101
|
Fedosov DA, Caswell B, Karniadakis GE. Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophys J 2011; 100:2084-93. [PMID: 21539775 DOI: 10.1016/j.bpj.2011.03.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022] Open
Abstract
Red blood cells (RBCs) infected by the Plasmodium falciparum (Pf-RBCs) parasite lose their membrane deformability and they also exhibit enhanced cytoadherence to vascular endothelium and other healthy and infected RBCs. The combined effect may lead to severe disruptions of normal blood circulation due to capillary occlusions. Here we extend the adhesion model to investigate the adhesive dynamics of Pf-RBCs as a function of wall shear stress (WSS) and other parameters using a three-dimensional, multiscale RBC model. Several types of adhesive behavior are identified, including firm adhesion, flipping dynamics, and slow slipping along the wall. In particular, the flipping dynamics of Pf-RBCs observed in experiments appears to be due to the increased stiffness of infected cells and the presence of the solid parasite inside the RBC, which may cause an irregular adhesion behavior. Specifically, a transition from crawling dynamics to flipping behavior occurs at a Young's modulus approximately three times larger than that of healthy RBCs. The simulated dynamics of Pf-RBCs is in excellent quantitative agreement with available microfluidic experiments if the force exerted on the receptors and ligands by an existing bond is modeled as a nonlinear function of WSS.
Collapse
Affiliation(s)
- Dmitry A Fedosov
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA
| | | | | |
Collapse
|
102
|
Serghides L. The Case for the Use of PPARγ Agonists as an Adjunctive Therapy for Cerebral Malaria. PPAR Res 2011; 2012:513865. [PMID: 21772838 PMCID: PMC3135089 DOI: 10.1155/2012/513865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/28/2011] [Indexed: 12/24/2022] Open
Abstract
Cerebral malaria is a severe complication of Plasmodium falciparum infection associated with high mortality even when highly effective antiparasitic therapy is used. Adjunctive therapies that modify the pathophysiological processes caused by malaria are a possible way to improve outcome. This review focuses on the utility of PPARγ agonists as an adjunctive therapy for the treatment of cerebral malaria. The current knowledge of PPARγ agonist use in malaria is summarized. Findings from experimental CNS injury and disease models that demonstrate the potential for PPARγ agonists as an adjunctive therapy for cerebral malaria are also discussed.
Collapse
Affiliation(s)
- Lena Serghides
- Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital, University Health Network, 101 College Street, Suite 10-359, Toronto, ON, Canada M5G 1L7
| |
Collapse
|
103
|
Wassmer SC, Combes V, Grau GE. Platelets and microparticles in cerebral malaria: the unusual suspects. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.ddmec.2011.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
104
|
Matrix Metalloproteinase-9 and Haemozoin: Wedding Rings for Human Host and Plasmodium falciparum Parasite in Complicated Malaria. J Trop Med 2011; 2011:628435. [PMID: 21760809 PMCID: PMC3134216 DOI: 10.1155/2011/628435] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/07/2011] [Indexed: 11/17/2022] Open
Abstract
It is generally accepted that the combination of both Plasmodium falciparum parasite and human host factors is involved in the pathogenesis of complicated severe malaria, including cerebral malaria (CM). Among parasite products, the malarial pigment haemozoin (HZ) has been shown to impair the functions of mononuclear and endothelial cells. Different CM models were associated with enhanced levels of matrix metalloproteinases (MMPs), a family of proteolytic enzymes able to disrupt subendothelial basement membrane and tight junctions and shed, activate, or inactivate cytokines, chemokines, and other MMPs through cleavage from their precursors. Among MMPs, a good candidate for targeted therapy might be MMP-9, whose mRNA and protein expression enhancement as well as direct proenzyme activation by HZ have been recently investigated in a series of studies by our group and others. In the present paper the role of HZ and MMP-9 in complicated malaria, as well as their interactions, will be discussed.
Collapse
|
105
|
Barbier M, Faille D, Loriod B, Textoris J, Camus C, Puthier D, Flori L, Wassmer SC, Victorero G, Alessi MC, Fusaï T, Nguyen C, Grau GE, Rihet P. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria. PLoS One 2011; 6:e19651. [PMID: 21603600 PMCID: PMC3095604 DOI: 10.1371/journal.pone.0019651] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/12/2011] [Indexed: 01/16/2023] Open
Abstract
Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM) in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC) and human brain microvascular endothelial cells (HBEC) and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF) and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.
Collapse
Affiliation(s)
- Mathieu Barbier
- Laboratoire de Pharmacogenétique des Maladies Parasitaires-EA 864, IFR 48, Faculté de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Dorothée Faille
- Unité de Recherche en Biologie et en Épidémiologie Parasitaires, UMR 6236-URMITE-IMTSSA, Institut de Recherche Biomédicale des Armées-Antenne Marseille, Marseille, France
- INSERM, UMR 626, Faculté de Médecine, Aix-Marseille Université, Marseille, France
- Vascular Immunology Unit, Department of Pathology, University of Sydney, Camperdown, Australia
| | - Béatrice Loriod
- INSERM U928-TAGC, Aix-Marseille Université, IFR137, Marseille, France
| | - Julien Textoris
- INSERM U928-TAGC, Aix-Marseille Université, IFR137, Marseille, France
| | - Claire Camus
- Laboratoire de Pharmacogenétique des Maladies Parasitaires-EA 864, IFR 48, Faculté de Pharmacie, Aix-Marseille Université, Marseille, France
- INSERM U928-TAGC, Aix-Marseille Université, IFR137, Marseille, France
| | - Denis Puthier
- INSERM U928-TAGC, Aix-Marseille Université, IFR137, Marseille, France
| | - Laurence Flori
- Laboratoire de Génétique Animale et Biologie Intégrative, Domaine de Vilvert, INRA AgroParisTech, Jouy-en-Josas, France
| | - Samuel Crocodile Wassmer
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | | | | | - Thierry Fusaï
- Unité de Recherche en Biologie et en Épidémiologie Parasitaires, UMR 6236-URMITE-IMTSSA, Institut de Recherche Biomédicale des Armées-Antenne Marseille, Marseille, France
| | - Catherine Nguyen
- INSERM U928-TAGC, Aix-Marseille Université, IFR137, Marseille, France
| | - Georges E. Grau
- Vascular Immunology Unit, Department of Pathology, University of Sydney, Camperdown, Australia
| | - Pascal Rihet
- Laboratoire de Pharmacogenétique des Maladies Parasitaires-EA 864, IFR 48, Faculté de Pharmacie, Aix-Marseille Université, Marseille, France
- INSERM U928-TAGC, Aix-Marseille Université, IFR137, Marseille, France
- * E-mail:
| |
Collapse
|
106
|
Sarfo BY, Wilson NO, Bond VC, Stiles JK. Plasmodium berghei ANKA infection increases Foxp3, IL-10 and IL-2 in CXCL-10 deficient C57BL/6 mice. Malar J 2011; 10:69. [PMID: 21439091 PMCID: PMC3078901 DOI: 10.1186/1475-2875-10-69] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/28/2011] [Indexed: 12/30/2022] Open
Abstract
Background Cerebral malaria (CM) is a major cause of malaria mortality. Sequestration of infected red blood cells and leukocytes in brain vessels coupled with the production of pro-inflammatory factors contribute to CM. CXCL-10 a chemokine that is chemotactic to T cells has been linked to fatal CM. Mice deficient for CXCL-10 gene are resistant to murine CM, while antibody ablation of CXCL-10 enhanced the production of regulatory T cells (CD4+Cd25+Foxp3+) and IL-10 which regulate the immune system. Interleukin-2 (IL-2), a pro-inflammatory cytokine implicated in malaria pathogenesis has also been shown to be a key regulator of Foxp3. However the role of Foxp3 in resistant murine CM is not well understood. Methods The hypothesis that resistance of CXCL-10-/- mice to murine CM may be due to enhanced expression of Foxp3 in concert with IL-10 and IL-2 was tested. CXCL-10-/- and WT C57BL/6 mice were infected with Plasmodium berghei ANKA and evaluated for CM symptoms. Brain, peripheral blood mononuclear cells (PBMCs) and plasma were harvested from infected and uninfected mice at days 2, 4 and 8. Regulatory T cells (CD4+CD25+) and non-T regs (CD4+CD25-) were isolated from PBMCs and cultured with P. berghei antigens in vitro with dendritic cells as antigen presenting cells. Regulatory T cell transcription and specific factor Foxp3, was evaluated in mouse brain and PBMCs by realtime-PCR and Western blots while IL-10, and IL-2 were evaluated in plasma and cultured supernatants by ELISA. Results Wild type mice exhibited severe murine CM symptoms compared with CXCL-10-/- mice. Foxp3 mRNA and protein in brain and PBMC's of CXCL-10-/- mice was significantly up-regulated (p < 0.05) by day 4 post-infection (p.i) compared with WT. Plasma levels of IL-10 and IL-2 in infected CXCL-10-/- were higher than in WT mice (p < 0.05) at days 2 and 4 p.i. Ex-vivo CD4+CD25+ T cells from CXCL-10-/- re-stimulated with P. berghei antigens produced more IL-10 than WT CD4+CD25+ T cells. Conclusion The results indicate that in the absence of CXCL-10, the resulting up-regulation of Foxp3, IL-10 and IL-2 may be involved in attenuating fatal murine CM.
Collapse
Affiliation(s)
- Bismark Y Sarfo
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive, South West, Atlanta Georgia, GA 30310, USA
| | | | | | | |
Collapse
|
107
|
Core A, Hempel C, Kurtzhals JA, Penkowa M. Plasmodium berghei ANKA: Erythropoietin activates neural stem cells in an experimental cerebral malaria model. Exp Parasitol 2011; 127:500-5. [DOI: 10.1016/j.exppara.2010.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/31/2010] [Accepted: 09/22/2010] [Indexed: 10/18/2022]
|
108
|
|
109
|
Zougbédé S, Miller F, Ravassard P, Rebollo A, Cicéron L, Couraud PO, Mazier D, Moreno A. Metabolic acidosis induced by Plasmodium falciparum intraerythrocytic stages alters blood-brain barrier integrity. J Cereb Blood Flow Metab 2011; 31:514-26. [PMID: 20683453 PMCID: PMC3049507 DOI: 10.1038/jcbfm.2010.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of cerebral malaria (CM) remains largely unknown. There is growing evidence that combination of both parasite and host factors could be involved in blood-brain barrier (BBB) breakdown. However, lack of adequate in vitro model of human BBB so far hampered molecular studies. In this article, we propose the use of hCMEC/D3 cells, a well-established human cerebral microvascular endothelial cell (EC) line, to study BBB breakdown induced by Plasmodium falciparum-parasitized red blood cells and environmental conditions. We show that coculture of parasitized erythrocytes with hCMEC/D3 cells induces cell adhesion and paracellular permeability increase, which correlates with disorganization of zonula occludens protein 1 expression pattern. Permeability increase and modification of tight junction proteins distribution are cytoadhesion independent. Finally, we show that permeability of hCMEC/D3 cell monolayers is mediated through parasite induced metabolic acidosis, which in turns correlates with apoptosis of parasitized erythrocytes. This new coculture model represents a very useful tool, which will improve the knowledge of BBB breakdown and the development of adjuvant therapies, together with antiparasitic drugs.
