101
|
Palakkan AA, Nanda J, Ross JA. Pluripotent stem cells to hepatocytes, the journey so far. Biomed Rep 2017; 6:367-373. [PMID: 28413633 DOI: 10.3892/br.2017.867] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/15/2017] [Indexed: 12/22/2022] Open
Abstract
Over the past several years, there has been substantial progress in the field of regenerative medicine, which has enabled new possibilities for research and clinical application. For example, there are ongoing efforts directed at generating functional hepatocytes from adult-derived pluripotent cells for toxicity screening, generating disease models or, in the longer term, for the treatment of liver failure. In the present review, the authors summarise recent developments in regenerative medicine and pluripotent stem cells, the methods and tissues used for reprogramming and the differentiation of induced pluripotent stem cells (iPSCs) into hepatocyte-like cells. In addition, the hepatic disease models developed using iPSC technologies are discussed, as well as the potential for gene editing.
Collapse
Affiliation(s)
- Anwar A Palakkan
- Tissue Injury and Repair Group, Clinical Sciences, Edinburgh Medical School, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Jyoti Nanda
- Tissue Injury and Repair Group, Clinical Sciences, Edinburgh Medical School, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - James A Ross
- Tissue Injury and Repair Group, Clinical Sciences, Edinburgh Medical School, University of Edinburgh, EH16 4SB Edinburgh, UK
| |
Collapse
|
102
|
Zakikhan K, Pournasr B, Vosough M, Nassiri-Asl M. In Vitro Generated Hepatocyte-Like Cells: A Novel Tool in Regenerative Medicine and Drug Discovery. CELL JOURNAL 2017; 19:204-217. [PMID: 28670513 PMCID: PMC5412779 DOI: 10.22074/cellj.2016.4362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022]
Abstract
Hepatocyte-like cells (HLCs) are generated from either various human pluripotent stem
cells (hPSCs) including induced pluripotent stem cells (iPSCs) and embryonic stem cells
(ESCs), or direct cell conversion, mesenchymal stem cells as well as other stem cells like
gestational tissues. They provide potential cell sources for biomedical applications. Liver
transplantation is the gold standard treatment for the patients with end stage liver disease,
but there are many obstacles limiting this process, like insufficient number of donated
healthy livers. Meanwhile, the number of patients receiving a liver organ transplant for
a better life is increasing. In this regard, HLCs may provide an adequate cell source to
overcome these shortages. New molecular engineering approaches such as CRISPR/
Cas system applying in iPSCs technology provide the basic principles of gene correction
for monogenic inherited metabolic liver diseases, as another application of HLCs. It has
been shown that HLCs could replace primary human hepatocytes in drug discovery and
hepatotoxicity tests. However, generation of fully functional HLCs is still a big challenge;
several research groups have been trying to improve current differentiation protocols to
achieve better HLCs according to morphology and function of cells. Large-scale generation
of functional HLCs in bioreactors could make a new opportunity in producing enough
hepatocytes for treating end-stage liver patients as well as other biomedical applications
such as drug studies. In this review, regarding the biomedical value of HLCs, we focus
on the current and efficient approaches for generating hepatocyte-like cells in vitro and
discuss about their applications in regenerative medicine and drug discovery.
Collapse
Affiliation(s)
- Kobra Zakikhan
- Cellular and Molecular Research Center, Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Behshad Pournasr
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.,Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
103
|
McDaniel K, Meng F, Wu N, Sato K, Venter J, Bernuzzi F, Invernizzi P, Zhou T, Kyritsi K, Wan Y, Huang Q, Onori P, Francis H, Gaudio E, Glaser S, Alpini G. Forkhead box A2 regulates biliary heterogeneity and senescence during cholestatic liver injury in mice‡. Hepatology 2017; 65:544-559. [PMID: 27639079 PMCID: PMC5258713 DOI: 10.1002/hep.28831] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 08/01/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Biliary-committed progenitor cells (small mouse cholangiocytes; SMCCs) from small bile ducts are more resistant to hepatobiliary injury than large mouse cholangiocytes (LGCCs) from large bile ducts. The definitive endoderm marker, forkhead box A2 (FoxA2), is the key transcriptional factor that regulates cell differentiation and tissue regeneration. Our aim was to characterize the translational role of FoxA2 during cholestatic liver injury. Messenger RNA expression in SMCCs and LGCCs was assessed by polymerase chain reaction (PCR) array analysis. Liver tissues and hepatic stellate cells (HSCs) from primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) patients were tested by real-time PCR for methylation, senescence, and fibrosis markers. Bile duct ligation (BDL) and multidrug resistance protein 2 (MDR2) knockout mice (MDR2-/- ) were used as animal models of cholestatic liver injury with or without healthy transplanted large or small cholangiocytes. We demonstrated that FoxA2 was notably enhanced in murine liver progenitor cells and SMCCs and was silenced in human PSC and PBC liver tissues relative to respective controls that are correlated with the epigenetic methylation enzymes, DNA methyltransferase (DNMT) 1 and DNMT3B. Serum alanine aminotransferase and aspartate aminotransferase levels in nonobese diabetic/severe combined immunodeficiency mice engrafted with SMCCs post-BDL showed significant changes compared to vehicle-treated mice, along with improved liver fibrosis. Enhanced expression of FoxA2 was observed in BDL mouse liver after SMCC cell therapy. Furthermore, activation of fibrosis signaling pathways were observed in BDL/MDR2-/- mouse liver as well as in isolated HSCs by laser capture microdissection, and these signals were recovered along with reduced hepatic senescence and enhanced hepatic stellate cellular senescence after SMCC engraft. CONCLUSION The definitive endoderm marker and the positive regulator of biliary development, FoxA2, mediates the therapeutic effect of biliary-committed progenitor cells during cholestatic liver injury. (Hepatology 2017;65:544-559).
Collapse
Affiliation(s)
- Kelly McDaniel
- Research, Central Texas Veterans Health Care System, Temple, TX, USA,Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA,Research Institute, Baylor Scott & White Health, Temple, TX, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX, USA,Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA,Research Institute, Baylor Scott & White Health, Temple, TX, USA
| | - Nan Wu
- Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA
| | - Keisaku Sato
- Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA
| | - Julie Venter
- Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA
| | - Francesca Bernuzzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Tianhao Zhou
- Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA
| | - Konstantina Kyritsi
- Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA
| | - Ying Wan
- Research Institute, Baylor Scott & White Health, Temple, TX, USA,Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, TX, USA,Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA,Research Institute, Baylor Scott & White Health, Temple, TX, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX, USA,Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX, USA,Department of Medicine, Baylor Scott & White Health Digestive Disease Research Center, Texas A&M HSC and Baylor Scott & White Health, Temple, TX, USA
| |
Collapse
|
104
|
Goldring C, Antoine DJ, Bonner F, Crozier J, Denning C, Fontana RJ, Hanley NA, Hay DC, Ingelman-Sundberg M, Juhila S, Kitteringham N, Silva-Lima B, Norris A, Pridgeon C, Ross JA, Sison Young R, Tagle D, Tornesi B, van de Water B, Weaver RJ, Zhang F, Park BK. Stem cell-derived models to improve mechanistic understanding and prediction of human drug-induced liver injury. Hepatology 2017; 65:710-721. [PMID: 27775817 PMCID: PMC5266558 DOI: 10.1002/hep.28886] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/01/2016] [Indexed: 01/12/2023]
Abstract
Current preclinical drug testing does not predict some forms of adverse drug reactions in humans. Efforts at improving predictability of drug-induced tissue injury in humans include using stem cell technology to generate human cells for screening for adverse effects of drugs in humans. The advent of induced pluripotent stem cells means that it may ultimately be possible to develop personalized toxicology to determine interindividual susceptibility to adverse drug reactions. However, the complexity of idiosyncratic drug-induced liver injury means that no current single-cell model, whether of primary liver tissue origin, from liver cell lines, or derived from stem cells, adequately emulates what is believed to occur during human drug-induced liver injury. Nevertheless, a single-cell model of a human hepatocyte which emulates key features of a hepatocyte is likely to be valuable in assessing potential chemical risk; furthermore, understanding how to generate a relevant hepatocyte will also be critical to efforts to build complex multicellular models of the liver. Currently, hepatocyte-like cells differentiated from stem cells still fall short of recapitulating the full mature hepatocellular phenotype. Therefore, we convened a number of experts from the areas of preclinical and clinical hepatotoxicity and safety assessment, from industry, academia, and regulatory bodies, to specifically explore the application of stem cells in hepatotoxicity safety assessment and to make recommendations for the way forward. In this short review, we particularly discuss the importance of benchmarking stem cell-derived hepatocyte-like cells to their terminally differentiated human counterparts using defined phenotyping, to make sure the cells are relevant and comparable between labs, and outline why this process is essential before the cells are introduced into chemical safety assessment. (Hepatology 2017;65:710-721).
