101
|
Patel P, Selvaraju V, Babu JR, Wang X, Geetha T. Racial Disparities in Methylation of NRF1, FTO, and LEPR Gene in Childhood Obesity. Genes (Basel) 2022; 13:2030. [PMID: 36360268 PMCID: PMC9690504 DOI: 10.3390/genes13112030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 09/18/2023] Open
Abstract
Childhood obesity has affected the health of millions of children around the world despite vigorous efforts by health experts. The obesity epidemic in the United States has disproportionately afflicted certain racial and ethnic minority groups. African American children are more likely than other children to have obesity-related risk factors such as hyperlipidemia, diabetes, cardiovascular disease, and coronavirus disease (COVID-19). For the reduction in obesity-related health inequalities to be successful, it is essential to identify the variables affecting various groups. A notable advancement in epigenetic biology has been made over the past decade. Epigenetic changes like DNA methylation impact on many genes associated with obesity. Here, we evaluated the DNA methylation levels of the genes NRF1, FTO, and LEPR from the saliva of children using real-time quantitative PCR-based multiplex MethyLight technology. ALU was used as a reference gene, and the Percent of Methylated Reference (PMR) was calculated for each sample. European American children showed a significant increase in PMR of NRF1 and FTO in overweight/obese participants compared to normal weight, but not in African American children. After adjusting for maternal education and annual family income by regression analysis, the PMR of NRF1 and FTO was significantly associated with BMI z-score only in European American children. While for the gene LEPR, African American children had higher methylation in normal weight participants as compared to overweight/obese and no methylation difference in European American children. The PMR of LEPR was significantly negative associated with the obesity measures only in African American children. These findings contribute to a race-specific link between NRF1, FTO, and LEPR gene methylation and childhood obesity.
Collapse
Affiliation(s)
- Priyadarshni Patel
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
102
|
Hees JT, Harbauer AB. Metabolic Regulation of Mitochondrial Protein Biogenesis from a Neuronal Perspective. Biomolecules 2022; 12:1595. [PMID: 36358945 PMCID: PMC9687362 DOI: 10.3390/biom12111595] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/29/2023] Open
Abstract
Neurons critically depend on mitochondria for ATP production and Ca2+ buffering. They are highly compartmentalized cells and therefore a finely tuned mitochondrial network constantly adapting to the local requirements is necessary. For neuronal maintenance, old or damaged mitochondria need to be degraded, while the functional mitochondrial pool needs to be replenished with freshly synthesized components. Mitochondrial biogenesis is known to be primarily regulated via the PGC-1α-NRF1/2-TFAM pathway at the transcriptional level. However, while transcriptional regulation of mitochondrial genes can change the global mitochondrial content in neurons, it does not explain how a morphologically complex cell such as a neuron adapts to local differences in mitochondrial demand. In this review, we discuss regulatory mechanisms controlling mitochondrial biogenesis thereby making a case for differential regulation at the transcriptional and translational level. In neurons, additional regulation can occur due to the axonal localization of mRNAs encoding mitochondrial proteins. Hitchhiking of mRNAs on organelles including mitochondria as well as contact site formation between mitochondria and endolysosomes are required for local mitochondrial biogenesis in axons linking defects in any of these organelles to the mitochondrial dysfunction seen in various neurological disorders.
Collapse
Affiliation(s)
- Jara Tabitha Hees
- TUM Medical Graduate Center, Technical University of Munich, 81675 Munich, Germany
- Max Planck Institute for Biological Intelligence, in Foundation, 82152 Planegg-Martinsried, Germany
| | - Angelika Bettina Harbauer
- Max Planck Institute for Biological Intelligence, in Foundation, 82152 Planegg-Martinsried, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| |
Collapse
|
103
|
In utero di-(2-ethylhexyl) phthalate-induced testicular dysgenesis syndrome in male newborn rats is rescued by taxifolin through reducing oxidative stress. Toxicol Appl Pharmacol 2022; 456:116262. [PMID: 36198370 DOI: 10.1016/j.taap.2022.116262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Testicular dysgenesis syndrome in male neonates manifests as cryptorchidism and hypospadias, which can be mimicked by in utero phthalate exposure. However, the underlying phthalate mediated mechanism and therapeutic effects of taxifolin remain unclear. Di-(2-ethylhexyl) phthalate (DEHP) is the most abundantly used phthalate and can induce testicular dysgenesis syndrome in male rats. To explore the mechanism of DEHP mediated effects and develop a therapeutic drug, the natural phytomedicine taxifolin was used. Pregnant Sprague-Dawley female rats were daily gavaged with 750 mg/kg/d DEHP or 10 or 20 mg/kg/d taxifolin alone or in combination from gestational day 14 to 21, and male pup's fetal Leydig cell function, testicular MDA, and antioxidants were examined. DEHP significantly reduced serum testosterone levels of male pups, down-regulated the expression of SCARB1, CYP11A1, HSD3B1, HSD17B3, and INSL3, reduced the cell size of fetal Leydig cells, decreased the levels of antioxidant and related signals (SOD2 and CAT, SIRT1, and PGC1α), induced abnormal aggregation of fetal Leydig cells, and stimulated formation of multinucleated gonocytes and MDA levels. Taxifolin alone (10 and 20 mg/kg/d) did not affect these parameters. However, taxifolin significantly rescued DEHP-induced alterations. DEHP exposure in utero can induce testicular dysgenesis syndrome by altering the oxidative balance and SIRT1/PGC1α levels, and taxifolin is an ideal phytomedicine to prevent phthalate induced testicular dysgenesis syndrome.
Collapse
|
104
|
Sulforaphane Protects against Unilateral Ureteral Obstruction-Induced Renal Damage in Rats by Alleviating Mitochondrial and Lipid Metabolism Impairment. Antioxidants (Basel) 2022; 11:antiox11101854. [PMID: 36290577 PMCID: PMC9598813 DOI: 10.3390/antiox11101854] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Unilateral ureteral obstruction (UUO) is an animal rodent model that allows the study of obstructive nephropathy in an accelerated manner. During UUO, tubular damage is induced, and alterations such as oxidative stress, inflammation, lipid metabolism, and mitochondrial impairment favor fibrosis development, leading to chronic kidney disease progression. Sulforaphane (SFN), an isothiocyanate derived from green cruciferous vegetables, might improve mitochondrial functions and lipid metabolism; however, its role in UUO has been poorly explored. Therefore, we aimed to determine the protective effect of SFN related to mitochondria and lipid metabolism in UUO. Our results showed that in UUO SFN decreased renal damage, attributed to increased mitochondrial biogenesis. We showed that SFN augmented peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and nuclear respiratory factor 1 (NRF1). The increase in biogenesis augmented the mitochondrial mass marker voltage-dependent anion channel (VDAC) and improved mitochondrial structure, as well as complex III (CIII), aconitase 2 (ACO2) and citrate synthase activities in UUO. In addition, lipid metabolism was improved, observed by the downregulation of cluster of differentiation 36 (CD36), sterol regulatory-element binding protein 1 (SREBP1), fatty acid synthase (FASN), and diacylglycerol O-acyltransferase 1 (DGAT1), which reduces triglyceride (TG) accumulation. Finally, restoring the mitochondrial structure reduced excessive fission by decreasing the fission protein dynamin-related protein-1 (DRP1). Autophagy flux was further restored by reducing beclin and sequestosome (p62) and increasing B-cell lymphoma 2 (Bcl2) and the ratio of microtubule-associated proteins 1A/1B light chain 3 II and I (LC3II/LC3I). These results reveal that SFN confers protection against UUO-induced kidney injury by targeting mitochondrial biogenesis, which also improves lipid metabolism.
Collapse
|
105
|
Abo Alrob O, Al-Horani RA, Altaany Z, Nusair MB. Synergistic Beneficial Effects of Resveratrol and Diet on High-Fat Diet-Induced Obesity. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091301. [PMID: 36143977 PMCID: PMC9503422 DOI: 10.3390/medicina58091301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
Introduction: Despite decades of research, obesity and its related medical complications remain a major health concern globally. Therefore, novel therapeutic strategies are needed to combat obesity and its numerous debilitating complications. Resveratrol (RES) has a potential therapeutic effect in obesity and diabetes by improving oxidative metabolism and insulin signaling. Background and Objectives: The aim of this study was to investigate the effect of RES treatment on weight loss and glucose and fatty acid metabolism. Methods: Obesity was induced in 24 mice by exposure to a high-fat diet (HFD) for 8 weeks. Mice were randomly assigned to one group of either: group 1: control, non-treated low-fat diet (LFD) for 12 weeks (n = 8), group 2: non-treated high-fat diet (HFD) for 12 weeks (n = 8), group 3: RES-treated HFD (HFD + RES) (n = 8), or group 4: RES-treated and switched to LFD (HFD-LFD + RES) (n = 8). HFD + RES mice were first fed an HFD for 8 weeks followed by 4 weeks of RES. The HFD-LFD + RES group was first fed an HFD for 8 weeks and then treated with RES and switched to an LFD for 4 weeks. Results: After 12 weeks, group 2 mice had significantly higher body weights compared to group 1 (23.71 ± 1.95 vs. 47.83 ± 2.27; p < 0.05). Group 4 had a significant decrease in body weight and improvement in glucose tolerance compared to mice in group 2 (71.3 ± 1.17 vs. 46.1 ± 1.82 and 40.9 ± 1.75, respectively; p < 0.05). Skeletal muscles expression of SIRT1, SIRT3, and PGC1α were induced in group 3 and 4 mice compared to group 2 (p < 0.01), with no changes in AMP-activated protein kinase expression levels. Furthermore, combination of RES and diet ameliorated skeletal muscle intermediate lipid accumulation and significantly improved insulin sensitivity and secretion. Conclusions: The results of this study suggest a synergistic beneficial effect of LFD and RES to lower body weight and enhance glucose and fatty acid metabolism.
Collapse
Affiliation(s)
- Osama Abo Alrob
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Yarmouk University, Irbid 211-63, Jordan or
- Correspondence:
| | - Ramzi A. Al-Horani
- Department of Exercise Science, Yarmouk University, Irbid 211-63, Jordan
| | - Zaid Altaany
- Department of Basic Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Mohammad B. Nusair
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Yarmouk University, Irbid 211-63, Jordan or
- Department of Sociobehavioral and Administrative Pharmacy, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
106
|
Murai N, Saito N, Nii S, Nishikawa Y, Suzuki A, Kodama E, Iida T, Mikura K, Imai H, Hashizume M, Kigawa Y, Tadokoro R, Sugisawa C, Endo K, Iizaka T, Otsuka F, Ishibashi S, Nagasaka S. Diabetic family history in young Japanese persons with normal glucose tolerance associates with k-means clustering of glucose response to oral glucose load, insulinogenic index and Matsuda index. Metabol Open 2022; 15:100196. [PMID: 35733612 PMCID: PMC9207666 DOI: 10.1016/j.metop.2022.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Aims The present study aimed to clarify the relationships between diabetic family history (FH), and dysglycemic response to the oral glucose tolerance test (OGTT), insulin secretion, and insulin sensitivity in young Japanese persons with normal glucose tolerance (NGT). Methods We measured plasma glucose (PG) and immunoreactive insulin levels in 1,309 young Japanese persons (age <40 years) with NGT before and at 30, 60, and 120 min during a 75-g OGTT. Dysglycemia during OGTT was analyzed by k-means clustering analysis. Body mass index (BMI), blood pressure (BP), and lipids were measured. Insulin secretion and sensitivity indices were calculated. Results PG levels during OGTT were classified by k-means clustering analysis into three groups with stepwise decreases in glucose tolerance even among individuals with NGT. In these clusters, proportion of males, BMI, BP and frequency of FH were higher, and lipid levels were worse, together with decreasing glucose tolerance. Subjects with a diabetic FH showed increases in PG after glucose loading and decreases in insulinogenic index and Matsuda index. Conclusions Dysglycemic response to OGTT by k-means clustering analysis was associated with FH in young Japanese persons with NGT. FH was also associated with post-loading glucose, insulinogenic index, and Matsuda index.