Collapse
|
110
|
Conroy AL, Phiri H, Hawkes M, Glover S, Mallewa M, Seydel KB, Taylor TE, Molyneux ME, Kain KC. Endothelium-based biomarkers are associated with cerebral malaria in Malawian children: a retrospective case-control study. PLoS One 2010; 5:e15291. [PMID: 21209923 PMCID: PMC3012131 DOI: 10.1371/journal.pone.0015291] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/10/2010] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Differentiating cerebral malaria (CM) from other causes of serious illness in African children is problematic, owing to the non-specific nature of the clinical presentation and the high prevalence of incidental parasitaemia. CM is associated with endothelial activation. In this study we tested the hypothesis that endothelium-derived biomarkers are associated with the pathophysiology of severe malaria and may help identify children with CM. METHODS AND FINDINGS Plasma samples were tested from children recruited with uncomplicated malaria (UM; n = 32), cerebral malaria with retinopathy (CM-R; n = 38), clinically defined CM without retinopathy (CM-N; n = 29), or non-malaria febrile illness with decreased consciousness (CNS; n = 24). Admission levels of angiopoietin-2 (Ang-2), Ang-1, soluble Tie-2 (sTie-2), von Willebrand factor (VWF), its propeptide (VWFpp), vascular endothelial growth factor (VEGF), soluble ICAM-1 (sICAM-1) and interferon-inducible protein 10 (IP-10) were measured by ELISA. Children with CM-R had significantly higher median levels of Ang-2, Ang-2:Ang-1, sTie-2, VWFpp and sICAM-1 compared to children with CM-N. Children with CM-R had significantly lower median levels of Ang-1 and higher median concentrations of Ang-2:Ang-1, sTie-2, VWF, VWFpp, VEGF and sICAM-1 compared to UM, and significantly lower median levels of Ang-1 and higher median levels of Ang-2, Ang-2:Ang-1, VWF and VWFpp compared to children with fever and altered consciousness due to other causes. Ang-1 was the best discriminator between UM and CM-R and between CNS and CM-R (areas under the ROC curve of 0.96 and 0.93, respectively). A comparison of biomarker levels in CM-R between admission and recovery showed uniform increases in Ang-1 levels, suggesting this biomarker may have utility in monitoring clinical response. CONCLUSIONS These results suggest that endothelial proteins are informative biomarkers of malarial disease severity. These results require validation in prospective studies to confirm that this group of biomarkers improves the diagnostic accuracy of CM from similar conditions causing fever and altered consciousness.
Collapse
Affiliation(s)
- Andrea L. Conroy
- Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Happy Phiri
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Michael Hawkes
- Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Simon Glover
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Mac Mallewa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- School of Tropical Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Karl B. Seydel
- Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre, Malawi
- Department of Internal Medicine, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Terrie E. Taylor
- Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre, Malawi
- Department of Internal Medicine, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Malcolm E. Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- College of Medicine, University of Malawi, Blantyre, Malawi
- School of Tropical Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kevin C. Kain
- Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
111
|
Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation. Proc Natl Acad Sci U S A 2010; 108:35-9. [PMID: 21173269 DOI: 10.1073/pnas.1009492108] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pathogenicity of Plasmodium falciparum (Pf) malaria results from the stiffening of red blood cells (RBCs) and its ability to adhere to endothelial cells (cytoadherence). The dynamics of Pf-parasitized RBCs is studied by three-dimensional mesoscopic simulations of flow in cylindrical capillaries in order to predict the flow resistance enhancement at different parasitemia levels. In addition, the adhesive dynamics of Pf-RBCs is explored for various parameters revealing several types of cell dynamics such as firm adhesion, very slow slipping along the wall, and intermittent flipping. The parasite inside the RBC is modeled explicitly in order to capture phenomena such as "hindered tumbling" motion of the RBC and the sudden transition from firm RBC cytoadherence to flipping on the endothelial surface. These predictions are in quantitative agreement with recent experimental observations, and thus the three-dimensional modeling method presented here provides new capabilities for guiding and interpreting future in vitro and in vivo studies of malaria.
Collapse
|
112
|
Peroxisome proliferator activating receptor (PPAR) in cerebral malaria (CM): a novel target for an additional therapy. Eur J Clin Microbiol Infect Dis 2010; 30:483-98. [PMID: 21140187 DOI: 10.1007/s10096-010-1122-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/13/2010] [Indexed: 12/16/2022]
Abstract
Cerebral malaria (CM) is a global life-threatening complication of Plasmodium infection and represents a major cause of morbidity and mortality among severe forms of malaria. Despite developing knowledge in understanding mechanisms of pathogenesis, the current anti-malarial agents are not sufficient due to drug resistance and various adverse effects. Therefore, there is an urgent need for the novel target and additional therapy. Recently, peroxisome proliferator-activated receptor (PPAR) a nuclear receptors (NR) and agonists of its isoforms (PPARγ, PPARα and PPARβ/δ) have been demonstrated to exhibit anti-inflammatory and immunomodulatory properties, which are driven to a new approach of research on inflammatory diseases. Although many studies on PPARs have confirmed their diverse biological role, there is a lack of knowledge of its therapeutic use in CM. The major objective of this review is to explore the possible experimental studies to link these two areas of research. We focus on the data describing the beneficial effects of this receptor in inflammation, which is observed as a basic pathology in CM. In conclusion, PPARs could be a novel target in treating inflammatory diseases, and continued work with the available and additional agonists screened from various sources may result in a potential new treatment for CM.
Collapse
|
113
|
Simpson JE, Wharton SB, Cooper J, Gelsthorpe C, Baxter L, Forster G, Shaw PJ, Savva G, Matthews FE, Brayne C, Ince PG. Alterations of the blood–brain barrier in cerebral white matter lesions in the ageing brain. Neurosci Lett 2010; 486:246-51. [PMID: 20887772 DOI: 10.1016/j.neulet.2010.09.063] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/07/2010] [Accepted: 09/22/2010] [Indexed: 11/30/2022]
Affiliation(s)
- Julie E Simpson
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Bienvenu AL, Gonzalez-Rey E, Picot S. Apoptosis induced by parasitic diseases. Parasit Vectors 2010; 3:106. [PMID: 21083888 PMCID: PMC2995786 DOI: 10.1186/1756-3305-3-106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/17/2010] [Indexed: 12/14/2022] Open
Abstract
Fatalities caused by parasitic infections often occur as a result of tissue injury that results from a form of host-cell death known as apoptosis. However, instead of being pathogenic, parasite-induced apoptosis may facilitate host survival. Consequently, it is of utmost importance to decipher and understand the process and the role of apoptosis induced or controlled by parasites in humans. Despite this, few studies provide definitive knowledge of parasite-induced host-cell apoptosis. Here, the focus is on a consideration of host-cell apoptosis as either a pathogenic feature or as a factor enabling parasite survival and development. Cell death by apoptotic-like mechanisms could be described as a ride to death with a return ticket, as initiation of the pathway may be reversed, with the potential that it could be manipulated for therapeutic purposes. The management of host-cell apoptosis could thus be an adjunctive factor for parasitic disease treatment. Evidence that the apoptotic process could be reversed by anti-apoptotic drugs has recently been obtained, leading to the possibility of host-cell rescue after injury. An important issue will be to predict the beneficial or deleterious effects of controlling human cell death by apoptotic-like mechanisms during parasitic diseases.
Collapse
Affiliation(s)
- Anne-Lise Bienvenu
- Malaria Research Unit, University Lyon 1, 8 avenue Rockefeller, 69373 Lyon cedex 08, France.
| | | | | |
Collapse
|
115
|
Idro R, Marsh K, John CC, Newton CRJ. Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr Res 2010; 68:267-74. [PMID: 20606600 PMCID: PMC3056312 DOI: 10.1203/pdr.0b013e3181eee738] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cerebral malaria is the most severe neurological complication of infection with Plasmodium falciparum. With >575,000 cases annually, children in sub-Saharan Africa are the most affected. Surviving patients have an increased risk of neurological and cognitive deficits, behavioral difficulties, and epilepsy making cerebral malaria a leading cause of childhood neurodisability in the region. The pathogenesis of neurocognitive sequelae is poorly understood: coma develops through multiple mechanisms and there may be several mechanisms of brain injury. It is unclear how an intravascular parasite causes such brain injury. Understanding these mechanisms is important to develop appropriate neuroprotective interventions. This article examines possible mechanisms of brain injury in cerebral malaria, relating this to the pathogenesis of the disease, and explores prospects for improved neurocognitive outcome.
Collapse
Affiliation(s)
- Richard Idro
- Department of Paediatrics and Child Health, Mulago Hospital, Makerere University School of Medicine, Kampala, Uganda.
| | | | | | | |
Collapse
|
116
|
Kuesap J, Hirayama K, Kikuchi M, Ruangweerayut R, Na-Bangchang K. Study on association between genetic polymorphisms of haem oxygenase-1, tumour necrosis factor, cadmium exposure and malaria pathogenicity and severity. Malar J 2010; 9:260. [PMID: 20846452 PMCID: PMC2949743 DOI: 10.1186/1475-2875-9-260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/17/2010] [Indexed: 11/20/2022] Open
Abstract
Background Malaria is the most important public health problems in tropical and sub-tropical countries. Haem oxygenase (HO) enzyme and the pro-inflammatory cytokine tumour necrosis factor (TNF) have been proposed as one of the factors that may play significant role in pathogenicity/severity of malaria infection. HO is the enzyme of the microsomal haem degradation pathway that yields biliverdin, carbon monoxide, and iron. In this study, the association between malaria disease pathogenicity/severity and (GT)n repeat polymorphism in the promoter region of the inducible HO-1 including the effect of cadmium exposure (potent inducer of HO-1 transcription) as well as polymorphism of TNF were investigated. Methods Blood samples were collected from 329 cases non-severe malaria with acute uncomplicated Plasmodium falciparum malaria (UM) and 80 cases with Plasmodium vivax malaria (VM), and 77 cases with severe or cerebral malaria (SM) for analysis of genetic polymorphisms of HO-1 and TNF and cadmium levels. These patients consisted of 123 (25.3%) Thai, 243 (50.0%) Burmese and 120 (24.7%) Karen who were present at Mae Sot General Hospital, Mae Sot, Tak Province, Thailand. Results The number of (GT)n repeats of the HO-1 gene in all patients varied between 16 and 39 and categorized to short (S), medium (M) and long (L) GTn repeats. The genotype of (GT)n repeat of HO-1 was found to be significantly different among the three ethnic groups of patients. Significantly higher frequency of S/L genotype was found in Burmese compared with Thai patients, while significantly lower frequencies of S/S and M/L but higher frequency of M/M genotype was observed in Burmese compared with Karen patients. No significant association between HO-1 and TNF polymorphisms including the inducing effect of cadmium and malaria pathogenicity/severity was observed. Conclusions Difference in the expression of HO-1 genotype in different ethnic groups may contribute to different severity of malaria disease. With this limited sample size, the finding of the lack of association between malaria disease pathogenicity/severity genetic polymorphisms of HO-1 (GT)n repeat as well as TNF observed in this study may not entirely exclude their possible link with malaria disease pathogenicity/severity. Further study in larger sample size is required.