Collapse
Affiliation(s)
- Christopher Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Daniel J. Antoine
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | | | - Jonathan Crozier
- European Partnership for Alternative Approaches to Animal Testing (EPAA), Brussels, Belgium
| | - Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Robert J. Fontana
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Neil A. Hanley
- Centre for Endocrinology & Diabetes, University of Manchester; Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre Manchester, UK
| | - David C. Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, UK
| | | | - Satu Juhila
- R&D, In Vitro Biology, Orion Pharma, Espoo, Finland
| | - Neil Kitteringham
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | | | - Alan Norris
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Chris Pridgeon
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - James A. Ross
- MRC Centre for Regenerative Medicine, University of Edinburgh, UK
| | - Rowena Sison Young
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Danilo Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Belen Tornesi
- Abbvie Global Pharmaceutical Research and Development, North Chicago, IL, USA
| | - Bob van de Water
- Faculty of Science, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, University of Leiden, Netherlands
| | - Richard J. Weaver
- Institut de Recherches Internationales Servier (I.R.I.S), Suresnes, 92284, Cedex France
| | - Fang Zhang
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - B. Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
105
|
Activation of Wnt/β-catenin signalling via GSK3 inhibitors direct differentiation of human adipose stem cells into functional hepatocytes. Sci Rep 2017; 7:40716. [PMID: 28094799 PMCID: PMC5240561 DOI: 10.1038/srep40716] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/09/2016] [Indexed: 02/08/2023] Open
Abstract
The generation of hepatocytes that are derived from human adipose stem cells (hASCs) represents an alternative to human hepatocytes for individualized therapeutic and pharmaceutical applications. However, the mechanisms facilitating hepatocyte differentiation from hASCs are not well understood. Here, we show that upon exposure to glycogen synthase kinase 3 (GSK3) inhibitors alone, the expression of definitive endoderm specific genes GATA4, FOXA2, and SOX17 in hASCs significantly increased in a manner with activation of Wnt/β-catenin signalling. Down regulation of the β-catenin expression attenuates the effect of GSK3 inhibitors on the induction of these specific genes. The cells induced using GSK3 inhibitors were directed to differentiate synchronously into hepatocyte-like cells (HLCs) after further combinations of soluble factors by a reproducible three-stage method. Moreover, hASC-HLCs induced using GSK3 inhibitors possess low-density lipoprotein uptake, albumin secretion, and glycogen synthesis ability, express important drug-metabolizing cytochrome P450 (CYP450) enzymes, and demonstrate CYP450 activity. Therefore, our findings suggest that activation of Wnt/β-catenin signalling via GSK3 inhibitors in definitive endoderm specification may represent an important mechanism mediating hASCs differentiated to functional hepatocyte. Furthermore, development of similar compounds may be useful for robust, potentially scalable and cost-effective generation of functional hepatocytes for drug screening and predictive toxicology platforms.
Collapse
|
106
|
Cervantes-Alvarez E, Wang Y, Collin de l'Hortet A, Guzman-Lepe J, Zhu J, Takeishi K. Current strategies to generate mature human induced pluripotent stem cells derived cholangiocytes and future applications. Organogenesis 2017; 13:1-15. [PMID: 28055309 DOI: 10.1080/15476278.2016.1278133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cell research has significantly evolved over the last few years, allowing the differentiation of pluripotent cells into almost any kind of lineage possible. Studies that focus on the liver have considerably taken a leap into this novel technology, and hepatocyte-like cells are being generated that are close to resembling actual hepatocytes both genotypically and phenotypically. The potential of this extends from disease models to bioengineering, and even also innovative therapies for end-stage liver disease. Nonetheless, too few attention has been given to the non-parenchymal cells which are also fundamental for normal liver function. This includes cholangiocytes, the cells of the biliary epithelium, without whose role in bile modification and metabolism would impair hepatocyte survival. Such can be observed in diseases that target them, so called cholangiopathies, for which there is much yet to study so as to improve therapeutical options. Protocols that describe the induction of human induced pluripotent stem cells into cholangiocytes are scarce, although progress is being achieved in this area as well. In order to give the current view on this emerging research field, and in hopes to motivate further advances, we present here a review on the known differentiation strategies with sight into future applications.
Collapse
Affiliation(s)
- Eduardo Cervantes-Alvarez
- a Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA.,b PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City , México
| | - Yang Wang
- a Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA.,c Department of Hepatobiliary Surgery , Peking University People's Hospital , Beijing , China
| | | | - Jorge Guzman-Lepe
- a Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Jiye Zhu
- c Department of Hepatobiliary Surgery , Peking University People's Hospital , Beijing , China
| | - Kazuki Takeishi
- a Department of Pathology , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
107
|
de Jonge J, Olthoff KM. Liver regeneration. BLUMGART'S SURGERY OF THE LIVER, BILIARY TRACT AND PANCREAS, 2-VOLUME SET 2017:93-109.e7. [DOI: 10.1016/b978-0-323-34062-5.00006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
108
|
Rashidi H, Hay D. Generation and Application of 3DCulture Systems in Human Drug Discovery and Medicine. STEM CELLS IN TOXICOLOGY AND MEDICINE 2016:265-287. [DOI: 10.1002/9781119135449.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
109
|
Luo X, Wang H, Leighton J, O'Sullivan M, Wang P. Generation of endoderm lineages from pluripotent stem cells. Regen Med 2016; 12:77-89. [PMID: 27976977 DOI: 10.2217/rme-2016-0086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Definitive endoderm is the cellular precursor to respiratory- and digestive-related organs such as lungs, stomach, liver, pancreas and intestine. Endodermal lineage cells derived from pluripotent stem cells (PSCs) in vitro are a potentially unlimited resource for regenerative medicine. These cells are useful tools for studying the physiology, pathogenesis and medical therapies involving these tissues, and great progress has been achieved in PSCs differentiation protocols. In this review, we will focus on the most common and/or advanced differentiation strategies currently used in generating endodermal lineage cells from PSCs. A brief discussion about the effect of early definitive endoderm differentiation on the final development products will follow.
Collapse
Affiliation(s)
- Xie Luo
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Han Wang
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jake Leighton
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mara O'Sullivan
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pei Wang
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
110
|
One Standardized Differentiation Procedure Robustly Generates Homogenous Hepatocyte Cultures Displaying Metabolic Diversity from a Large Panel of Human Pluripotent Stem Cells. Stem Cell Rev Rep 2016; 12:90-104. [PMID: 26385115 DOI: 10.1007/s12015-015-9621-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human hepatocytes display substantial functional inter-individual variation regarding drug metabolizing functions. In order to investigate if this diversity is mirrored in hepatocytes derived from different human pluripotent stem cell (hPSC) lines, we evaluated 25 hPSC lines originating from 24 different donors for hepatic differentiation and functionality. Homogenous hepatocyte cultures could be derived from all hPSC lines using one standardized differentiation procedure. To the best of our knowledge this is the first report of a standardized hepatic differentiation procedure that is generally applicable across a large panel of hPSC lines without any adaptations to individual lines. Importantly, with regard to functional aspects, such as Cytochrome P450 activities, we observed that hepatocytes derived from different hPSC lines displayed inter-individual variation characteristic for primary hepatocytes obtained from different donors, while these activities were highly reproducible between repeated experiments using the same line. Taken together, these data demonstrate the emerging possibility to compile panels of hPSC-derived hepatocytes of particular phenotypes/genotypes relevant for drug metabolism and toxicity studies. Moreover, these findings are of significance for applications within the regenerative medicine field, since our stringent differentiation procedure allows the derivation of homogenous hepatocyte cultures from multiple donors which is a prerequisite for the realization of future personalized stem cell based therapies.
Collapse
|
111
|
Development of a rapid screen for the endodermal differentiation potential of human pluripotent stem cell lines. Sci Rep 2016; 6:37178. [PMID: 27872482 PMCID: PMC5118706 DOI: 10.1038/srep37178] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/26/2016] [Indexed: 02/07/2023] Open
Abstract
A challenge facing the human pluripotent stem cell (hPSC) field is the variability observed in differentiation potential of hPSCs. Variability can lead to time consuming and costly optimisation to yield the cell type of interest. This is especially relevant for the differentiation of hPSCs towards the endodermal lineages. Endodermal cells have the potential to yield promising new knowledge and therapies for diseases affecting multiple organ systems, including lung, thymus, intestine, pancreas and liver, as well as applications in regenerative medicine and toxicology. Providing a means to rapidly, cheaply and efficiently assess the differentiation potential of multiple hPSCs is of great interest. To this end, we have developed a rapid small molecule based screen to assess the endodermal potential (EP) of hPSCs, based solely on definitive endoderm (DE) morphology. This drastically reduces the cost and time to identify lines suitable for use in deriving endodermal lineages. We demonstrate the efficacy of this screen using 10 different hPSCs, including 4 human embryonic stem cell lines (hESCs) and 6 human induced pluripotent stem cell lines (hiPSCs). The screen clearly revealed lines amenable to endodermal differentiation, and only lines that passed our morphological assessment were capable of further differentiation to hepatocyte like cells (HLCs).
Collapse
|
112
|
Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy. Methods Mol Biol 2016; 1506:17-42. [PMID: 27830543 DOI: 10.1007/978-1-4939-6506-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.