Collapse
|
107
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
108
|
Sheng CY, Son YH, Jang J, Park SJ. In vitro skeletal muscle models for type 2 diabetes. BIOPHYSICS REVIEWS 2022; 3:031306. [PMID: 36124295 PMCID: PMC9478902 DOI: 10.1063/5.0096420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Type 2 diabetes mellitus, a metabolic disorder characterized by abnormally elevated blood sugar, poses a growing social, economic, and medical burden worldwide. The skeletal muscle is the largest metabolic organ responsible for glucose homeostasis in the body, and its inability to properly uptake sugar often precedes type 2 diabetes. Although exercise is known to have preventative and therapeutic effects on type 2 diabetes, the underlying mechanism of these beneficial effects is largely unknown. Animal studies have been conducted to better understand the pathophysiology of type 2 diabetes and the positive effects of exercise on type 2 diabetes. However, the complexity of in vivo systems and the inability of animal models to fully capture human type 2 diabetes genetics and pathophysiology are two major limitations in these animal studies. Fortunately, in vitro models capable of recapitulating human genetics and physiology provide promising avenues to overcome these obstacles. This review summarizes current in vitro type 2 diabetes models with focuses on the skeletal muscle, interorgan crosstalk, and exercise. We discuss diabetes, its pathophysiology, common in vitro type 2 diabetes skeletal muscle models, interorgan crosstalk type 2 diabetes models, exercise benefits on type 2 diabetes, and in vitro type 2 diabetes models with exercise.
Collapse
Affiliation(s)
- Christina Y. Sheng
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Young Hoon Son
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | - Sung-Jin Park
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
109
|
Barbosa H, Ramadan W, Matzenbacher dos Santos J, Benite-Ribeiro SA. Effects of Physical Exercise on Mitochondrial Biogenesis of Skeletal Muscle Modulated by Histones Modifications in Type 2 Diabetes. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epigenetic modification in skeletal muscle induced by environmental factors seems to modulate several metabolic pathways that underlie Type 2 Diabetes Mellitus (T2DM) development. Mitochondrial biogenesis is an important process for maintaining lipid metabolism homeostasis, as well as epigenetic modifications in proteins that regulate this pathway have been observed in the skeletal muscle of T2DM subjects. Moreover, physical exercise affects several metabolic pathways attenuating metabolic deregulation observed in T2DM. The pathways that regulate mitochondrial homeostasis are one of the key components for understanding such physical exercise beneficial effects. Thus, in this study, we investigate the epigenetic mechanisms underlying mitochondrial biogenesis in the skeletal muscle in T2DM, focusing on histone modifications and the possible mechanisms by which physical exercise delay or inhibit T2DM onset. The results indicate that exercise promotes improvements in cellular metabolism through increasing enzymes of the antioxidant system, AMPK and ATP-citrate lyase activity, Acetyl-CoA concentration, and enhancing the acetylation of histones. A key mediator of mitochondrial biogenesis such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC1) seems to be upregulated by exercise in T2DM and such factor positively regulates the skeletal muscle mitochondrial biogenesis, which improves energy metabolism and glucose homeostasis inhibiting or delaying insulin resistance and further T2DM.
Collapse
|
110
|
Bagci G, Okten H. The effects of taurine supplementation on obesity and browning of white adipose tissue in high-fat diet-fed mice. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:151-165. [PMID: 36000201 DOI: 10.1080/15257770.2022.2114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Background: In recent years, a new type of adipose tissue (beige adipose tissue) has been mentioned, unlike white adipose tissue (WAT) and brown adipose tissue (BAT). Beige cells are capable of thermogenesis like BAT. In response to various agents, beige cells can develop within WAT through a process called "browning." Therefore, the prevention of obesity and related diseases by providing WAT browning with new potential agents has been extensively studied in recent years. Taurine has many physiological functions in the body and has beneficial effects on obesity and related metabolic disorders. For this reason, we aimed to investigate whether taurine supplementation has effects on browning of WAT and attenuating obesity. Methods: Thirty-two male C57BL/6 mice were used for the study. Mice were divided into 4 groups as control, control + taurine, high fat diet (HFD) and HFD + taurine, and fed for 20 weeks. Taurine was given in drinking water (5%). Epididymal WAT samples were obtained from mice and RNA was extracted from these tissues. Expression levels of FLCN, mTOR, TFE3, PGC-1α, PGC1-1β, AMPK, S6K and UCP1 genes were measured by real-time PCR. Results: Taurine supplementation reduced HFD-induced obesity. No UCP1 expression was detected in any of the groups studied. Any of the gene expressions were not significantly different between HFD and HFD + taurine groups. Reduced PGC-1α and PGC-1β expressions were observed in both HFD and HFD + taurine groups. Conclusions: Taurine reduced the obesity in HFD fed mice, but had no effect on browning of epididymal WAT in this study.
Collapse
Affiliation(s)
- Gokhan Bagci
- Department of Medical Biochemistry, Faculty of Medicine, Altinbas University, Istanbul, Turkey
| | - Hatice Okten
- Department of Medical Biochemistry, Faculty of Medicine, Beykent University, Istanbul, Turkey
| |
Collapse
|
111
|
Heras-Molina A, Núñez Y, Benítez R, Pesántez-Pacheco JL, García-Contreras C, Vázquez-Gómez M, Astiz S, Isabel B, González-Bulnes A, Óvilo C. Hypothalamic transcriptome analysis reveals male-specific differences in molecular pathways related to oxidative phosphorylation between Iberian pig genotypes. PLoS One 2022; 17:e0272775. [PMID: 35972914 PMCID: PMC9380940 DOI: 10.1371/journal.pone.0272775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
The hypothalamus is implicated in controlling feeding and adiposity, besides many other physiological functions, and thus can be of great importance in explaining productive differences between lean and fatty pig breeds. The present study aimed to evaluate the hypothalamic transcriptome of pure Iberian (IBxIB) and Large White x Iberian crossbreds (IBxLW) at 60 days-old, produced in a single maternal environment. Results showed the implication of gender and genotype in the hypothalamic transcriptome, with 51 differentially expressed genes (DEGs) between genotypes and 10 DEGs between genders. Fourteen genotype by sex interactions were found, due to a higher genotype effect on transcriptome found in males. In fact, just 31 DEGs were identified when using only females but 158 using only males. A higher expression of genes related to mitochondrial activity in IBxIB male animals (ND3, ND4, ND5, UQCRC2 and ATP6) was found, which was related to a higher oxidative phosphorylation and greater reactive oxygen species and nitric oxide production. IBxLW male animals showed higher expression of SIRT3 regulator, also related to mitochondrial function. When females were analysed, such differences were not found, since only some differences in genes related to the tricarboxylic acid cycle. Thus, the results indicate a significant effect and interaction of the breed and the sex on the hypothalamic transcriptome at this early age.
Collapse
Affiliation(s)
- Ana Heras-Molina
- Department of Animal Breeding, INIA-CSIC, Madrid, Spain
- Department of Animal Production, Veterinary Faculty, UCM, Madrid, Spain
- * E-mail:
| | - Yolanda Núñez
- Department of Animal Breeding, INIA-CSIC, Madrid, Spain
| | - Rita Benítez
- Department of Animal Breeding, INIA-CSIC, Madrid, Spain
| | - José Luis Pesántez-Pacheco
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain
- School of Veterinary Medicine and Zootechnics, Faculty of Agricultural Sciences, UC, Cuenca, Ecuador
| | | | - Marta Vázquez-Gómez
- Department of Animal Production, Veterinary Faculty, UCM, Madrid, Spain
- Nutrition and Obesities: Systemic Approaches Research Unit (NutriOmics), INSERM, Sorbonne Université, Paris, France
| | - Susana Astiz
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain
| | - Beatriz Isabel
- Department of Animal Production, Veterinary Faculty, UCM, Madrid, Spain
| | - Antonio González-Bulnes
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain
- Department of Animal Production, Veterinary Faculty, UCH-CEU, Valencia, Spain
| | | |
Collapse
|
112
|
Hjort L, Novakovic B, Cvitic S, Saffery R, Damm P, Desoye G. Placental DNA Methylation in pregnancies complicated by maternal diabetes and/or obesity: State of the Art and research gaps. Epigenetics 2022; 17:2188-2208. [PMID: 35950598 DOI: 10.1080/15592294.2022.2111755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
SUMMARYMaternal diabetes and/or obesity in pregnancy are undoubtedly associated with later disease-risk in the offspring. The placenta, interposed between the mother and the fetus, is a potential mediator of this risk through epigenetic mechanisms, including DNA methylation. In recent years, multiple studies have identified differentially methylated CpG sites in the placental tissue DNA in pregnancies complicated by diabetes and obesity. We reviewed all published original research relevant to this topic and analyzed our findings with the focus of identifying overlaps, contradictions and gaps. Most studies focused on the association of gestational diabetes and/or hyperglycemia in pregnancy and DNA methylation in placental tissue at term. We identified overlaps in results related to specific candidate genes, but also observed a large research gap of pregnancies affected by type 1 diabetes. Other unanswered questions relate to analysis of specific placental cell types and the timing of DNA methylation change in response to diabetes and obesity during pregnancy. Maternal metabolism is altered already in the first trimester involving structural and functional changes in the placenta, but studies into its effects on placental DNA methylation during this period are lacking and urgently needed. Fetal sex is also an important determinant of pregnancy outcome, but only few studies have taken this into account. Collectively, we provide a reference work for researchers working in this large and evolving field. Based on the results of the literature review, we formulate suggestions for future focus of placental DNA methylation studies in pregnancies complicated by diabetes and obesity.
Collapse
Affiliation(s)
- Line Hjort
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Environmental Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Silvija Cvitic
- Department of Pediatrics and Adolescent Medicine, Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Austria
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Peter Damm
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gernot Desoye
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept. of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
113
|
Li H, Chen X, Chen D, Yu B, He J, Zheng P, Luo Y, Yan H, Chen H, Huang Z. Ellagic Acid Alters Muscle Fiber-Type Composition and Promotes Mitochondrial Biogenesis through the AMPK Signaling Pathway in Healthy Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9779-9789. [PMID: 35916165 DOI: 10.1021/acs.jafc.2c04108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ellagic acid (EA), because of its remarkable health-promoting ability, has aroused widespread interest in the fields of nutrition and medicine. However, no reports showed that EA regulates mitochondrial biogenesis as well as muscle fiber-type composition in pigs. Our study found that dietary 75 and 150 mg/kg EA obviously augmented the slow myosin heavy chain (MyHC) protein level, the number of slow-twitch muscle fibers, and the activity of malate dehydrogenase (MDH) in the longissimus thoracis (LT) muscle of growing-finishing pigs. In contrast, dietary 75 and 150 mg/kg EA decreased the fast MyHC level, the number of fast-twitch muscle fibers, and the activity of lactate dehydrogenase (LDH) in the LT muscle. In addition, our further study found that dietary 75 and 150 mg/kg EA promoted the mitochondrial DNA (mtDNA) content, the mRNA expressions of ATP synthase (ATP5G), mtDNA transcription factor A (TFAM), AMP-activated protein kinase α1 (AMPKα1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and sirtuin 1 (Sirt1), and the level of phospho-LKB1 (P-LKB1), phospho-AMPK (P-AMPK), Sirt1, and PGC-1α in the LT muscle. In vitro, 5, 10, and 20 μmol/L EA treatment upregulated the level of slow MyHC, but only 10 μmol/L EA treatment decreased fast MyHC protein expression in porcine skeletal muscle satellite cells (PSCs). In addition, our data again found that 10 μmol/L EA treatment promoted the mtDNA content, the mRNA levels of ATP5G, mitochondrial transcription factor b1 (TFB1M), citrate synthase (Cs), AMPKα1, PGC-1α, and Sirt1, and the protein expressions of P-AMPK, P-LKB1, PGC-1α, and Sirt1 in PSCs. What is more, inhibition of the AMPK signaling pathway by AMPKα1 siRNA significantly eliminated the improvement of EA on muscle fiber-type composition as well as the mtDNA content in PSCs. In conclusion, EA altered muscle fiber-type composition and promoted mitochondrial biogenesis through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Huawei Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| |
Collapse
|
114
|
Luo JS, Ning JQ, Chen ZY, Li WJ, Zhou RL, Yan RY, Chen MJ, Ding LL. The Role of Mitochondrial Quality Control in Cognitive Dysfunction in Diabetes. Neurochem Res 2022; 47:2158-2172. [PMID: 35661963 PMCID: PMC9352619 DOI: 10.1007/s11064-022-03631-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/26/2022]
Abstract
Type 2 diabetes (T2DM) is a well known risk factor for Alzheimer's disease. Mitochondria are the center of intracellular energy metabolism and the main source of reactive oxygen species. Mitochondrial dysfunction has been identified as a key factor in diabetes-associated brain alterations contributing to neurodegenerative events. Defective insulin signaling may act in concert with neurodegenerative mechanisms leading to abnormalities in mitochondrial structure and function. Mitochondrial dysfunction triggers neuronal energy exhaustion and oxidative stress, leading to brain neuronal damage and cognitive impairment. The normality of mitochondrial function is basically maintained by mitochondrial quality control mechanisms. In T2DM, defects in the mitochondrial quality control pathway in the brain have been found to lead to mitochondrial dysfunction and cognitive impairment. Here, we discuss the association of mitochondrial dysfunction with T2DM and cognitive impairment. We also review the molecular mechanisms of mitochondrial quality control and impacts of mitochondrial quality control on the progression of cognitive impairment in T2DM.