Collapse
Affiliation(s)
- Jiraporn Kuesap
- Pharmacology and Toxicology Unit, Graduate Programme in Biomedical Sciences, Thammasat University, Pathumthani, Thailand
| | | | | | | | | |
Collapse
|
117
|
Elsheikha HM, Khan NA. Protozoa traversal of the blood–brain barrier to invade the central nervous system. FEMS Microbiol Rev 2010; 34:532-53. [DOI: 10.1111/j.1574-6976.2010.00215.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
118
|
Silver KL, Higgins SJ, McDonald CR, Kain KC. Complement driven innate immune response to malaria: fuelling severe malarial diseases. Cell Microbiol 2010; 12:1036-45. [PMID: 20545944 DOI: 10.1111/j.1462-5822.2010.01492.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Severe malaria remains a major cause of global mortality. The innate immune response to infection is a key determinant of malaria severity and outcome. The complement system plays a key role in initiating and augmenting innate immune responses, including inflammation, endothelial activation, opsonization and coagulation, processes which have been implicated in malaria pathogenesis. In this review, we discuss the evidence supporting a role for excessive complement activation in the pathogenesis of severe malaria.
Collapse
Affiliation(s)
- Karlee L Silver
- McLaughlin-Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
119
|
Kuesap J, Na-Bangchang K. Possible role of heme oxygenase-1 and prostaglandins in the pathogenesis of cerebral malaria: heme oxygenase-1 induction by prostaglandin D(2) and metabolite by a human astrocyte cell line. THE KOREAN JOURNAL OF PARASITOLOGY 2010; 48:15-21. [PMID: 20333281 DOI: 10.3347/kjp.2010.48.1.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 01/28/2010] [Accepted: 01/28/2010] [Indexed: 11/23/2022]
Abstract
Astrocytes are the most abundant cells in the central nervous system that play roles in maintaining the blood-brain-barrier and in neural injury, including cerebral malaria, a severe complication of Plasmodium falciparum infection. Prostaglandin (PG) D(2) is abundantly produced in the brain and regulates the sleep response. Moreover, PGD(2) is a potential factor derived from P. falciparum within erythrocytes. Heme oxygenase-1 (HO-1) is catalyzing enzyme in heme breakdown process to release iron, carbon monoxide, and biliverdin/bilirubin, and may influence iron supply to the P. falciparum parasites. Here, we showed that treatment of a human astrocyte cell line, CCF-STTG1, with PGD(2) significantly increased the expression levels of HO-1 mRNA by RT-PCR. Western blot analysis showed that PGD(2) treatment increased the level of HO-1 protein, in a dose- and time-dependent manner. Thus, PGD(2) may be involved in the pathogenesis of cerebral malaria by inducing HO-1 expression in malaria patients.
Collapse
Affiliation(s)
- Jiraporn Kuesap
- Graduate Porgram in Biomedical Sciences, Clinical Coordination and Training Center, Thammasat University, Pathumtanee, Thailand
| | | |
Collapse
|
120
|
Abstract
Neurocysticercosis (NCC) is the most common parasitic disease of the central nervous system (CNS) caused by the larval form of the tapeworm Taenia solium. NCC has a long asymptomatic period with little or no inflammation, and the sequential progression to symptomatic NCC depends upon the intense inflammation associated with degeneration of larvae. The mechanisms involved in these progressive events are difficult to study in human patients. Thus it was necessary to develop an experimental model that replicated NCC. In this review, we describe studies of a murine model of NCC in terms of the release/secretion of parasite antigens, immune responses elicited within the CNS environment and subsequent pathogenesis. In particular, the kinetics of leukocyte subsets infiltrating into the brain are discussed in the context of disruption of the CNS barriers at distinct anatomical sites and the mechanisms contributing to these processes. In addition, production of various inflammatory mediators and the mechanisms involved in their induction by the Toll-like receptor signaling pathway are described. Overall, the knowledge gained from the mouse model of NCC has provided new insights for understanding the kinetics of events contributing to different stages of NCC and should aid in the formulation of more effective therapeutic approaches.
Collapse
|
121
|
Conroy AL, Lafferty EI, Lovegrove FE, Krudsood S, Tangpukdee N, Liles WC, Kain KC. Whole blood angiopoietin-1 and -2 levels discriminate cerebral and severe (non-cerebral) malaria from uncomplicated malaria. Malar J 2009; 8:295. [PMID: 20003529 PMCID: PMC2806378 DOI: 10.1186/1475-2875-8-295] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 12/15/2009] [Indexed: 12/02/2022] Open
Abstract
Background Severe and cerebral malaria are associated with endothelial activation. Angiopoietin-1 (ANG-1) and angiopoietin-2 (ANG-2) are major regulators of endothelial activation and integrity. The aim of this study was to investigate the clinical utility of whole blood angiopoietin (ANG) levels as biomarkers of disease severity in Plasmodium falciparum malaria. Methods The utility of whole blood ANG levels was examined in Thai patients to distinguish cerebral (CM; n = 87) and severe (non-cerebral) malaria (SM; n = 36) from uncomplicated malaria (UM; n = 70). Comparative statistics are reported using a non-parametric univariate analysis (Kruskal-Wallis test or Chi-squared test, as appropriate). Multivariate binary logistic regression was used to examine differences in whole blood protein levels between groups (UM, SM, CM), adjusting for differences due to ethnicity, age, parasitaemia and sex. Receiver operating characteristic curve analysis was used to assess the diagnostic accuracy of the ANGs in their ability to distinguish between UM, SM and CM. Cumulative organ injury scores were obtained for patients with severe disease based on the presence of acute renal failure, jaundice, severe anaemia, circulatory collapse or coma. Results ANG-1 and ANG-2 were readily detectable in whole blood. Compared to UM there were significant decreases in ANG-1 (p < 0.001) and significant increases in ANG-2 (p < 0.001) levels and the ratio of ANG-2: ANG-1 (p < 0.001) observed in patients with SM and CM. This effect was independent of covariates (ethnicity, age, parasitaemia, sex). Further, there was a significant decrease in ANG-1 levels in patients with SM (non-cerebral) versus CM (p < 0.001). In participants with severe disease, ANG-2, but not ANG-1, levels correlated with cumulative organ injury scores; however, ANG-1 correlated with the presence of renal dysfunction and coma. Receiver operating characteristic curve analysis demonstrated that the level of ANG-1, the level of ANG-2 or the ratio of ANG-2: ANG-1 discriminated between individuals with UM and SM (area under the curve, p-value: ANG-2, 0.763, p < 0.001; ANG-1, 0.884, p < 0.001; Ratio, 0.857, p < 0.001) or UM and CM (area under the curve, p-value: ANG-2, 0.772, p < 0.001; ANG-1, 0.778, p < 0.001; Ratio, 0.820, p < 0.001). Conclusions These results suggest that whole blood ANG-1/2 levels are promising clinically informative biomarkers of disease severity in malarial syndromes.
Collapse
Affiliation(s)
- Andrea L Conroy
- Sandra A, Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, University Health Network-Toronto General Hospital, McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto ON, Canada
| | | | | | | | | | | | | |
Collapse
|
122
|
Suidan GL, Dickerson JW, Chen Y, McDole JR, Tripathi P, Pirko I, Seroogy KB, Johnson AJ. CD8 T cell-initiated vascular endothelial growth factor expression promotes central nervous system vascular permeability under neuroinflammatory conditions. THE JOURNAL OF IMMUNOLOGY 2009; 184:1031-40. [PMID: 20008293 DOI: 10.4049/jimmunol.0902773] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dysregulation of the blood-brain barrier (BBB) is a hallmark feature of numerous neurologic disorders as diverse as multiple sclerosis, stroke, epilepsy, viral hemorrhagic fevers, cerebral malaria, and acute hemorrhagic leukoencephalitis. CD8 T cells are one immune cell type that have been implicated in promoting vascular permeability in these conditions. Our laboratory has created a murine model of CD8 T cell-mediated CNS vascular permeability using a variation of the Theiler's murine encephalomyelitis virus system traditionally used to study multiple sclerosis. Previously, we demonstrated that CD8 T cells have the capacity to initiate astrocyte activation, cerebral endothelial cell tight junction protein alterations and CNS vascular permeability through a perforin-dependent process. To address the downstream mechanism by which CD8 T cells promote BBB dysregulation, in this study, we assess the role of vascular endothelial growth factor (VEGF) expression in this model. We demonstrate that neuronal expression of VEGF is significantly upregulated prior to, and coinciding with, CNS vascular permeability. Phosphorylation of fetal liver kinase-1 is significantly increased early in this process indicating activation of this receptor. Specific inhibition of neuropilin-1 significantly reduced CNS vascular permeability and fetal liver kinase-1 activation, and preserved levels of the cerebral endothelial cell tight junction protein occludin. Our data demonstrate that CD8 T cells initiate neuronal expression of VEGF in the CNS under neuroinflammatory conditions, and that VEGF may be a viable therapeutic target in neurologic disease characterized by inflammation-induced BBB disruption.
Collapse
Affiliation(s)
- Georgette L Suidan
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Mishra SK, Newton CRJC. Diagnosis and management of the neurological complications of falciparum malaria. Nat Rev Neurol 2009; 5:189-98. [PMID: 19347024 PMCID: PMC2859240 DOI: 10.1038/nrneurol.2009.23] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malaria is a major public health problem in the developing world owing to its high rates of morbidity and mortality. Of all the malarial parasites that infect humans, Plasmodium falciparum is most commonly associated with neurological complications, which manifest as agitation, psychosis, seizures, impaired consciousness and coma (cerebral malaria). Cerebral malaria is the most severe neurological complication; the condition is associated with mortality of 15-20%, and a substantial proportion of individuals with this condition develop neurocognitive sequelae. In this Review, we describe the various neurological complications encountered in malaria, discuss the underlying pathogenesis, and outline current management strategies for these complications. Furthermore, we discuss the role of adjunctive therapies in improving outcome.
