407-415. [PMID: 36958768 DOI: 10.1071/fp22242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
We aimed at exploring the plant functional traits whose responses to drought or salinity are altered by the presence of arbuscular mycorrhiza (AM). We performed a meta-analysis across 114 articles spanning 110 plant species or cultivars. We quantified the size effect of AM symbiosis on the stress response of several functional traits, using linear mixed model analysis (LMM). Correlation analysis between functional traits and total biomass responses to stresses were also performed through LMM. The literature search and further selection yielded seven functional traits, extracted from 114 laboratory studies, including 888 observations and 110 plant species/cultivars. Evidence for significant effects of predictor variables (type of stress, AM symbiosis and/or their interaction) on functional trait response were found for leaf area ratio (LAR), root mass fraction (RMF) and root-shoot (R:S) ratio. Our results provided evidence to accept the hypothesis that AM fungal inoculation may reduce the stress response of these plant functional traits by decreasing its magnitude. We also found a weak correlation between stress responses of these traits and total biomass variation. Although our literature search and data collection were intensive and our results robust, the scope of our conclusions is limited by the agronomical bias of plant species targeted by the meta-analysis. Further knowledge on non-cultivable plant species and better understanding of the mechanisms ruling resources allocation in plants would allow more generalised conclusions.
Collapse
Affiliation(s)
- Florencia Gobbo
- Departamento de Biodiversidad y Biología Experimental, Facultad de ciencias Exactas y Naturales, Universidad de Buenos Aires, Piso 4° Pabellón II Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - María José Corriale
- Departamento de Ecología, Genética y Evolución, Piso 4° Pabellón II Ciudad Universitaria, Buenos Aires 1428, Argentina; and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Piso 4° Pabellón II Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Ayelén Gázquez
- Instituto 'Cavanilles' de Biodiversidad y Biología Evolutiva (ICBiBE), Fac. CC. Biológicas, Universitat de València, Burjassot, Valencia 46100, Spain
| | - César Daniel Bordenave
- Instituto 'Cavanilles' de Biodiversidad y Biología Evolutiva (ICBiBE), Fac. CC. Biológicas, Universitat de València, Burjassot, Valencia 46100, Spain
| | - David Bilenca
- Departamento de Biodiversidad y Biología Experimental, Facultad de ciencias Exactas y Naturales, Universidad de Buenos Aires, Piso 4° Pabellón II Ciudad Universitaria, Buenos Aires 1428, Argentina; and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Piso 4° Pabellón II Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Ana Menéndez
- Departamento de Biodiversidad y Biología Experimental, Facultad de ciencias Exactas y Naturales, Universidad de Buenos Aires, Piso 4° Pabellón II Ciudad Universitaria, Buenos Aires 1428, Argentina; and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Piso 4° Pabellón II Ciudad Universitaria, Buenos Aires 1428, Argentina
| |
Collapse
|
148
|
Li S, Sun M, Miao L, Di Q, Lv L, Yu X, Yan Y, He C, Wang J, Shi A, Li Y. Multifaceted regulatory functions of CsBPC2 in cucumber under salt stress conditions. HORTICULTURE RESEARCH 2023; 10:uhad051. [PMID: 37213679 PMCID: PMC10194891 DOI: 10.1093/hr/uhad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/08/2023] [Indexed: 05/23/2023]
Abstract
BASIC PENTACYSTEINE (BPC) transcription factors are essential regulators of plant growth and development. However, BPC functions and the related molecular mechanisms during cucumber (Cucumis sativus L.) responses to abiotic stresses, especially salt stress, remain unknown. We previously determined that salt stress induces CsBPC expression in cucumber. In this study, Csbpc2 transgene-free cucumber plants were created using a CRISPR/Cas9-mediated editing system to explore CsBPC functions associated with the salt stress response. The Csbpc2 mutants had a hypersensitive phenotype, with increased leaf chlorosis, decreased biomass, and increased malondialdehyde and electrolytic leakage levels under salt stress conditions. Additionally, a mutated CsBPC2 resulted in decreased proline and soluble sugar contents and antioxidant enzyme activities, which led to the accumulation of hydrogen peroxide and superoxide radicals. Furthermore, the mutation to CsBPC2 inhibited salinity-induced PM-H+-ATPase and V-H+-ATPase activities, resulting in decreased Na+ efflux and increased K+ efflux. These findings suggest that CsBPC2 may mediate plant salt stress resistance through its effects on osmoregulation, reactive oxygen species scavenging, and ion homeostasis-related regulatory pathways. However, CsBPC2 also affected ABA signaling. The mutation to CsBPC2 adversely affected salt-induced ABA biosynthesis and the expression of ABA signaling-related genes. Our results indicate that CsBPC2 may enhance the cucumber response to salt stress. It may also function as an important regulator of ABA biosynthesis and signal transduction. These findings will enrich our understanding of the biological functions of BPCs, especially their roles in abiotic stress responses, thereby providing the theoretical basis for improving crop salt tolerance.