Collapse
Affiliation(s)
- Jian-Sheng Luo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jia-Qi Ning
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Zhuo-Ya Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Wen-Jing Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Rui-Ling Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ru-Yu Yan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Meng-Jie Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ling-Ling Ding
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
115
|
Zumbaugh MD, Johnson SE, Shi TH, Gerrard DE. Molecular and biochemical regulation of skeletal muscle metabolism. J Anim Sci 2022; 100:6652332. [PMID: 35908794 PMCID: PMC9339271 DOI: 10.1093/jas/skac035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle hypertrophy is a culmination of catabolic and anabolic processes that are interwoven into major metabolic pathways, and as such modulation of skeletal muscle metabolism may have implications on animal growth efficiency. Muscle is composed of a heterogeneous population of muscle fibers that can be classified by metabolism (oxidative or glycolytic) and contractile speed (slow or fast). Although slow fibers (type I) rely heavily on oxidative metabolism, presumably to fuel long or continuous bouts of work, fast fibers (type IIa, IIx, and IIb) vary in their metabolic capability and can range from having a high oxidative capacity to a high glycolytic capacity. The plasticity of muscle permits continuous adaptations to changing intrinsic and extrinsic stimuli that can shift the classification of muscle fibers, which has implications on fiber size, nutrient utilization, and protein turnover rate. The purpose of this paper is to summarize the major metabolic pathways in skeletal muscle and the associated regulatory pathways.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tim H Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
116
|
Exposure to Bisphenol A Caused Hepatoxicity and Intestinal Flora Disorder in Rats. Int J Mol Sci 2022; 23:ijms23148042. [PMID: 35887390 PMCID: PMC9321671 DOI: 10.3390/ijms23148042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Bisphenol A (BPA) is a globally utilized industrial chemical and is commonly used as a monomer of polycarbonate plastics and epoxy resins. Recent research reveals that BPA could cause potential adverse biological effects and liver dysfunction. However, the underlying mechanisms of BPA-induced hepatoxicity and gut dysbiosis remain unclear and deserve further study. In this study, male Sprague Dawley rats were exposed to different doses (0, 30, 90, and 270 mg/kg bw) of BPA by gavage for 30 days. The results showed that the high dose of BPA decreased superoxide dismutase (SOD), glutathione (GSH), and increased malondialdehyde (MDA) levels. Moreover, a high dose of BPA caused a significant increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C), while high-density lipoprotein cholesterol (HDL-C) was significantly decreased in BPA-treated rats. The gene expression of PGC-1α and Nrf1 were decreased in the liver of high doses of BPA-administrated rats, as well as the protein levels of SIRT1, PGC-1α, Nrf2, and TFAM. However, the protein expression of IL-1β was significantly increased in BPA-treated rats. In addition, BPA weakened the mitochondrial function of hepatocytes and promoted cell apoptosis in the liver by up-regulating the protein levels of Bax, cleaved-Caspase3, and cleaved-PARP1 while down-regulating the Bcl-2 in the liver. More importantly, a high dose of BPA caused a dramatic change in microbiota structure, as characterized at the genus level by increasing the ratio of Firmicutes to Bacteroidetes (F/B), and the relative abundance of Proteobacteria in feces, while decreasing the relative abundance of Prevotella_9 and Ruminococcaceae_UCG-014, which is positively correlated with the content of short-chain fatty acids (SCFAs). In summary, our data indicated that BPA exposure caused hepatoxicity through apoptosis and the SIRT1/PGC-1α pathway. BPA-induced intestinal flora and SCFA changes may be associated with hepatic damage. The results of this study provide a new sight for the understanding of BPA-induced hepatoxicity.
Collapse
|
117
|
Pharmacological Approaches to Decelerate Aging: A Promising Path. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201533. [PMID: 35860429 PMCID: PMC9293537 DOI: 10.1155/2022/4201533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
Abstract
Biological aging or senescence is a course in which cellular function decreases over a period of time and is a consequence of altered signaling mechanisms that are triggered in stressed cells leading to cell damage. Aging is among the principal risk factors for many chronic illnesses such as cancer, cardiovascular disorders, and neurodegenerative diseases. Taking this into account, targeting fundamental aging mechanisms therapeutically may effectively impact numerous chronic illnesses. Selecting ideal therapeutic options in order to hinder the process of aging and decelerate the progression of age-related diseases is valuable. Along therapeutic options, life style modifications may well render the process of aging. The process of aging is affected by alteration in many cellular and signaling pathways amid which mTOR, SIRT1, and AMPK pathways are the most emphasized. Herein, we have discussed the mechanisms of aging focusing mainly on the mentioned pathways as well as the role of inflammation and autophagy in aging. Moreover, drugs and natural products with antiaging properties are discussed in detail.
Collapse
|
118
|
Li H, Li J, Shi L, Zhu Y, Tian F, Shi M, Li Q, Ge RS. Bisphenol F blocks Leydig cell maturation and steroidogenesis in pubertal male rats through suppressing androgen receptor signaling and activating G-protein coupled estrogen receptor 1 (GPER1) signaling. Food Chem Toxicol 2022; 167:113268. [PMID: 35803362 DOI: 10.1016/j.fct.2022.113268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
Bisphenol F (BPF) is a new analog of bisphenol A (BPA). BPA has deleterious effects on the male reproductive system, but the effect of BPF has not been studied in detail. In this study we focus on the effect of BPF on Leydig cell maturation. Male Sprague-Dawley rats were gavaged with 0, 1, 10, or 100 mg/kg BPF from postnatal days 35-56. BPF significantly reduced serum testosterone levels and sperm count in cauda epididymis at dose ≥1 mg/kg. It significantly down-regulated the expression of steroidogenic enzymes, while increasing FSHR and SOX9 levels at 10 and 100 mg/kg. Further studies showed that BPF reduced NR3C4 expression in Leydig and Sertoli cells without affecting its levels in peritubular myoid cells. BPF markedly increased GPER1 in Leydig cells at 100 mg/kg, and it significantly reduced SIRT1 and PGC1α levels in the testes at 100 mg/kg. BPF significantly inhibited testosterone production by immature Leydig cells at 50 μM after 24 h of treatment, which was completely reversed by NR3C4 agonist 7α-methyl-19-nortestosterone and partially reversed by GPER1 antagonist G15 not by ESR1 antagonist ICI 182,780. In conclusion, BPF negatively affects Leydig cell maturation in pubertal male rats through NR3C4 antagonism and GPER1 agonism.
Collapse
Affiliation(s)
- Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Jingjing Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Lei Shi
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Fuhong Tian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Mengna Shi
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qiyao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
119
|
Metformin modulates mitochondrial function and mitophagy in peripheral blood mononuclear cells from type 2 diabetic patients. Redox Biol 2022; 53:102342. [PMID: 35605453 PMCID: PMC9124713 DOI: 10.1016/j.redox.2022.102342] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 01/06/2023] Open
Abstract
Type 2 diabetes is a chronic metabolic disease that affects mitochondrial function. In this context, the rescue mechanisms of mitochondrial health, such as mitophagy and mitochondrial biogenesis, are of crucial importance. The gold standard for the treatment of type 2 diabetes is metformin, which has a beneficial impact on the mitochondrial metabolism. In this study, we set out to describe the effect of metformin treatment on mitochondrial function and mitophagy in peripheral blood mononuclear cells (PBMCs) from type 2 diabetic patients. We performed a preliminary cross-sectional observational study complying with CONSORT requirements, for which we recruited 242 subjects, divided into 101 healthy volunteers, 93 metformin-treated type 2 diabetic patients and 48 non-metformin-treated type 2 diabetic patients. Mitochondria from the type 2 diabetic patients not treated with metformin displayed more reactive oxygen species (ROS) than those from healthy or metformin-treated subjects. Protein expression of the electron transport chain (ETC) complexes was lower in PBMCs from type 2 diabetic patients without metformin treatment than in those from the other two groups. Mitophagy was altered in type 2 diabetic patients, evident in a decrease in the protein levels of PINK1 and Parkin in parallel to that of the mitochondrial biogenesis protein PGC1α, both of which effects were reversed by metformin. Analysis of AMPK phosphorylation revealed that its activation was decreased in the PBMCs of type 2 diabetic patients, an effect which was reversed, once again, by metformin. In addition, there was an increase in the serum levels of TNFα and IL-6 in type 2 diabetic patients and this was reversed with metformin treatment. These results demonstrate that metformin improves mitochondrial function, restores the levels of ETC complexes, and enhances AMPK activation and mitophagy, suggesting beneficial clinical implications in the treatment of type 2 diabetes. Metformin promoted electron transport chain expression on type 2 diabetic patients. Metformin restored mitophagy levels via PINK1 and PARKIN on type 2 diabetic patients. Mitochondrial biogenesis was enhanced by metformin on type 2 diabetic patients. Metformin restored AMPK activation on type 2 diabetic patients.