Collapse
|
124
|
Lovegrove FE, Tangpukdee N, Opoka RO, Lafferty EI, Rajwans N, Hawkes M, Krudsood S, Looareesuwan S, John CC, Liles WC, Kain KC. Serum angiopoietin-1 and -2 levels discriminate cerebral malaria from uncomplicated malaria and predict clinical outcome in African children. PLoS One 2009; 4:e4912. [PMID: 19300530 PMCID: PMC2657207 DOI: 10.1371/journal.pone.0004912] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 02/05/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Limited tools exist to identify which individuals infected with Plasmodium falciparum are at risk of developing serious complications such as cerebral malaria (CM). The objective of this study was to assess serum biomarkers that differentiate between CM and non-CM, with the long-term goal of developing a clinically informative prognostic test for severe malaria. METHODOLOGY/PRINCIPAL FINDINGS Based on the hypothesis that endothelial activation and blood-brain-barrier dysfunction contribute to CM pathogenesis, we examined the endothelial regulators, angiopoietin-1 (ANG-1) and angiopoietin-2 (ANG-2), in serum samples from P. falciparum-infected patients with uncomplicated malaria (UM) or CM, from two diverse populations--Thai adults and Ugandan children. Angiopoietin levels were compared to tumour necrosis factor (TNF). In both populations, ANG-1 levels were significantly decreased and ANG-2 levels were significantly increased in CM versus UM and healthy controls (p<0.001). TNF was significantly elevated in CM in the Thai adult population (p<0.001), but did not discriminate well between CM and UM in African children. Receiver operating characteristic curve analysis showed that ANG-1 and the ratio of ANG-2:ANG-1 accurately discriminated CM patients from UM in both populations. Applied as a diagnostic test, ANG-1 had a sensitivity and specificity of 100% for distinguishing CM from UM in Thai adults and 70% and 75%, respectively, for Ugandan children. Across both populations the likelihood ratio of CM given a positive test (ANG-1<15 ng/mL) was 4.1 (2.7-6.5) and the likelihood ratio of CM given a negative test was 0.29 (0.20-0.42). Moreover, low ANG-1 levels at presentation predicted subsequent mortality in children with CM (p = 0.027). CONCLUSIONS/SIGNIFICANCE ANG-1 and the ANG-2/1 ratio are promising clinically informative biomarkers for CM. Additional studies should address their utility as prognostic biomarkers and potential therapeutic targets in severe malaria.
Collapse
Affiliation(s)
- Fiona E. Lovegrove
- McLaughlin-Rotman Centre for Global Health, McLaughlin Centre for Molecular Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Robert O. Opoka
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Erin I. Lafferty
- McLaughlin-Rotman Centre for Global Health, McLaughlin Centre for Molecular Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Nimerta Rajwans
- McLaughlin-Rotman Centre for Global Health, McLaughlin Centre for Molecular Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Michael Hawkes
- McLaughlin-Rotman Centre for Global Health, McLaughlin Centre for Molecular Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Chandy C. John
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - W. Conrad Liles
- McLaughlin-Rotman Centre for Global Health, McLaughlin Centre for Molecular Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kevin C. Kain
- McLaughlin-Rotman Centre for Global Health, McLaughlin Centre for Molecular Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
125
|
White VA, Lewallen S, Beare NAV, Molyneux ME, Taylor TE. Retinal pathology of pediatric cerebral malaria in Malawi. PLoS One 2009; 4:e4317. [PMID: 19177166 PMCID: PMC2627904 DOI: 10.1371/journal.pone.0004317] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 12/22/2008] [Indexed: 11/19/2022] Open
Abstract
Introduction The causes of coma and death in cerebral malaria remain unknown. Malarial retinopathy has been identified as an important clinical sign in the diagnosis and prognosis of cerebral malaria. As part of a larger autopsy study to determine causes of death in children with coma presenting to hospital in Blantyre, Malawi, who were fully evaluated clinically prior to death, we examined the histopathology of eyes of patients who died and underwent autopsy. Methodology/Principal Findings Children with coma were admitted to the pediatric research ward, classified according to clinical definitions as having cerebral malaria or another cause of coma, evaluated and treated. The eyes were examined by direct and indirect ophthalmoscopy. If a child died and permission was given, a standardized autopsy was carried out. The patient was then assigned an actual cause of death according to the autopsy findings. The eyes were examined pathologically for hemorrhages, cystoid macular edema, parasite sequestration and thrombi. They were stained immunohistochemically for fibrin and CD61 to identify the components of thrombi, β-amyloid precursor protein to detect axonal damage, for fibrinogen to identify vascular leakage and for glial fibrillary acidic protein to detect gliosis. Sixty-four eyes from 64 patients were examined: 35 with cerebral malaria and 29 with comas of other causes. Cerebral malaria was distinguished by sequestration of parasitized erythrocytes, the presence and severity of retinal hemorrhages, the presence of cystoid macular edema, the occurrence and number of fibrin-platelet thrombi, the presence and amount of axonal damage and vascular leakage. Conclusions/Significance We found significant differences in retinal histopathology between patients who died of cerebral malaria and those with other diagnoses. These histopathological findings offer insights into the etiology of malarial retinopathy and provide a pathological basis for recently described retinal capillary non-perfusion in children with malarial retinopathy. Because of the similarities between the retina and the brain it also suggests mechanisms that may contribute to coma and death in cerebral malaria.
Collapse
Affiliation(s)
- Valerie A White
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
126
|
Wilson NO, Huang MB, Anderson W, Bond V, Powell M, Thompson WE, Armah HB, Adjei AA, Gyasi R, Tettey Y, Stiles JK. Soluble factors from Plasmodium falciparum-infected erythrocytes induce apoptosis in human brain vascular endothelial and neuroglia cells. Mol Biochem Parasitol 2008; 162:172-6. [PMID: 18848585 DOI: 10.1016/j.molbiopara.2008.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 08/29/2008] [Accepted: 09/08/2008] [Indexed: 11/28/2022]
Abstract
The severity of malaria is multi-factorial. It is associated with parasite-induced alteration in pro-inflammatory and anti-inflammatory cytokine and chemokine levels in host serum and cerebrospinal fluid. It is also associated with sequestration and cytoadherence of parasitized erythrocytes (pRBCs) in post-capillary venules and blood-brain barrier (BBB) dysfunction. The role of these factors in development of vascular injury and tissue damage in malaria patients is unclear. While some studies indicate a requirement for pRBC adhesion to vascular endothelial cells (ECs) in brain capillaries to induce apoptosis and BBB damage, others show no role of apoptosis resulting from adhesion of pRBC to EC. In the present study, the hypothesis that soluble factors from Plasmodium falciparum-infected erythrocytes induce apoptosis in human brain vascular endothelial (HBVEC) and neuroglia cells (cellular components of the BBB) was tested. Apoptotic effects of parasitized (pRBC) and non-parasitized erythrocyte (RBC) conditioned medium on HBVEC and neuroglia cells were determined in vitro by evaluating nuclear DNA fragmentation (TUNEL assay) in cultured cells. Soluble factors from P. falciparum-infected erythrocytes in conditioned medium induced extensive DNA fragmentation in both cell lines, albeit to a greater extent in HBVEC than neuroglia, indicating that extended exposure to high levels of these soluble factors in serum may be associated with vascular, neuronal and tissue injury in malaria patients.
Collapse
Affiliation(s)
- Nana O Wilson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Cytoadherence of PRBCs (Plasmodium falciparum-infected red blood cells) to host endothelium has been associated with pathology in severe malaria, but, despite extensive information on the primary processes involved in the adhesive interactions, the mechanisms underlying the disease are poorly understood. Endothelial cells have the ability to mobilize immune and pro-adhesive responses when exposed to both PRBCs and TNF (tumour necrosis factor). In addition, there is also an up-regulation by PRBCs and TNF and a concurrent down-regulation of a range of genes involved in inflammation and cell death, by PRBCs and TNF. We propose that the balance between positive and negative regulation will contribute to endothelial pathology during malarial infection. Apposition of PRBCs has been shown by a number of groups to activate signalling pathways. This is dependent, at least in part, on the cytoadherence characteristics of the invading isolate, such that the avidity of the PRBC for the receptor on host endothelium is proportional to the level of activation of the signalling pathways. An understanding of the post-adhesive processes produced by cytoadherence may help us to understand the variable pathology seen in malaria and to design appropriate therapies to alleviate severe disease.
Collapse
|
128
|
Suidan GL, Mcdole JR, Chen Y, Pirko I, Johnson AJ. Induction of blood brain barrier tight junction protein alterations by CD8 T cells. PLoS One 2008; 3:e3037. [PMID: 18725947 PMCID: PMC2516328 DOI: 10.1371/journal.pone.0003037] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 08/03/2008] [Indexed: 11/19/2022] Open
Abstract
Disruption of the blood brain barrier (BBB) is a hallmark feature of immune-mediated neurological disorders as diverse as viral hemorrhagic fevers, cerebral malaria and acute hemorrhagic leukoencephalitis. Although current models hypothesize that immune cells promote vascular permeability in human disease, the role CD8 T cells play in BBB breakdown remains poorly defined. Our laboratory has developed a novel murine model of CD8 T cell mediated central nervous system (CNS) vascular permeability using a variation of the Theiler's virus model of multiple sclerosis. In previous studies, we observed that MHC class II−/− (CD4 T cell deficient), IFN-γR−/−, TNF-α−/−, TNFR1−/−, TNFR2−/−, and TNFR1/TNFR2 double knockout mice as well as those with inhibition of IL-1 and LTβ activity were susceptible to CNS vascular permeability. Therefore, the objective of this study was to determine the extent immune effector proteins utilized by CD8 T cells, perforin and FasL, contributed to CNS vascular permeability. Using techniques such as fluorescent activated cell sorting (FACS), T1 gadolinium-enhanced magnetic resonance imaging (MRI), FITC-albumin leakage assays, microvessel isolation, western blotting and immunofluorescent microscopy, we show that in vivo stimulation of CNS infiltrating antigen-specific CD8 T cells initiates astrocyte activation, alteration of BBB tight junction proteins and increased CNS vascular permeability in a non-apoptotic manner. Using the aforementioned techniques, we found that despite having similar expansion of CD8 T cells in the brain as wildtype and Fas Ligand deficient animals, perforin deficient mice were resistant to tight junction alterations and CNS vascular permeability. To our knowledge, this study is the first to demonstrate that CNS infiltrating antigen-specific CD8 T cells have the capacity to initiate BBB tight junction disruption through a non-apoptotic perforin dependent mechanism and our model is one of few that are useful for studies in this field. These novel findings are highly relevant to the development of therapies designed to control immune mediated CNS vascular permeability.
