101
|
Allison CC, Ferrero RL. Role of virulence factors and host cell signaling in the recognition of Helicobacter pylori and the generation of immune responses. Future Microbiol 2010; 5:1233-55. [PMID: 20722601 DOI: 10.2217/fmb.10.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori colonizes a large proportion of the world's population, with infection invariably leading to chronic, lifelong gastritis. While the infection often persists undiagnosed and without causing severe pathology, there are a number of host, bacterial and environmental factors that can influence whether infection provokes a mild inflammatory response or results in significant morbidity. Intriguingly, the most virulent H. pylori strains appear to deliberately induce the epithelial signaling cascades responsible for activating the innate immune system. While the reason for this remains unclear, the resulting adaptive immune responses are largely ineffective in clearing the bacterium once infection has become established and, as a result, inflammation likely causes more damage to the host itself.
Collapse
Affiliation(s)
- Cody C Allison
- Centre for Innate Immunity & Infectious Diseases, Monash Institute of Medical Research, Clayton, Australia.
| | | |
Collapse
|
102
|
In Vivo Studies of Clostridium perfringens in Mouse Gas Gangrene Model. Curr Microbiol 2010; 62:999-1008. [DOI: 10.1007/s00284-010-9821-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|
103
|
Levert M, Zamfir O, Clermont O, Bouvet O, Lespinats S, Hipeaux MC, Branger C, Picard B, Saint-Ruf C, Norel F, Balliau T, Zivy M, Le Nagard H, Cruvellier S, Chane-Woon-Ming B, Nilsson S, Gudelj I, Phan K, Ferenci T, Tenaillon O, Denamur E. Molecular and evolutionary bases of within-patient genotypic and phenotypic diversity in Escherichia coli extraintestinal infections. PLoS Pathog 2010; 6:e1001125. [PMID: 20941353 PMCID: PMC2947995 DOI: 10.1371/journal.ppat.1001125] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 08/31/2010] [Indexed: 12/22/2022] Open
Abstract
Although polymicrobial infections, caused by combinations of viruses, bacteria, fungi and parasites, are being recognised with increasing frequency, little is known about the occurrence of within-species diversity in bacterial infections and the molecular and evolutionary bases of this diversity. We used multiple approaches to study the genomic and phenotypic diversity among 226 Escherichia coli isolates from deep and closed visceral infections occurring in 19 patients. We observed genomic variability among isolates from the same site within 11 patients. This diversity was of two types, as patients were infected either by several distinct E. coli clones (4 patients) or by members of a single clone that exhibit micro-heterogeneity (11 patients); both types of diversity were present in 4 patients. A surprisingly wide continuum of antibiotic resistance, outer membrane permeability, growth rate, stress resistance, red dry and rough morphotype characteristics and virulence properties were present within the isolates of single clones in 8 of the 11 patients showing genomic micro-heterogeneity. Many of the observed phenotypic differences within clones affected the trade-off between self-preservation and nutritional competence (SPANC). We showed in 3 patients that this phenotypic variability was associated with distinct levels of RpoS in co-existing isolates. Genome mutational analysis and global proteomic comparisons in isolates from a patient revealed a star-like relationship of changes amongst clonally diverging isolates. A mathematical model demonstrated that multiple genotypes with distinct RpoS levels can co-exist as a result of the SPANC trade-off. In the cases involving infection by a single clone, we present several lines of evidence to suggest diversification during the infectious process rather than an infection by multiple isolates exhibiting a micro-heterogeneity. Our results suggest that bacteria are subject to trade-offs during an infectious process and that the observed diversity resembled results obtained in experimental evolution studies. Whatever the mechanisms leading to diversity, our results have strong medical implications in terms of the need for more extensive isolate testing before deciding on antibiotic therapies. We investigated whether an infection is a site of pathogen within-species diversity. Our results indicate that there is indeed extensive diversity during human extraintestinal infections by Escherichia coli. This diversity was of two types, not mutually exclusive, as we found that patients were infected either by several distinct E. coli clones or by members of a single clone that exhibit micro-heterogeneity. The high degree of phenotypic diversity, including antibiotic resistance, suggests that there is no uniform selection pressure leading to a single fitter clone during an infection. We discuss a possible mechanism and a mathematical model that explains these unexpected results. Our data suggest that the evolution of diversity in the course of an infection and in in vitro experimental evolution in the absence of host immune selective pressure may have many parallels. Whatever the mechanisms leading to diversity, our results have strong medical implications in terms of the need for more extensive isolate testing before deciding on antibiotic therapies.
Collapse
Affiliation(s)
- Maxime Levert
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Oana Zamfir
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Olivier Clermont
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Odile Bouvet
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Sylvain Lespinats
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Marie Claire Hipeaux
- Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, Laboratoire de Microbiologie, Colombes, France
| | - Catherine Branger
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, Laboratoire de Microbiologie, Colombes, France
| | - Bertrand Picard
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Claude Saint-Ruf
- INSERM U1001 and Université Paris 5 René Descartes, Faculté de Médecine, Paris, France
| | - Françoise Norel
- Unité de Génétique Moléculaire and CNRS URA2172, Institut Pasteur, Paris, France
| | - Thierry Balliau
- CNRS UMR 0320/UMR8120 Génétique Végétale, Plate-Forme de Protéomique PAPPSO, Gif-sur-Yvette, France
| | - Michel Zivy
- CNRS UMR 0320/UMR8120 Génétique Végétale, Plate-Forme de Protéomique PAPPSO, Gif-sur-Yvette, France
| | - Hervé Le Nagard
- INSERM U738 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Stéphane Cruvellier
- Laboratoire de Génomique Comparative, CNRS UMR8030, Institut de Génomique, CEA, Genoscope, Evry, France
| | - Béatrice Chane-Woon-Ming
- Laboratoire de Génomique Comparative, CNRS UMR8030, Institut de Génomique, CEA, Genoscope, Evry, France
| | - Susanna Nilsson
- Department of Mathematics, Imperial College, London, United Kingdom
| | - Ivana Gudelj
- Department of Mathematics, Imperial College, London, United Kingdom
| | - Katherine Phan
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Ferenci
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Olivier Tenaillon
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Erick Denamur
- INSERM U722 and Université Paris 7 Denis Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
- * E-mail:
| |
Collapse
|
104
|
Peek RM, Fiske C, Wilson KT. Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiol Rev 2010; 90:831-58. [PMID: 20664074 DOI: 10.1152/physrev.00039.2009] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori colonizes the majority of persons worldwide, and the ensuing gastric inflammatory response is the strongest singular risk factor for peptic ulceration and gastric cancer. However, only a fraction of colonized individuals ever develop clinically significant outcomes. Disease risk is combinatorial and can be modified by bacterial factors, host responses, and/or specific interactions between host and microbe. Several H. pylori constituents that are required for colonization or virulence have been identified, and their ability to manipulate the host innate immune response will be the focus of this review. Identification of bacterial and host mediators that augment disease risk has profound ramifications for both biomedical researchers and clinicians as such findings will not only provide mechanistic insights into inflammatory carcinogenesis but may also serve to identify high-risk populations of H. pylori-infected individuals who can then be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Richard M Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, and Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37232-2279, USA.
| | | | | |
Collapse
|
105
|
Study of simultaneous experimental colonization of Meriones unguiculatus (Mongolian gerbils) by cagPAI+ and cagPAI− strains of Helicobacter pylori. Microbes Infect 2010; 12:607-14. [DOI: 10.1016/j.micinf.2010.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 03/07/2010] [Accepted: 04/08/2010] [Indexed: 01/17/2023]
|
106
|
Magalhães A, Reis CA. Helicobacter pylori adhesion to gastric epithelial cells is mediated by glycan receptors. Braz J Med Biol Res 2010; 43:611-8. [PMID: 20521012 DOI: 10.1590/s0100-879x2010007500049] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 05/24/2010] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori adhesion to gastric epithelial cells constitutes a key step in the establishment of a successful infection of the gastric mucosa. The high representation of outer membrane proteins in the bacterial genome suggests the relevance of those proteins in the establishment of profitable interactions with the host gastric cells. Gastric epithelial cells are protected by a mucous layer gel, mainly consisting of the MUC5AC and MUC6 mucins. In addition to this protective role, mucins harbor glycan-rich domains that constitute preferential binding sites of many pathogens. In this article we review the main players in the process of H. pylori adhesion to gastric epithelial cells, which contribute decisively to the high prevalence and chronicity of H. pylori infection. The BabA adhesin recognizes both H-type 1 and Lewis b blood-group antigens expressed on normal gastric mucosa of secretor individuals, contributing to the initial steps of infection. Upon colonization, persistent infection induces an inflammatory response with concomitant expression of sialylated antigens. The SabA adhesin mediates H. pylori binding to inflamed gastric mucosa by recognizing sialyl-Lewis a and sialyl-Lewis x antigens. The expression of the BabA and SabA adhesins is tightly regulated, permitting the bacteria to rapidly adapt to the changes of glycosylation of the host gastric mucosa that occur during infection, as well as to escape from the inflammatory response. The growing knowledge of the interactions between the bacterial adhesins and the host receptors will contribute to the design of alternative strategies for eradication of the infection.