Collapse
|
120
|
Sabaratnam R, Skov V, Paulsen SK, Juhl S, Kruse R, Hansen T, Halkier C, Kristensen JM, Vind BF, Richelsen B, Knudsen S, Dahlgaard J, Beck-Nielsen H, Kruse TA, Højlund K. A Signature of Exaggerated Adipose Tissue Dysfunction in Type 2 Diabetes Is Linked to Low Plasma Adiponectin and Increased Transcriptional Activation of Proteasomal Degradation in Muscle. Cells 2022; 11:cells11132005. [PMID: 35805088 PMCID: PMC9265693 DOI: 10.3390/cells11132005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Insulin resistance in skeletal muscle in type 2 diabetes (T2D) is characterized by more pronounced metabolic and molecular defects than in obesity per se. There is increasing evidence that adipose tissue dysfunction contributes to obesity-induced insulin resistance in skeletal muscle. Here, we used an unbiased approach to examine if adipose tissue dysfunction is exaggerated in T2D and linked to diabetes-related mechanisms of insulin resistance in skeletal muscle. Transcriptional profiling and biological pathways analysis were performed in subcutaneous adipose tissue (SAT) and skeletal muscle biopsies from 17 patients with T2D and 19 glucose-tolerant, age and weight-matched obese controls. Findings were validated by qRT-PCR and western blotting of selected genes and proteins. Patients with T2D were more insulin resistant and had lower plasma adiponectin than obese controls. Transcriptional profiling showed downregulation of genes involved in mitochondrial oxidative phosphorylation and the tricarboxylic-acid cycle and increased expression of extracellular matrix (ECM) genes in SAT in T2D, whereas genes involved in proteasomal degradation were upregulated in the skeletal muscle in T2D. qRT-PCR confirmed most of these findings and showed lower expression of adiponectin in SAT and higher expression of myostatin in muscle in T2D. Interestingly, muscle expression of proteasomal genes correlated positively with SAT expression of ECM genes but inversely with the expression of ADIPOQ in SAT and plasma adiponectin. Protein content of proteasomal subunits and major ubiquitin ligases were unaltered in the skeletal muscle of patients with T2D. A transcriptional signature of exaggerated adipose tissue dysfunction in T2D, compared with obesity alone, is linked to low plasma adiponectin and increased transcriptional activation of proteasomal degradation in skeletal muscle.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.S.); (S.J.); (R.K.); (J.M.K.); (B.F.V.); (H.B.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; (T.H.); (C.H.)
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, DK-4000 Roskilde, Denmark;
| | - Søren K. Paulsen
- Department of Pathology, Viborg Regional Hospital, DK-8800 Viborg, Denmark;
| | - Stine Juhl
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.S.); (S.J.); (R.K.); (J.M.K.); (B.F.V.); (H.B.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; (T.H.); (C.H.)
| | - Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.S.); (S.J.); (R.K.); (J.M.K.); (B.F.V.); (H.B.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; (T.H.); (C.H.)
| | - Thea Hansen
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; (T.H.); (C.H.)
| | - Cecilie Halkier
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; (T.H.); (C.H.)
| | - Jonas M. Kristensen
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.S.); (S.J.); (R.K.); (J.M.K.); (B.F.V.); (H.B.-N.)
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Birgitte F. Vind
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.S.); (S.J.); (R.K.); (J.M.K.); (B.F.V.); (H.B.-N.)
| | - Bjørn Richelsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, DK-8200 Aarhus N, Denmark;
| | - Steen Knudsen
- Allarity Therapeutics Europe, DK-2970 Hørsholm, Denmark;
| | - Jesper Dahlgaard
- Program for Mind and Body in Mental Health, Research Centre for Health and Welfare Technology, VIA University College, DK-8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
| | - Henning Beck-Nielsen
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.S.); (S.J.); (R.K.); (J.M.K.); (B.F.V.); (H.B.-N.)
| | - Torben A. Kruse
- Department of Clinical Genetics, Odense University Hospital, DK-5000 Odense C, Denmark;
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.S.); (S.J.); (R.K.); (J.M.K.); (B.F.V.); (H.B.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; (T.H.); (C.H.)
- Correspondence: ; Tel.: +45-2532-0648
| |
Collapse
|
121
|
Insulin and Its Key Role for Mitochondrial Function/Dysfunction and Quality Control: A Shared Link between Dysmetabolism and Neurodegeneration. BIOLOGY 2022; 11:biology11060943. [PMID: 35741464 PMCID: PMC9220302 DOI: 10.3390/biology11060943] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023]
Abstract
Insulin was discovered and isolated from the beta cells of pancreatic islets of dogs and is associated with the regulation of peripheral glucose homeostasis. Insulin produced in the brain is related to synaptic plasticity and memory. Defective insulin signaling plays a role in brain dysfunction, such as neurodegenerative disease. Growing evidence suggests a link between metabolic disorders, such as diabetes and obesity, and neurodegenerative diseases, especially Alzheimer's disease (AD). This association is due to a common state of insulin resistance (IR) and mitochondrial dysfunction. This review takes a journey into the past to summarize what was known about the physiological and pathological role of insulin in peripheral tissues and the brain. Then, it will land in the present to analyze the insulin role on mitochondrial health and the effects on insulin resistance and neurodegenerative diseases that are IR-dependent. Specifically, we will focus our attention on the quality control of mitochondria (MQC), such as mitochondrial dynamics, mitochondrial biogenesis, and selective autophagy (mitophagy), in healthy and altered cases. Finally, this review will be projected toward the future by examining the most promising treatments that target the mitochondria to cure neurodegenerative diseases associated with metabolic disorders.
Collapse
|
122
|
Abdi A, Mehrabani J, Nordvall M, Wong A, Fallah A, Bagheri R. Effects of concurrent training on irisin and fibronectin type-III domain containing 5 (FNDC5) expression in visceral adipose tissue in type-2 diabetic rats. Arch Physiol Biochem 2022; 128:651-656. [PMID: 31979994 DOI: 10.1080/13813455.2020.1716018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Evidence suggests that myokines could have clinical implications for metabolic diseases such as type-2 diabetes. OBJECTIVE We investigated the effects of concurrent training (CT) on irisin and fibronectin type-III domain containing five (FNDC5) expressions in visceral adipose tissue (VAT) in type-2 diabetic rats. MATERIALS AND METHODS Eighteen male Wistar rats (ages four to eight weeks) became diabetic using nicotinamide and streptozotocin and were assigned to either a control (CON) or a CT group using a randomised block design. The CT group exercised on a motor-driven treadmill at 60 to 75 per cent of VO2max (0% grade) for 10-40 min/day (aerobic training) and performed 10 climbs on a 1-meter ladder utilising weighted resistance of 30-100% of body mass (resistance exercise) for 5 days/week over 8 weeks. Forty-eight hours after the last training session, the VAT of rats was removed and washed. FNDC5-relative gene expression and irisin were measured by the reverse transcription polymerase chain reaction (RT-PCR) method and enzyme-linked immunosorbent assay (ELISA) kit. Additionally, insulin resistance and plasma insulin and glucose levels were determined. RESULTS Our findings revealed that CT significantly increased FNDC5-relative gene expression in the VAT of type-2 diabetic rats compared to controls. Furthermore, eight weeks of CT improved insulin resistance and insulin and glucose levels but did not significantly alter irisin levels in type-2 diabetic rats. DISCUSSION AND CONCLUSION The results of this study demonstrated that CT increased FNDC5 mRNA and improved insulin resistance, insulin, and glucose levels. Also observed were increased trends (non-significant, p = .051) in irisin levels. Hence, CT may play a role in attenuating metabolic disorders such as obesity and type-2 diabetes.
Collapse
Affiliation(s)
- Ahmad Abdi
- Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Javad Mehrabani
- Department of Exercise Physiology, University of Guilan, Rasht, Iran
| | - Michael Nordvall
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Abbas Fallah
- Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
123
|
Class I MHC Polymorphisms Associated with Type 2 Diabetes in the Mexican Population. Genes (Basel) 2022; 13:genes13050772. [PMID: 35627158 PMCID: PMC9140925 DOI: 10.3390/genes13050772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
Type 2 diabetes (T2D) has been linked to the expression of Human Leukocyte Antigens, principally to the Major Histocompatibility Complex Class II, with only scarce reports of Major Histocompatibility Complex Class I in specific populations. The objective of the present work was to explore the presence of polymorphisms in the MHC Class I related to T2D in the Mexican population using the Genome-Wide Association Studies Slim Initiative in Genomic Medicine of the Americas (GWAS SIGMA) database. This database contains information on 3848 Mexican individuals with T2D and 4366 control individuals from the same population without a clinical or hereditary history of the disease. The searching criteria considered a p-value of <0.005 and an odds ratio (OR) of >1.0. Ten novel, statistically significant nucleotide variants were identified: four polymorphisms associated with HLA-A (A*03:01:01:01) and six with HLA-C (C*01:02:01:01). These alleles have a high prevalence in Latin American populations and could potentially be associated with autoimmunity mechanisms related to the development of T2D complications.
Collapse
|
124
|
Endoplasmic reticulum stress downregulates PGC-1α in skeletal muscle through ATF4 and an mTOR-mediated reduction of CRTC2. Cell Commun Signal 2022; 20:53. [PMID: 35428325 PMCID: PMC9012021 DOI: 10.1186/s12964-022-00865-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022] Open
Abstract
Background Peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) downregulation in skeletal muscle contributes to insulin resistance and type 2 diabetes mellitus. Here, we examined the effects of endoplasmic reticulum (ER) stress on PGC-1α levels in muscle and the potential mechanisms involved. Methods The human skeletal muscle cell line LHCN-M2 and mice exposed to different inducers of ER stress were used. Results Palmitate- or tunicamycin-induced ER stress resulted in PGC-1α downregulation and enhanced expression of activating transcription factor 4 (ATF4) in human myotubes and mouse skeletal muscle. Overexpression of ATF4 decreased basal PCG-1α expression, whereas ATF4 knockdown abrogated the reduction of PCG-1α caused by tunicamycin in myotubes. ER stress induction also activated mammalian target of rapamycin (mTOR) in myotubes and reduced the nuclear levels of cAMP response element-binding protein (CREB)-regulated transcription co-activator 2 (CRTC2), a positive modulator of PGC-1α transcription. The mTOR inhibitor torin 1 restored PCG-1α and CRTC2 protein levels. Moreover, siRNA against S6 kinase, an mTORC1 downstream target, prevented the reduction in the expression of CRTC2 and PGC-1α caused by the ER stressor tunicamycin. Conclusions Collectively, these findings demonstrate that ATF4 and the mTOR-CRTC2 axis regulates PGC-1α transcription under ER stress conditions in skeletal muscle, suggesting that its inhibition might be a therapeutic target for insulin resistant states. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00865-9.
Collapse
|
125
|
Reid DM, Barber RC, Thorpe RJ, Sun J, Zhou Z, Phillips NR. Mitochondrial DNA oxidative mutations are elevated in Mexican American women potentially implicating Alzheimer's disease. NPJ AGING 2022; 8:2. [PMID: 35927256 PMCID: PMC9158774 DOI: 10.1038/s41514-022-00082-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/15/2022] [Indexed: 11/08/2022]
Abstract
Mexican Americans (MAs) are the fastest-growing Hispanic population segment in the US; as this population increases in age, so will the societal burden of age-related diseases such as Alzheimer's disease (AD). Mitochondrial DNA (mtDNA) damage may be implicated in MA AD risk since metabolic comorbidities are more prevalent in this group. Oxidative damage to guanosine (8oxoG) is one of the most prevalent DNA lesions and a putative indicator of mitochondrial dysfunction. Testing blood samples from participants of the Texas Alzheimer's Research and Care Consortium, we found mtDNA 8oxoG mutational load to be significantly higher in MAs compared to non-Hispanic whites and that MA females are differentially affected. Furthermore, we identified specific mtDNA haplotypes that confer increased risk for oxidative damage and suggestive evidence that cognitive function may be related to 8oxoG burden. Our understanding of these phenomena will elucidate population- and sex-specific mechanisms of AD pathogenesis, informing the development of more precise interventions and therapeutic approaches for MAs with AD in the future.