Collapse
Affiliation(s)
- Georgette L. Suidan
- Neuroscience Department, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Neurology Department, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jeremiah R. Mcdole
- Neuroscience Department, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Neurology Department, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yi Chen
- Neurology Department, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Istvan Pirko
- Neuroscience Department, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Neurology Department, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Aaron J. Johnson
- Neuroscience Department, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Neurology Department, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
129
|
Haldar K, Murphy SC, Milner DA, Taylor TE. Malaria: mechanisms of erythrocytic infection and pathological correlates of severe disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 2:217-49. [PMID: 18039099 DOI: 10.1146/annurev.pathol.2.010506.091913] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malaria is an ancient disease that continues to cause enormous human morbidity and mortality. The life cycle of the causative parasite involves multiple tissues in two distinct host organisms, mosquitoes and humans. However, all the clinical symptoms of malaria are a consequence of infection of human erythrocytes. An understanding of the basic mechanisms that govern parasite invasion, remodeling, growth, and reinvasion of erythrocytes and the complex events leading to tissue pathology may yield new diagnostics and treatments for malaria. This approach is revealing a more complete picture of the most serious syndrome associated with this infection-cerebral malaria. We focus on the most recent understanding of the molecular basis of infection, summarize our finding from an ongoing pediatric cerebral malaria autopsy study in Malawi, and integrate these insights to malarial pathology.
Collapse
Affiliation(s)
- Kasturi Haldar
- Department of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
130
|
Prato M, Gallo V, Giribaldi G, Arese P. Phagocytosis of haemozoin (malarial pigment) enhances metalloproteinase-9 activity in human adherent monocytes: role of IL-1beta and 15-HETE. Malar J 2008; 7:157. [PMID: 18710562 PMCID: PMC2529304 DOI: 10.1186/1475-2875-7-157] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Accepted: 08/18/2008] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND It has been shown previously that human monocytes fed with haemozoin (HZ) or trophozoite-parasitized RBCs displayed increased matrix metalloproteinase-9 (MMP-9) enzyme activity and protein/mRNA expression and increased TNF production, and showed higher matrix invasion ability. The present study utilized the same experimental model to analyse the effect of phagocytosis of: HZ, delipidized HZ, beta-haematin (lipid-free synthetic HZ) and trophozoites on production of IL-1beta and MMP-9 activity and expression. The second aim was to find out which component of HZ was responsible for the effects. METHODS Native HZ freshly isolated from Plasmodium falciparum (Palo Alto strain, Mycoplasma-free), delipidized HZ, beta-haematin (lipid-free synthetic HZ), trophozoites and control meals such as opsonized non-parasitized RBCs and inert latex particles, were fed to human monocytes. The production of IL-1beta by differently fed monocytes, in presence or absence of specific MMP-9 inhibitor or anti-hIL-1beta antibodies, was quantified in supernatants by ELISA. Expression of IL-1beta was analysed by quantitative real-time RT-PCR. MMP-9 activity and protein expression were quantified by gelatin zymography and Western blotting. RESULTS Monocytes fed with HZ or trophozoite-parasitized RBCs generated increased amounts of IL-1beta and enhanced enzyme activity (in cell supernatants) and protein/mRNA expression (in cell lysates) of monocyte MMP-9. The latter appears to be causally related to enhanced IL-1beta production, as enhancement of both expression and enzyme activity were abrogated by anti-hIL-1beta Abs. Upregulation of IL-1beta and MMP-9 were absent in monocytes fed with beta-haematin or delipidized HZ, indicating a role for HZ-attached or HZ-generated lipid components. 15-HETE (15(S,R)-hydroxy-6,8,11,13-eicosatetraenoic acid) a potent lipoperoxidation derivative generated by HZ from arachidonic acid via haem-catalysis was identified as one mediator possibly responsible for increase of both IL-1beta production and MMP-9 activity. CONCLUSION Results indicate that specific lipoperoxide derivatives generated by HZ may play a role in modulating production of IL-1beta and MMP-9 expression and activity in HZ/trophozoite-fed human monocytes. Results may clarify aspects of cerebral malaria pathogenesis, since MMP-9, a metalloproteinase able to disrupt the basal lamina is possibly involved in generation of hallmarks of cerebral malaria, such as blood-brain barrier endothelium dysfunction, localized haemorrhages and extravasation of phagocytic cells and parasitized RBCs into brain tissues.
Collapse
Affiliation(s)
- Mauro Prato
- Department of Genetics, Biology and Biochemistry, University of Torino Medical School, Torino, Italy.
| | | | | | | |
Collapse
|
131
|
Antia M, Herricks T, Rathod PK. Microfluidic modeling of cell-cell interactions in malaria pathogenesis. PLoS Pathog 2008; 3:e99. [PMID: 17658948 PMCID: PMC1924869 DOI: 10.1371/journal.ppat.0030099] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 05/29/2007] [Indexed: 11/19/2022] Open
Abstract
The clinical outcomes of human infections by Plasmodium falciparum remain highly unpredictable. A complete understanding of the complex interactions between host cells and the parasite will require in vitro experimental models that simultaneously capture diverse host-parasite interactions relevant to pathogenesis. Here we show that advanced microfluidic devices concurrently model (a) adhesion of infected red blood cells to host cell ligands, (b) rheological responses to changing dimensions of capillaries with shapes and sizes similar to small blood vessels, and (c) phagocytosis of infected erythrocytes by macrophages. All of this is accomplished under physiologically relevant flow conditions for up to 20 h. Using select examples, we demonstrate how this enabling technology can be applied in novel, integrated ways to dissect interactions between host cell ligands and parasitized erythrocytes in synthetic capillaries. The devices are cheap and portable and require small sample volumes; thus, they have the potential to be widely used in research laboratories and at field sites with access to fresh patient samples.
Collapse
Affiliation(s)
- Meher Antia
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Thurston Herricks
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Pradipsinh K Rathod
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
132
|
Mturi N, Keir G, MacLennan C, Ross A, Willis A, Elford B, Berkley J, Newton C. Cerebrospinal Fluid Studies in Kenyan Children with Severe Falciparum Malaria. THE OPEN TROPICAL MEDICINE JOURNAL 2008; 1:56-62. [PMID: 20396606 PMCID: PMC2854806 DOI: 10.2174/1874315300801010056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pathogenesis of the neurological complications of Plasmodium falciparum malaria is unclear. We measured proteins and amino acids in paired plasma and cerebrospinal fluid (CSF) samples in children with severe falciparum malaria, to assess the integrity of the blood brain barrier (BBB), and look for evidence of intrathecal synthesis of immunoglobulins, excitotoxins and brain damage. METHODS: Proteins of different molecular sizes and immunoglobulins were measured in paired CSF and plasma samples in children with falciparum malaria and either impaired consciousness, prostrate, or seizures. RESULTS: The ratio of CSF to plasma albumin (Q(alb)) exceeded the reference values in 42 (51%) children. The CSF concentrations of the excitotoxic amino acid aspartate and many non-polar amino acids, except alanine, were above the reference value, despite normal plasma concentrations. IgM concentrations were elevated in 21 (46%) and the IgM index was raised in 22 (52%). Identical IgG oligoclonal bands were found in 9 (35%), but only one patient had an increase in the CSF IgG without a concomitant increase in plasma indicating intrathecal synthesis of IgG. CONCLUSIONS: This study indicates that the BBB is mildly impaired in some children with severe falciparum malaria, and this impairment is not confined to cerebral malaria, but also occurs in children with prostrate malaria and to a lesser extent the children with malaria and seizures. There is evidence of intrathecal synthesis of immunoglobulins in children with malaria, but this requires further investigation. This finding, together with raised level of excitotoxic amino acid aspartate could contribute to the pathogenesis of neurological complications in malaria.
Collapse
Affiliation(s)
- N. Mturi
- Kenya Medical Research Institute, Centre for Geographic Medicine Research (Coast), P. O. Box 230, Kilifi, Kenya
| | - G. Keir
- Department of Neuroimmunology, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - C.A. MacLennan
- MRC Centre for Immune Regulation, Division of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - A. Ross
- Kenya Medical Research Institute, Centre for Geographic Medicine Research (Coast), P. O. Box 230, Kilifi, Kenya
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DY, UK
- Swiss Tropical Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
| | - A.C. Willis
- MRC Immunochemistry Unit, Biochemistry, University of Oxford, Oxford, UK
| | - B.C. Elford
- Molecular Parasitology Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - J.A Berkley
- Kenya Medical Research Institute, Centre for Geographic Medicine Research (Coast), P. O. Box 230, Kilifi, Kenya
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DY, UK
| | - C.R.J.C Newton
- Kenya Medical Research Institute, Centre for Geographic Medicine Research (Coast), P. O. Box 230, Kilifi, Kenya
- Clinical research Unit, London School of Hygiene and Tropical Medicine, London, UK
- Neurosciences Unit, Institute of Child Health, University College London, The Wolfson Centre, Mecklenburgh Square, London, WC1N 2AP, UK
| |
Collapse
|
133
|
Armah HB, Wilson NO, Sarfo BY, Powell MD, Bond VC, Anderson W, Adjei AA, Gyasi RK, Tettey Y, Wiredu EK, Tongren JE, Udhayakumar V, Stiles JK. Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. Malar J 2007; 6:147. [PMID: 17997848 PMCID: PMC2186349 DOI: 10.1186/1475-2875-6-147] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 11/12/2007] [Indexed: 12/04/2022] Open
Abstract
Background Plasmodium falciparum can cause a diffuse encephalopathy known as cerebral malaria (CM), a major contributor to malaria associated mortality. Despite treatment, mortality due to CM can be as high as 30% while 10% of survivors of the disease may experience short- and long-term neurological complications. The pathogenesis of CM and other forms of severe malaria is multi-factorial and appear to involve cytokine and chemokine homeostasis, inflammation and vascular injury/repair. Identification of prognostic markers that can predict CM severity will enable development of better intervention. Methods Postmortem serum and cerebrospinal fluid (CSF) samples were obtained within 2–4 hours of death in Ghanaian children dying of CM, severe malarial anemia (SMA), and non-malarial (NM) causes. Serum and CSF levels of 36 different biomarkers (IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, Eotaxin, FGF basic protein, CRP, G-CSF, GM-CSF, IFN-γ, TNF-α, IP-10, MCP-1 (MCAF), MIP-1α, MIP-1β, RANTES, SDF-1α, CXCL11 (I-TAC), Fas-ligand [Fas-L], soluble Fas [sFas], sTNF-R1 (p55), sTNF-R2 (p75), MMP-9, TGF-β1, PDGF bb and VEGF) were measured and the results compared between the 3 groups. Results After Bonferroni adjustment for other biomarkers, IP-10 was the only serum biomarker independently associated with CM mortality when compared to SMA and NM deaths. Eight CSF biomarkers (IL-1ra, IL-8, IP-10, PDGFbb, MIP-1β, Fas-L, sTNF-R1, and sTNF-R2) were significantly elevated in CM mortality group when compared to SMA and NM deaths. Additionally, CSF IP-10/PDGFbb median ratio was statistically significantly higher in the CM group compared to SMA and NM groups. Conclusion The parasite-induced local cerebral dysregulation in the production of IP-10, 1L-8, MIP-1β, PDGFbb, IL-1ra, Fas-L, sTNF-R1, and sTNF-R2 may be involved in CM neuropathology, and their immunoassay may have potential utility in predicting mortality in CM.