Collapse
|
113
|
Yanagihara K, Liu Y, Kanie K, Takayama K, Kokunugi M, Hirata M, Fukuda T, Suga M, Nikawa H, Mizuguchi H, Kato R, Furue MK. Prediction of Differentiation Tendency Toward Hepatocytes from Gene Expression in Undifferentiated Human Pluripotent Stem Cells. Stem Cells Dev 2016; 25:1884-1897. [PMID: 27733097 PMCID: PMC5165660 DOI: 10.1089/scd.2016.0099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Functional hepatocytes derived from human pluripotent stem cells (hPSCs) have potential as tools for predicting drug-induced hepatotoxicity in the early phases of drug development. However, the propensity of hPSC lines to differentiate into specific lineages is reported to differ. The ability to predict low propensity of hPSCs to differentiate into hepatocytes would facilitate the selection of useful hPSC clones and substantially accelerate development of hPSC-derived hepatocytes for pharmaceutical research. In this study, we compared the expression of genes associated with hepatic differentiation in five hPSC lines including human ES cell line, H9, which is known to differentiate into hepatocytes, and an hPSC line reported with a poor propensity for hepatic differentiation. Genes distinguishing between undifferentiated hPSCs, hPSC-derived hepatoblast-like differentiated cells, and primary human hepatocytes were drawn by two-way cluster analysis. The order of expression levels of genes in undifferentiated hPSCs was compared with that in hPSC-derived hepatoblast-like cells. Three genes were selected as predictors of low propensity for hepatic differentiation. Expression of these genes was investigated in 23 hPSC clones. Review of representative cells by induction of hepatic differentiation suggested that low prediction scores were linked with low hepatic differentiation. Thus, our model using gene expression ranking and bioinformatic analysis could reasonably predict poor differentiation propensity of hPSC lines.
Collapse
Affiliation(s)
- Kana Yanagihara
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Yujung Liu
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Kei Kanie
- 2 Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| | - Kazuo Takayama
- 3 Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan .,4 The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University , Kyoto, Japan .,5 Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Minako Kokunugi
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan .,6 Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Mitsuhi Hirata
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Takayuki Fukuda
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Mika Suga
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Hiroki Nikawa
- 6 Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Hiroyuki Mizuguchi
- 3 Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan .,5 Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan .,7 Global Center for Medical Engineering and Informatics, Osaka University , Osaka, Japan
| | - Ryuji Kato
- 2 Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| | - Miho K Furue
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| |
Collapse
|
114
|
Vasconcellos R, Alvarenga ÉC, Parreira RC, Lima SS, Resende RR. Exploring the cell signalling in hepatocyte differentiation. Cell Signal 2016; 28:1773-88. [DOI: 10.1016/j.cellsig.2016.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
|
115
|
Takayama K, Mizuguchi H. Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening. Drug Metab Pharmacokinet 2016; 32:12-20. [PMID: 28012798 DOI: 10.1016/j.dmpk.2016.10.408] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/03/2016] [Accepted: 10/17/2016] [Indexed: 01/22/2023]
Abstract
Because drug-induced liver injury is one of the main reasons for drug development failures, it is important to perform drug toxicity screening in the early phase of pharmaceutical development. Currently, primary human hepatocytes are most widely used for the prediction of drug-induced liver injury. However, the sources of primary human hepatocytes are limited, making it difficult to supply the abundant quantities required for large-scale drug toxicity screening. Therefore, there is an urgent need for a novel unlimited, efficient, inexpensive, and predictive model which can be applied for large-scale drug toxicity screening. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are able to replicate indefinitely and differentiate into most of the body's cell types, including hepatocytes. It is expected that hepatocyte-like cells generated from human ES/iPS cells (human ES/iPS-HLCs) will be a useful tool for drug toxicity screening. To apply human ES/iPS-HLCs to various applications including drug toxicity screening, homogenous and functional HLCs must be differentiated from human ES/iPS cells. In this review, we will introduce the current status of hepatocyte differentiation technology from human ES/iPS cells and a novel method to predict drug-induced liver injury using human ES/iPS-HLCs.
Collapse
Affiliation(s)
- Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto 606-8302, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan; Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan.
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
116
|
LPS-TLR4 Pathway Mediates Ductular Cell Expansion in Alcoholic Hepatitis. Sci Rep 2016; 6:35610. [PMID: 27752144 PMCID: PMC5067590 DOI: 10.1038/srep35610] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023] Open
Abstract
Alcoholic hepatitis (AH) is the most severe form of alcoholic liver disease for which there are no effective therapies. Patients with AH show impaired hepatocyte proliferation, expansion of inefficient ductular cells and high lipopolysaccharide (LPS) levels. It is unknown whether LPS mediates ductular cell expansion. We performed transcriptome studies and identified keratin 23 (KRT23) as a new ductular cell marker. KRT23 expression correlated with mortality and LPS serum levels. LPS-TLR4 pathway role in ductular cell expansion was assessed in human and mouse progenitor cells, liver slices and liver injured TLR4 KO mice. In AH patients, ductular cell expansion correlated with portal hypertension and collagen expression. Functional studies in ductular cells showed that KRT23 regulates collagen expression. These results support a role for LPS-TLR4 pathway in promoting ductular reaction in AH. Maneuvers aimed at decreasing LPS serum levels in AH patients could have beneficial effects by preventing ductular reaction development.
Collapse
|
117
|
Kanninen LK, Harjumäki R, Peltoniemi P, Bogacheva MS, Salmi T, Porola P, Niklander J, Smutný T, Urtti A, Yliperttula ML, Lou YR. Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells. Biomaterials 2016; 103:86-100. [DOI: 10.1016/j.biomaterials.2016.06.054] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
|
118
|
Zeilinger K, Freyer N, Damm G, Seehofer D, Knöspel F. Cell sources for in vitro human liver cell culture models. Exp Biol Med (Maywood) 2016; 241:1684-98. [PMID: 27385595 PMCID: PMC4999620 DOI: 10.1177/1535370216657448] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described.
Collapse
Affiliation(s)
- Katrin Zeilinger
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nora Freyer
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Daniel Seehofer
- Department of General-, Visceral- and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Fanny Knöspel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
119
|
Mathapati S, Siller R, Impellizzeri AAR, Lycke M, Vegheim K, Almaas R, Sullivan GJ. Small-Molecule-Directed Hepatocyte-Like Cell Differentiation of Human Pluripotent Stem Cells. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2016; 38:1G.6.1-1G.6.18. [PMID: 27532814 DOI: 10.1002/cpsc.13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatocyte-like cells (HLCs) generated in vitro from human pluripotent stem cells (hPSCs) provide an invaluable resource for basic research, regenerative medicine, drug screening, toxicology, and modeling of liver disease and development. This unit describes a small-molecule-driven protocol for in vitro differentiation of hPSCs into HLCs without the use of growth factors. hPSCs are coaxed through a developmentally relevant route via the primitive streak to definitive endoderm (DE) using the small molecule CHIR99021 (a Wnt agonist), replacing the conventional growth factors Wnt3A and activin A. The small-molecule-derived DE is then differentiated to hepatoblast-like cells in the presence of dimethyl sulfoxide. The resulting hepatoblasts are then differentiated to HLCs with N-hexanoic-Tyr, Ile-6 aminohexanoic amide (Dihexa, a hepatocyte growth factor agonist) and dexamethasone. The protocol provides an efficient and reproducible procedure for differentiation of hPSCs into HLCs utilizing small molecules. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Santosh Mathapati
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo, Norway
| | - Richard Siller
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo, Norway
| | - Agata A R Impellizzeri
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Max Lycke
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Karianne Vegheim
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Runar Almaas
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Gareth J Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo, Norway.,Institute of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
120
|
Freyer N, Knöspel F, Strahl N, Amini L, Schrade P, Bachmann S, Damm G, Seehofer D, Jacobs F, Monshouwer M, Zeilinger K. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor. Biores Open Access 2016; 5:235-48. [PMID: 27610270 PMCID: PMC5003005 DOI: 10.1089/biores.2016.0027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture systems in stem cell differentiation approaches for improved formation of differentiated tissue structures.