Collapse
Affiliation(s)
- Danielle Marie Reid
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Robert C Barber
- Pharmacology & Neuroscience, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Roland J Thorpe
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
- Johns Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jie Sun
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Zhengyang Zhou
- Biostatistics & Epidemiology, School of Public Health, UNT Health Science Center, Fort Worth, TX, USA
| | - Nicole R Phillips
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
126
|
Xia W, Qiu J, Peng Y, Snyder MM, Gu L, Huang K, Luo N, Yue F, Kuang S. Chchd10 is dispensable for myogenesis but critical for adipose browning. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:14. [PMID: 35362877 PMCID: PMC8975916 DOI: 10.1186/s13619-022-00111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
Abstract
The Chchd10 gene encodes a coiled-coil-helix-coiled-coil-helix-domain containing protein predicted to function in the mitochondrion and nucleus. Mutations of Chchd10 are associated with ALS, dementia and myopathy in humans and animal models, but how knockout of Chchd10 (Chchd10KO) affects various tissues especially skeletal muscle and adipose tissues remains unclear. Here we show that Chchd10 expression increases as myoblasts and preadipocytes differentiate. During myogenesis, CHCHD10 interacts with TAR DNA binding protein 43 (TDP-43) in regenerating myofibers in vivo and in newly differentiated myotubes ex vivo. Surprisingly, Chchd10KO mice had normal skeletal muscle development, growth and regeneration, with moderate defects in grip strength and motor performance. Chchd10KO similarly had no effects on development of brown and white adipose tissues (WAT). However, Chchd10KO mice had blunted response to acute cold and attenuated cold-induced browning of WAT, with markedly reduced UCP1 levels. Together, these results demonstrate that Chchd10 is dispensable for normal myogenesis and adipogenesis but is required for normal motility and cold-induced, mitochondrion-dependent browning of adipocytes. The data also suggest that human CHCHD10 mutations cause myopathy through a gain-of-function mechanism.
Collapse
Affiliation(s)
- Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China. .,Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA. .,College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, China.
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ying Peng
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Madigan M Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Lijie Gu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.,College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kuilong Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nanjian Luo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
127
|
Diggins CE, Russo SC, Lo J. Metabolic Consequences of Antiretroviral Therapy. Curr HIV/AIDS Rep 2022; 19:141-153. [PMID: 35299263 DOI: 10.1007/s11904-022-00600-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review reports on published studies describing metabolic changes associated with antiretroviral therapy (ART) to treat HIV disease including a historical perspective of earlier ART agents, but with the main focus on newer ART agents currently in use. RECENT FINDINGS Studies from different countries around the world have shown that integrase inhibitor (INSTI)-based regimens as well as tenofovir alafenamide (TAF) are associated with weight gain, with women and people of black race at especially high risk. Some studies preliminarily suggest worsened metabolic outcomes associated with this weight gain including adverse effects on glucose homeostasis. Antiretroviral therapy can affect weight, adipose tissue, glucose, and lipids. As obesity is prevalent and increasing among people with HIV, awareness of risk factors for weight gain, including the ART medications associated with greater weight gain, are needed in order to inform prevention efforts. Further research is needed to better understand the long-term health consequences of INSTI- and TAF-associated weight increases.
Collapse
Affiliation(s)
- Caroline E Diggins
- Metabolism Unit, Division of Endocrinology, Massachusetts General Hospital, LON-207, 55 Fruit Street, Boston, MA, 02114, USA
| | - Samuel C Russo
- Metabolism Unit, Division of Endocrinology, Massachusetts General Hospital, LON-207, 55 Fruit Street, Boston, MA, 02114, USA
| | - Janet Lo
- Metabolism Unit, Division of Endocrinology, Massachusetts General Hospital, LON-207, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
128
|
Prenatal Low-Protein Diet Affects Mitochondrial Structure and Function in the Skeletal Muscle of Adult Female Offspring. Nutrients 2022; 14:nu14061158. [PMID: 35334815 PMCID: PMC8954615 DOI: 10.3390/nu14061158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Gestational low-protein (LP) diet leads to glucose intolerance and insulin resistance in adult offspring. We had earlier demonstrated that LP programming affects glucose disposal in females. Mitochondrial health is crucial for normal glucose metabolism in skeletal muscle. In this study, we sought to analyze mitochondrial structure, function, and associated genes in skeletal muscles to explore the molecular mechanism of insulin resistance LP-programmed female offspring. On day four of pregnancy, rats were assigned to a control diet containing 20% protein or an isocaloric 6% protein-containing diet. Standard laboratory diet was given to the dams after delivery until the end of weaning and to pups after weaning. Gestational LP diet led to changes in mitochondrial ultrastructure in the gastrocnemius muscles, including a nine-fold increase in the presence of giant mitochondria along with unevenly formed cristae. Further, functional analysis showed that LP programming caused impaired mitochondrial functions. Although the mitochondrial copy number did not show significant changes, key genes involved in mitochondrial structure and function such as Fis1, Opa1, Mfn2, Nrf1, Nrf2, Pgc1b, Cox4b, Esrra, and Vdac were dysregulated. Our study shows that prenatal LP programming induced disruption in mitochondrial ultrastructure and function in the skeletal muscle of female offspring.
Collapse
|
129
|
Hu W, Li M, Sun W, Li Q, Xi H, Qiu Y, Wang R, Ding Q, Wang Z, Yu Y, Lei H, Mao Y, Zhu YZ. Hirsutine ameliorates hepatic and cardiac insulin resistance in high-fat diet-induced diabetic mice and in vitro models. Pharmacol Res 2022; 177:105917. [PMID: 34597809 DOI: 10.1016/j.phrs.2021.105917] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/23/2022]
Abstract
Closely associated with type 2 diabetes mellitus (T2DM), hepatic steatosis and cardiac hypertrophy resulting from chronic excess intake can exacerbate insulin resistance (IR). The current study aims to investigate the pharmacological effects of hirsutine, one indole alkaloid isolated from Uncaria rhynchophylla, on improving hepatic and cardiac IR, and elucidate the underlying mechanism. T2DM and IR in vivo were established by high-fat diet (HFD) feeding for 3 months in C57BL/6 J mice. In vitro IR models were induced by high-glucose and high-insulin (HGHI) incubation in HepG2 and H9c2 cells. Hirsutine administration for 8 weeks improved HFD-induced peripheral hyperglycemia, glucose tolerance and IR by OGTT and ITT assays, and simultaneously attenuated hepatic steatosis and cardiac hypertrophy by pathological observation. The impaired p-Akt expression was activated by hirsutine in liver and heart tissues of HFD mice, and also in the models in vitro. Hirsutine exhibited the effects on enhancing glucose consumption and uptake in IR cell models via activating phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which was blocked by PI3K inhibitor LY294002. Moreover, the effect of hirsutine on promoting glucose uptake and GLUT4 expression in HGHI H9c2 cells was also prevented by Compound C, an inhibitor of AMP-activated protein kinase (AMPK). Enhancement of glycolysis might be another factor of hirsutine showing its effects on glycemic control. Collectively, it was uncovered that hirsutine might exert beneficial effects on regulating glucose homeostasis, thus improving hepatic and cardiac IR, and could be a promising compound for treating diet-induced T2DM.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Meng Li
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Wuyi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Qixiu Li
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Haiyan Xi
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuanye Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Ran Wang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Heping Lei
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yicheng Mao
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China; Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
130
|
Bhardwaj G, Penniman CM, Klaus K, Weatherford ET, Pan H, Dreyfuss JM, Nair KS, Kahn CR, O’Neill BT. Transcriptomic Regulation of Muscle Mitochondria and Calcium Signaling by Insulin/IGF-1 Receptors Depends on FoxO Transcription Factors. Front Physiol 2022; 12:779121. [PMID: 35185597 PMCID: PMC8855073 DOI: 10.3389/fphys.2021.779121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 02/02/2023] Open
Abstract
Insulin and IGF-1, acting through the insulin receptor (IR) and IGF-1 receptor (IGF1R), maintain muscle mass and mitochondrial function, at least part of which occurs via their action to regulate gene expression. Here, we show that while muscle-specific deletion of IR or IGF1R individually results in only modest changes in the muscle transcriptome, combined deletion of IR/IGF1R (MIGIRKO) altered > 3000 genes, including genes involved in mitochondrial dysfunction, fibrosis, cardiac hypertrophy, and pathways related to estrogen receptor, protein kinase A (PKA), and calcium signaling. Functionally, this was associated with decreased mitochondrial respiration and increased ROS production in MIGIRKO muscle. To determine the role of FoxOs in these changes, we performed RNA-Seq on mice with muscle-specific deletion of FoxO1/3/4 (M-FoxO TKO) or combined deletion of IR, IGF1R, and FoxO1/3/4 in a muscle quintuple knockout (M-QKO). This revealed that among IR/IGF1R regulated genes, >97% were FoxO-dependent, and their expression was normalized in M-FoxO TKO and M-QKO muscle. FoxO-dependent genes were related to oxidative phosphorylation, inflammatory signaling, and TCA cycle. Metabolomic analysis showed accumulation of TCA cycle metabolites in MIGIRKO, which was reversed in M-QKO muscle. Likewise, calcium signaling genes involved in PKA signaling and sarcoplasmic reticulum calcium homeostasis were markedly altered in MIGIRKO muscle but normalized in M-QKO. Thus, combined loss of insulin and IGF-1 action in muscle transcriptionally alters mitochondrial function and multiple regulatory and signaling pathways, and these changes are mediated by FoxO transcription factors.
Collapse
Affiliation(s)
- Gourav Bhardwaj
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Christie M. Penniman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Katherine Klaus
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Eric T. Weatherford
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | - Jonathan M. Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | - K. Sreekumaran Nair
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | - Brian T. O’Neill
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Veterans Affairs Health Care System, Iowa City, IA, United States
| |
Collapse
|
131
|
Astro V, Alowaysi M, Fiacco E, Saera-Vila A, Cardona-Londoño KJ, Aiese Cigliano R, Adamo A. Pseudoautosomal Region 1 Overdosage Affects the Global Transcriptome in iPSCs From Patients With Klinefelter Syndrome and High-Grade X Chromosome Aneuploidies. Front Cell Dev Biol 2022; 9:801597. [PMID: 35186953 PMCID: PMC8850648 DOI: 10.3389/fcell.2021.801597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/28/2021] [Indexed: 01/19/2023] Open
Abstract
Klinefelter syndrome (KS) is the most prevalent aneuploidy in males and is characterized by a 47,XXY karyotype. Less frequently, higher grade sex chromosome aneuploidies (HGAs) can also occur. Here, using a paradigmatic cohort of KS and HGA induced pluripotent stem cells (iPSCs) carrying 49,XXXXY, 48,XXXY, and 47,XXY karyotypes, we identified the genes within the pseudoautosomal region 1 (PAR1) as the most susceptible to dosage-dependent transcriptional dysregulation and therefore potentially responsible for the progressively worsening phenotype in higher grade X aneuploidies. By contrast, the biallelically expressed non-PAR escape genes displayed high interclonal and interpatient variability in iPSCs and differentiated derivatives, suggesting that these genes could be associated with variable KS traits. By interrogating KS and HGA iPSCs at the single-cell resolution we showed that PAR1 and non-PAR escape genes are not only resilient to the X-inactive specific transcript (XIST)-mediated inactivation but also that their transcriptional regulation is disjointed from the absolute XIST expression level. Finally, we explored the transcriptional effects of X chromosome overdosage on autosomes and identified the nuclear respiratory factor 1 (NRF1) as a key regulator of the zinc finger protein X-linked (ZFX). Our study provides the first evidence of an X-dosage-sensitive autosomal transcription factor regulating an X-linked gene in low- and high-grade X aneuploidies.
Collapse
Affiliation(s)
- Veronica Astro
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maryam Alowaysi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Elisabetta Fiacco
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Kelly J. Cardona-Londoño
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Antonio Adamo
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Antonio Adamo,
| |
Collapse
|
132
|
Excess glutamine does not alter myotube metabolism or insulin sensitivity. Amino Acids 2022; 54:455-468. [PMID: 35112170 DOI: 10.1007/s00726-022-03131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/15/2022] [Indexed: 11/01/2022]
Abstract
Glutamine is an amino acid previously linked with improved skeletal muscle metabolism and insulin signaling, however, past observations often use cell culture models with only supraphysiological concentrations. Additionally, past reports have yet to simultaneously investigate both metabolic outcomes and insulin signaling. The present report utilized cell culture experiments and measured the effects of both physiological and supraphysiological levels of glutamine on myotube metabolism and insulin signaling/resistance. It was hypothesized the addition of glutamine at any level would increase cell metabolism and related gene expression, as well as improve insulin signaling versus respective control cells. C2C12 myotubes were treated with glutamine ranging from 0.25 mM-4 mM (or media control) for 24 h to capture a range of physiological and supraphysiological concentrations. qRT-PCR was used to measure metabolic gene expression. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Insulin sensitivity (indicated by pAkt:Akt) and metabolism following glucose/insulin infusion were also assessed. Glutamine treatment consistently increased mitochondrial and glycolytic metabolism versus true controls (cells treated with media void of glutamine), however, supraphysiological glutamine did not enhance metabolism beyond that of cells with physiological levels of glutamine. Neither physiological nor supraphysiological levels of glutamine altered insulin signaling regardless of insulin stimulation or insulin resistance when compared with respective controls. These data demonstrate excess glutamine does not appear to alter myotube metabolism or glucose disposal when base levels of glutamine are present. Moreover, glutamine does not appear to alter insulin sensitivity regardless of level of insulin resistance or presence of insulin stimulation.