Collapse
Affiliation(s)
- A Magalhães
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
107
|
Allelic diversity among Helicobacter pylori outer membrane protein genes homB and homA generated by recombination. J Bacteriol 2010; 192:3961-8. [PMID: 20525831 DOI: 10.1128/jb.00395-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recombination is one of the main mechanisms contributing to Helicobacter pylori genomic variability. homB and homA are paralogous genes coding for H. pylori outer membrane proteins (OMPs). Both genes display allelic variation yielded by polymorphisms of the genes' middle regions, with six different alleles. This study used bioinformatic and statistical analyses to evaluate whether the allelic diversity of homB and homA is generated by recombination. A detailed molecular analysis of the most prevalent homB allelic variant was also performed to establish its molecular profile. The two most prevalent homB and homA allelic variants resulted from interallelic homologous recombination between the rarest allelic variants of each gene, with a crossover point localized in the middle of the genes, containing the allelic region. Molecular analysis of the most prevalent homB allele revealed a geographic partition among Western and East Asian strains, more noticeable for the 5' and 3' homB regions than for the middle allelic regions. In conclusion, the diversity of the 5' and 3' homB regions reflect the strains' geographical origin, and variants likely occur via the accumulation of single nucleotide polymorphisms. On the other hand, homologous recombination seems to play an important role in the diversification of the highly polymorphic homB and homA allele-defining regions, where the most prevalent alleles worldwide result from genomic exchange between the rarest variants of each gene, suggesting that the resulting combinations confer biological advantages to H. pylori. This phenomenon illustrates an evolutionary scenario in which recombination appears to be associated with ecological success.
Collapse
|
108
|
Abstract
Helicobacter pylori is the dominant species of the human gastric microbiome, and colonization causes a persistent inflammatory response. H. pylori-induced gastritis is the strongest singular risk factor for cancers of the stomach; however, only a small proportion of infected individuals develop malignancy. Carcinogenic risk is modified by strain-specific bacterial components, host responses and/or specific host-microbe interactions. Delineation of bacterial and host mediators that augment gastric cancer risk has profound ramifications for both physicians and biomedical researchers as such findings will not only focus the prevention approaches that target H. pylori-infected human populations at increased risk for stomach cancer but will also provide mechanistic insights into inflammatory carcinomas that develop beyond the gastric niche.
Collapse
|
109
|
Abstract
Helicobacter pylori is the dominant species of the human gastric microbiome, and colonization causes a persistent inflammatory response. H. pylori-induced gastritis is the strongest singular risk factor for cancers of the stomach; however, only a small proportion of infected individuals develop malignancy. Carcinogenic risk is modified by strain-specific bacterial components, host responses and/or specific host-microbe interactions. Delineation of bacterial and host mediators that augment gastric cancer risk has profound ramifications for both physicians and biomedical researchers as such findings will not only focus the prevention approaches that target H. pylori-infected human populations at increased risk for stomach cancer but will also provide mechanistic insights into inflammatory carcinomas that develop beyond the gastric niche.
Collapse
Affiliation(s)
- D Brent Polk
- Department of Pediatrics, University of Southern California, Los Angeles, CA 10027, USA
| | | |
Collapse
|
110
|
Expression of the BabA adhesin during experimental infection with Helicobacter pylori. Infect Immun 2010; 78:1593-600. [PMID: 20123715 DOI: 10.1128/iai.01297-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Helicobacter pylori babA gene encodes an outer membrane protein that mediates binding to fucosylated ABH antigens of the ABO blood group. We recently demonstrated that BabA expression is lost during experimental infection of rhesus macaques with H. pylori J166. We sought to test the generality of this observation by comparison of different H. pylori strains and different animal hosts. Challenge of macaques with H. pylori J99 yielded output strains that lost BabA expression, either by selection and then expansion of a subpopulation of J99 that had a single-base-pair mutation that encoded a stop codon or by gene conversion of babA with a duplicate copy of babB, a paralog of unknown function. Challenge of mice with H. pylori J166, which unlike J99, has 5' CT repeats in babA, resulted in loss of BabA expression due to phase variation. In the gerbil, Leb binding was lost by replacement of the babA gene that encoded Leb binding with a nonbinding allele that differed at six amino acid residues. Complementation experiments confirmed that change in these six amino acids of BabA was sufficient to eliminate binding to Leb and to gastric tissue. These results demonstrate that BabA expression in vivo is highly dynamic, and the findings implicate specific amino acid residues as critical for binding to fucosylated ABH antigens. We hypothesize that modification of BabA expression during H. pylori infection is a mechanism to adapt to changing conditions of inflammation and glycan expression at the epithelial surface.
Collapse
|
111
|
Con SA, Takeuchi H, Nishioka M, Morimoto N, Sugiura T, Yasuda N, Con-Wong R. Clinical relevance of Helicobacter pylori babA2 and babA2/B in Costa Rica and Japan. World J Gastroenterol 2010; 16:474-8. [PMID: 20101774 PMCID: PMC2811801 DOI: 10.3748/wjg.v16.i4.474] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the prevalence of Helicobacter pylori (H. pylori) babA2, babB and a recombinant gene between babA2 and babB (babA2/B), and their role in the development of atrophic gastritis in Costa Rican and Japanese clinical isolates.
METHODS: A total of 95 continuous H. pylori-positive Costa Rican (41 males and 54 females; mean age, 50.65 years; SD, ± 13.04 years) and 95 continuous H. pylori-positive Japanese (50 males and 45 females; mean age, 63.43; SD, ± 13.21 years) patients underwent upper endoscopy from October 2005 to July 2006. They were enrolled for the polymerase chain reaction (PCR)-based genotyping of the H. pylori babA2, babB and babA2/B genes. Statistical analysis was performed using the χ2 test and the Fisher’s exact probability test and multivariate analysis was performed by logistic regression adjusting for gender and age. P < 0.05 was regarded as statistically significant.
RESULTS: The PCR-based genotyping of 95 Costa Rican and 95 Japanese isolates showed a higher prevalence of babA2 in Japan (96.8%) than in Costa Rica (73.7%), while that of babA2/B was higher in Costa Rica (11.6%) than in Japan (1.1%). In Costa Rican isolates only, babA2 was significantly associated with atrophic gastritis (P = 0.01).
CONCLUSION: These results suggest that the status of babA2 and babA2/B shows geographic differences, and that babA2 has clinical relevance in Costa Rica.
Collapse
|
112
|
Lienlaf M, Morales JP, Díaz MI, Díaz R, Bruce E, Siegel F, León G, Harris PR, Venegas A. Helicobacter pylori HopE and HopV porins present scarce expression among clinical isolates. World J Gastroenterol 2010; 16:320-9. [PMID: 20082477 PMCID: PMC2807952 DOI: 10.3748/wjg.v16.i3.320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/11/2009] [Accepted: 11/18/2009] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate how widely Helicobacter pylori (H. pylori) HopE and HopV porins are expressed among Chilean isolates and how seroprevalent they are among infected patients in Chile. METHODS H. pylori hopE and hopV genes derived from strain CHCTX-1 were cloned by polymerase chain reaction (PCR), sequenced and expressed in Escherichia coli AD494 (DE3). Gel-purified porins were used to prepare polyclonal antibodies. The presence of both genes was tested by PCR in a collection of H. pylori clinical isolates and their expression was detected in lysates by immunoblotting. Immune responses against HopE, HopV and other H. pylori antigens in sera from infected and non-infected patients were tested by Western blotting using these sera as first antibody on recombinant H. pylori antigens. RESULTS PCR and Western blotting assays revealed that 60 and 82 out of 130 Chilean isolates carried hopE and hopV genes, respectively, but only 16 and 9, respectively, expressed these porins. IgG serum immunoreactivity evaluation of 69 H. pylori-infected patients revealed that HopE and HopV were infrequently recognized (8.7% and 10.1% respectively) compared to H. pylori VacA (68.1%) and CagA (59.5%) antigens. Similar values were detected for IgA serum immunoreactivity against HopE (11.6%) and HopV (10.5%) although lower values for VacA (42%) and CagA (17.4%) were obtained when compared to the IgG response. CONCLUSION A scarce expression of HopE and HopV among Chilean isolates was found, in agreement with the infrequent seroconversion against these antigens when tested in infected Chilean patients.
Collapse
|
113
|
Windle HJ, Brown PA, Kelleher DP. Proteomics of bacterial pathogenicity: therapeutic implications. Proteomics Clin Appl 2010; 4:215-27. [PMID: 21137045 DOI: 10.1002/prca.200900145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 01/04/2023]
Abstract
Identification of the molecular mechanisms of host-pathogen interaction is becoming a key focus of proteomics. Analysis of these interactions holds promise for significant developments in the identification of new therapeutic strategies to combat infectious diseases, a process that will also benefit parallel improvements in molecular diagnostics, biomarker identification and drug discovery. This review highlights recent advances in functional proteomics initiatives in infectious disease with emphasis on studies undertaken within physiologically relevant parameters that enable identification of the infectious proteome rather than that of the vegetative state. Deciphering the molecular details of what constitutes physiologically relevant host-pathogen interactions remains an underdeveloped aspect of research into infectious disease. The magnitude of this deficit will be largely influenced by the ease with which model systems can be established to investigate such interactions. As the selective pressures exerted by the host on an infecting pathogen are numerous, the adequacy of certain model systems should be considered carefully.
Collapse
Affiliation(s)
- Henry J Windle
- Institute of Molecular Medicine, Trinity College, University of Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
114
|
Abstract
Microbial pathogens contribute to the development of more than 1 million cases of cancer per year. Gastric adenocarcinoma is the second leading cause of cancer-related death in the world, and gastritis induced by Helicobacter pylori is the strongest known risk factor for this malignancy. H. pylori colonizes the stomach for years, not days or weeks, as is usually the case for bacterial pathogens and it always induces inflammation; however, only a fraction of colonized individuals ever develop disease. Identification of mechanisms through which H. pylori co-opts host defenses to facilitate its own persistence will not only improve diagnostic and therapeutic modalities, but may also provide insights into other diseases that arise within the context of long-term pathogen-initiated inflammatory states, such as chronic viral hepatitis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Dawn A Israel
- Department of Medicine; Division of Gastroenterology; Vanderbilt University Medical Center; Nashville, TN USA
| | - Richard M Peek
- Department of Medicine; Division of Gastroenterology; Vanderbilt University Medical Center; Nashville, TN USA,Department of Cancer Biology; Vanderbilt University Medical Center; Nashville, TN USA,Department of Veterans Affairs Medical Center; Nashville, TN USA
| |
Collapse
|
115
|
Pohl MA, Romero-Gallo J, Guruge JL, Tse DB, Gordon JI, Blaser MJ. Host-dependent Lewis (Le) antigen expression in Helicobacter pylori cells recovered from Leb-transgenic mice. ACTA ACUST UNITED AC 2009; 206:3061-72. [PMID: 20008521 PMCID: PMC2806470 DOI: 10.1084/jem.20090683] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Variation of surface antigen expression is a mechanism used by microbes to adapt to and persist within their host habitats. Helicobacter pylori, a persistent bacterial colonizer of the human stomach, can alter its surface Lewis (Le) antigen expression. We examined H. pylori colonization in mice to test the hypothesis that host phenotype selects for H. pylori (Le) phenotypes. When wild-type and Leb-expressing transgenic FVB/N mice were challenged with H. pylori strain HP1, expressing Lex and Ley, we found that bacterial populations recovered after 8 mo from Leb-transgenic, but not wild-type, mice expressed Leb. Changes in Le phenotype were linked to variation of a putative galactosyltransferase gene (β-(1,3)galT); mutagenesis and complementation revealed its essential role in type I antigen expression. These studies indicate that H. pylori evolves to resemble the host's gastric Le phenotype, and reveal a bacterial genetic locus that is subject to host-driven selection pressure.