Collapse
Affiliation(s)
- Nora Freyer
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Fanny Knöspel
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Nadja Strahl
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Leila Amini
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Schrade
- Charité Centrum Grundlagenmedizin, Institut für Vegetative Anatomie, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Bachmann
- Charité Centrum Grundlagenmedizin, Institut für Vegetative Anatomie, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, Leipzig, Germany
| | - Daniel Seehofer
- Department of General-, Visceral- and Transplantation Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, Leipzig, Germany
| | - Frank Jacobs
- Janssen Research and Development, Beerse, Belgium
| | | | - Katrin Zeilinger
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Address correspondence to: Dr. med. vet. Katrin Zeilinger, Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin 13353, Germany, E-mail:
| |
Collapse
|
121
|
Wang M, Yang X, Zhang P, Cai L, Yang X, Chen Y, Jing Y, Kong J, Yang X, Sun FL. Sustained Delivery Growth Factors with Polyethyleneimine-Modified Nanoparticles Promote Embryonic Stem Cells Differentiation and Liver Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1500393. [PMID: 27818907 PMCID: PMC5071678 DOI: 10.1002/advs.201500393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/24/2016] [Indexed: 05/17/2023]
Abstract
Stem-cell-derived hepatocyte transplantation is considered as a potential method for the therapy of acute and chronic liver failure. However, the low efficiency of differentiation into mature and functional hepatocytes remains a major challenge for clinical applications. By using polyethyleneimine-modified silica nanoparticles, this study develops a system for sustained delivery of growth factors, leading to induce hepatocyte-like cells (iHeps) from mouse embryonic stem cells (mESCs) and improve the expression of endoderm and hepatocyte-specific genes and proteins significantly, thus producing a higher population of functional hepatocytes in vitro. When transplanted into liver-injured mice after four weeks, mESC-derived definitive endoderm cells treated with this delivery system show higher integration efficiency into the host liver, differentiated into iHeps in vivo and significantly restored the injured liver. Therefore, these findings reveal the multiple advantages of functionalized nanoparticles to serve as efficient delivery platforms to promote stem cell differentiation in the regenerative medicine.
Collapse
Affiliation(s)
- Meiyan Wang
- Research Center for Translational Medicine at East Hospital School of Life Sciences and Technology Tongji University Shanghai 200120/200092 P.R. China
| | - Xiaomei Yang
- Research Center for Translational Medicine at East Hospital School of Life Sciences and Technology Tongji University Shanghai 200120/200092 P.R. China
| | - Peng Zhang
- Department of Pharmaceutics School of Pharmacy Fudan University Shanghai 201203 P. R. China
| | - Lei Cai
- Bio-X Institutes Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500) Shanghai Jiaotong University Shanghai 200240 P.R. China
| | - Xibin Yang
- Research Center for Translational Medicine at East Hospital School of Life Sciences and Technology Tongji University Shanghai 200120/200092 P.R. China
| | - Youwei Chen
- Research Center for Translational Medicine at East Hospital School of Life Sciences and Technology Tongji University Shanghai 200120/200092 P.R. China
| | - Yuanya Jing
- Research Center for Translational Medicine at East Hospital School of Life Sciences and Technology Tongji University Shanghai 200120/200092 P.R. China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P.R. China
| | - Xiaowei Yang
- School of Materials Science and Engineering Tongji University Shanghai 200092 P.R. China
| | - Fang-Lin Sun
- Research Center for Translational Medicine at East Hospital School of Life Sciences and Technology Tongji University Shanghai 200120/200092 P.R. China
| |
Collapse
|
122
|
Ashtiani MK, Zandi M, Barzin J, Tahamtani Y, Ghanian MH, Moradmand A, Ehsani M, Nezari H, Larijani MR, Baharvand H. Substrate-mediated commitment of human embryonic stem cells for hepatic differentiation. J Biomed Mater Res A 2016; 104:2861-72. [DOI: 10.1002/jbm.a.35830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/18/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Kazemi Ashtiani
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Mojgan Zandi
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Jalal Barzin
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Mohammad Hossein Ghanian
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Azadeh Moradmand
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Morteza Ehsani
- Biomaterials Department; Iran Polymer and Petrochemical Institute; Tehran Iran
| | - Hossein Nezari
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Mehran Rezaei Larijani
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Department of Developmental Biology; University of Science and Culture; Tehran Iran
| |
Collapse
|
123
|
Graffmann N, Ring S, Kawala MA, Wruck W, Ncube A, Trompeter HI, Adjaye J. Modeling Nonalcoholic Fatty Liver Disease with Human Pluripotent Stem Cell-Derived Immature Hepatocyte-Like Cells Reveals Activation of PLIN2 and Confirms Regulatory Functions of Peroxisome Proliferator-Activated Receptor Alpha. Stem Cells Dev 2016; 25:1119-33. [PMID: 27308945 PMCID: PMC4971413 DOI: 10.1089/scd.2015.0383] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD/steatosis) is a metabolic disease characterized by the incorporation of fat into hepatocytes. In this study, we developed an in vitro model for NAFLD based on hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells. We induced fat storage in these HLCs and detected major expression changes of metabolism-associated genes, as well as an overall reduction of liver-related microRNAs. We observed an upregulation of the lipid droplet coating protein Perilipin 2 (PLIN2), as well as of numerous genes of the peroxisome proliferator-activated receptor (PPAR) pathway, which constitutes a regulatory hub for metabolic processes. Interference with PLIN2 and PPARα resulted in major alterations in gene expression, especially affecting lipid, glucose, and purine metabolism. Our model recapitulates many metabolic changes that are characteristic for NAFLD. It permits the dissection of disease-promoting molecular pathways and allows us to investigate the influences of distinct genetic backgrounds on disease progression.
Collapse
Affiliation(s)
- Nina Graffmann
- 1 Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Sarah Ring
- 1 Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Marie-Ann Kawala
- 1 Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Wasco Wruck
- 1 Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Audrey Ncube
- 1 Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Hans-Ingo Trompeter
- 2 Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - James Adjaye
- 1 Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
124
|
Wang B, Jakus AE, Baptista PM, Soker S, Soto-Gutierrez A, Abecassis MM, Shah RN, Wertheim JA. Functional Maturation of Induced Pluripotent Stem Cell Hepatocytes in Extracellular Matrix-A Comparative Analysis of Bioartificial Liver Microenvironments. Stem Cells Transl Med 2016; 5:1257-67. [PMID: 27421950 PMCID: PMC4996436 DOI: 10.5966/sctm.2015-0235] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/07/2016] [Indexed: 01/12/2023] Open
Abstract
The ability of two three-dimensional bioscaffold systems to reverse the primary limitations of induced pluripotent stem cell (iPSC)-derived hepatocytes was compared. Proliferation and function of iPSC hepatocytes were significantly enhanced when cultured within scaffolds made from extracellular matrix (ECM). This ECM scaffold enhanced phenotypic maturation of iPSC hepatocytes compared with other platforms, likely owing to its biologically diverse makeup. Induced pluripotent stem cells (iPSCs) are new diagnostic and potentially therapeutic tools to model disease and assess the toxicity of pharmaceutical medications. A common limitation of cell lineages derived from iPSCs is a blunted phenotype compared with fully developed, endogenous cells. We examined the influence of novel three-dimensional bioartificial microenvironments on function and maturation of hepatocyte-like cells differentiated from iPSCs and grown within an acellular, liver-derived extracellular matrix (ECM) scaffold. In parallel, we also compared a bioplotted poly-l-lactic acid (PLLA) scaffold that allows for cell growth in three dimensions and formation of cell-cell contacts but is infused with type I collagen (PLLA-collagen scaffold) alone as a “deconstructed” control scaffold with narrowed biological diversity. iPSC-derived hepatocytes cultured within both scaffolds remained viable, became polarized, and formed bile canaliculi-like structures; however, cells grown within ECM scaffolds had significantly higher P450 (CYP2C9, CYP3A4, CYP1A2) mRNA levels and metabolic enzyme activity compared with iPSC hepatocytes grown in either bioplotted PLLA collagen or Matrigel sandwich control culture. Additionally, the rate of albumin synthesis approached the level of primary cryopreserved hepatocytes with lower transcription of fetal-specific genes, α-fetoprotein and CYP3A7, compared with either PLLA-collagen scaffolds or sandwich culture. These studies show that two acellular, three-dimensional culture systems increase the function of iPSC-derived hepatocytes. However, scaffolds derived from ECM alone induced further hepatocyte maturation compared with bioplotted PLLA-collagen scaffolds. This effect is likely mediated by the complex composition of ECM scaffolds in contrast to bioplotted scaffolds, suggesting their utility for in vitro hepatocyte assays or drug discovery. Significance Through the use of novel technology to develop three-dimensional (3D) scaffolds, the present study demonstrated that hepatocyte-like cells derived via induced pluripotent stem cell (iPSC) technology mature on 3D extracellular matrix scaffolds as a result of 3D matrix structure and scaffold biology. The result is an improved hepatic phenotype with increased synthetic and catalytic potency, an improvement on the blunted phenotype of iPSC-derived hepatocytes, a critical limitation of iPSC technology. These findings provide insight into the influence of 3D microenvironments on the viability, proliferation, and function of iPSC hepatocytes to yield a more mature population of cells for cell toxicity studies and disease modeling.