Collapse
|
133
|
Strączkowski M, Nikołajuk A, Stefanowicz M, Matulewicz N, Fernandez-Real JM, Karczewska-Kupczewska M. Adipose Tissue and Skeletal Muscle Expression of Genes Associated with Thyroid Hormone Action in Obesity and Insulin Resistance. Thyroid 2022; 32:206-214. [PMID: 34610751 DOI: 10.1089/thy.2021.0351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Thyroid hormone (TH) regulates metabolic pathways which may interfere with insulin action. There is limited knowledge on adipose tissue (AT) and skeletal muscle (SM) expression of genes associated with TH action in relation to insulin sensitivity. The aim of this study was to analyze AT and SM expression of the genes associated with TH action in subjects with different degree of insulin sensitivity and the regulation of these genes by insulin and free fatty acids (FFA). Methods: The study group comprised 72 euthyroid male subjects: 36 normal weight subjects and 36 overweight/obese subjects. Two-hour hyperinsulinemic-euglycemic clamp and tissue biopsies were performed. In the subgroup of 20 subjects, 9 normal weight subjects and 11 overweight/obese subjects, clamp was prolonged to 6 hours and another clamp with Intralipid/heparin infusion was performed after 1 week. Tissue biopsies were performed before and after each clamp. Results: Overweight/obese subjects had higher AT DIO2, DIO3, and NCOR1, lower AT THRA and PPARGC1A, higher SM NCOR1, and lower SM DIO2, DIO3, PPARGC1A, and ATP2A2 expression. In AT, DIO2 and PPARGC1A increased, whereas NCOR1 and FOXO1 decreased after the clamp only in normal weight individuals. DIO3 decreased in both groups. In SM, NCOR1 decreased, whereas PPARGC1A and ATP2A2 increased after the clamp only in normal weight individuals. Tissue THRA and THRB decreased in both groups. Intralipid/heparin abolished these effects. Conclusions: Alterations in AT and SM expression of TH-related gene indicate a decreased tissue TH action in obesity. Inability to increase TH-related gene expression in obesity and during FFA oversupply may contribute to the aggravation of lipotoxicity.
Collapse
Affiliation(s)
- Marek Strączkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Natalia Matulewicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Jose Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- CIBERobn Pathophysiology of Obesity and Nutrition, Girona, Spain
| | | |
Collapse
|
134
|
Iwabu M, Okada-Iwabu M, Kadowaki T, Yamauchi T. Elucidating exercise-induced skeletal muscle signaling pathways and applying relevant findings to preemptive therapy for lifestyle-related diseases. Endocr J 2022; 69:1-8. [PMID: 34511589 DOI: 10.1507/endocrj.ej21-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
While it is well recognized that exercise represents a radical preventive and therapeutic measure for lifestyle-related diseases, it is clear that contemporary lifestyles abound with situations where exercise may be found difficult to implement on a continuous basis. Indeed, this has led to global expectations for elucidation of the exercise-activated skeletal muscle signaling pathways as well as for development of exercise mimics that effectively activate such pathways. It is shown that exercise activates the transcriptional coactivator PGC-1α via AMPK/SIRT1 in muscle, thereby not only enhancing mitochondrial function and muscle endurance but upregulating energy metabolism. Further, adipocyte-derived adiponectin is also shown to activate AMPK/SIRT1/PGC-1α via its receptor AdipoR1 in skeletal muscles. Thus, adiponectin/AdipoR1 signaling is thought to constitute exercise-mimicking signaling. Indeed, it has become clear that AMPK, SIRT1 and AdipoR activators act as exercise mimetics. With the crystal structures of AdipoR elucidated and humanized AdipoR mice generated toward optimization of candidate AdipoR-activators for human use, expectations are mounting for the clinical application in the near future of AdipoR activators as exercise mimetics in humans. This review provides an overview of molecules activated by exercise and compounds activating these molecules, with a focus on the therapeutic potential of AdipoR activators as exercise mimetics.
Collapse
Affiliation(s)
- Masato Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miki Okada-Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
135
|
Devarshi PP, Pereyra AS, Ellis JM, Henagan TM. A single bout of cycling exercise induces nucleosome repositioning in the skeletal muscle of lean and overweight/obese individuals. Diabetes Obes Metab 2022; 24:21-33. [PMID: 34472674 PMCID: PMC8728694 DOI: 10.1111/dom.14541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023]
Abstract
AIM To compare the molecular and metabolic effects of a single exercise bout in the skeletal muscle between lean and overweight/obese (Ov/Ob) individuals. MATERIALS AND METHODS Participants recruited were men, aged 19-30 years, who were either lean (body mass index [BMI] < 25, 18.5-24.1 kg/m2 ; n = 15) or Ov/Ob (BMI ≥ 25, 25.5-36.9 kg/m2 ; n = 15). Four hours after a high-carbohydrate breakfast (7 kcal/kg; 60% carbohydrate, 25% fat, 15% protein), participants performed a cycling exercise (50% VO2 max, expending ~650 kcal). Muscle biopsies and peripheral blood samples were collected 30 minutes before the meal and immediately after exercise. Blood analysis, and muscle acylcarnitine profiles, transcriptomics, and nucleosome mapping by micrococcal nuclease digestion with deep sequencing were performed. RESULTS A single exercise bout improved blood metabolite profiles in both lean and Ov/Ob individuals. Muscle long-chain acylcarnitines were increased in Ov/Ob compared with lean participants, but were not altered by exercise. A single exercise bout increased the mRNA abundance of genes related to mitochondria and insulin signalling in both lean and Ov/Ob participants. Nucleosome mapping by micrococcal nuclease digestion with deep sequencing revealed that exercise repositioned the -1 nucleosome away from the transcription start site of the PGC1a promoter and of other mitochondrial genes, but did not affect genes related to insulin signalling, in both lean and Ov/Ob participants. CONCLUSION These data suggest that a single exercise bout induced epigenetic alterations in skeletal muscle in a BMI-independent manner.
Collapse
Affiliation(s)
| | - Andrea S. Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834
| | - Jessica M. Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834
| | - Tara M. Henagan
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
- School of Medicine, LSU-Shreveport, Shreveport, LA 71103
| |
Collapse
|
136
|
Guo M, Xiang L, Yao J, Zhang J, Zhu S, Wang D, Liu C, Li G, Wang J, Gao Y, Xie C, Ma X, Xu L, Zhou J. Comprehensive Transcriptome Profiling of NAFLD- and NASH-Induced Skeletal Muscle Dysfunction. Front Endocrinol (Lausanne) 2022; 13:851520. [PMID: 35265044 PMCID: PMC8899658 DOI: 10.3389/fendo.2022.851520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by extensive triglyceride accumulation in hepatocytes, may progress to nonalcoholic steatohepatitis (NASH) with liver fibrosis and inflammation and increase the risk of cirrhosis, cancer, and death. It has been reported that physical exercise is effective in ameliorating NAFLD and NASH, while skeletal muscle dysfunctions, including lipid deposition and weakness, are accompanied with NAFLD and NASH. However, the molecular characteristics and alterations in skeletal muscle in the progress of NAFLD and NASH remain unclear. In the present study, we provide a comprehensive analysis on the similarity and heterogeneity of quadriceps muscle in NAFLD and NASH mice models by RNA sequencing. Importantly, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway functional enrichment analysis revealed that NAFLD and NASH led to impaired glucose and lipid metabolism and deteriorated functionality in skeletal muscle. Besides this, we identified that myokines possibly mediate the crosstalk between muscles and other metabolic organs in pathological conditions. Overall, our analysis revealed a comprehensive understanding of the molecular signature of skeletal muscles in NAFLD and NASH, thus providing a basis for physical exercise as an intervention against liver diseases.
Collapse
Affiliation(s)
- Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Liping Xiang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuangshuang Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Caizhi Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqiang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuqing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Xinran Ma, ; Lingyan Xu, ; Jian Zhou,
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Xinran Ma, ; Lingyan Xu, ; Jian Zhou,
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Xinran Ma, ; Lingyan Xu, ; Jian Zhou,
| |
Collapse
|
137
|
Nogueira Godinho WD, Vasconcelos Filho FSL, Pinto DV, Alves JO, de Souza Nascimento T, de Aguiar ID, Silva Almeida GN, Ceccatto VM, Soares PM. High-Intense Interval Training Prevents Cognitive Impairment and Increases the Expression of Muscle Genes FNDC5 and PPARGC1A in a Rat Model of Alzheimer's Disease. Curr Alzheimer Res 2022; 19:830-840. [PMID: 36503461 DOI: 10.2174/1567205020666221207103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/06/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease is the most common neurodegenerative disease in the world, characterized by the progressive loss of neuronal structure and function, whose main histopathological landmark is the accumulation of β-amyloid in the brain. OBJECTIVE It is well known that exercise is a neuroprotective factor and that muscles produce and release myokines that exert endocrine effects in inflammation and metabolic dysfunction. Thus, this work intends to establish the relationship between the benefits of exercise through the chronic training of HIIT on cognitive damage induced by the Alzheimer's model by the injection of β amyloid1-42. METHODS For this purpose, forty-eight male Wistar rats were divided into four groups: Sedentary Sham (SS), Trained Sham (ST), Sedentary Alzheimer's (AS), and Trained Alzheimer's (AT). Animals were submitted to stereotactic surgery and received a hippocampal injection of Aβ1-42 or a saline solution. Seven days after surgery, twelve days of treadmill adaptation followed by five maximal running tests (MRT) and fifty-five days of HIIT, rats underwent the Morris water maze test. The animals were then euthanized, and their gastrocnemius muscle tissue was extracted to analyze the Fibronectin type III domain containing 5 (FNDC5), PPARG Coactivator 1 Alpha (PPARGC1A), and Integrin subunit beta 5 (ITGB5-R) expression by qRT-PCR in addition to cross-sectional areas. RESULTS The HIIT prevents the cognitive deficit induced by the infusion of amyloid β1-42 (p < 0.0001), causes adaptation of muscle fibers (p < 0.0001), modulates the gene expression of FNDC5 (p < 0.01), ITGB5 (p < 0.01) and PPARGC1A (p < 0.01), and induces an increase in peripheral protein expression of FNDC5 (p < 0.005). CONCLUSION Thus, we conclude that HIIT can prevent cognitive damage induced by the infusion of Aβ1-42, constituting a non-pharmacological tool that modulates important genetic and protein pathways.