Collapse
Affiliation(s)
- Mary Ann Pohl
- Department of Medicine, New York University School of Medicine and Veteran's Administration Medical Center, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
116
|
Oleastro M, Cordeiro R, Ménard A, Yamaoka Y, Queiroz D, Mégraud F, Monteiro L. Allelic diversity and phylogeny of homB, a novel co-virulence marker of Helicobacter pylori. BMC Microbiol 2009; 9:248. [PMID: 19954539 PMCID: PMC2795765 DOI: 10.1186/1471-2180-9-248] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 12/02/2009] [Indexed: 12/11/2022] Open
Abstract
Background The homB gene is a Helicobacter pylori disease-marker candidate, strongly associated with peptic ulcer disease, while homA, its paralogue gene with 90% sequence identity, is correlated with non-ulcer dyspepsia. The HomB encoded outer membrane protein was shown to contribute to the proinflammatory properties of H. pylori and also to be involved in bacterial adherence. This study investigated the distribution of homB and homA genes in 455 H. pylori strains from East Asian and Western countries, and carried out sequence comparison and phylogenetic analyses. Results Both homB and homA genes were heterogeneously distributed worldwide, with a marked difference between East Asian and Western strains. Analysis of homB and homA sequences revealed diversity regarding the number of copies and their genomic localization, with East Asian and Western strains presenting different genotypes. Moreover, homB and homA sequence analysis suggests regulation by phase variation. It also indicates possible recombination events, leading to gene duplication or homB/homA conversion which may as well be implicated in the regulation of these genes. Phylogenetic reconstruction of homB and homA revealed clustering according to the geographic origin of strains. Allelic diversity in the middle region of the genes was observed for both homB and homA, although there was no correlation between any allele and disease. For each gene, a dominant worldwide allele was detected, suggesting that homB/homA allelic variants were independent of the geographical origin of the strain. Moreover, all alleles were demonstrated to be expressed in vivo. Conclusion Overall, these results suggest that homB and homA genes are good candidates to be part of the pool of H. pylori OMPs implicated in host-bacteria interface and also contributing to the generation of antigenic variability, and thus involved in H. pylori persistence.
Collapse
Affiliation(s)
- Mónica Oleastro
- Departamento de Doenças Infecciosas, Instituto Nacional Saúde Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal.
| | | | | | | | | | | | | |
Collapse
|
117
|
Cooke CL, An HJ, Kim J, Canfield DR, Torres J, Lebrilla CB, Solnick JV. Modification of gastric mucin oligosaccharide expression in rhesus macaques after infection with Helicobacter pylori. Gastroenterology 2009; 137:1061-71, 1071.e1-8. [PMID: 19375420 DOI: 10.1053/j.gastro.2009.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/25/2009] [Accepted: 04/09/2009] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori attaches to mucin oligosaccharides that are expressed on host gastric epithelium. We used the rhesus macaque model to characterize the effect of H. pylori infection on gastric mucin oligosaccharides during acute and chronic infection. METHODS Specific pathogen (H. pylori)-free rhesus macaques were inoculated with H. pylori J166. Biopsy specimens of the gastric antrum were obtained 2 and 4 weeks before and 2, 8, and 24 weeks after infection with H. pylori. O-linked mucin oligosaccharides were released from gastric biopsy samples by beta-elimination and profiled by matrix-assisted laser desorption/ionization mass spectrometry. Similar studies were performed on gastric biopsy samples from H. pylori-infected and uninfected humans. Formalin-fixed, paraffin-embedded sections of rhesus antrum biopsy samples were stained with H&E, periodic acid-Schiff stain, and antibody to MUC5AC, the predominant mucin expressed in the stomach. RESULTS H. pylori-induced gastritis was accompanied by an acute and dramatic decrease in diversity and relative abundance of O-linked mucin oligosaccharides in the rhesus stomach, which largely recovered during the 24-week observation period. These variations in oligosaccharide abundance detected by mass spectrometry were reflected by changes in periodic acid-Schiff-positive material and expression of MUC5AC over time. Relatively few differences were seen in gastric mucin oligosaccharide composition between H. pylori-infected and uninfected patients, which is consistent with the results in rhesus macaques because infection occurs in childhood. CONCLUSIONS Acute H. pylori infection is accompanied by a dramatic but transient loss in mucin oligosaccharides that may promote colonization and persistence.
Collapse
Affiliation(s)
- Cara L Cooke
- Department of Internal Medicine, University of California, Davis, California, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Fischer W, Prassl S, Haas R. Virulence Mechanisms and Persistence Strategies of the Human Gastric Pathogen Helicobacter pylori. Curr Top Microbiol Immunol 2009; 337:129-71. [DOI: 10.1007/978-3-642-01846-6_5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
119
|
Outer membrane protein expression profile in Helicobacter pylori clinical isolates. Infect Immun 2009; 77:3782-90. [PMID: 19546190 DOI: 10.1128/iai.00364-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The gram-negative gastric pathogen Helicobacter pylori is equipped with an extraordinarily large set of outer membrane proteins (OMPs), whose role in the infection process is not well understood. The Hop (Helicobacter outer membrane porins) and Hor (Hop-related proteins) groups constitute a large paralogous family consisting of 33 members. The OMPs AlpA, AlpB, BabA, SabA, and HopZ have been identified as adhesins or adherence-associated proteins. To better understand the relevance of these and other OMPs during infection, we analyzed the expression of eight different omp genes (alpA, alpB, babA, babB, babC, sabA, hopM, and oipA) in a set of 200 patient isolates, mostly from symptomatic children or young adults. Virtually all clinical isolates produced the AlpA and AlpB proteins, supporting their essential function. All other OMPs were produced at extremely variable rates, ranging from 35% to 73%, indicating a function in close adaptation to the individual host or gastric niche. In 11% of the isolates, BabA was produced, and SabA was produced in 5% of the isolates, but the strains failed to bind their cognate substrates. Interleukin-8 (IL-8) expression in gastric cells was strictly dependent on the presence of the cag pathogenicity island, whereas the presence of OipA clearly enhanced IL-8 production. The presence of the translocated effector protein CagA correlated well with BabA and OipA production. In conclusion, we found unexpectedly diverse omp expression profiles in individual H. pylori strains and hypothesize that this reflects the selective pressure for adhesion, which may differ across different hosts as well as within an individual over time.
Collapse
|
120
|
Oleastro M, Cordeiro R, Yamaoka Y, Queiroz D, Mégraud F, Monteiro L, Ménard A. Disease association with two Helicobacter pylori duplicate outer membrane protein genes, homB and homA. Gut Pathog 2009; 1:12. [PMID: 19545429 PMCID: PMC2706848 DOI: 10.1186/1757-4749-1-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 06/22/2009] [Indexed: 12/14/2022] Open
Abstract
Background homB encodes a Helicobacter pylori outer membrane protein. This gene was previously associated with peptic ulcer disease (PUD) and was shown to induce activation of interleukin-8 secretion in vitro, as well as contributing to bacterial adherence. Its 90%-similar gene, homA, was previously correlated with gastritis. The present study aimed to evaluate the gastric disease association with homB and homA, as well as with the H. pylori virulence factors cagA, babA and vacA, in 415 H. pylori strains isolated from patients from East Asian and Western countries. The correlation among these genotypes was also evaluated. Results Both homB and homA genes were heterogeneously distributed worldwide, with a marked difference between East Asian and Western strains. In Western strains (n = 234, 124 PUD and 110 non-ulcer dyspepsia (NUD), homB, cagA and vacA s1 were all significantly associated with PUD (p = 0.025, p = 0.014, p = 0.039, respectively), and homA was closely correlated with NUD (p = 0.072). In East Asian strains (n = 138, 73 PUD and 65 NUD), homB was found more frequently than homA, and none of these genes was associated with the clinical outcome. Overall, homB was associated with the presence of cagA (p = 0.043) and vacA s1 (p < 0.001), whereas homA was found more frequently in cagA-negative (p = 0.062) and vacA s2 (p < 0.001) strains. Polymorphisms in homB and homA copy number were observed, with a clear geographical specificity, suggesting an involvement of these genes in host adaptation. A correlation between the homB two-copy genotype and PUD was also observed, emphasizing the role of homB in the virulence of the strain. Conclusion The global results suggest that homB and homA contribute to the determination of clinical outcome.