Collapse
Affiliation(s)
- Bo Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Adam E Jakus
- Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, USA
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria de Aragón, Centro de Investigación Biomédica de Aragón, Zaragoza, Spain Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas (CIBERehd), Zaragoza, Spain Fundacion ARAID, Zaragoza, Spain
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA Department of Pathology, Thomas E. Starzl Transplantation Institute, and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael M Abecassis
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA Department of Surgery, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ramille N Shah
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, USA Department of Surgery, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jason A Wertheim
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA Department of Surgery, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA Department of Surgery, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
125
|
Toivonen S, Malinen MM, Küblbeck J, Petsalo A, Urtti A, Honkakoski P, Otonkoski T. Regulation of Human Pluripotent Stem Cell-Derived Hepatic Cell Phenotype by Three-Dimensional Hydrogel Models. Tissue Eng Part A 2016; 22:971-84. [PMID: 27329070 DOI: 10.1089/ten.tea.2016.0127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human-induced pluripotent stem cell (hiPSC)-derived hepatocytes are anticipated as important surrogates for primary human hepatocytes in applications ranging from basic research to drug discovery and regenerative medicine. Although methods for differentiating hepatocyte-like cells (HLCs) from hiPSCs have developed remarkably, the limited yield of fully functional HLCs is still a major obstacle to their utility. A three-dimensional (3D) culture environment could improve the in vitro hepatic maturation of HLCs. Here we compare 3D hydrogel models of hiPSC-derived HLCs in agarose microwells (3D Petri Dish; 3DPD), nanofibrillar cellulose hydrogels (Growdex; 3DNFC), or animal extracellular matrix-based hydrogels (3D Matrigel; 3DMG). In all the tested 3D biomaterial systems, HLCs formed aggregates. In comparison with two-dimensional monolayer culture, 3DPD and 3DMG models showed both phenotypic and functional enhancement in HLCs over 2.5 weeks of 3D culture. Specifically, we found higher hepatocyte-specific gene expression levels and enhanced cytochrome P450 functions. Our work suggests that transferring HLCs into 3D hydrogel systems can expedite the hepatic maturation of HLCs irrespective of the biochemical nature of the 3D hydrogel. Both plant-based nonembedding and animal-based embedding 3D hydrogel models enhanced the maturation.
Collapse
Affiliation(s)
- Sanna Toivonen
- 1 Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki , Helsinki, Finland
| | - Melina M Malinen
- 2 Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki , Helsinki, Finland
| | - Jenni Küblbeck
- 3 School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland & Biocenter Kuopio , Kuopio, Finland
| | - Aleksanteri Petsalo
- 3 School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland & Biocenter Kuopio , Kuopio, Finland
| | - Arto Urtti
- 2 Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki , Helsinki, Finland .,3 School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland & Biocenter Kuopio , Kuopio, Finland
| | - Paavo Honkakoski
- 3 School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland & Biocenter Kuopio , Kuopio, Finland
| | - Timo Otonkoski
- 1 Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki , Helsinki, Finland .,4 Children's Hospital, Helsinki University Central Hospital , Helsinki, Finland
| |
Collapse
|
126
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
127
|
Affiliation(s)
- Yu Wang
- a MRC Centre for Regenerative Medicine, University of Edinburgh , Edinburgh , UK
| | - David C Hay
- a MRC Centre for Regenerative Medicine, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
128
|
Hannoun Z, Steichen C, Dianat N, Weber A, Dubart-Kupperschmitt A. The potential of induced pluripotent stem cell derived hepatocytes. J Hepatol 2016; 65:182-199. [PMID: 26916529 DOI: 10.1016/j.jhep.2016.02.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/12/2016] [Accepted: 02/09/2016] [Indexed: 12/21/2022]
Abstract
Orthotopic liver transplantation remains the only curative treatment for liver disease. However, the number of patients who die while on the waiting list (15%) has increased in recent years as a result of severe organ shortages; furthermore the incidence of liver disease is increasing worldwide. Clinical trials involving hepatocyte transplantation have provided encouraging results. However, transplanted cell function appears to often decline after several months, necessitating liver transplantation. The precise aetiology of the loss of cell function is not clear, but poor engraftment and immune-mediated loss appear to be important factors. Also, primary human hepatocytes (PHH) are not readily available, de-differentiate, and die rapidly in culture. Hepatocytes are available from other sources, such as tumour-derived human hepatocyte cell lines and immortalised human hepatocyte cell lines or porcine hepatocytes. However, all these cells suffer from various limitations such as reduced or differences in functions or risk of zoonotic infections. Due to their significant potential, one possible inexhaustible source of hepatocytes is through the directed differentiation of human induced pluripotent stem cells (hiPSCs). This review will discuss the potential applications and existing limitations of hiPSC-derived hepatocytes in regenerative medicine, drug screening, in vitro disease modelling and bioartificial livers.
Collapse
Affiliation(s)
- Zara Hannoun
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Clara Steichen
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Noushin Dianat
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Anne Weber
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France.
| |
Collapse
|
129
|
Gómez-Lechón MJ, Tolosa L. Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening. Arch Toxicol 2016; 90:2049-2061. [PMID: 27325232 DOI: 10.1007/s00204-016-1756-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 06/09/2016] [Indexed: 01/09/2023]
Abstract
Drug-induced liver injury (DILI) is a frequent cause of failure in both clinical and post-approval stages of drug development, and poses a key challenge to the pharmaceutical industry. Current animal models offer poor prediction of human DILI. Although several human cell-based models have been proposed for the detection of human DILI, human primary hepatocytes remain the gold standard for preclinical toxicological screening. However, their use is hindered by their limited availability, variability and phenotypic instability. In contrast, pluripotent stem cells, which include embryonic and induced pluripotent stem cells (iPSCs), proliferate extensively in vitro and can be differentiated into hepatocytes by the addition of soluble factors. This provides a stable source of hepatocytes for multiple applications, including early preclinical hepatotoxicity screening. In addition, iPSCs also have the potential to establish genotype-specific cells from different individuals, which would increase the predictivity of toxicity assays allowing more successful clinical trials. Therefore, the generation of human hepatocyte-like cells derived from pluripotent stem cells seems to be promising for overcoming limitations of hepatocyte preparations, and it is expected to have a substantial repercussion in preclinical hepatotoxicity risk assessment in early drug development stages.
Collapse
Affiliation(s)
- María José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe de Valencia, Torre A, 6ª Planta, Avenida Fernando Abril Martorell 106, 46026, Valencia, Spain.,CIBERehd, FIS, 08036, Barcelona, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe de Valencia, Torre A, 6ª Planta, Avenida Fernando Abril Martorell 106, 46026, Valencia, Spain.
| |
Collapse
|
130
|
Kang SJ, Lee HM, Park YI, Yi H, Lee H, So B, Song JY, Kang HG. Chemically induced hepatotoxicity in human stem cell-induced hepatocytes compared with primary hepatocytes and HepG2. Cell Biol Toxicol 2016; 32:403-17. [PMID: 27287938 DOI: 10.1007/s10565-016-9342-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/01/2016] [Indexed: 12/14/2022]
Abstract
Stem cell-induced hepatocytes (SC-iHeps) have been suggested as a valuable model for evaluating drug toxicology. Here, human-induced pluripotent stem cells (QIA7) and embryonic stem cells (WA01) were differentiated into hepatocytes, and the hepatotoxic effects of acetaminophen (AAP) and aflatoxin B1 (AFB1) were compared with primary hepatocytes (p-Heps) and HepG2. In a cytotoxicity assay, the IC50 of SC-iHeps was similar to that in p-Heps and HepG2 in the AAP groups but different from that in p-Heps of the AFB1 groups. In a multi-parameter assay, phenotypic changes in mitochondrial membrane potential, calcium influx and oxidative stress were similar between QIA7-iHeps and p-Heps following AAP and AFB1 treatment but relatively low in WA01-iHeps and HepG2. Most hepatic functional markers (hepatocyte-specific genes, albumin/urea secretion, and the CYP450 enzyme activity) were decreased in a dose-dependent manner following AAP and AFB1 treatment in SC-iHeps and p-Heps but not in HepG2. Regarding CYP450 inhibition, the cell viability of SC-iHeps and p-Heps was increased by ketoconazole, a CYP3A4 inhibitor. Collectively, SC-iHeps and p-Heps showed similar cytotoxicity and hepatocyte functional effects for AAP and AFB1 compared with HepG2. Therefore, SC-iHeps have phenotypic characteristics and sensitivity to cytotoxic chemicals that are more similar to p-Heps than to HepG2 cells.