Collapse
Affiliation(s)
- Shuzhen Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou 341000, China
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Miao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Qinghua Di
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijun Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianchang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Yan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chaoxing He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aokun Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | |
Collapse
|
149
|
Padilla YG, Gisbert-Mullor R, López-Galarza S, Albacete A, Martínez-Melgarejo PA, Calatayud Á. Short-term water stress responses of grafted pepper plants are associated with changes in the hormonal balance. FRONTIERS IN PLANT SCIENCE 2023; 14:1170021. [PMID: 37180400 PMCID: PMC10167040 DOI: 10.3389/fpls.2023.1170021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023]
Abstract
Phytohormones play an important role in regulating the plant behavior to drought. In previous studies, NIBER® pepper rootstock showed tolerance to drought in terms of production and fruit quality compared to ungrafted plants. In this study, our hypothesis was that short-term exposure to water stress in young, grafted pepper plants would shed light on tolerance to drought in terms of modulation of the hormonal balance. To validate this hypothesis, fresh weight, water use efficiency (WUE) and the main hormone classes were analyzed in self-grafted pepper plants (variety onto variety, V/V) and variety grafted onto NIBER® (V/N) at 4, 24, and 48h after severe water stress was induced by PEG addition. After 48h, WUE in V/N was higher than in V/V, due to major stomata closure to maintain water retention in the leaves. This can be explained by the higher abscisic acid (ABA) levels observed in the leaves of V/N plants. Despite the interaction between ABA and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), in relation to stomata closure is controversial, we observed an important increase of ACC at the end of the experiment in V/N plants coinciding with an important rise of the WUE and ABA. The maximum concentration of jasmonic acid and salicylic acid after 48h was found in the leaves of V/N, associated with their role in abiotic stress signaling and tolerance. Respect to auxins and cytokinins, the highest concentrations were linked to water stress and NIBER®, but this effect did not occur for gibberellins. These results show that hormone balance was affected by water stress and rootstock genotype, where NIBER® rootstock displayed a better ability to overcome short-term water stress.
Collapse
Affiliation(s)
- Yaiza Gara Padilla
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Ramón Gisbert-Mullor
- Departamento de Producción Vegetal, Centro Valenciano de Estudios sobre el Riego (CVER), Universitat Politècnica de València, Valencia, Spain
| | - Salvador López-Galarza
- Departamento de Producción Vegetal, Centro Valenciano de Estudios sobre el Riego (CVER), Universitat Politècnica de València, Valencia, Spain
| | - Alfonso Albacete
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, Murcia, Spain
| | | | - Ángeles Calatayud
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| |
Collapse
|
150
|
Mohammadi H, Khoshi N, Hazrati S, Aghaee A, Falakian M, Ghorbanpour M. Interaction of NaCl salinity and light intensity affect growth, physiological traits and essential oil constituents in Artemisia dracunculus L. (tarragon). BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|