Collapse
Affiliation(s)
- Monica Oleastro
- Departamento de Doenças Infecciosas, Instituto Nacional Saúde Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal.
| | | | | | | | | | | | | |
Collapse
|
121
|
Amundsen SK, Fero J, Salama NR, Smith GR. Dual nuclease and helicase activities of Helicobacter pylori AddAB are required for DNA repair, recombination, and mouse infectivity. J Biol Chem 2009; 284:16759-16766. [PMID: 19395381 PMCID: PMC2719311 DOI: 10.1074/jbc.m109.005587] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/09/2009] [Indexed: 01/18/2023] Open
Abstract
Helicobacter pylori infection of the human stomach is associated with disease-causing inflammation that elicits DNA damage in both bacterial and host cells. Bacteria must repair their DNA to persist. The H. pylori AddAB helicase-exonuclease is required for DNA repair and efficient stomach colonization. To dissect the role of each activity in DNA repair and infectivity, we altered the AddA and AddB nuclease (NUC) domains and the AddA helicase (HEL) domain by site-directed mutagenesis. Extracts of Escherichia coli expressing H. pylori addA(NUC)B or addAB(NUC) mutants unwound DNA but had approximately half of the exonuclease activity of wild-type AddAB; the addA(NUC)B(NUC) double mutant lacked detectable nuclease activity but retained helicase activity. Extracts with AddA(HEL)B lacked detectable helicase and nuclease activity. H. pylori with the single nuclease domain mutations were somewhat less sensitive to the DNA-damaging agent ciprofloxacin than the corresponding deletion mutant, suggesting that residual nuclease activity promotes limited DNA repair. The addA(NUC) and addA(HEL) mutants colonized the stomach less efficiently than the wild type; addB(NUC) showed partial attenuation. E. coli DeltarecBCD expressing H. pylori addAB was recombination-deficient unless H. pylori recA was also expressed, suggesting a species-specific interaction between AddAB and RecA and also that H. pylori AddAB participates in both DNA repair and recombination. These results support a role for both the AddAB nuclease and helicase in DNA repair and promoting infectivity.
Collapse
Affiliation(s)
| | - Jutta Fero
- Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Nina R Salama
- Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Gerald R Smith
- From the Divisions of Basic Sciences, Seattle, Washington 98109.
| |
Collapse
|
122
|
Pediatric Helicobacter pylori isolates display distinct gene coding capacities and virulence gene marker profiles. J Clin Microbiol 2009; 47:1680-8. [PMID: 19386830 DOI: 10.1128/jcm.00273-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori strains display remarkable genetic diversity, and the presence of strains bearing the toxigenic vacA s1 allele, a complete cag pathogenicity island (PAI), cagA alleles containing multiple EPIYA phosphorylation sites, and expressing the BabA adhesin correlates with development of gastroduodenal disease in adults. To better understand the genetic variability present among pediatric strains and its relationship to disease, we characterized H. pylori strains infecting 47 pediatric North American patients. Prevalence of mixed infection was assessed by random amplified polymorphic DNA analysis of multiple H. pylori clones from each patient. Microarray-based comparative genomic hybridization was used to examine the genomic content of the pediatric strains. The cagA and vacA alleles were further characterized by allele-specific PCR. A range of EPIYA motif configurations were observed for the cagA gene, which was present in strains from 22 patients (47%), but only 19 (41%) patients contained a complete cag PAI. Thirty patients (64%) were infected with a strain having the vacA s1 allele, and 28 patients (60%) had the babA gene. The presence of a functional cag PAI was correlated with ulcer disease (P = 0.0095). In spite of declining rates of H. pylori infection in North America, at least 11% of patients had mixed infection. Pediatric strains differ in their spectrum of strain-variable genes and percentage of absent genes in comparison to adult strains. Most children were infected with H. pylori strains lacking the cag PAI, but the presence of a complete cag PAI, in contrast to other virulence markers, was associated with more severe gastroduodenal disease.
Collapse
|
123
|
Peek RM. Helicobacter pylori infection and disease: from humans to animal models. Dis Model Mech 2009; 1:50-5. [PMID: 19048053 DOI: 10.1242/dmm.000364] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Informative and tractable animal models that are colonized by well-defined microbial pathogens represent ideal systems for the study of complex human diseases. Helicobacter pylori colonization of the stomach is a strong risk factor for peptic ulceration and distal gastric cancer. However, gastritis has no adverse consequences for most hosts and emerging evidence suggests that H. pylori prevalence is inversely related to gastroesophageal reflux disease and allergic disorders. These observations indicate that eradication may not be appropriate for certain populations due to the potentially beneficial effects conferred by persistent gastric inflammation. Animal models have provided an invaluable resource with which to study H. pylori pathogenesis and carcinogenesis, and have permitted the development of a focused approach to selectively target human populations at high-risk of disease.
Collapse
Affiliation(s)
- Richard M Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
124
|
López-Bolaños CC, Guzmán-Murillo MA, Ruiz-Bustos E, Ascencio F. The role of heparan sulfate on adhesion of 47 and 51 kDa outer membrane proteins ofHelicobacter pylorito gastric cancer cellsThis study was done in memory of the late Dr. Roberto Carlos Vazquez-Juarez. Can J Microbiol 2009; 55:450-6. [DOI: 10.1139/w08-149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Helicobacter pylori is a common gastrointestinal pathogenic bacterium in humans and the usual preference for the stomach’s outer membrane proteins (OMPs) are antigens involved in the adhesion process. Through SDS–PAGE and blotting analyses, using horseradish peroxidase-labeled heparan sulfate (HRP-HS) as a probe, we identified H. pylori OMPs with affinity for heparan sulfate (OMP-HS). Biotin–streptavidin bacterial-adhesion assay was used to evaluate participation of OMP-HS in the adhesion of H. pylori to semi-confluent HeLa S3 and Kato III cell monolayers. The results provide evidence that induction of antibodies against 2 OMP-HSs (HSBP-47 and HSBP-51) could reduce binding of H. pylori to both cell lines and induce detachment of cell-bound bacteria from infected cultured cells.
Collapse
Affiliation(s)
- Claudia C. López-Bolaños
- Centro de Investigaciones Biológicas del Noroeste, Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico
- Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
| | - Maria A. Guzmán-Murillo
- Centro de Investigaciones Biológicas del Noroeste, Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico
- Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
| | - Eduardo Ruiz-Bustos
- Centro de Investigaciones Biológicas del Noroeste, Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico
- Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
| | - Felipe Ascencio
- Centro de Investigaciones Biológicas del Noroeste, Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico
- Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
| |
Collapse
|
125
|
Abstract
Helicobacter pylori infection is the most important risk factor in the development of non-cardia gastric adenocarcinoma; host genetic variability and dietary co-factors also modulate risk. Because most H. pylori infections do not cause cancer, H. pylori heterogeneity has been investigated to identify possible virulence factors. The strongest candidates are genes within the cag (cytotoxin-associated antigen) pathogenicity island, including the gene encoding the CagA protein, as well as polymorphic variation in the VacA vacuolating exotoxin and the blood group antigen binding adhesin BabA. Improved understanding of the pathogenesis of H. pylori-associated gastric cancer may improve risk stratification for prevention and therapy.
Collapse
Affiliation(s)
- Sicheng Wen
- Department of Medicine, Division of Gastroenterology, Rhode Island Hospital and Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | | |
Collapse
|
126
|
Wen S, Moss SF. Helicobacter pylori virulence factors in gastric carcinogenesis. Cancer Lett 2008; 282:1-8. [PMID: 19111390 DOI: 10.1016/j.canlet.2008.11.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/10/2008] [Accepted: 11/17/2008] [Indexed: 02/09/2023]
Abstract
Helicobacter pylori infection is the most important risk factor in the development of non-cardia gastric adenocarcinoma; host genetic variability and dietary co-factors also modulate risk. Because most H. pylori infections do not cause cancer, H. pylori heterogeneity has been investigated to identify possible virulence factors. The strongest candidates are genes within the cag (cytotoxin-associated antigen) pathogenicity island, including the gene encoding the CagA protein, as well as polymorphic variation in the VacA vacuolating exotoxin and the blood group antigen binding adhesin BabA. Improved understanding of the pathogenesis of H. pylori-associated gastric cancer may improve risk stratification for prevention and therapy.
Collapse
Affiliation(s)
- Sicheng Wen
- Department of Medicine, Division of Gastroenterology, Rhode Island Hospital and Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | | |
Collapse
|
127
|
Oleastro M, Cordeiro R, Ferrand J, Nunes B, Lehours P, Carvalho-Oliveira I, Mendes AI, Penque D, Monteiro L, Mégraud F, Ménard A. Evaluation of the clinical significance of homB, a novel candidate marker of Helicobacter pylori strains associated with peptic ulcer disease. J Infect Dis 2008; 198:1379-87. [PMID: 18811585 DOI: 10.1086/592166] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND homB codes for a putative Helicobacter pylori outer membrane protein and has previously been associated with peptic ulcer disease (PUD) in children. METHODS A total of 190 H. pylori strains isolated from children and adults were studied to evaluate the clinical importance of the homB gene. In vitro experiments were performed to identify HomB mechanisms of bacterial pathogenicity. RESULTS Characterization of the isolates demonstrated that homB was significantly associated with PUD in 86 children (odds ratio [OR], 7.64 [95% confidence interval {CI}, 2.65-22.05]) and in 32 adults < or =40 years of age (OR, 11.25 [95% CI, 1.86-68.13]). homB was correlated with the presence of cagA, babA2, vacAs1, hopQI, and oipA "on" genotype (P< .001) The HomB protein was found to be expressed in the H. pylori outer membrane and was noted to be antigenic in humans. H. pylori homB knockout mutant strains presented reduced ability to induce interleukin-8 secretion from human gastric epithelial cells, as well as reduced capacity to bind to these cells. Both of these functions correlated with the number of homB copies present in a strain. CONCLUSION homB can be considered a comarker of H. pylori strains associated with PUD. Moreover, results strongly suggest that HomB is involved in the inflammatory response and in H. pylori adherence, constituting a novel putative virulence factor.