Collapse
Affiliation(s)
- Henry B Armah
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Lovegrove FE, Gharib SA, Patel SN, Hawkes CA, Kain KC, Liles WC. Expression microarray analysis implicates apoptosis and interferon-responsive mechanisms in susceptibility to experimental cerebral malaria. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1894-903. [PMID: 17991715 DOI: 10.2353/ajpath.2007.070630] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specific local brain responses, influenced by parasite sequestration and host immune system activation, have been implicated in the development of cerebral malaria. This study assessed whole-brain transcriptional responses over the course of experimental cerebral malaria by comparing genetically resistant and susceptible inbred mouse strains infected with Plasmodium berghei ANKA. Computational methods were used to identify differential patterns of gene expression. Overall, genes that showed the most transcriptional activity were differentially expressed in susceptible mice 1 to 2 days before the onset of characteristic symptoms of cerebral malaria. Most of the differentially expressed genes identified were associated with immune-related gene ontology categories. Further analysis to identify interaction networks and to examine patterns of transcriptional regulation within the set of identified genes implicated a central role for both interferon-regulated processes and apoptosis in the pathogenesis of cerebral malaria. Biological relevance of these genes and pathways was confirmed using quantitative RT-PCR and histopathological examination of the brain for apoptosis. The application of computational biology tools to examine systematically the disease progression in cerebral malaria can identify important transcriptional programs activated during its pathogenesis and may serve as a methodological approach to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Fiona E Lovegrove
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada M5G 2C4
| | | | | | | | | | | |
Collapse
|
135
|
Griffith JW, O'Connor C, Bernard K, Town T, Goldstein DR, Bucala R. Toll-like receptor modulation of murine cerebral malaria is dependent on the genetic background of the host. J Infect Dis 2007; 196:1553-64. [PMID: 18008236 DOI: 10.1086/522865] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/07/2007] [Indexed: 01/15/2023] Open
Abstract
Infection with Plasmodium berghei ANKA is a well-established model of human cerebral malaria (CM). We show herein that Toll-like receptor (TLR) signaling influences the development of lethal CM in P. berghei ANKA-infected mice. Modulation of outcome was dependent on genetic background, such that deletion of myeloid differentiation factor (MyD) 88 on the susceptible C57BL/6 background resulted in resistance to CM, whereas deletion of MyD88 on the resistant BALB/c background led to increased mortality. Our data show that MyD88 influenced the production of T helper-polarizing cytokines, including interferon (IFN)- gamma, interleukin (IL)-4, and IL-17, as well as the total number of Foxp3(+) regulatory T (T(reg)) cells in a manner dependent on host genetic background. In addition, mRNA levels of IFN- gamma, CXCL10, and CXCL9 were strongly up-regulated in the brains of susceptible wild-type but not MyD88(-/-) infected mice. These results suggest that TLR signaling and host genetic background influences the pathogenesis of CM via modulation of cytokine production and T(reg) cell numbers.
Collapse
Affiliation(s)
- Jason W Griffith
- Department of Internal Medicine, Yale University, 300 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
136
|
Gillrie MR, Krishnegowda G, Lee K, Buret AG, Robbins SM, Looareesuwan S, Gowda DC, Ho M. Src-family kinase dependent disruption of endothelial barrier function by Plasmodium falciparum merozoite proteins. Blood 2007; 110:3426-35. [PMID: 17693580 PMCID: PMC2200906 DOI: 10.1182/blood-2007-04-084582] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pulmonary complication in severe Plasmodium falciparum malaria is manifested as a prolonged impairment of gas transfer or the more severe acute respiratory distress syndrome (ARDS). In either clinical presentation, vascular permeability is a major component of the pathologic process. In this report, we examined the effect of clinical P falciparum isolates on barrier function of primary dermal and lung microvascular endothelium in vitro. We showed that parasite sonicates but not intact infected erythrocytes disrupted endothelial barrier function in a Src-family kinase-dependent manner. The abnormalities were manifested both as discontinuous immunofluorescence staining of the junctional proteins ZO-1, claudin 5, and VE-cadherin and the formation of interendothelial gaps in monolayers. These changes were associated with a loss in total protein content of claudin 5 and redistribution of ZO-1 from the cytoskeleton to the membrane and the cytosolic and nuclear fractions. There was minimal evidence of a proinflammatory response or direct cellular cytotoxicity or cell death. The active component in sonicates appeared to be a merozoite-associated protein. Increased permeability was also induced by P falciparum glycophosphatidylinositols (GPIs) and food vacuoles. These results demonstrate that parasite components can alter endothelial barrier function and thus contribute to the pathogenesis of severe falciparum malaria.
Collapse
Affiliation(s)
- Mark R Gillrie
- Department of Microbiology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Szklarczyk A, Stins M, Milward EA, Ryu H, Fitzsimmons C, Sullivan D, Conant K. Glial activation and matrix metalloproteinase release in cerebral malaria. J Neurovirol 2007; 13:2-10. [PMID: 17454443 DOI: 10.1080/13550280701258084] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although neurological symptoms associated with cerebral malaria (CM) are largely reversible, recent studies suggest that lasting neurological sequelae can occur. This may be especially true for children, in whom persistent deficits include problems with memory and attention. Because the malaria parasite is not thought to enter the brain parenchyma, lasting deficits are likely related to factors including the host response to disease. Studies with a rodent model, and with human postmortem tissue, suggest that glial activation occurs with CM. In this review, the authors will highlight studies focused on such activation in CM. Likely causes will be discussed, which include ischemia and activation of blood brain barrier endothelial cells. The potential consequences of glial activation will also be discussed, highlighting the possibility that glial-derived proteinases contribute to structural damage of the central nervous system (CNS). Of note, for the purposes of this focused review, glial activation will refer to the activation of astrocytes and microglial cells; discussion of oligodendroglial cells will not be included. In addition, although events thought to be critical to the pathogenesis of CM and glial activation will be covered, a comprehensive review of cerebral malaria will not be presented. Excellent reviews are already available, including Coltel et al (2004; Curr Neurovasc Res 1: 91-110), Medana and Turner (2006; Int J Parasitol 36: 555-568), and Hunt et al (2006; Int J Parasitol 36: 569-582).
Collapse
Affiliation(s)
- A Szklarczyk
- Departments of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | |
Collapse
|
138
|
Weiser S, Miu J, Ball HJ, Hunt NH. Interferon-gamma synergises with tumour necrosis factor and lymphotoxin-alpha to enhance the mRNA and protein expression of adhesion molecules in mouse brain endothelial cells. Cytokine 2007; 37:84-91. [PMID: 17412608 DOI: 10.1016/j.cyto.2007.02.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 02/16/2007] [Accepted: 02/27/2007] [Indexed: 11/19/2022]
Abstract
Changes to the cerebral microvasculature are evident during cerebral malaria (CM). Activation of the endothelium is likely to be due to the actions of cytokines, circulating levels of which are elevated during CM. Endothelial cells are known to up-regulate the expression of cellular adhesion molecules, which can lead to cellular sequestration and obstruction of vessels. However, it is unknown whether cytokines synergise in the up-regulation of the adhesion molecules involved in CM. In this study, the mRNA and/or protein expression of the adhesion molecules vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin and E-Selectin were examined in a mouse brain endothelial cell line. Endothelial cells were stimulated with interferon-gamma (IFN-gamma), tumour necrosis factor (TNF) and lymphotoxin-alpha (LT-alpha), alone or in combination. The expression of ICAM-1, VCAM-1, P-selectin and E-Selectin mRNA in mouse brain endothelial cells by TNF and/or LT-alpha was found to be significantly enhanced in the presence of IFN-gamma. The same synergistic effect was found when analyzing ICAM-1 protein expression in cytokine stimulated mouse brain endothelial cells. The findings show that cytokines can synergise to influence gene expression and protein expression in a mouse brain endothelial cell line.
Collapse
Affiliation(s)
- Silvia Weiser
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, Medical Foundation Building (K25), University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
139
|
Chakravorty SJ, Carret C, Nash GB, Ivens A, Szestak T, Craig AG. Altered phenotype and gene transcription in endothelial cells, induced by Plasmodium falciparum-infected red blood cells: pathogenic or protective? Int J Parasitol 2007; 37:975-87. [PMID: 17383656 PMCID: PMC1906861 DOI: 10.1016/j.ijpara.2007.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/02/2007] [Accepted: 02/04/2007] [Indexed: 01/22/2023]
Abstract
Severe malaria is associated with sequestration of Plasmodium falciparum-infected red blood cells (PRBC) in the microvasculature and elevation of intercellular adhesion molecule-1 (ICAM-1) and TNF. In vitro co-culture of human umbilical vein endothelial cells (HUVEC), with either PRBC or uninfected RBC, required the presence of low level TNF (5 pg/ml) for significant up-regulation of ICAM-1, which may contribute to increased cytoadhesion in vivo. These effects were independent of P. falciparum erythrocyte membrane protein-1 (PfEMP-1)-mediated adhesion but critically dependent on cell–cell contact. Further changes included increases in IL8 release and soluble TNF receptor shedding. Microarray analysis of HUVEC transcriptome following co-culture, using a human Affymetrix microarray chip, showed significant differential regulation of genes which defined gene ontologies such as cell communication, cell adhesion, signal transduction and immune response. Our data demonstrate that endothelial cells have the ability to mobilise immune and pro-adhesive responses when exposed to both PRBC and TNF. In addition, there is also a previously un-described positive regulation by RBC and TNF and a concurrent negative regulation of a range of genes involved in inflammation and cell-death, by PRBC and TNF. We propose that the balance between positive and negative regulation demonstrated in our study will determine endothelial pathology during a malaria infection.
Collapse
Affiliation(s)
- Srabasti J Chakravorty
- Molecular & Biochemical Parasitology, Liverpool School of Tropical Medicine, University of Liverpool, Liverpool, L3 5QA, United Kingdom.
| | | | | | | | | | | |
Collapse
|
140
|
Leech S, Kirk J, Plumb J, McQuaid S. Persistent endothelial abnormalities and blood?brain barrier leak in primary and secondary progressive multiple sclerosis. Neuropathol Appl Neurobiol 2007; 33:86-98. [PMID: 17239011 DOI: 10.1111/j.1365-2990.2006.00781.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epithelial and endothelial tight junctions are pathologically altered in infectious, inflammatory, neoplastic and other diseases. Previously, we described such abnormalities, associated with serum protein leak, in tight junctions of the blood-brain barrier endothelium, in lesional and normal-appearing white matter (NAWM) in secondary progressive (SP) and acute multiple sclerosis (MS). This work is extended here to lesions and NAWM in primary progressive multiple sclerosis (PPMS) and to cortical grey matter in PPMS and SPMS. Immunocytochemistry and semiquantitative confocal microscopy for the tight junction protein zonula occludens 1 (ZO-1) was performed on snap-frozen sections from PPMS (n = 6) and controls (n = 5). Data on 2103 blood vessels were acquired from active lesions (n = 10), inactive lesions (n = 15), NAWM (n = 42) and controls (n = 20). Data on 1218 vessels were acquired from normal-appearing grey matter (PPMS, 5; SPMS, 6; controls, 5). In PPMS abnormal ZO-1 expression in active white matter lesions and NAWM, was found in 42% and 13% of blood vessels, respectively, comparable to previous data from acute and SPMS. In chronic white matter plaques, however, abnormalities were considerably more frequent (37%) in PPMS than in SPMS. Abnormality was also more frequent in normal-appearing grey matter in SPMS (23%) than in PPMS (10%). In summary, abnormal tight junctions in both SPMS and PPMS are most frequent in active white matter lesions but persist in inactive lesions, particularly in PPMS. Abnormal tight junctions are also common in normal-appearing grey matter in SPMS. Persistent endothelial abnormality with leak (PEAL) is therefore widespread but variably expressed in MS and may contribute to disease progression.