Collapse
Affiliation(s)
- Welton Daniel Nogueira Godinho
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700, Itaperi, Fortaleza, 60714-903, CE, Brazil
- Instituto de Educação Física e Esportes, Universidade Federal do Ceará, Av. Ten. Raimundo Rocha, 1639, Cidade Universitária, Juazeiro do Norte, 63048- 080 CE, Brazil
| | - Francisco Sérgio Lopes Vasconcelos Filho
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700, Itaperi, Fortaleza, 60714-903, CE, Brazil
- Coordenadoria de Esporte e Cultura do Movimento, Universidade Federal do Cariri, Av. Ten. Raimundo Rocha, 1639, Cidade Universitária, Juazeiro do Norte, 63048-080, CE, Brazil
| | - Daniel Vieira Pinto
- Departmento de Ciências, Universidade Federal do Ceará, Av. Ten. Raimundo Rocha, 1639, Cidade Universitária, Juazeiro do Norte, 63048-080, CE, Brazil
| | - Juliana Osório Alves
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700, Itaperi, Fortaleza, 60714-903, CE, Brazil
| | - Tyciane de Souza Nascimento
- Coordenadoria de Esporte e Cultura do Movimento, Universidade Federal do Cariri, Av. Ten. Raimundo Rocha, 1639, Cidade Universitária, Juazeiro do Norte, 63048-080, CE, Brazil
| | - Isabele Dutra de Aguiar
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700, Itaperi, Fortaleza, 60714-903, CE, Brazil
| | - Guilherme Nizan Silva Almeida
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700, Itaperi, Fortaleza, 60714-903, CE, Brazil
| | - Vânia Marilande Ceccatto
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700, Itaperi, Fortaleza, 60714-903, CE, Brazil
| | - Paula Matias Soares
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700, Itaperi, Fortaleza, 60714-903, CE, Brazil
| |
Collapse
|
138
|
Corrigan RR, Piontkivska H, Casadesus G. Amylin Pharmacology in Alzheimer's Disease Pathogenesis and Treatment. Curr Neuropharmacol 2022; 20:1894-1907. [PMID: 34852745 PMCID: PMC9886804 DOI: 10.2174/1570159x19666211201093147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
The metabolic peptide hormone amylin, in concert with other metabolic peptides like insulin and leptin, has an important role in metabolic homeostasis and has been intimately linked to Alzheimer's disease (AD). Interestingly, this pancreatic amyloid peptide is known to self-aggregate much like amyloid-beta and has been reported to be a source of pathogenesis in both Type II diabetes mellitus (T2DM) and Alzheimer's disease. The traditional "gain of toxic function" properties assigned to amyloid proteins are, however, contrasted by several reports highlighting neuroprotective effects of amylin and a recombinant analog, pramlintide, in the context of these two diseases. This suggests that pharmacological therapies aimed at modulating the amylin receptor may be therapeutically beneficial for AD development, as they already are for T2DMM. However, the nature of amylin receptor signaling is highly complex and not well studied in the context of CNS function. Therefore, to begin to address this pharmacological paradox in amylin research, the goal of this review is to summarize the current research on amylin signaling and CNS functions and critically address the paradoxical nature of this hormone's signaling in the context of AD pathogenesis.
Collapse
Affiliation(s)
| | | | - Gemma Casadesus
- Address correspondence to this author at the Department of Pharmacology and Therapeutics, University of Florida, PO Box 100495. Gainesville, FL32610 USA; Tel: 352-294-5346; E-mail:
| |
Collapse
|
139
|
Rautenberg EK, Hamzaoui Y, Coletta DK. Mini-review: Mitochondrial DNA methylation in type 2 diabetes and obesity. Front Endocrinol (Lausanne) 2022; 13:968268. [PMID: 36093112 PMCID: PMC9453027 DOI: 10.3389/fendo.2022.968268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes (T2D) and obesity are two of the most challenging public health problems of our time. Therefore, understanding the molecular mechanisms that contribute to these complex metabolic disorders is essential. An underlying pathophysiological condition of T2D and obesity is insulin resistance (IR), a reduced biological response to insulin in peripheral tissues such as the liver, adipose tissue, and skeletal muscle. Many factors contribute to IR, including lifestyle variables such as a high-fat diet and physical inactivity, genetics, and impaired mitochondrial function. It is well established that impaired mitochondria structure and function occur in insulin-resistant skeletal muscle volunteers with T2D or obesity. Therefore, it could be hypothesized that the mitochondrial abnormalities are due to epigenetic regulation of mitochondrial and nuclear-encoded genes that code for mitochondrial structure and function. In this review, we describe the normal function and structure of mitochondria and highlight some of the key studies that demonstrate mitochondrial abnormalities in skeletal muscle of volunteers with T2D and obesity. Additionally, we describe epigenetic modifications in the context of IR and mitochondrial abnormalities, emphasizing mitochondria DNA (mtDNA) methylation, an emerging area of research.
Collapse
Affiliation(s)
- Emma K. Rautenberg
- Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| | - Yassin Hamzaoui
- Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| | - Dawn K. Coletta
- Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, United States
- Department of Medicine, Division of Endocrinology, The University of Arizona College of Medicine, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Dawn K. Coletta,
| |
Collapse
|
140
|
Dhanya R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed Pharmacother 2021; 146:112560. [PMID: 34953390 DOI: 10.1016/j.biopha.2021.112560] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Quercetin, a bioflavonoid abundant in grapefruit, onion, berries, etc., has vast therapeutic potential, especially against Type 2 diabetes and its complications. Quercetin showed similar effects as that of metformin, (widely prescribed antidiabetic drug) in cell lines models (Sajan et al., 2010; Dhanya et al., 2017). In vivo findings also showcase it as a promising agent against diabetes and its pathophysiological complications. SCOPE AND APPROACH Quercetin can be produced on a large scale through a novel fermentation-based glycosylation strategy from cheap substrates and can be utilized as a dietary supplement. The review focuses on the mounting evidence pointing to Quercetin as a promising candidate for managing type 2 diabetes and its oxidative stress mediated pathophysiological complications. CONCLUSION Quercetin acts on multiple targets of diabetes and regulates key signalling pathways which improve the symptoms as well as the complications of Type 2 diabetes. However further studies are needed to improve the bioavailability and to establish a dosing regimen for Quercetin.
Collapse
Affiliation(s)
- R Dhanya
- Cardiovascular Diseases and Diabetes Biology Division, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud Post, Poojappura, Trivandrum 695014, Kerala, India.
| |
Collapse
|
141
|
Sun Y, Wang Z, Nie C, Xue L, Wang Y, Song C, Fan M, Qian H, Ying H, Li Y, Wang L. Hydroxysafflor Yellow A Alters Fuel Selection From Glucose to Fat by Activating the PPARδ Pathway in Myocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13838-13848. [PMID: 34757740 DOI: 10.1021/acs.jafc.1c06034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Modulation of fuel selection is critical in skeletal muscle function. Hydroxysafflor yellow A (HSYA) is the major bioactive component in safflower (Carthamus tinctorius L.) and, in our previous study, has been demonstrated to promote a shift from fast to slow myofiber. However, the effects of HSYA on fuel selection in skeletal muscle and its underlying mechanisms remain unclear. In this study, the in vitro experiments found that water extracts of safflower, rich in HSYA, significantly suppressed the expressions of the genes related to glucose utilization and activated the expressions of the lipolysis genes. Furthermore, HSYA resulted in a shift in substrate utilization toward fat relative to carbohydrates in C2C12 myotubes. Animal tests showed HSYA could significantly reduce the respiratory exchange ratio and prolonge endurance performance in mice and also trigger a switch in intramuscular fuel selection preference from carbohydrates to fat at rest and during exercise. Mechanistic studies revealed that HSYA converted this fuel selection by activating peroxisome proliferator activated receptor δ (PPARδ), and these effects of HSYA could be reversed by specific suppression of PPARδ by PPARδ siRNA. Collectively, our study demonstrated that HSYA can switch substrate utilization from glucose to fat in myocytes by activating PPARδ signaling, resulting in prolonged endurance performance. These findings provided direct evidence for the endurance performance enhancement effect of HSYA and explored new perspectives for the innovation and application of HSYA in the health care industry.
Collapse
Affiliation(s)
- Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhijun Wang
- COFCO Aerocean Oils & Grain Industrial Co., Ltd, Shawan, NO.1 West Park Road, West Urumqi Road, Shawan County, Tacheng District, Xinjiang Province 832100, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chunmei Song
- Food & Pharmacy College, Xuchang University, Xuchang 461000, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Ying
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
142
|
Relevance of mitochondrial dysfunction in heart disease associated with insulin resistance conditions. Pflugers Arch 2021; 474:21-31. [PMID: 34807312 DOI: 10.1007/s00424-021-02638-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022]
Abstract
Insulin resistance plays a key role in the development and progression of obesity, diabetes, and their complications. Moreover, insulin resistance is considered the principal link between metabolic diseases and cardiovascular diseases. Heart disease associated with insulin resistance is one of the most important consequences of both obesity and diabetes, and it is characterized by impaired cardiac energetics, diastolic dysfunction, and finally heart failure. Mitochondrion plays a key role in cell energy homeostasis and is the main source of reactive oxygen species. Obesity and diabetes are associated with alterations in mitochondrial function and dynamics. Mitochondrial dysfunction is characterized by changes in mitochondrial respiratory chain with reduced ATP production and elevated reactive oxygen species production. These mitochondrial alterations together with inflammation contribute to the development and progression of heart disease under insulin resistance conditions. Finally, numerous miRNAs participate in the regulation of energy substrate metabolism, reactive oxygen species production, and apoptotic pathways within the mitochondria. This notion supports the relevance of interactions between miRNAs and mitochondrial dysfunction in the pathophysiology of metabolic heart disease.
Collapse
|
143
|
Setyawati T, Jati Kusuma R, Freitag Luglio H, Oktiyani N, Sunarti S, Nur R, Hendra S. The Effect of Gembili Starch (Dioscorea esculenta) and Eubacterium rectal Supplementation on Skeletal Muscle Peroxisome Proliferator-Activated Receptor γ Coactivator 1α (Pgc-1α) Expression in Diabetic Mice Models. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Gembili or Dioscorea esculenta is a local food that is produced by several areas in Indonesia. Few studies have reported its health benefits for diabetes mellitus but a little is understood about its mechanism of action. PGC-1α is a transcriptional coactivator for genes that involved in energy metabolism and increased expression of this gene has previously been associated with improved insulin sensitivity.
AIM: The objective of this study was to investigate the effect of Gembili starch and Gembili starch with butirogenic bacteria Eubacterium rectal on PGC-1α expression in skeletal muscle of diabetic mice.
MATERIALS AND METHODS: Three months old male diabetic Wistar mice were divided into groups based on dietary supplement: Gembili starch only; Gembili starch with E. rectal; and E. rectal only. Positive (diabetic mice) and negative (non-diabetic) control groups were used in this study. After 4 weeks of supplementation, mice were sacrificed and muscle tissue was taken from musculus vastus latissimus. Plasma blood glucose was measured before and after intervention. PGC-1α expression was measured with immunohistochemistry and quantified by dividing cells that produce PGC-1α with total cells.
RESULTS: Plasma blood glucose was reduced after invention in group that received Gembili starch only (p < 0.001); Gembili starch with E. rectal (p < 0.001); and E. rectal only (p < 0.001). The protein expression of PGC-1α in diabetic mice receiving Gembili starch only was significantly higher compared to control (p < 0.05).
CONCLUSION: This study shown that Gembili starch supplementation was able to improve glucose control in diabetic mice and this effect was obtained perhaps through PGC-1α activation. Further study is needed to investigate the effect of Gembili starch supplementation on fat metabolism.