Collapse
Affiliation(s)
- Mónica Oleastro
- Departamento de Doenças Infecciosas, Instituto Nacional Saúde Dr Ricardo Jorge, Lisbon, Portugal.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
O'Brien DP, Romero-Gallo J, Schneider BG, Chaturvedi R, Delgado A, Harris EJ, Krishna U, Ogden SR, Israel DA, Wilson KT, Peek RM. Regulation of the Helicobacter pylori cellular receptor decay-accelerating factor. J Biol Chem 2008; 283:23922-30. [PMID: 18579524 PMCID: PMC2527108 DOI: 10.1074/jbc.m801144200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 06/23/2008] [Indexed: 12/24/2022] Open
Abstract
Chronic gastritis induced by Helicobacter pylori is the strongest known risk factor for peptic ulceration and distal gastric cancer, and adherence of H. pylori to gastric epithelial cells is critical for induction of inflammation. One H. pylori constituent that increases disease risk is the cag pathogenicity island, which encodes a secretion system that translocates bacterial effector molecules into host cells. Decay-accelerating factor (DAF) is a cellular receptor for H. pylori and a mediator of the inflammatory response to this pathogen. H. pylori induces DAF expression in human gastric epithelial cells; therefore, we sought to define the mechanism by which H. pylori up-regulates DAF and to extend these findings into a murine model of H. pylori-induced injury. Co-culture of MKN28 gastric epithelial cells with the wild-type H. pylori cag(+) strain J166 induced transcriptional expression of DAF, which was attenuated by disruption of a structural component of the cag secretion system (cagE). H. pylori-induced expression of DAF was dependent upon activation of the p38 mitogen-activated protein kinase pathway but not NF-kappaB. Hypergastrinemic INS-GAS mice infected with wild-type H. pylori demonstrated significantly increased DAF expression in gastric epithelium versus uninfected controls or mice infected with an H. pylori cagE(-) isogenic mutant strain. These results indicate that H. pylori cag(+) strains induce up-regulation of a cognate cellular receptor in vitro and in vivo in a cag-dependent manner, representing the first evidence of regulation of an H. pylori host receptor by the cag pathogenicity island.
Collapse
Affiliation(s)
- Daniel P. O'Brien
- Division of Gastroenterology, Department
of Medicine, Department of Cancer Biology, and
Department of Pathology, Vanderbilt University
School of Medicine, Nashville, Tennessee 37232-2279 and
Department of Veterans Affairs Medical Center,
Nashville, Tennessee 37212
| | - Judith Romero-Gallo
- Division of Gastroenterology, Department
of Medicine, Department of Cancer Biology, and
Department of Pathology, Vanderbilt University
School of Medicine, Nashville, Tennessee 37232-2279 and
Department of Veterans Affairs Medical Center,
Nashville, Tennessee 37212
| | - Barbara G. Schneider
- Division of Gastroenterology, Department
of Medicine, Department of Cancer Biology, and
Department of Pathology, Vanderbilt University
School of Medicine, Nashville, Tennessee 37232-2279 and
Department of Veterans Affairs Medical Center,
Nashville, Tennessee 37212
| | - Rupesh Chaturvedi
- Division of Gastroenterology, Department
of Medicine, Department of Cancer Biology, and
Department of Pathology, Vanderbilt University
School of Medicine, Nashville, Tennessee 37232-2279 and
Department of Veterans Affairs Medical Center,
Nashville, Tennessee 37212
| | - Alberto Delgado
- Division of Gastroenterology, Department
of Medicine, Department of Cancer Biology, and
Department of Pathology, Vanderbilt University
School of Medicine, Nashville, Tennessee 37232-2279 and
Department of Veterans Affairs Medical Center,
Nashville, Tennessee 37212
| | - Elizabeth J. Harris
- Division of Gastroenterology, Department
of Medicine, Department of Cancer Biology, and
Department of Pathology, Vanderbilt University
School of Medicine, Nashville, Tennessee 37232-2279 and
Department of Veterans Affairs Medical Center,
Nashville, Tennessee 37212
| | - Uma Krishna
- Division of Gastroenterology, Department
of Medicine, Department of Cancer Biology, and
Department of Pathology, Vanderbilt University
School of Medicine, Nashville, Tennessee 37232-2279 and
Department of Veterans Affairs Medical Center,
Nashville, Tennessee 37212
| | - Seth R. Ogden
- Division of Gastroenterology, Department
of Medicine, Department of Cancer Biology, and
Department of Pathology, Vanderbilt University
School of Medicine, Nashville, Tennessee 37232-2279 and
Department of Veterans Affairs Medical Center,
Nashville, Tennessee 37212
| | - Dawn A. Israel
- Division of Gastroenterology, Department
of Medicine, Department of Cancer Biology, and
Department of Pathology, Vanderbilt University
School of Medicine, Nashville, Tennessee 37232-2279 and
Department of Veterans Affairs Medical Center,
Nashville, Tennessee 37212
| | - Keith T. Wilson
- Division of Gastroenterology, Department
of Medicine, Department of Cancer Biology, and
Department of Pathology, Vanderbilt University
School of Medicine, Nashville, Tennessee 37232-2279 and
Department of Veterans Affairs Medical Center,
Nashville, Tennessee 37212
| | - Richard M. Peek
- Division of Gastroenterology, Department
of Medicine, Department of Cancer Biology, and
Department of Pathology, Vanderbilt University
School of Medicine, Nashville, Tennessee 37232-2279 and
Department of Veterans Affairs Medical Center,
Nashville, Tennessee 37212
| |
Collapse
|
129
|
Amundsen SK, Fero J, Hansen LM, Cromie GA, Solnick JV, Smith GR, Salama NR. Helicobacter pylori AddAB helicase-nuclease and RecA promote recombination-related DNA repair and survival during stomach colonization. Mol Microbiol 2008; 69:994-1007. [PMID: 18573180 PMCID: PMC2680919 DOI: 10.1111/j.1365-2958.2008.06336.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori colonization of the human stomach is characterized by profound disease-causing inflammation. Bacterial proteins that detoxify reactive oxygen species or recognize damaged DNA adducts promote infection, suggesting that H. pylori requires DNA damage repair for successful in vivo colonization. The molecular mechanisms of repair remain unknown. We identified homologues of the AddAB class of helicase-nuclease enzymes, related to the Escherichia coli RecBCD enzyme, which, with RecA, is required for repair of DNA breaks and homologous recombination. H. pylori mutants lacking addA or addB genes lack detectable ATP-dependent nuclease activity, and the cloned H. pylori addAB genes restore both nuclease and helicase activities to an E. coli recBCD deletion mutant. H. pylori addAB and recA mutants have a reduced capacity for stomach colonization. These mutants are sensitive to DNA damaging agents and have reduced frequencies of apparent gene conversion between homologous genes encoding outer membrane proteins. Our results reveal requirements for double-strand break repair and recombination during both acute and chronic phases of H. pylori stomach infection.
Collapse
Affiliation(s)
- Susan K. Amundsen
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle WA, 98109
| | - Jutta Fero
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle WA, 98109
| | - Lori M. Hansen
- Departments of Internal Medicine and Medical Microbiology & Immunology, and Center for Comparative Medicine, University of California, Davis CA, 95616, USA
| | - Gareth A. Cromie
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle WA, 98109
| | - Jay V. Solnick
- Departments of Internal Medicine and Medical Microbiology & Immunology, and Center for Comparative Medicine, University of California, Davis CA, 95616, USA
| | - Gerald R. Smith
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle WA, 98109
| | - Nina R. Salama
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle WA, 98109
| |
Collapse
|
130
|
Phase and antigenic variation mediated by genome modifications. Antonie van Leeuwenhoek 2008; 94:493-515. [DOI: 10.1007/s10482-008-9267-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 07/09/2008] [Indexed: 11/26/2022]
|
131
|
Yamaoka Y. Roles of Helicobacter pylori BabA in gastroduodenal pathogenesis. World J Gastroenterol 2008; 14:4265-72. [PMID: 18666312 PMCID: PMC2731175 DOI: 10.3748/wjg.14.4265] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/04/2008] [Accepted: 05/11/2008] [Indexed: 02/06/2023] Open
Abstract
Interactions between BabA and Lewis b (Le(b)) related antigens are the best characterized adhesin-receptor interactions in Helicobacter pylori (H pylori). Several mechanisms for the regulation of BabA expression are predicted, including at both transcriptional and translational levels. The formation of chimeric proteins (babA/B or babB/A chimeras) seems to play an especially important role in translational regulation. Chimeric BabB/A protein had the potential to bind Le(b); however, protein production was subject to phase variation through slipped strand mispairing. The babA gene was cloned initially from strain CCUG17875, which contains a silent babA1 gene and an expressed babA2 gene. The sequence of these two genes differs only by the presence of a 10 bp deletion in the signal peptide sequence of babA1 that eliminates its translational initiation codon. However, the babA1 type deletion was found only in strain CCUG17875. A few studies evaluated BabA status by immunoblot and confirmed that BabA-positive status in Western strains was closely associated with severe clinical outcomes. BabA-positive status also was associated with the presence of other virulence factors (e.g. cagA-positive status and vacA s1 genotype). A small class of strains produced low levels of the BabA protein and lacked Le(b) binding activity. These were more likely to be associated with increased mucosal inflammation and severe clinical outcomes than BabA-positive strains that exhibited Le(b) binding activity. The underlying mechanism is unclear, and further studies will be necessary to investigate how the complex BabA-receptor network is functionally coordinated during the interaction of H pylori with the gastric mucosa.