Collapse
Affiliation(s)
- Seok-Jin Kang
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 480, Anyang 6-dong, Anyang, 430-824, Gyeonggi-do, Republic of Korea
| | - Hyuk-Mi Lee
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 480, Anyang 6-dong, Anyang, 430-824, Gyeonggi-do, Republic of Korea
| | - Young-Il Park
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 480, Anyang 6-dong, Anyang, 430-824, Gyeonggi-do, Republic of Korea
| | - Hee Yi
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 480, Anyang 6-dong, Anyang, 430-824, Gyeonggi-do, Republic of Korea
| | - Hunjoo Lee
- CHEM.I.NET Ltd, Mok-dong, Yangcheon-gu, Seoul, 158-818, Republic of Korea
| | - ByungJae So
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 480, Anyang 6-dong, Anyang, 430-824, Gyeonggi-do, Republic of Korea
| | - Jae-Young Song
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 480, Anyang 6-dong, Anyang, 430-824, Gyeonggi-do, Republic of Korea
| | - Hwan-Goo Kang
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 480, Anyang 6-dong, Anyang, 430-824, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
131
|
Szkolnicka D, Lucendo-Villarin B, Moore JK, Simpson KJ, Forbes SJ, Hay DC. Reducing Hepatocyte Injury and Necrosis in Response to Paracetamol Using Noncoding RNAs. Stem Cells Transl Med 2016; 5:764-72. [PMID: 27057006 PMCID: PMC4878326 DOI: 10.5966/sctm.2015-0117] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 02/08/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The liver performs multiple functions within the human body. It is composed of numerous cell types, which play important roles in organ physiology. Our study centers on the major metabolic cell type of the liver, the hepatocyte, and its susceptibility to damage during drug overdose. In these studies, hepatocytes were generated from a renewable and genetically defined resource. In vitro-derived hepatocytes were extensively profiled and exposed to varying levels of paracetamol and plasma isolated from liver-failure patients, with a view to identifying noncoding microRNAs that could reduce drug- or serum-induced hepatotoxicity. We identified a novel anti-microRNA, which reduced paracetamol-induced hepatotoxicity and glutathione depletion. Additionally, we identified a prosurvival role for anti-microRNA-324 following exposure to plasma collected from liver failure patients. We believe that these studies represent an important advance for the field, demonstrating the power of stem cell-derived systems to model human biology "in a dish" and identify novel noncoding microRNAs, which could be translated to the clinic in the future. SIGNIFICANCE The liver performs vital functions within the human body and is composed of numerous cell types. The major metabolic cell type of the liver, the hepatocyte, is susceptible to damage during drug overdose. In these studies, hepatocytes were generated from a renewable resource and exposed to varying levels of paracetamol, with a view to identifying interventions that could reduce or attenuate drug-induced liver toxicity. A novel noncoding RNA that reduced paracetamol-induced hepatocyte toxicity was identified. These findings may represent an important advance for the field.
Collapse
Affiliation(s)
- Dagmara Szkolnicka
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Baltasar Lucendo-Villarin
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna K Moore
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenneth J Simpson
- Division of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart J Forbes
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David C Hay
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
132
|
Tsikritsis D, Shi H, Wang Y, Velugotla S, Sršeň V, Elfick A, Downes A. Label-free biomarkers of human embryonic stem cell differentiation to hepatocytes. Cytometry A 2016; 89:575-84. [PMID: 27214589 DOI: 10.1002/cyto.a.22875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 01/09/2023]
Abstract
Four different label-free, minimally invasive, live single cell analysis techniques were applied in a quantitative comparison, to characterize embryonic stem cells and the hepatocytes into which they were differentiated. Atomic force microscopy measures the cell's mechanical properties, Raman spectroscopy measures its chemical properties, and dielectrophoresis measures the membrane's capacitance. They were able to assign cell type of individual cells with accuracies of 91% (atomic force microscopy), 95.5% (Raman spectroscopy), and 72% (dielectrophoresis). In addition, stimulated Raman scattering (SRS) microscopy was able to easily identify hepatocytes in images by the presence of lipid droplets. These techniques, used either independently or in combination, offer label-free methods to study individual living cells. Although these minimally invasive biomarkers can be applied to sense phenotypical or environmental changes to cells, these techniques have most potential in human stem cell therapies where the use of traditional biomarkers is best avoided. Destructive assays consume valuable stem cells and do not characterize the cells which go on to be used in therapies; whereas immunolabeling risks altering cell behavior. It was suggested how these four minimally invasive methods could be applied to cell culture, and how they could in future be combined into one microfluidic chip for cell sorting. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Dimitrios Tsikritsis
- Institute for BioEngineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Hu Shi
- Institute for BioEngineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Yuan Wang
- Institute for BioEngineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Srinivas Velugotla
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Vlastimil Sršeň
- Institute for BioEngineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Alistair Elfick
- Institute for BioEngineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Downes
- Institute for BioEngineering, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
133
|
Szkolnicka D, Hay DC. Concise Review: Advances in Generating Hepatocytes from Pluripotent Stem Cells for Translational Medicine. Stem Cells 2016; 34:1421-6. [PMID: 27015786 PMCID: PMC4982058 DOI: 10.1002/stem.2368] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/24/2016] [Accepted: 03/10/2016] [Indexed: 12/23/2022]
Abstract
The liver is one of the major organs in the human body. Severe or prolonged exposure of the liver to different factors may cause life-threatening disease, which necessitates donor organ transplantation. While orthotopic liver transplantation can be used to effectively treat liver failure, it is an invasive procedure, which is severely limited by organ donation. Therefore, alternative sources of liver support have been proposed and studied. This includes the use of pluripotent stem cell-derived hepatocytes as a renewable source of cells for therapy. In addition to cell-based therapies, in vitro engineered liver tissue provides powerful models for human drug discovery and disease modeling. This review focuses on the generation of hepatocyte-like cells from pluripotent stem cells and their application in translational medicine. Stem Cells 2016;34:1421-1426.
Collapse
Affiliation(s)
- Dagmara Szkolnicka
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - David C Hay
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
134
|
Lucendo-Villarin B, Rashidi H, Cameron K, Hay DC. Pluripotent stem cell derived hepatocytes: using materials to define cellular differentiation and tissue engineering. J Mater Chem B 2016; 4:3433-3442. [PMID: 27746914 PMCID: PMC5024673 DOI: 10.1039/c6tb00331a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022]
Abstract
Pluripotent stem cell derived liver cells (hepatocytes) represent a promising alternative to primary tissue for biological and clinical applications. To date, most hepatocyte maintenance and differentiation systems have relied upon the use of animal derived components. This serves as a significant barrier to large scale production and application of stem cell derived hepatocytes. Recently, the use of defined biologics has overcome those limitations in two-dimensional monolayer culture. In order to improve the cell phenotype further, three-dimensional culture systems have been employed to better mimic the in vivo situation, drawing upon materials chemistry, engineering and biology. In this review we discuss efforts in the field, to differentiate pluripotent stem cells towards hepatocytes under defined conditions.
Collapse
Affiliation(s)
- B Lucendo-Villarin
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - H Rashidi
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - K Cameron
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - D C Hay
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| |
Collapse
|
135
|
Serum-Free Directed Differentiation of Human Embryonic Stem Cells to Hepatocytes. Methods Mol Biol 2016; 1250:105-11. [PMID: 26272137 DOI: 10.1007/978-1-4939-2074-7_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The increase in human liver disease worldwide is a major concern. At present, the only successful mode of treatment for failing liver function is organ transplantation. While highly successful, donor organs are a limited resource that cannot meet current demands. Therefore, alternative liver support strategies have been explored, including the use of the major and metabolic cell within the liver, the hepatocyte. While current approaches using human hepatocytes are very promising, donor material is still required and therefore suffers from similar limitations to whole organ transplantation. One alternative source of human hepatocytes being actively pursued in the field is pluripotent stem cells. Pluripotent stem cells are a scalable and renewable cell-based resource, which can be efficiently differentiated towards hepatocytes, including pluripotent stem cell lines that have been derived under good manufacturing practice conditions. Therefore, it is believed that this approach provides a promising model system for cell scale-up and differentiation. In the future, pluripotent stem cell-derived hepatocytes could be used in the clinic to support failing liver function if they should be deemed fit for purpose.
Collapse
|
136
|
Yu H, Cowan CA. Minireview: Genome Editing of Human Pluripotent Stem Cells for Modeling Metabolic Disease. Mol Endocrinol 2016; 30:575-86. [PMID: 27075706 DOI: 10.1210/me.2015-1290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathophysiology of metabolic diseases such as coronary artery disease, diabetes, and obesity is complex and multifactorial. Developing new strategies to prevent or treat these diseases requires in vitro models with which researchers can extensively study the molecular mechanisms that lead to disease. Human pluripotent stem cells and their differentiated derivatives have the potential to provide an unlimited source of disease-relevant cell types and, when combined with recent advances in genome editing, make the goal of generating functional metabolic disease models, for the first time, consistently attainable. However, this approach still has certain limitations including lack of robust differentiation methods and potential off-target effects. This review describes the current progress in human pluripotent stem cell-based metabolic disease research using genome-editing technology.
Collapse
Affiliation(s)
- Haojie Yu
- Department of Stem Cell and Regenerative Biology (H.Y., C.A.C.), Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138; and Center for Regenerative Medicine (C.A.C.), Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Chad A Cowan
- Department of Stem Cell and Regenerative Biology (H.Y., C.A.C.), Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138; and Center for Regenerative Medicine (C.A.C.), Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
137
|
Kanninen LK, Porola P, Niklander J, Malinen MM, Corlu A, Guguen-Guillouzo C, Urtti A, Yliperttula ML, Lou YR. Hepatic differentiation of human pluripotent stem cells on human liver progenitor HepaRG-derived acellular matrix. Exp Cell Res 2016; 341:207-17. [PMID: 26854693 DOI: 10.1016/j.yexcr.2016.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 11/18/2022]
Abstract
Human hepatocytes are extensively needed in drug discovery and development. Stem cell-derived hepatocytes are expected to be an improved and continuous model of human liver to study drug candidates. Generation of endoderm-derived hepatocytes from human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, is a complex, challenging process requiring specific signals from soluble factors and insoluble matrices at each developmental stage. In this study, we used human liver progenitor HepaRG-derived acellular matrix (ACM) as a hepatic progenitor-specific matrix to induce hepatic commitment of hPSC-derived definitive endoderm (DE) cells. The DE cells showed much better attachment to the HepaRG ACM than other matrices tested and then differentiated towards hepatic cells, which expressed hepatocyte-specific makers. We demonstrate that Matrigel overlay induced hepatocyte phenotype and inhibited biliary epithelial differentiation in two hPSC lines studied. In conclusion, our study demonstrates that the HepaRG ACM, a hepatic progenitor-specific matrix, plays an important role in the hepatic differentiation of hPSCs.