Collapse
Affiliation(s)
- S Leech
- Multiple Sclerosis and Inflammation Research Groups, School of Medicine and Dentistry, Queens University Belfast, Institute of Pathology, Belfast, UK
| | | | | | | |
Collapse
|
141
|
Abstract
Severe falciparum malaria is an acute systemic disease that can affect multiple organs, including those in which few parasites are found. The acute disease bears many similarities both clinically and, potentially, mechanistically, to the systemic diseases caused by bacteria, rickettsia, and viruses. Traditionally the morbidity and mortality associated with severe malarial disease has been explained in terms of mechanical obstruction to vascular flow by adherence to endothelium (termed sequestration) of erythrocytes containing mature-stage parasites. However, over the past few decades an alternative ‘cytokine theory of disease’ has also evolved, where malarial pathology is explained in terms of a balance between the pro- and anti-inflammatory cytokines. The final common pathway for this pro-inflammatory imbalance is believed to be a limitation in the supply and mitochondrial utilisation of energy to cells. Different patterns of ensuing energy depletion (both temporal and spatial) throughout the cells in the body present as different clinical syndromes. This chapter draws attention to the over-arching position that inflammatory cytokines are beginning to occupy in the pathogenesis of acute malaria and other acute infections. The influence of inflammatory cytokines on cellular function offers a molecular framework to explain the multiple clinical syndromes that are observed during acute malarial illness, and provides a fresh avenue of investigation for adjunct therapies to ameliorate the malarial disease process.
Collapse
|
142
|
Taoufiq Z, Pino P, Dugas N, Conti M, Tefit M, Mazier D, Vouldoukis I. Transient supplementation of superoxide dismutase protects endothelial cells against Plasmodium falciparum-induced oxidative stress. Mol Biochem Parasitol 2006; 150:166-73. [PMID: 16930739 DOI: 10.1016/j.molbiopara.2006.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/11/2006] [Accepted: 07/17/2006] [Indexed: 11/19/2022]
Abstract
The pathogenesis of cerebral malaria, a major complication of Plasmodium falciparum infection, relies on mechanisms such as cytokine production and cytoadherence of parasitized red blood cells (PRBCs) on microvascular endothelial cells. In this way parasites avoid spleen clearance by sequestration in post-capillary venules of various organs including the brain. Infected erythrocytes adhesion has also been shown to have molecular signaling consequences providing insight on how tissue homeostasis could be comprised by endothelium perturbation. Our previous work demonstrated that PRBCs adhesion to human lung endothelial cells (HLEC) induces caspases activation, oxidative stress and apoptosis. Cytoplasmic Cu/Zn superoxide dismutase (SOD1), which provides the first line of defense against oxidative stress within a cell, is now used as a treatment of numerous diseases including traumatic brain injury and ischemic stroke. In this report, we demonstrated that transient supplementation of SOD1 protects endothelial cells against P. falciparum induced oxidative stress and apoptosis. We also showed a significant decrease in PRBCs cytoadherence through a downregulation of ICAM-1 and an induction of iNOS. Protection of endothelium via antioxidant delivery may constitute a relevant strategy in cerebral malaria treatment.
Collapse
Affiliation(s)
- Zacharie Taoufiq
- INSERM UMR511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, CHU Pitié-Salpêtrière, Université Pierre et Marie Curie, 91 bd de l'Hôpital, 75013 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
143
|
Akech S, Gwer S, Idro R, Fegan G, Eziefula AC, Newton CRJC, Levin M, Maitland K. Volume expansion with albumin compared to gelofusine in children with severe malaria: results of a controlled trial. PLOS CLINICAL TRIALS 2006; 1:e21. [PMID: 16998584 PMCID: PMC1569382 DOI: 10.1371/journal.pctr.0010021] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 07/14/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Previous studies have shown that in children with severe malaria, resuscitation with albumin infusion results in a lower mortality than resuscitation with saline infusion. Whether the apparent benefit of albumin is due solely to its colloidal properties, and thus might also be achieved with other synthetic colloids, or due to the many other unique physiological properties of albumin is unknown. As albumin is costly and not readily available in Africa, examination of more affordable colloids is warranted. In order to inform the design of definitive phase III trials we compared volume expansion with Gelofusine (succinylated modified fluid gelatin 4% intravenous infusion) with albumin. DESIGN This study was a phase II safety and efficacy study. SETTING The study was conducted at Kilifi District Hospital, Kenya. PARTICIPANTS The participants were children admitted with severe falciparum malaria (impaired consciousness or deep breathing), metabolic acidosis (base deficit > 8 mmol/l), and clinical features of shock. INTERVENTIONS The interventions were volume resuscitation with either 4.5% human albumin solution or Gelofusine. OUTCOME MEASURES Primary endpoints were the resolution of shock and acidosis; secondary endpoints were in-hospital mortality and adverse events including neurological sequelae. RESULTS A total of 88 children were enrolled: 44 received Gelofusine and 44 received albumin. There was no significant difference in the resolution of shock or acidosis between the groups. Whilst no participant developed pulmonary oedema or fluid overload, fatal neurological events were more common in the group receiving gelatin-based intervention fluids. Mortality was lower in patients receiving albumin (1/44; 2.3%) than in those treated with Gelofusine (7/44; 16%) by intention to treat (Fisher's exact test, p = 0.06), or 1/40 (2.5%) and 4/40 (10%), respectively, for those treated per protocol (p = 0.36). Meta-analysis of published trials to provide a summary estimate of the effect of albumin on mortality showed a pooled relative risk of death with albumin administration of 0.19 (95% confidence interval 0.06-0.59; p = 0.004 compared to other fluid boluses). CONCLUSIONS In children with severe malaria, we have shown a consistent survival benefit of receiving albumin infusion compared to other resuscitation fluids, despite comparable effects on the resolution of acidosis and shock. The lack of similar mortality benefit from Gelofusine suggests that the mechanism may involve a specific neuroprotective effect of albumin, rather than solely the effect of the administered colloid. Further exploration of the benefits of albumin is warranted in larger clinical trials.
Collapse
Affiliation(s)
- Samuel Akech
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
| | - Samson Gwer
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
| | - Richard Idro
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
| | - Greg Fegan
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
- Infectious Diseases Epidemiology Unit, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alice C Eziefula
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
| | - Charles R. J. C Newton
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
- Neurosciences Unit, Institute of Child Health, London, United Kingdom
| | - Michael Levin
- Department of Paediatrics and Wellcome Trust Centre for Clinical Tropical Medicine, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Kathryn Maitland
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research–Coast, Kilifi, Kenya
- Department of Paediatrics and Wellcome Trust Centre for Clinical Tropical Medicine, Faculty of Medicine, Imperial College, London, United Kingdom
| |
Collapse
|
144
|
Susomboon P, Maneerat Y, Dekumyoy P, Kalambaheti T, Iwagami M, Komaki-Yasuda K, Kawazu SI, Tangpukdee N, Looareesuwan S, Kano S. Down-regulation of tight junction mRNAs in human endothelial cells co-cultured with Plasmodium falciparum-infected erythrocytes. Parasitol Int 2006; 55:107-12. [PMID: 16388977 DOI: 10.1016/j.parint.2005.11.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 11/15/2005] [Accepted: 11/18/2005] [Indexed: 11/17/2022]
Abstract
To understand the mechanism of sequestration in the microvasculature of patients with falciparum malaria, we examined the patterns of expression of mRNAs for adhesion molecules (ICAM-1, VCAM-1, and E-selectin) and tight junction molecules (occludin, vinculin, and ZO-1) in human umbilical vein endothelial cells (HUVECs) co-cultured with Plasmodium falciparum-parasitized red blood cells (PRBCs) in vitro. The PRBCs were collected from patients with uncomplicated, severe, or cerebral malaria (CM). Patterns of mRNA expression in HUVECs co-cultured with PRBCs were examined by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Levels of mRNAs for all the three adhesion molecules increased with increased culture time within 3 h, regardless of the source of the PRBCs. In contrast, the patterns of mRNA expression for the tight junction molecules varied between the different co-cultures. When HUVECs were cultured with PRBCs from uncomplicated malaria patients, levels of mRNAs for tight junction molecules increased according to the culture time. HUVECs co-cultured with PRBCs from severe malaria patients showed no change in the mRNAs levels during 3 h of observation. When HUVECs were cultured with PRBCs from CM patients, levels of mRNAs for tight junction proteins decreased according to the culture time. Although the mechanisms underlying these phenomena are not clear, our results suggest that PRBCs can alter expression of tight junction proteins in endothelial cells at the site of sequestration and thereby influence disease severity.
Collapse
Affiliation(s)
- Pannapa Susomboon
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchavithi Road, Bangkok 10400, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Bisser S, Ouwe-Missi-Oukem-Boyer ON, Toure FS, Taoufiq Z, Bouteille B, Buguet A, Mazier D. Harbouring in the brain: A focus on immune evasion mechanisms and their deleterious effects in malaria and human African trypanosomiasis. Int J Parasitol 2006; 36:529-40. [PMID: 16600243 DOI: 10.1016/j.ijpara.2006.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/27/2006] [Accepted: 02/02/2006] [Indexed: 11/18/2022]
Abstract
Malaria and human African trypanosomiasis represent the two major tropical vector-transmitted protozoan infections, displaying different prevalence and epidemiological patterns. Death occurs mainly due to neurological complications which are initiated at the blood-brain barrier level. Adapted host-immune responses present differences but also similarities in blood-brain barrier/parasite interactions for these diseases: these are the focus of this review. We describe and compare parasite evasion mechanisms, the initiating mechanisms of central nervous system pathology and major clinical and neuropathological features. Finally, we highlight the common immune mediated mechanisms leading to brain involvement. In both diseases neurological damage is caused mainly by cytokines (interferon-gamma, tumour necrosis factor-alpha and IL-10), nitric oxide and endothelial cell apoptosis. Such a comparative analysis is expected to be useful in the comprehension of disease mechanisms, which may in turn have implications for treatment strategies.