Collapse
|
132
|
Abstract
Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents—bacteria, viruses, fungi, parasites, prions. The remarkable diversity of human infectious diseases that have been modeled in the macaque includes global, childhood, and tropical diseases as well as newly emergent, sexually transmitted, oncogenic, degenerative neurologic, potential bioterrorism, and miscellaneous other diseases. Historically, macaques played a major role in establishing the etiology of yellow fever, polio, and prion diseases. With rare exceptions (Chagas disease, bartonellosis), all of the infectious diseases in this review are of Old World origin. Perhaps most surprising is the large number of tropical (16), newly emergent (7), and bioterrorism diseases (9) that have been modeled in macaques. Many of these human diseases (e.g., AIDS, hepatitis E, bartonellosis) are a consequence of zoonotic infection. However, infectious agents of certain diseases, including measles and tuberculosis, can sometimes go both ways, and thus several human pathogens are threats to nonhuman primates including macaques. Through experimental studies in macaques, researchers have gained insight into pathogenic mechanisms and novel treatment and vaccine approaches for many human infectious diseases, most notably acquired immunodeficiency syndrome (AIDS), which is caused by infection with human immunodeficiency virus (HIV). Other infectious agents for which macaques have been a uniquely valuable resource for biomedical research, and particularly vaccinology, include influenza virus, paramyxoviruses, flaviviruses, arenaviruses, hepatitis E virus, papillomavirus, smallpox virus, Mycobacteria, Bacillus anthracis, Helicobacter pylori, Yersinia pestis, and Plasmodium species. This review summarizes the extensive past and present research on macaque models of human infectious disease.
Collapse
Affiliation(s)
- Murray B Gardner
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
133
|
Yamaoka Y. Increasing evidence of the role of Helicobacter pylori SabA in the pathogenesis of gastroduodenal disease. J Infect Dev Ctries 2008; 2:174-81. [PMID: 19738347 DOI: 10.3855/jidc.259] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Indexed: 12/13/2022] Open
Abstract
Although infection with Helicobacter pylori always results in chronic active gastritis, only a fraction of those infected develop severe clinical disease. In addition, certain populations with high incidences of H. pylori infection, such as those in East Asian countries, have high incidences of gastric cancer, while other highly infected populations, such as those in Africa and South Asia, do not. This phenomenon might be partially explained by differences in the genotypes of H. pylori; however, currently no definite H. pylori factors can clearly explain it. Recently, the importance of sialic acid binding adhesin (SabA), a novel outer membrane protein in gastroduodenal pathogenesis, has become increasingly apparent. Binding of blood group antigen binding adhesin (BabA) to Lewis b antigen and related fucosylated ABO blood group antigens is probably important in the initial stage of infection. However, when host inflammation increases, expression of sialyl-Lewis x increases, and H. pylori is likely to adhere to the gastric mucosa with SabA. Many of the genes encoding outer membrane proteins undergo phase variation such that not all strains will produce functional proteins, and SabA expression is frequently switched "on" or "off", suggesting that SabA expression can rapidly respond to changing conditions in the stomach or in different regions of the stomach. SabA production is indeed reported to be associated with severe intestinal metaplasia, gastric atrophy, and the development of gastric cancer in both developed and developing countries, confirming the importance of investigating SabA in developing countries.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
134
|
Ménard A, Danchin A, Dupouy S, Mégraud F, Lehours P. A variable gene in a conserved region of the Helicobacter pylori genome: isotopic gene replacement or rapid evolution? DNA Res 2008; 15:163-8. [PMID: 18442984 PMCID: PMC2650637 DOI: 10.1093/dnares/dsn006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The present study concerns the identification of a novel coding sequence in a region of the Helicobacter pylori genome, located between JHP1069/HP1141 and JHP1071/HP1143 according to the numbering of the J99 and 26695 reference strains, respectively, and spanning three different coding DNA sequences (CDSs). The CDSs located at the centre of this locus were highly polymorphic, as determined by the analysis of 24 European isolates, 3 Asian, and 3 African isolates. Phylogenetic and molecular evolutionary analyses showed that the CDSs were not restricted to the geographical origin of the strains. Despite a very high variability observed in the deduced protein sequences, significant similarity was observed, always with the same protein families, i.e. ATPase and bacteriophage receptor/invasion proteins. Although this variability could be explained by isotopic gene replacement via horizontal transfer of a gene with the same function but coming from a variety of sources, it seems more likely that the very high sequence variation observed at this locus is the result of a strong selection pressure exerted on the corresponding gene product. The CDSs identified in the present study could be used as strain specific markers.
Collapse
Affiliation(s)
- Armelle Ménard
- INSERM U853, Laboratoire de Bactériologie, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, F-33076 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
135
|
Lindén SK, Wickström C, Lindell G, Gilshenan K, Carlstedt I. Four modes of adhesion are used during Helicobacter pylori binding to human mucins in the oral and gastric niches. Helicobacter 2008; 13:81-93. [PMID: 18321298 DOI: 10.1111/j.1523-5378.2008.00587.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Helicobacter pylori causes peptic ulcer disease and gastric cancer, and the oral cavity is likely to serve as a reservoir for this pathogen. We investigated the binding of H. pylori to the mucins covering the mucosal surfaces in the niches along the oral to gastric infection route and during gastric disease and modeled the outcome of these interactions. MATERIALS AND METHODS A panel of seven H. pylori strains with defined binding properties was used to identify binding to human mucins from saliva, gastric juice, cardia, corpus, and antrum of healthy stomachs and of stomachs affected by gastritis at pH 7.4 and 3.0 using a microtiter-based method. RESULTS H. pylori binding to mucins differed substantially with the anatomic site, mucin type, pH, gastritis status, and H. pylori strain all having effect on binding. Mucins from saliva and gastric juice displayed the most diverse binding patterns, involving four modes of H. pylori adhesion and the MUC5B, MUC7, and MUC5AC mucins as well as the salivary agglutinin. Binding occurred via the blood-group antigen-binding adhesin (BabA), the sialic acid-binding adhesin (SabA), a charge/low pH-dependent mechanism, and a novel saliva-binding adhesin. In the healthy gastric mucus layer only BabA and acid/charge affect binding to the mucins, whereas in gastritis, the BabA/Le(b)-dependent binding to MUC5AC remained, and SabA and low pH binding increased. CONCLUSIONS The four H. pylori adhesion modes binding to mucins are likely to play different roles during colonization of the oral to gastric niches and during long-term infection.
Collapse
Affiliation(s)
- Sara K Lindén
- Mucosal Diseases Program, Mater Medical Research Institute, South Brisbane, Queensland 4101, Australia.
| | | | | | | | | |
Collapse
|
136
|
Amieva MR, El-Omar EM. Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology 2008; 134:306-23. [PMID: 18166359 DOI: 10.1053/j.gastro.2007.11.009] [Citation(s) in RCA: 387] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 10/21/2007] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori are spiral-shaped gram-negative bacteria with polar flagella that live near the surface of the human gastric mucosa. They have evolved intricate mechanisms to avoid the bactericidal acid in the gastric lumen and to survive near, to attach to, and to communicate with the human gastric epithelium and host immune system. This interaction sometimes results in severe gastric pathology. H pylori infection is the strongest known risk factor for the development of gastroduodenal ulcers, with infection being present in 60%-80% of gastric and 95% of duodenal ulcers.(1)H pylori is also the first bacterium to be classified as a definite carcinogen by the World Health Organization's International Agency for Research on Cancer because of its epidemiologic relationship to gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue lymphoma.(2) In the last 25 years, since H pylori was first described and cultured, a complete paradigm shift has occurred in our clinical approach to these gastric diseases, and more than 20,000 scientific publications have appeared on the subject. From the medical point of view, H pylori is a formidable pathogen responsible for much morbidity and mortality worldwide. However, H pylori infection occurs in approximately half of the world population, with disease being an exception rather than the rule. Understanding how this organism interacts with its host is essential for formulating an intelligent strategy for dealing with its most important clinical consequences. This review offers an insight into H pylori host-bacterial interactions.
Collapse
Affiliation(s)
- Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
137
|
Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. Mucins in the mucosal barrier to infection. Mucosal Immunol 2008; 1:183-97. [PMID: 19079178 PMCID: PMC7100821 DOI: 10.1038/mi.2008.5] [Citation(s) in RCA: 860] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mucosal tissues of the gastrointestinal, respiratory, reproductive, and urinary tracts, and the surface of the eye present an enormous surface area to the exterior environment. All of these tissues are covered with resident microbial flora, which vary considerably in composition and complexity. Mucosal tissues represent the site of infection or route of access for the majority of viruses, bacteria, yeast, protozoa, and multicellular parasites that cause human disease. Mucin glycoproteins are secreted in large quantities by mucosal epithelia, and cell surface mucins are a prominent feature of the apical glycocalyx of all mucosal epithelia. In this review, we highlight the central role played by mucins in accommodating the resident commensal flora and limiting infectious disease, interplay between underlying innate and adaptive immunity and mucins, and the strategies used by successful mucosal pathogens to subvert or avoid the mucin barrier, with a particular focus on bacteria.
Collapse
Affiliation(s)
- S K Linden
- grid.1003.20000 0000 9320 7537Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, Level 3 Aubigny Place, Mater Hospitals, South Brisbane, Queensland Australia
| | - P Sutton
- grid.1008.90000 0001 2179 088XCentre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Melbourne, Victoria Australia
| | - N G Karlsson
- grid.6142.10000 0004 0488 0789Department of Chemistry, Centre for BioAnalytical Sciences, National University of Ireland, Galway, Ireland
| | - V Korolik
- grid.1022.10000 0004 0437 5432Institute for Glycomics, Griffith University, Gold Coast, Queensland Australia
| | - M A McGuckin
- grid.1003.20000 0000 9320 7537Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, Level 3 Aubigny Place, Mater Hospitals, South Brisbane, Queensland Australia
| |
Collapse
|
138
|
Atherton JC. The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:63-96. [PMID: 18039108 DOI: 10.1146/annurev.pathol.1.110304.100125] [Citation(s) in RCA: 409] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is the main cause of peptic ulceration, distal gastric adenocarcinoma, and gastric lymphoma. Only 15% of those colonized develop disease, and pathogenesis depends upon strain virulence, host genetic susceptibility, and environmental cofactors. Virulence factors include the cag pathogenicity island, which induces proinflammatory, pro-proliferative epithelial cell signaling; the cytotoxin VacA, which causes epithelial damage; and an adhesin, BabA. Host genetic polymorphisms that lead to high-level pro-inflammatory cytokine release in response to infection increase cancer risk. Pathogenesis is dependent upon inflammation, a Th-1 acquired immune response and hormonal changes including hypergastrinaemia. Antral-predominant inflammation leads to increased acid production from the uninflamed corpus and predisposes to duodenal ulceration; corpus-predominant gastritis leads to hypochlorhydria and predisposes to gastric ulceration and adenocarcinoma. Falling prevalence of H. pylori in developed countries has led to a falling incidence of associated diseases. However, whether there are disadvantages of an H. pylori-free stomach, for example increased risk of esosphageal adenocarcinoma, remains unclear.