Collapse
Affiliation(s)
- Liisa K Kanninen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Pauliina Porola
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Johanna Niklander
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Melina M Malinen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Anne Corlu
- Inserm UMR991, Liver Metabolisms and Cancer, Université de Rennes 1, F-35043 Rennes, France
| | | | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland; School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Marjo L Yliperttula
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Yan-Ru Lou
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland.
| |
Collapse
|
138
|
Csöbönyeiová M, Polák Š, Danišovič L. Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells. Can J Physiol Pharmacol 2016; 94:687-94. [PMID: 27128322 DOI: 10.1139/cjpp-2015-0459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Unexpected toxicity in areas such as cardiotoxicity, hepatotoxicity, and neurotoxicity is a serious complication of clinical therapy and one of the key causes for failure of promising drug candidates in development. Animal studies have been widely used for toxicology research to provide preclinical security evaluation of various therapeutic agents under development. Species differences in drug penetration of the blood-brain barrier, drug metabolism, and related toxicity contribute to failure of drug trials from animal models to human. The existing system for drug discovery has relied on immortalized cell lines, animal models of human disease, and clinical trials in humans. Moreover, drug candidates that are passed as being safe in the preclinical stage often show toxic effects during the clinical stage. Only around 16% drugs are approved for human use. Research on induced pluripotent stem cells (iPSCs) promises to enhance drug discovery and development by providing simple, reproducible, and economically effective tools for drug toxicity screening under development and, on the other hand, for studying the disease mechanism and pathways. In this review, we provide an overview of basic information about iPSCs, and discuss efforts aimed at the use of iPSC-derived hepatocytes, cardiomyocytes, and neural cells in drug discovery and toxicity testing.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- a Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
| | - Štefan Polák
- a Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
| | - L'uboš Danišovič
- b Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
| |
Collapse
|
139
|
Hansel MC, Davila JC, Vosough M, Gramignoli R, Skvorak KJ, Dorko K, Marongiu F, Blake W, Strom SC. The Use of Induced Pluripotent Stem Cells for the Study and Treatment of Liver Diseases. ACTA ACUST UNITED AC 2016; 67:14.13.1-14.13.27. [PMID: 26828329 DOI: 10.1002/0471140856.tx1413s67] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liver disease is a major global health concern. Liver cirrhosis is one of the leading causes of death in the world and currently the only therapeutic option for end-stage liver disease (e.g., acute liver failure, cirrhosis, chronic hepatitis, cholestatic diseases, metabolic diseases, and malignant neoplasms) is orthotropic liver transplantation. Transplantation of hepatocytes has been proposed and used as an alternative to whole organ transplant to stabilize and prolong the lives of patients in some clinical cases. Although these experimental therapies have demonstrated promising and beneficial results, their routine use remains a challenge due to the shortage of donor livers available for cell isolation, variable quality of those tissues, the potential need for lifelong immunosuppression in the transplant recipient, and high costs. Therefore, new therapeutic strategies and more reliable clinical treatments are urgently needed. Recent and continuous technological advances in the development of stem cells suggest they may be beneficial in this respect. In this review, we summarize the history of stem cell and induced pluripotent stem cell (iPSC) technology in the context of hepatic differentiation and discuss the potential applications the technology may offer for human liver disease modeling and treatment. This includes developing safer drugs and cell-based therapies to improve the outcomes of patients with currently incurable health illnesses. We also review promising advances in other disease areas to highlight how the stem cell technology could be applied to liver diseases in the future. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marc C Hansel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Julio C Davila
- Department of Biochemistry, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Massoud Vosough
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kristen J Skvorak
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas
| | - Fabio Marongiu
- Department of Biomedical Sciences, Section of Experimental Pathology, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - William Blake
- Genetically Modified Models Center of Emphasis, Pfizer, Groton, Connecticut
| | - Stephen C Strom
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
140
|
Ensuring the Quality of Stem Cell-Derived In Vitro Models for Toxicity Testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 856:259-297. [DOI: 10.1007/978-3-319-33826-2_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
141
|
Abdelalim EM, Emara MM. Pluripotent Stem Cell-Derived Pancreatic β Cells: From In Vitro Maturation to Clinical Application. RECENT ADVANCES IN STEM CELLS 2016. [DOI: 10.1007/978-3-319-33270-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
142
|
Tolosa L, Caron J, Hannoun Z, Antoni M, López S, Burks D, Castell JV, Weber A, Gomez-Lechon MJ, Dubart-Kupperschmitt A. Transplantation of hESC-derived hepatocytes protects mice from liver injury. Stem Cell Res Ther 2015; 6:246. [PMID: 26652177 PMCID: PMC4676869 DOI: 10.1186/s13287-015-0227-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/25/2015] [Accepted: 11/06/2015] [Indexed: 12/25/2022] Open
Abstract
Background Hepatic cell therapy has become a viable alternative to liver transplantation for life-threatening liver diseases. However, the supply of human hepatocytes is limited due to the shortage of suitable donor organs required to isolate high-quality cells. Human pluripotent stem cells reflect a potential renewable source for generating functional hepatocytes. However, most differentiation protocols use undefined matrices or factors of animal origin; as such, the resulting hepatocytes are not Good Manufacturing Practice compliant. Moreover, the preclinical studies employed to assess safety and function of human embryonic stem cell (hESC)-derived hepatocytes are generally limited to immunodeficient mice. In the present study, we evaluate the generation of hepatocytes under defined conditions using a European hESC line (VAL9) which was derived under animal-free conditions. The function capacity of VAL9-derived hepatocytes was assessed by transplantation into mice with acetaminophen-induced acute liver failure, a clinically relevant model. Methods We developed a protocol that successfully differentiates hESCs into bipotent hepatic progenitors under defined conditions, without the use of chromatin modifiers such as dimethyl sulphoxide. These progenitors can be cryopreserved and are able to generate both committed precursors of cholangiocytes and neonate-like hepatocytes. Results Thirty days post-differentiation, hESCs expressed hepatocyte-specific markers such as asialoglycoprotein receptor and hepatic nuclear factors including HNF4α. The cells exhibited properties of mature hepatocytes such as urea secretion and UGT1A1 and cytochrome P450 activities. When transplanted into mice with acetaminophen-induced acute liver failure, a model of liver damage, the VAL9-derived hepatocytes efficiently engrafted and proliferated, repopulating up to 10 % of the liver. In these transplanted livers, we observed a significant decrease of liver transaminases and found no evidence of tumourigenicity. Thus, VAL9-derived hepatocytes were able to rescue hepatic function in acetaminophen-treated animals. Conclusions Our study reveals an efficient protocol for differentiating VAL9 hESCs to neonatal hepatocytes which are then able to repopulate livers in vivo without tumour induction. The human hepatocytes are able to rescue liver function in mice with acetaminophen-induced acute toxicity. These results provide proof-of-concept that replacement therapies using hESC-derived hepatocytes are effective for treating liver diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0227-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laia Tolosa
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Unidad de Hepatología Experimental, IIS LA Fe, Valencia, S-46026, Spain. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Jérôme Caron
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Zara Hannoun
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Marc Antoni
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Silvia López
- Unidad de Hepatología Experimental, IIS LA Fe, Valencia, S-46026, Spain.
| | - Deborah Burks
- CIBERDEM, Centro de Investigacion Prıncipe Felipe, Valencia, S-46012, Spain.
| | - Jose Vicente Castell
- Unidad de Hepatología Experimental, IIS LA Fe, Valencia, S-46026, Spain. .,CIBERehd, FIS, Barcelona, S-08036, Spain.
| | - Anne Weber
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Maria-Jose Gomez-Lechon
- Unidad de Hepatología Experimental, IIS LA Fe, Valencia, S-46026, Spain. .,CIBERehd, FIS, Barcelona, S-08036, Spain.
| | - Anne Dubart-Kupperschmitt
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| |
Collapse
|
143
|
Cameron K, Tan R, Schmidt-Heck W, Campos G, Lyall MJ, Wang Y, Lucendo-Villarin B, Szkolnicka D, Bates N, Kimber SJ, Hengstler JG, Godoy P, Forbes SJ, Hay DC. Recombinant Laminins Drive the Differentiation and Self-Organization of hESC-Derived Hepatocytes. Stem Cell Reports 2015; 5:1250-1262. [PMID: 26626180 PMCID: PMC4682209 DOI: 10.1016/j.stemcr.2015.10.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
Stem cell-derived somatic cells represent an unlimited resource for basic and translational science. Although promising, there are significant hurdles that must be overcome. Our focus is on the generation of the major cell type of the human liver, the hepatocyte. Current protocols produce variable populations of hepatocytes that are the product of using undefined components in the differentiation process. This serves as a significant barrier to scale-up and application. To tackle this issue, we designed a defined differentiation process using recombinant laminin substrates to provide instruction. We demonstrate efficient hepatocyte specification, cell organization, and significant improvements in cell function and phenotype. This is driven in part by the suppression of unfavorable gene regulatory networks that control cell proliferation and migration, pluripotent stem cell self-renewal, and fibroblast and colon specification. We believe that this represents a significant advance, moving stem cell-based hepatocytes closer toward biomedical application.