Collapse
Affiliation(s)
- S Bisser
- Centre International de Recherches Médicales de Franceville, Unité de parasitologie médicale, BP 769 Franceville, Gabon.
| | | | | | | | | | | | | |
Collapse
|
146
|
Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, Medana IM, Miu J, Ball HJ. Immunopathogenesis of cerebral malaria. Int J Parasitol 2006; 36:569-82. [PMID: 16678181 DOI: 10.1016/j.ijpara.2006.02.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 02/09/2006] [Accepted: 02/17/2006] [Indexed: 01/20/2023]
Abstract
Malaria is one of the most important global health problems, potentially affecting more than one third of the world's population. Cerebral malaria (CM) is a deadly complication of Plasmodium falciparum infection, yet its pathogenesis remains incompletely understood. In this review, we discuss some of the principal pathogenic events that have been described in murine models of the disease and relate them to the human condition. One of the earliest events in CM pathogenesis appears to be a mild increase in the permeability to protein of the blood-brain barrier. Recent studies have shown a role for CD8+T cells in mediating damage to the microvascular endothelium and this damage can result in the leakage of cytokines, malaria antigens and other potentially harmful molecules across the blood-brain barrier into the cerebral parenchyma. We suggest that this, in turn, leads to the activation of microglia and the activation and apoptosis of astrocytes. The role of hypoxia in the pathogenesis of cerebral malaria is also discussed, with particular reference to the local reduction of oxygen consumption in the brain as a consequence of vascular obstruction, to cytokine-driven changes in glucose metabolism, and to cytopathic hypoxia. Interferon-gamma, a cytokine known to be produced in malaria infection, induces increased expression, by microvascular endothelial cells, of the haem enzyme indoleamine 2,3-dioxygenase, the first enzyme in the kynurenine pathway of tryptophan metabolism. Enhanced indoleamine 2,3-dioxygenase expression leads to increased production of a range of biologically active metabolites that may be part of a tissue protective response. Damage to astrocytes may result in reduced production of the neuroprotectant molecule kynurenic acid, leading to a decrease in its ratio relative to the neuroexcitotoxic molecule quinolinic acid, which might contribute to some of the neurological symptoms of cerebral malaria. Lastly, we discuss the role of other haem enzymes, cyclooxygenase-2, inducible nitric oxide synthase and haem oxygenase-1, as potentially being components of mechanisms that protect host tissue against the effects of cytokine- and leukocyte-mediated stress induced by malaria infection.
Collapse
Affiliation(s)
- Nicholas H Hunt
- Molecular Immunopathology Unit, Institute for Biomedical Research, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Plumb J, McQuaid S, Mirakhur M, Kirk J. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 2006; 12:154-69. [PMID: 11958369 PMCID: PMC8095734 DOI: 10.1111/j.1750-3639.2002.tb00430.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Blood-brain barrier (BBB) breakdown, demonstrable in vivo by enhanced MRI is characteristic of new and expanding inflammatory lesions in relapsing-remitting and chronic progressive multiple sclerosis (MS). Subtle leakage may also occur in primary progressive MS. However, the anatomical route(s) of BBB leakage have not been demonstrated. We investigated the possible involvement of interendothelial tight junctions (TJ) by examining the expression of TJ proteins (occludin and ZO-1 ) in blood vessels in active MS lesions from 8 cases of MS and in normal-appearing white (NAWM) matter from 6 cases. Blood vessels (10-50 per frozen section) were scanned using confocal laser scanning microscopy to acquire datasets for analysis. TJ abnormalities manifested as beading, interruption, absence or diffuse cytoplasmic localization of fluorescence, or separation of junctions (putative opening) were frequent (affecting 40% of vessels) in oil-red-O-positive active plaques but less frequent in NAWM (15%), and in normal (< 2%) and neurological controls (6%). Putatively "open" junctions were seen in vessels in active lesions and in microscopically inflamed vessels in NAWM. Dual fluorescence revealed abnormal TJs in vessels with pre-mortem serum protein leakage. Abnormal or open TJs, associated with inflammation may contribute to BBB leakage in enhancing MRI lesions and may also be involved in subtle leakage in non-enhancing focal and diffuse lesions in NAWM. BBB disruption due to tight junctional pathology should be regarded as a significant form of tissue injury in MS, alongside demyelination and axonopathy.
Collapse
Affiliation(s)
- Jonnie Plumb
- Neuropathology Laboratory, Royal Group of Hospitals Trust, Belfast, Northern Ireland, United Kingdom
| | - Stephen McQuaid
- Neuropathology Laboratory, Royal Group of Hospitals Trust, Belfast, Northern Ireland, United Kingdom
| | - Meenakshi Mirakhur
- Neuropathology Laboratory, Royal Group of Hospitals Trust, Belfast, Northern Ireland, United Kingdom
| | - John Kirk
- Centre for Infection, Inflammation and Repair, Queen's University of Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
148
|
Potter S, Chan-Ling T, Ball HJ, Mansour H, Mitchell A, Maluish L, Hunt NH. Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria. Int J Parasitol 2006; 36:485-96. [PMID: 16500656 DOI: 10.1016/j.ijpara.2005.12.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 12/15/2005] [Accepted: 12/18/2005] [Indexed: 11/26/2022]
Abstract
Cerebral malaria is a serious complication of Plasmodium falciparum infection. We have investigated the role of perforin in the pathogenesis of cerebral malaria in a murine model (Plasmodium berghei ANKA (PbA) infection). C57BL/6 mice demonstrated the typical neuropathological symptoms of experimental cerebral malaria infection from day 5p.i. and became moribund on day 6p.i. This pathology was not seen in PbA-infected, perforin-deficient (pfp-/-) mice. From days 5-6p.i. onwards there was a significant increase in mRNA for granzyme B and CD8, but not CD4, in brain tissue from PbA-infected C57BL/6 and pfp-/- mouse brains. Perforin mRNA was strongly increased in the brains of PbA-infected C57BL/6 mice on day 6p.i. Immunohistochemistry revealed increased perforin staining and elevated numbers of CD8(+) cells within the cerebral microvessels in PbA-infected C57BL/6 at days 5 and 6p.i. compared with uninfected animals. At day 6p.i., there were TUNEL-positive cells and activated caspase-3 positive cells of endothelial morphology in the CNS of PbA-infected C57BL/6 mice. The TUNEL-positive cells were greatly reduced in pfp-/- mice. These results suggest that CD8(+)T lymphocytes induce apoptosis of endothelial cells via a perforin-dependent process, contributing to the fatal pathogenic process in murine cerebral malaria.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- Blood-Brain Barrier/parasitology
- Brain/metabolism
- Brain Edema/immunology
- Brain Edema/parasitology
- Brain Edema/pathology
- CD8-Positive T-Lymphocytes/immunology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/pathology
- Female
- Malaria, Cerebral/immunology
- Malaria, Cerebral/parasitology
- Malaria, Cerebral/pathology
- Malaria, Cerebral/physiopathology
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Parasitemia/immunology
- Parasitemia/pathology
- Perforin
- Pore Forming Cytotoxic Proteins/metabolism
- Pore Forming Cytotoxic Proteins/physiology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Transcription, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- Sarah Potter
- Department of Pathology, Medical Foundation Building (K25), University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
149
|
Alvarez JI, Teale JM. Breakdown of the blood brain barrier and blood–cerebrospinal fluid barrier is associated with differential leukocyte migration in distinct compartments of the CNS during the course of murine NCC. J Neuroimmunol 2006; 173:45-55. [PMID: 16406118 DOI: 10.1016/j.jneuroim.2005.11.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
Brain homeostasis is normally protected by the blood brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCB), barriers that function in distinct CNS compartments and consist of different types of blood vessels including pial (subarachnoid spaces, leptomeninges), parenchymal (cerebral cortex) and ventricular vessels. In this study, a mouse model of neurocysticercosis was used to distinguish between changes in the permeability of the BBB and the BCB and determine the association of such alterations on leukocyte infiltration. Mice were intracranially infected with the parasite Mesocestoides corti and sacrificed at various times post infection. Different anatomical areas of infected brain were analyzed by three color immunofluoresence utilizing antibodies against serum proteins to assess brain barrier permeability, glial fibrillary acidic protein (GFAP) to detect astrocytes, and specific cell surface markers to determine the subpopulations of leukocytes infiltrating the CNS at particular sites. The results indicate increased permeability of all three types of vessels/structural sites as a result of infection evidenced by serum proteins and leukocyte extravasation but with considerable differences in the timing and extent of these permeability changes. Parenchymal vessels were the most resilient to changes in permeability whereas pial vessels were the least. Choroid plexus vessels of the ventricles also appeared less susceptible to increased permeability compared with pial vessels. In addition, parenchymal vessels appeared impermeable to particular types of immune cells even after extended periods of infection. Additionally, alterations in reactive astrocytes juxtaposed to blood vessels that exhibited increased permeability displayed increased expression of cytokines known to regulate brain barrier function. The results suggest that access of leukocytes and serum derived factors into the infected brain depend on several parameters including the anatomical area, type of vascular bed, cell phenotype and cytokine microenvironment.
Collapse
Affiliation(s)
- Jorge I Alvarez
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
150
|
Wassmer SC, Combes V, Candal FJ, Juhan-Vague I, Grau GE. Platelets potentiate brain endothelial alterations induced by Plasmodium falciparum. Infect Immun 2006; 74:645-53. [PMID: 16369021 PMCID: PMC1346683 DOI: 10.1128/iai.74.1.645-653.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brain lesions of cerebral malaria (CM) are characterized by a sequestration of Plasmodium falciparum-parasitized red blood cells (PRBC) and platelets within brain microvessels, as well as by blood-brain barrier (BBB) disruption. In the present study, we evaluated the possibility that PRBC and platelets induce functional alterations in brain endothelium. In a human brain endothelial cell line, named HBEC-5i, exhibiting most of the features demanded for a pathophysiological study of BBB, tumor necrosis factor (TNF) or lymphotoxin alpha (LT-alpha) reduced transendothelial electrical resistance (TEER), enhanced the permeability to 70-kDa dextran, and increased the release of microparticles, a recently described indicator of disease severity in CM patients. In vitro cocultures showed that platelets or PRBC can have a direct cytotoxic effect on activated, but not on resting, HBEC-5i cells. Platelet binding was required, as platelet supernatant had no effect. Furthermore, platelets potentiated the cytotoxicity of PRBC for TNF- or LT-alpha-activated HBEC-5i cells when they were added prior to these cells on the endothelial monolayers. This effect was not observed when platelets were added after PRBC. Both permeability and TEER were strongly affected, and the apoptosis rate of HBEC-5i cells was dramatically increased. These findings provide insights into the mechanisms by which platelets can be deleterious to the brain endothelium during CM.
Collapse
Affiliation(s)
- Samuel C Wassmer
- Laboratory of Immunopathology, Unité des Rickettsies CNRS UMR6020, IFR 48, Faculty of Medicine, Université de la Méditerranée, 27 Boulevard Jean Moulin, F-13385 Marseille Cedex 05, France
| | | | | | | | | |
Collapse
|