Collapse
Affiliation(s)
- John C Atherton
- Wolfson Digestive Diseases Centre and Institute of Infections, Immunity, and Inflammation, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
139
|
Wen S, Velin D, Felley CP, Du L, Michetti P, Pan-Hammarström Q. Expression of Helicobacter pylori virulence factors and associated expression profiles of inflammatory genes in the human gastric mucosa. Infect Immun 2007; 75:5118-26. [PMID: 17709414 PMCID: PMC2168299 DOI: 10.1128/iai.00334-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori virulence factors have been suggested to be important in determining the outcome of infection. The H. pylori adhesion protein BabA2 is thought to play a crucial role in bacterial colonization and in induction of severe gastric inflammation, particularly in combination with expression of CagA and VacA. However, the influence of these virulence factors on the pathogenesis of H. pylori infection is still poorly understood. To address this question, the inflammatory gene expression profiles for two groups of patients infected with triple-negative strains (lacking expression of cagA, babA2, and vacAs1 but expressing vacAs2) and triple-positive strains (expressing cagA, vacAs1, and babA2 but lacking expression of vacAs2) were investigated. The gene expression patterns in the antrum gastric mucosa from patients infected with different H. pylori strains were very similar, and no differentially expressed genes could be identified by pairwise comparisons. Our data thus suggest that there is a lack of correlation between the host inflammatory responses in the gastric mucosa and expression of the babA2, cagA, and vacAs1 genes.
Collapse
Affiliation(s)
- Sicheng Wen
- Division of Clinical Immunology, Department of Laboratory Medicine, F79, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
140
|
de Reuse H, Bereswill S. Ten years after the first Helicobacter pylori genome: comparative and functional genomics provide new insights in the variability and adaptability of a persistent pathogen. ACTA ACUST UNITED AC 2007; 50:165-76. [PMID: 17567280 DOI: 10.1111/j.1574-695x.2007.00244.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this review, we summarize how genomic approaches contributed to the understanding of the biology of the recently discovered pathogen Helicobacter pylori. Comparative genomics provided new insights into H. pylori's spectacular genetic diversity and generated exiting hypotheses on its evolutionary history. Transcriptomic studies provided original information on the mechanisms of H. pylori gastric adaptation that are central to its virulence.
Collapse
Affiliation(s)
- Hilde de Reuse
- Institut Pasteur, Unité de Pathogénie Bacterienne des Muqueuses, Paris, France
| | | |
Collapse
|
141
|
Helicobacter pylori genome variability in a framework of familial transmission. BMC Microbiol 2007; 7:54. [PMID: 17562007 PMCID: PMC1899507 DOI: 10.1186/1471-2180-7-54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 06/11/2007] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Helicobacter pylori infection is exceptionally prevalent and is considered to be acquired primarily early in life through person-to-person transmission within the family. H. pylori is a genetically diverse bacterial species, which may facilitate adaptation to new hosts and persistence for decades. The present study aimed to explore the genetic diversity of clonal isolates from a mother and her three children in order to shed light on H. pylori transmission and host adaptation. RESULTS Two different H. pylori strains and strain variants were identified in the family members by PCR-based molecular typing and sequencing of five loci. Genome diversity was further assessed for 15 isolates by comparative microarray hybridizations. The microarray consisted of 1,745 oligonucleotides representing the genes of two previously sequenced H. pylori strains. The microarray analysis detected a limited mean number (+/- standard error) of divergent genes between clonal isolates from the same and different individuals (1 +/- 0.4, 0.1%, and 3 +/- 0.3, 0.2%, respectively). There was considerable variability between the two different strains in the family members (147 +/- 4, 8%) and for all isolates relative to the two sequenced reference strains (314 +/- 16, 18%). The diversity between different strains was associated with gene functional classes related to DNA metabolism and the cell envelope. CONCLUSION The present data from clonal H. pylori isolates of family members do not support that transmission and host adaptation are associated with substantial sequence diversity in the bacterial genome. However, important phenotypic modifications may be determined by additional genetic mechanisms, such as phase-variation. Our findings can aid further exploration of H. pylori genetic diversity and adaptation.
Collapse
|
142
|
Suerbaum S, Josenhans C. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat Rev Microbiol 2007; 5:441-52. [PMID: 17505524 DOI: 10.1038/nrmicro1658] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori colonizes the stomachs of more than 50% of the world's population, making it one of the most successful of all human pathogens. One striking characteristic of H. pylori biology is its remarkable allelic diversity and genetic variability. Not only does almost every infected person harbour their own individual H. pylori strain, but strains can undergo genetic alteration in vivo, driven by an elevated mutation rate and frequent intraspecific recombination. This genetic variability, which affects both housekeeping and virulence genes, has long been thought to contribute to host adaptation, and several recently published studies support this concept. We review the available knowledge relating to the genetic variation of H. pylori, with special emphasis on the changes that occur during chronic colonization, and argue that H. pylori uses mutation and recombination processes to adapt to its individual host by modifying molecules that interact with the host. Finally, we put forward the hypothesis that the lack of opportunity for intraspecies recombination as a result of the decreasing prevalence of H. pylori could accelerate its disappearance from Western populations.
Collapse
Affiliation(s)
- Sebastian Suerbaum
- Medizinische Hochschule Hannover, Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | |
Collapse
|
143
|
Ashgar SSA, Oldfield NJ, Wooldridge KG, Jones MA, Irving GJ, Turner DPJ, Ala'Aldeen DAA. CapA, an autotransporter protein of Campylobacter jejuni, mediates association with human epithelial cells and colonization of the chicken gut. J Bacteriol 2007; 189:1856-65. [PMID: 17172331 PMCID: PMC1855769 DOI: 10.1128/jb.01427-06] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 12/08/2006] [Indexed: 01/04/2023] Open
Abstract
Two putative autotransporter proteins, CapA and CapB, were identified in silico from the genome sequence of Campylobacter jejuni NCTC11168. The genes encoding each protein contain homopolymeric tracts, suggestive of phase variation mediated by a slipped-strand mispairing mechanism; in each case the gene sequence contained frameshifts at these positions. The C-terminal two-thirds of the two genes, as well as a portion of the predicted signal peptides, were identical; the remaining N-terminal portions were gene specific. Both genes were cloned and expressed; recombinant polypeptides were purified and used to raise rabbit polyclonal monospecific antisera. Using immunoblotting, expression of the ca.116-kDa CapA protein was demonstrated for in vitro-grown cells of strain NCTC11168, for 4 out of 11 recent human fecal isolates, and for 2 out of 8 sequence-typed strains examined. Expression of CapB was not detected for any of the strains tested. Surface localization of CapA was demonstrated by subcellular fractionation and immunogold electron microscopy. Export of CapA was inhibited by globomycin, reinforcing the bioinformatic prediction that the protein is a lipoprotein. A capA insertion mutant had a significantly reduced capacity for association with and invasion of Caco-2 cells and failed to colonize and persist in chickens, indicating that CapA plays a role in host association and colonization by Campylobacter. In view of this demonstrated role, we propose that CapA stands for Campylobacter adhesion protein A.
Collapse
Affiliation(s)
- Sami S A Ashgar
- Queen's Medical Centre, University Hospital, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | |
Collapse
|
144
|
Fujimoto S, Olaniyi Ojo O, Arnqvist A, Wu JY, Odenbreit S, Haas R, Graham DY, Yamaoka Y. Helicobacter pylori BabA expression, gastric mucosal injury, and clinical outcome. Clin Gastroenterol Hepatol 2007; 5:49-58. [PMID: 17157077 PMCID: PMC3118416 DOI: 10.1016/j.cgh.2006.09.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The blood grou. METHODS We compared the ability of published PCR-based methods to assess BabA status with BabA immunoblotting and Lewis b (Le(b)) binding activity assays. We also used immunoblotting to examine the relationship between clinical presentation and levels of BabA expression. RESULTS Immunoblotting and Le(b) binding assays for 80 strains revealed 3 levels of BabA expression: BabA high producers (BabA-H) with Le(b) binding activity, BabA low producers (BabA-L) without Le(b) binding activity, and BabA-negative. BabA-negative strains lacked the babA gene. PCR methods to determine BabA status yielded poor results. babA1 sequences were never detected. BabA expression was examined in 250 strains from Western countries and 270 strains from East Asia. The results failed to confirm any relationship between triple-positive status (cagA-positive/vacA s1/BabA-H) and clinical outcome. BabA-negative strains typically were cagA-negative/vacA s2 and were associated with gastritis. BabA-L strains showed a higher level of mucosal injury and were associated more frequently with duodenal ulcer and gastric cancer than the other groups. CONCLUSIONS Information gained from currently used PCR-based methods must be interpreted with caution. Le(b) binding activity does not accurately reflect the severity of mucosal damage or the clinical outcome. Quantitation of BabA expression revealed that Le(b)-nonbinding BabA-L strains are associated with higher levels of mucosal injury and clinical outcome.
Collapse
Affiliation(s)
- Saori Fujimoto
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Schnappinger D. Genomics of host-pathogen interactions. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 64:311, 313-43. [PMID: 17195480 DOI: 10.1007/978-3-7643-7567-6_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The complete sequences of hundreds of microbial genomes have provided drug discovery pipelines with thousands of new potential drug targets. Their availability has also stimulated the development of a variety of innovative approaches that allow functional studies to be performed on the entire genome of an organism. This chapter describes how these approaches have been applied to the analysis of host-pathogen interactions and discusses how such studies might facilitate the development of new antibiotics.