Collapse
|
144
|
AICAR stimulates mitochondrial biogenesis and BCAA catabolic enzyme expression in C2C12 myotubes. Biochimie 2021; 195:77-85. [PMID: 34798200 DOI: 10.1016/j.biochi.2021.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022]
Abstract
Type 2 diabetes is characterized by reduced insulin sensitivity, elevated blood metabolites, and reduced mitochondrial metabolism. Insulin resistant populations often exhibit reduced expression of genes governing mitochondrial metabolism such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Interestingly, PGC-1α regulates the expression of branched-chain amino acid (BCAA) metabolism, and thus, the consistently observed increased circulating levels of BCAA in diabetics may be partially explained by reduced PGC-1α expression. Conversely, PGC-1α upregulation appears to increase BCAA catabolism. PGC-1α activity is regulated by 5'-AMP-activated protein kinase (AMPK), however, only limited experimental data exists on the effect of AMPK activation in the regulation of BCAA catabolism. The present report examined the effects of the commonly used AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) on the metabolism and expression of several related targets (including BCAA catabolic enzymes) of cultured myotubes. C2C12 myotubes were treated with AICAR at 1 mM for up to 24 h. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Metabolic gene and protein expression were assessed via qRT-PCR and western blot, respectively. AICAR treatment significantly increased mitochondrial content and peak mitochondrial capacity. AICAR treatment also increased AMPK activation and mRNA expression of several regulators of mitochondrial biogenesis but reduced glycolytic metabolism and mRNA expression of several glycolytic enzymes. Interestingly, branched-chain alpha-keto acid dehydrogenase a (BCKDHa) protein was significantly increased following AICAR-treatment suggesting increased overall BCAA catabolic capacity in AICAR-treated cells. Together, these experiments demonstrate AICAR/AMPK activation can upregulate BCAA catabolic machinery in a model of skeletal muscle.
Collapse
|
145
|
de Wit-Verheggen VHW, van de Weijer T. Changes in Cardiac Metabolism in Prediabetes. Biomolecules 2021; 11:1680. [PMID: 34827678 PMCID: PMC8615987 DOI: 10.3390/biom11111680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
In type 2 diabetes mellitus (T2DM), there is an increased prevalence of cardiovascular disease (CVD), even when corrected for atherosclerosis and other CVD risk factors. Diastolic dysfunction is one of the early changes in cardiac function that precedes the onset of cardiac failure, and it occurs already in the prediabetic state. It is clear that these changes are closely linked to alterations in cardiac metabolism; however, the exact etiology is unknown. In this narrative review, we provide an overview of the early cardiac changes in fatty acid and glucose metabolism in prediabetes and its consequences on cardiac function. A better understanding of the relationship between metabolism, mitochondrial function, and cardiac function will lead to insights into the etiology of the declined cardiac function in prediabetes.
Collapse
Affiliation(s)
- Vera H. W. de Wit-Verheggen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
| | - Tineke van de Weijer
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
146
|
Gilloteaux J, Nicaise C, Sprimont L, Bissler J, Finkelstein JA, Payne WR. Leptin receptor defect with diabetes causes skeletal muscle atrophy in female obese Zucker rats where peculiar depots networked with mitochondrial damages. Ultrastruct Pathol 2021; 45:346-375. [PMID: 34743665 DOI: 10.1080/01913123.2021.1983099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tibialis anterior muscles of 45-week-old female obese Zucker rats with defective leptin receptor and non-insulin dependent diabetes mellitus (NIDDM) showed a significative atrophy compared to lean muscles, based on histochemical-stained section's measurements in the sequence: oxidative slow twitch (SO, type I) < oxidative fast twitch (FOG, type IIa) < fast glycolytic (FG, type IIb). Both oxidative fiber's outskirts resembled 'ragged' fibers and, in these zones, ultrastructure revealed small clusters of endoplasm-like reticulum filled with unidentified electron contrasted compounds, contiguous and continuous with adjacent mitochondria envelope. The linings appeared crenated stabbed by circular patterns resembling those found of ceramides. The same fibers contained scattered degraded mitochondria that tethered electron contrasted droplets favoring larger depots while mitoptosis were widespread in FG fibers. Based on other interdisciplinary investigations on the lipid depots of diabetes 2 muscles made us to propose these accumulated contrasted contents to be made of peculiar lipids, including acyl-ceramides, as those were only found while diabetes 2 progresses in aging obese rats. These could interfere in NIDDM with mitochondrial oxidative energetic demands and muscle functions.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomical Sciences, St George's University School of Medicine, K B Taylor Global Scholar's Program at the University of Northumbria, School of Health and Life Sciences, Newcastle upon Tyne, UK.,Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium.,Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA
| | - Charles Nicaise
- Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium
| | - Lindsay Sprimont
- Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium
| | - John Bissler
- Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA.,Division of Nephrology at St. Jude Children's Research Hospital and Le Bonheur Children's Hospital, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Judith A Finkelstein
- Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA
| | - Warren R Payne
- Institute for Sport and Health, Footscray Park Campus, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
147
|
Takagi H, Ikehara T, Hashimoto K, Tanimoto K, Shimazaki A, Kashiwagi Y, Sakamoto S, Yukioka H. Acetyl-CoA carboxylase 2 inhibition reduces skeletal muscle bioactive lipid content and attenuates progression of type 2 diabetes in Zucker diabetic fatty rats. Eur J Pharmacol 2021; 910:174451. [PMID: 34454928 DOI: 10.1016/j.ejphar.2021.174451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022]
Abstract
Intramyocellular lipid (IMCL) accumulation in skeletal muscle is closely associated with development of insulin resistance. In particular, diacylglycerol and ceramide are currently considered as causal bioactive lipids for impaired insulin action. Recently, inhibition of acetyl-CoA carboxylase 2 (ACC2), which negatively modulates mitochondrial fatty acid oxidation, has been shown to reduce total IMCL content and improve whole-body insulin resistance. This study aimed to investigate whether ACC2 inhibition-induced compositional changes in bioactive lipids, especially diacylglycerol and ceramide, within skeletal muscle contribute to the improved insulin resistance. In skeletal muscle of normal rats, treatment of the ACC2 inhibitor compound 2e significantly decreased both diacylglycerol and ceramide levels while having no significant impact on other lipid metabolite levels. In skeletal muscle of Zucker diabetic fatty (ZDF) rats, which exhibited greater lipid accumulation than that of normal rats, compound 2e significantly decreased diacylglycerol and ceramide levels corresponding to reduced long chain acyl-CoA pools. Additionally, in the lipid metabolomics study, ZDF rats treated with compound 2e also showed improved diabetes-related metabolic disturbance, as reflected by delayed hyperinsulinemia as well as upregulated gene expression associated with diabetic conditions in skeletal muscle. These metabolic improvements were strongly correlated with the bioactive lipid reductions. Furthermore, long-term treatment of compound 2e markedly improved whole-body insulin resistance, attenuated hyperglycemia and delayed insulin secretion defect even at severe diabetic conditions. These findings suggest that ACC2 inhibition decreases diacylglycerol and ceramide accumulation within skeletal muscle by enhancing acyl-CoA breakdown, leading to attenuation of lipid-induced insulin resistance and subsequent diabetes progression.
Collapse
Affiliation(s)
- Hiroyuki Takagi
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan.
| | - Tatsuya Ikehara
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Kumi Hashimoto
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Keiichi Tanimoto
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Atsuyuki Shimazaki
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Yuto Kashiwagi
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Shingo Sakamoto
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Hideo Yukioka
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| |
Collapse
|
148
|
Urashima K, Miramontes A, Garcia LA, Coletta DK. Potential evidence for epigenetic biomarkers of metabolic syndrome in human whole blood in Latinos. PLoS One 2021; 16:e0259449. [PMID: 34714849 PMCID: PMC8555810 DOI: 10.1371/journal.pone.0259449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Metabolic syndrome (MetS) is highly prevalent worldwide. In the United States, estimates show that more than 30% of the adult population has MetS. MetS consists of multiple phenotypes, including obesity, dyslipidemia, and impaired glucose tolerance. Therefore, identifying the molecular mechanisms to explain this complex disease is critical for diagnosing and treating MetS. We previously showed 70 increased genes and 20 decreased genes in whole blood in MetS participants. The present study aimed to identify blood-based DNA methylation biomarkers in non-MetS versus MetS participants. The present study analyzed whole blood DNA samples from 184 adult participants of Latino descent from the Arizona Insulin Resistance (AIR) registry. We used the National Cholesterol Education Program Adult Treatment Panel III (NCEP: ATP III) criteria to identify non-MetS (n = 110) and MetS (n = 74) participants. We performed whole blood methylation analysis on select genes: ATP Synthase, H+ Transporting mitochondrial F1 Complex, Epsilon Subunit (ATP5E), Cytochrome C Oxidase Subunit VIc (COX6C), and Ribosomal Protein L9 (RPL9). The pyrosequencing analysis was a targeted approach focusing on the promoter region of each gene that specifically captured CpG methylation sites. In MetS participants, we showed decreased methylation in two CpG sites in COX6C and three CpG sites in RPL9, all p < 0.05 using the Mann-Whitney U test. There were no ATP5E CpG sites differently methylated in the MetS participants. Furthermore, while adjusting for age, gender, and smoking status, logistic regression analysis reaffirmed the associations between MetS and mean methylation within COX6C and RPL9 (both p < 0.05). In addition, Spearman's correlation revealed a significant inverse relationship between the previously published gene expression data and methylation data for RPL9 (p < 0.05). In summary, these results highlight potential blood DNA methylation biomarkers for the MetS phenotype. However, future validation studies are warranted to strengthen our findings.
Collapse
Affiliation(s)
- Keane Urashima
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Anastasia Miramontes
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, Arizona, United States of America
| | - Luis A. Garcia
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, Arizona, United States of America
- Center for Disparities in Diabetes Obesity, and Metabolism, University of Arizona, Tucson, Arizona, United States of America
| | - Dawn K. Coletta
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, Arizona, United States of America
- Center for Disparities in Diabetes Obesity, and Metabolism, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
149
|
Singh R, Mohapatra L, Tripathi AS. Targeting mitochondrial biogenesis: a potential approach for preventing and controlling diabetes. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diabetes mellitus is a lingering hyperglycemic ailment resulting in several life-threatening difficulties. Enduring hyperglycemia often persuades the buildup of reactive oxygen species that are the significant pathological makers of diabetic complications. The mitochondrial dysfunction, with mitochondrial damage and too much production of reactive oxygen species, have been proposed to be convoluted in the progress of insulin resistance. Numerous studies advocate that agents that enhance the mitochondrial number and/or decrease their dysfunction, could be greatly helpful in management of diabetes and its complications.
Main body
Mitochondrial biogenesis is an extremely delimited procedure arbitrated by numerous transcription influences, in which mitochondrial fusion and fission happen in synchronization in a standard vigorous cell. But this synchronization is greatly disturbed in diabetic condition designated by modification in the working of several important transcription factors regulating the expressions of different genes. Numerous preclinical and clinical investigations have suggested that, the compromised functions of mitochondria play a significant protagonist in development of pancreatic β-cell dysfunction, skeletal muscle insulin resistance and several diabetic complications. However, there are several phytoconstituents performing through numerous alleyways, either unswervingly by motivating biogenesis or indirectly by constraining or averting dysfunction and producing a beneficial effect on overall function of the mitochondria.
Conclusion
This review describes standard mitochondrial physiology and anomalous modifications that transpire in answer to persistent hyperglycemia in diabetes condition. It also discusses about the different phytoconstituents that can affect the biogenesis pathways of mitochondria and thus can be used in the treatment and prevention of diabetes.
Collapse
|
150
|
Poitras TM, Munchrath E, Zochodne DW. Neurobiological Opportunities in Diabetic Polyneuropathy. Neurotherapeutics 2021; 18:2303-2323. [PMID: 34935118 PMCID: PMC8804062 DOI: 10.1007/s13311-021-01138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
This review highlights a selection of potential translational directions for the treatment of diabetic polyneuropathy (DPN) currently irreversible and without approved interventions beyond pain management. The list does not include all diabetic targets that have been generated over several decades of research but focuses on newer work. The emphasis is firstly on approaches that support the viability and growth of peripheral neurons and their ability to withstand a barrage of diabetic alterations. We include a section describing Schwann cell targets and finally how mitochondrial damage has been a common element in discussing neuropathic damage. Most of the molecules and pathways described here have not yet reached clinical trials, but many trials have been negative to date. Nonetheless, these failures clear the pathway for new thoughts over reversing DPN.
Collapse
Affiliation(s)
- Trevor M Poitras
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Easton Munchrath
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|