Collapse
Affiliation(s)
- Kate Cameron
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Rosanne Tan
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology eV-Hans-Knöll Institute, 07743 Jena, Germany
| | - Gisela Campos
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Ardeystraße 67, 44139 Dortmund, Germany
| | - Marcus J Lyall
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Yu Wang
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Dagmara Szkolnicka
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Nicola Bates
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Susan J Kimber
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Ardeystraße 67, 44139 Dortmund, Germany
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Ardeystraße 67, 44139 Dortmund, Germany
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
144
|
Bengoa-Vergniory N, Gorroño-Etxebarria I, González-Salazar I, Kypta RM. A switch from canonical to noncanonical Wnt signaling mediates early differentiation of human neural stem cells. Stem Cells 2015; 32:3196-208. [PMID: 25100239 DOI: 10.1002/stem.1807] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/07/2014] [Indexed: 01/28/2023]
Abstract
Wnt/β-catenin signaling is essential for neurogenesis but less is known about β-catenin-independent Wnt signals. We show here that Wnt/activator protein-1 (AP-1) signaling drives differentiation of human embryonic stem cell and induced pluripotent stem cell-derived neural progenitor cells. Neuronal differentiation was accompanied by a reduction in β-catenin/Tcf-dependent transcription and target gene expression, increased levels and/or phosphorylation of activating transcription factor 2 (ATF2), cyclic AMP response element-binding protein, and c-Jun, and increased AP-1-dependent transcription. Inhibition of Wnt secretion using the porcupine inhibitors IWP-2 and Wnt-C59 blocked neuronal differentiation, while activation or inhibition of Wnt/β-catenin signaling had no effect. Neuronal differentiation increased expression of several Wnt genes, including WNT3A, silencing of which reduced differentiation. Addition of recombinant Wnt-3a to cells treated with IWP-2 or Wnt-C59 increased AP-1 levels and restored neuronal differentiation. The effects of Wnt-3a could not be blocked by addition of Dkk-1 or IWR-1, suggesting the involvement of noncanonical signaling. Consistent with this, restoration of neuronal differentiation by Wnt-3a was reduced by inhibition of Jun N-terminal kinase (JNK) and by gene silencing of ATF2. Together, these observations suggest that β-catenin-independent Wnt signals promote neural stem/progenitor cell differentiation in a signaling pathway involving Wnt-3a, JNK, and ATF2.
Collapse
|
145
|
Tsolaki E, Yannaki E. Stem cell-based regenerative opportunities for the liver: State of the art and beyond. World J Gastroenterol 2015; 21:12334-12350. [PMID: 26604641 PMCID: PMC4649117 DOI: 10.3748/wjg.v21.i43.12334] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/16/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
The existing mismatch between the great demand for liver transplants and the number of available donor organs highlights the urgent need for alternative therapeutic strategies in patients with acute or chronic liver failure. The rapidly growing knowledge on stem cell biology and the intrinsic repair processes of the liver has opened new avenues for using stem cells as a cell therapy platform in regenerative medicine for hepatic diseases. An impressive number of cell types have been investigated as sources of liver regeneration: adult and fetal liver hepatocytes, intrahepatic stem cell populations, annex stem cells, adult bone marrow-derived hematopoietic stem cells, endothelial progenitor cells, mesenchymal stromal cells, embryonic stem cells, and induced pluripotent stem cells. All these highly different cell types, used either as cell suspensions or, in combination with biomaterials as implantable liver tissue constructs, have generated great promise for liver regeneration. However, fundamental questions still need to be addressed and critical hurdles to be overcome before liver cell therapy emerges. In this review, we summarize the state-of-the-art in the field of stem cell-based therapies for the liver along with existing challenges and future perspectives towards a successful liver cell therapy that will ultimately deliver its demanding goals.
Collapse
|
146
|
Ji F, Hu AB. Hepatic differentiation of pluripotent stem cells. Shijie Huaren Xiaohua Zazhi 2015; 23:5101-5106. [DOI: 10.11569/wcjd.v23.i32.5101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cell mainly contain two types: embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC). Their hepatic differentiation and application in transplantation may make them serve as new seed cells for replacement therapy and become an effective adjunctive therapy for end-stage hepatic diseases. Recently, great progress has been made in the research of stem cell technology. For example, iPSCs can maintain pluripotency, and the application of iPSCs can avoid the ethical issues associated with the use of ESCs. The research of differentiation of stem cells has greatly shifted from differentiation into hepatic single-cell lineage to differentiation into liver tissues. All of these can improve the development of replacement therapy, and update the basic knowledge of ectogenesis of the liver.
Collapse
|
147
|
Affiliation(s)
- Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK
| |
Collapse
|
148
|
Sun C, Hu JJ, Pan Q, Cao Y, Fan JG, Li GM. Hepatic differentiation of rat induced pluripotent stem cells in vitro. World J Gastroenterol 2015; 21:11118-11126. [PMID: 26494966 PMCID: PMC4607909 DOI: 10.3748/wjg.v21.i39.11118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/23/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To show the efficient generation of hepatocyte-like cells (HLCs) differentiated from the induced pluripotent stem cells (iPSCs) of rats. METHODS Hepatic differentiation was achieved using a three-step protocol with several growth factors. First, rat iPSCs were differentiated into definitive endoderm cells using Activin A and Wnt3a treatment. Then fibroblast growth factor 4 and bone morphogenetic protein 2 were added to the culture medium and used to induce hepatic differentiation. Finally, hepatocyte growth factor, Oncostatin M and dexamethasone were used for hepatic maturation. The liver-related markers and functions of HLCs were assessed at the gene and protein levels. RESULTS After endodermal induction, the differentiated cells expressed endodermal markers forkhead box protein A2 and SRY-box containing gene 17 at the mRNA and protein levels. After 20 d of culture, the iPSCs were differentiated into HLCs. These differentiated cells expressed hepatic markers including α-fetoprotein, albumin CK8, CK18, CK19, and transcription factor HNF-4α. In addition, the cells expressed functional proteins such as α1-antitrypsin, cytochrome P450 1A2 and CYP 3A4. They acted like healthy hepatic cells, storing glycogen and taking up indocyanine green and low-density lipoproteins. Also, the rates of urea synthesis (20 d 1.202 ± 0.080 mg/dL vs 0 d 0.317 ± 0.021 mg/dL, P < 0.01) and albumin secretion (20 d 1.601 ± 0.102 mg/dL vs 0 d 0.313 ± 0.015 mg/dL, P < 0.01) increased significantly as differentiation progressed. CONCLUSION Rat iPSCs can differentiate into HLCs rapidly and efficiently. These differentiated cells may be an attractive resource for treatment of end-stage liver disease.
Collapse
|
149
|
Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 2015; 7:044102. [DOI: 10.1088/1758-5090/7/4/044102] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
150
|
Xu F, Liu J, Deng J, Chen X, Wang Y, Xu P, Cheng L, Fu Y, Cheng F, Yao Y, Zhang Y, Huang M, Yu D, Wei Y, Deng H. Rapid and high-efficiency generation of mature functional hepatocyte-like cells from adipose-derived stem cells by a three-step protocol. Stem Cell Res Ther 2015; 6:193. [PMID: 26438426 PMCID: PMC4595267 DOI: 10.1186/s13287-015-0181-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/31/2015] [Accepted: 09/09/2015] [Indexed: 02/05/2023] Open
Abstract
The generation of functional hepatocytes is a major challenge for regenerative medicine and drug discovery. Here we show a method that facilitates generation of induced functional hepatocytes (iHeps) from adipose-derived stem cells (ADSCs) within 9 days. iHeps express hepatocytic gene programs and display functions characteristic of mature hepatocytes, including cytochrome P450 enzyme activity. Upon transplantation into mice with carbon tetrachloride (CCl4)-induced acute fulminant liver failure, iHeps restore the liver function and prolong survival. The work could contribute to the development of alternative strategies to obtain nonhepatic cell-derived mature hepatocytes with potential for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Fen Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
| | - Junli Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
| | - Jie Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
| | - Xiaolei Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
| | - Yuan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
| | - Pengchao Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
| | - Yanli Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
| | - Yunqi Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
| | - Yujing Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
| | - Meijuan Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P.R. China.
| | - Dechao Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, section3, Renmin South Road, Chengdu, 610041, P.R. China.
| |
Collapse
|