Collapse
Affiliation(s)
- Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, USA.
| |
Collapse
|
146
|
Aspholm M, Olfat FO, Nordén J, Sondén B, Lundberg C, Sjöström R, Altraja S, Odenbreit S, Haas R, Wadström T, Engstrand L, Semino-Mora C, Liu H, Dubois A, Teneberg S, Arnqvist A, Borén T. SabA is the H. pylori hemagglutinin and is polymorphic in binding to sialylated glycans. PLoS Pathog 2006; 2:e110. [PMID: 17121461 PMCID: PMC1626103 DOI: 10.1371/journal.ppat.0020110] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 09/07/2006] [Indexed: 12/13/2022] Open
Abstract
Adherence of Helicobacter pylori to inflamed gastric mucosa is dependent on the sialic acid–binding adhesin (SabA) and cognate sialylated/fucosylated glycans on the host cell surface. By in situ hybridization, H. pylori bacteria were observed in close association with erythrocytes in capillaries and post-capillary venules of the lamina propria of gastric mucosa in both infected humans and Rhesus monkeys. In vivo adherence of H. pylori to erythrocytes may require molecular mechanisms similar to the sialic acid–dependent in vitro agglutination of erythrocytes (i.e., sialic acid–dependent hemagglutination). In this context, the SabA adhesin was identified as the sialic acid–dependent hemagglutinin based on sialidase-sensitive hemagglutination, binding assays with sialylated glycoconjugates, and analysis of a series of isogenic sabA deletion mutants. The topographic presentation of binding sites for SabA on the erythrocyte membrane was mapped to gangliosides with extended core chains. However, receptor mapping revealed that the NeuAcα2–3Gal-disaccharide constitutes the minimal sialylated binding epitope required for SabA binding. Furthermore, clinical isolates demonstrated polymorphism in sialyl binding and complementation analysis of sabA mutants demonstrated that polymorphism in sialyl binding is an inherent property of the SabA protein itself. Gastric inflammation is associated with periodic changes in the composition of mucosal sialylation patterns. We suggest that dynamic adaptation in sialyl-binding properties during persistent infection specializes H. pylori both for individual variation in mucosal glycosylation and tropism for local areas of inflamed and/or dysplastic tissue. Helicobacter pylori infections are very common worldwide and cause chronic inflammation in the stomach (gastritis), which may progress to peptic ulcer disease and stomach cancer. In the gastric epithelium, H. pylori infections induce expression of inflammation-associated “sialylated” carbohydrates. The ability to bind to the glycosylated epithelial cells is considered to be essential for H. pylori to cause persistent infection and disease. Here the authors show that during established infection, H. pylori also binds to red blood cells in gastric mucosal blood vessels in both infected humans and Rhesus monkeys. The authors found that “sialic acid–binding adhesin” (SabA), is the bacterial surface protein that mediates binding of H. pylori to red blood cells. Furthermore, they show that clinical H. pylori isolates demonstrate “polymorphism” in their abilities to bind various sialylated carbohydrates, and that the variation in binding properties depends on the sialic acid–binding adhesin protein itself. This variability may adapt the binding properties of H. pylori both to individual hosts and the changing epithelial glycosylation patterns during chronic inflammation. Continuous adaptation to inflamed tissue during persistent infections is probably a general feature of microbial pathogens, although their binding properties have not yet been explored in detail.
Collapse
Affiliation(s)
- Marina Aspholm
- Department of Odontology, Section of Oral Microbiology, Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Farzad O Olfat
- Department of Odontology, Section of Oral Microbiology, Umeå University, Umeå, Sweden
- The Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Jenny Nordén
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Berit Sondén
- Department of Odontology, Section of Oral Microbiology, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Carina Lundberg
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Rolf Sjöström
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Siiri Altraja
- Institute of Molecular and Cell Biology, Tartu University, Tartu, Estonia
| | - Stefan Odenbreit
- Max-von-Pettenkofer-Institute of Hygiene and Medical Microbiology, Department of Bacteriology, Munich, Germany
| | - Rainer Haas
- Max-von-Pettenkofer-Institute of Hygiene and Medical Microbiology, Department of Bacteriology, Munich, Germany
| | - Torkel Wadström
- Department of Infectious Diseases and Medical Microbiology, Lund University, Lund, Sweden
| | - Lars Engstrand
- The Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Cristina Semino-Mora
- Laboratory of Gastrointestinal and Liver Studies, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Hui Liu
- Laboratory of Gastrointestinal and Liver Studies, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - André Dubois
- Laboratory of Gastrointestinal and Liver Studies, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (AD); (TB)
| | - Susann Teneberg
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Göteborg University, Göteborg, Sweden
| | - Anna Arnqvist
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- * To whom correspondence should be addressed. E-mail: (AD); (TB)
| |
Collapse
|
147
|
Algood HMS, Cover TL. Helicobacter pylori persistence: an overview of interactions between H. pylori and host immune defenses. Clin Microbiol Rev 2006; 19:597-613. [PMID: 17041136 PMCID: PMC1592695 DOI: 10.1128/cmr.00006-06] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is a gram-negative bacterium that persistently colonizes more than half of the global human population. In order to successfully colonize the human stomach, H. pylori must initially overcome multiple innate host defenses. Remarkably, H. pylori can persistently colonize the stomach for decades or an entire lifetime despite development of an acquired immune response. This review focuses on the immune response to H. pylori and the mechanisms by which H. pylori resists immune clearance. Three main sections of the review are devoted to (i) analysis of the immune response to H. pylori in humans, (ii) analysis of interactions of H. pylori with host immune defenses in animal models, and (iii) interactions of H. pylori with immune cells in vitro. The topics addressed in this review are important for understanding how H. pylori resists immune clearance and also are relevant for understanding the pathogenesis of diseases caused by H. pylori (peptic ulcer disease, gastric adenocarcinoma, and gastric lymphoma).
Collapse
Affiliation(s)
- Holly M Scott Algood
- Division of Infectious Diseases, A2200 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
148
|
Gatti LL, Módena JLP, Payão SLM, Smith MDAC, Fukuhara Y, Módena JLP, de Oliveira RB, Brocchi M. Prevalence of Helicobacter pylori cagA, iceA and babA2 alleles in Brazilian patients with upper gastrointestinal diseases. Acta Trop 2006; 100:232-40. [PMID: 17181989 DOI: 10.1016/j.actatropica.2006.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 08/01/2006] [Accepted: 08/22/2006] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is an important human pathogen associated with gastrointestinal diseases such as gastritis, gastric and duodenal ulcer (peptic ulcer disease, PUD), and gastric cancer. A number of pathogenic factors have been described for this bacterium, and some of them have been proposed as markers for the prediction of the clinical outcome. However, with the exception of the cag and vacA status, there is no universal consensus regarding the importance of the other virulence factors. Therefore, the aim of this study was to investigate the status of H. pylori strains regarding the babA and iceA alleles, as well as the cagA genotype, to reveal any association between these genotypes and clinical outcomes in Brazilian patients. The great majority (92.6%) of the strains were typed as iceA1, while 40.4% were found to possess the babA2 allele. The cagA gene was detected in 73.4% of the strains. The iceA2 and cagA genotypes were associated with PUD, while iceA1 was negatively correlated with PUD. However, considering the high percentage of strains typed as iceA1, these associations must be treated with caution. No clinical entity was associated with the babA2 allele. These results suggest that iceA1 is not a good marker for the diseases associated with H. pylori infection in Brazil. Further studies are needed in order to elucidate the relevance of the babA status, because other studies performed in Brazil have associated the babA2 allele with clinical outcomes. These results also indicate the existence of regional differences in the H. pylori genotypes and their association with clinical outcomes.
Collapse
Affiliation(s)
- Luciano Lobo Gatti
- Laboratório de Genética e Biologia Molecular, Faculdade de Medicina de Marília (FAMEMA), Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Romano M, Ricci V, Zarrilli R. Mechanisms of disease: Helicobacter pylori-related gastric carcinogenesis--implications for chemoprevention. NATURE CLINICAL PRACTICE. GASTROENTEROLOGY & HEPATOLOGY 2006; 3:622-632. [PMID: 17068500 DOI: 10.1038/ncpgasthep0634] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Accepted: 08/04/2006] [Indexed: 02/06/2023]
Abstract
Gastric adenocarcinoma is the second most common cause of cancer-related mortality worldwide. Infection with Helicobacter pylori is the single most common cause of adenocarcinoma of the distal stomach. Cancer risk is believed to be related to differences among H. pylori strains and inflammatory responses governed by host genetics. In particular, specific interactions between host factors that modulate the response to the infection, and bacterial virulence factors that can directly cause tissue damage seem to have a major pathogenic role in the development of gastric cancer. In addition, environmental factors can modify key growth signaling pathways within the gastric mucosa, which leads to the alteration of epithelial cell growth. Preventive strategies represent the most promising means of decreasing cancer risk, and must be aimed at the control of H. pylori infection, improvement of environmental conditions, and the identification of subjects who are genetically predisposed to the development of cancer in response to H. pylori infection. Understanding the intracellular signaling pathways that are specifically affected by H. pylori and that promote phenotypic and genotypic changes that might ultimately progress to malignant transformation could enable physicians to focus eradication therapy appropriately and design interventions targeted at the molecular level to prevent the development of gastric cancer.
Collapse
Affiliation(s)
- Marco Romano
- Dipartimento di Internistica Clinica e Sperimentale A Lanzara e F Magrassi--Gastroenterologia e CIRANAD, Seconda Università di Napoli, II Policlinico, Ed 3, Secondo piano, Via Pansini 5, 80131 Napoli, Italy.
| | | | | |
Collapse
|
150
|
Dossumbekova A, Prinz C, Gerhard M, Brenner L, Backert S, Kusters JG, Schmid RM, Rad R. Helicobacter pylori outer membrane proteins and gastric inflammation. Gut 2006; 55:1360-1; author reply 1361. [PMID: 16905702 PMCID: PMC1860015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|