101
|
Georgellis D, Kwon O, De Wulf P, Lin EC. Signal decay through a reverse phosphorelay in the Arc two-component signal transduction system. J Biol Chem 1998; 273:32864-9. [PMID: 9830034 DOI: 10.1074/jbc.273.49.32864] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli senses and signals anoxic or low redox conditions in its growth environment by the Arc two-component system. Under those conditions, the tripartite sensor kinase ArcB undergoes autophosphorylation at the expense of ATP and subsequently transphosphorylates its cognate response regulator ArcA through a His --> Asp --> His --> Asp phosphorelay pathway. In this study we used various combinations of wild-type and mutant ArcB domains to analyze in vitro the pathway for signal decay. The results indicate that ArcA-P dephosphorylation does not occur by direct hydrolysis but by transfer of the phosphoryl group to the secondary transmitter and subsequently to the receiver domain of ArcB. This reverse phosphorelay involves both the conserved His-717 of the secondary transmitter domain and the conserved Asp-576 of the receiver domain of ArcB but not the conserved His-292 of its primary transmitter domain. This novel pathway for signal decay may generally apply to signal transduction systems with tripartite sensor kinases.
Collapse
Affiliation(s)
- D Georgellis
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
102
|
Xu D, Yang C, Kaplan HB. Myxococcus xanthus sasN encodes a regulator that prevents developmental gene expression during growth. J Bacteriol 1998; 180:6215-23. [PMID: 9829930 PMCID: PMC107706 DOI: 10.1128/jb.180.23.6215-6223.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1998] [Accepted: 10/01/1998] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus multicellular fruiting body development is initiated by nutrient limitation at high cell density. Five clustered point mutations (sasB5, -14, -15, -16, and -17) can bypass the starvation and high-cell-density requirements for expression of the 4521 developmental reporter gene. These mutants express 4521 at high levels during growth and development in an asgB background, which is defective in generation of the cell density signal, A signal. A 1.3-kb region of the sasB locus cloned from the wild-type chromosome restored the SasB+ phenotype to the five mutants. DNA sequence analysis of the 1.3-kb region predicted an open reading frame, designated SasN. The N terminus of SasN appears to contain a strongly hydrophobic region and a leucine zipper motif. SasN showed no significant sequence similarities to known proteins. A strain containing a newly constructed sasN-null mutation and Omega4521 Tn5lac in an otherwise wild-type background expressed 4521 at a high level during growth and development. A similar sasN-null mutant formed abnormal fruiting bodies and sporulated at about 10% the level of wild type. These data indicate that the wild-type sasN gene product is necessary for normal M. xanthus fruiting body development and functions as a critical regulator that prevents 4521 expression during growth.
Collapse
Affiliation(s)
- D Xu
- Department of Microbiology and Molecular Genetics, The University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
103
|
Hsieh MH, Lam HM, van de Loo FJ, Coruzzi G. A PII-like protein in Arabidopsis: putative role in nitrogen sensing. Proc Natl Acad Sci U S A 1998; 95:13965-70. [PMID: 9811909 PMCID: PMC24990 DOI: 10.1073/pnas.95.23.13965] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/1998] [Indexed: 11/18/2022] Open
Abstract
PII is a protein allosteric effector in Escherichia coli and other bacteria that indirectly regulates glutamine synthetase at the transcriptional and post-translational levels in response to nitrogen availability. Data supporting the notion that plants have a nitrogen regulatory system(s) includes previous studies showing that the levels of mRNA for plant nitrogen assimilatory genes such as glutamine synthetase (GLN) and asparagine synthetase (ASN) are modulated by carbon and organic nitrogen metabolites. Here, we have characterized a PII homolog (GLB1) in two higher plants, Arabidopsis thaliana and Ricinus communis (Castor bean). Each plant PII-like protein has high overall identity to E. coli PII (50%). Western blot analyses reveal that the plant PII-like protein is a nuclear-encoded chloroplast protein. The PII-like protein of plants appears to be regulated at the transcriptional level in that levels of GLB1 mRNA are affected by light and metabolites. To initiate studies of the in vivo function of the Arabidopsis PII-like protein, we have constructed transgenic lines in which PII expression is uncoupled from its native regulation. Analyses of these transgenic plants support the notion that the plant PII-like protein may serve as part of a complex signal transduction network involved in perceiving the status of carbon and organic nitrogen. Thus, the PII protein found in archaea, bacteria, and now in higher eukaryotes (plants) is one of the most widespread regulatory proteins known, providing evidence for an ancestral metabolic regulatory mechanism that may have existed before the divergence of these three domains of life.
Collapse
Affiliation(s)
- M H Hsieh
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
104
|
Widdick D, Farez-Vidal E, Austin S, Dixon R. Properties of a mutant form of the prokaryotic enhancer binding protein, NTRC, which hydrolyses ATP in the absence of effectors. FEBS Lett 1998; 437:70-4. [PMID: 9804174 DOI: 10.1016/s0014-5793(98)01206-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mutation S170A in the proposed nucleotide binding site of the transcriptional activator protein NTRC abolishes its ability to catalyse open promoter complex formation by the sigma(N)-RNA polymerase holoenzyme. NTRC(S170A) has significant ATPase activity, which, in contrast to the wild-type protein, is unaffected by phosphorylation or binding to enhancer sites on DNA. The mutant protein appears to oligomerise normally on DNA in response to phosphorylation but the ATPase activity is apparently not responsive to changes in oligomerisation state. The defect in transcriptional activation is discussed in relation to mutations in other sigma(N)-dependent activators.
Collapse
Affiliation(s)
- D Widdick
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich, UK
| | | | | | | |
Collapse
|
105
|
Jung K, Altendorf K. Truncation of amino acids 12-128 causes deregulation of the phosphatase activity of the sensor kinase KdpD of Escherichia coli. J Biol Chem 1998; 273:17406-10. [PMID: 9651326 DOI: 10.1074/jbc.273.28.17406] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kdpFABC operon, which encodes the structural genes for the high affinity K+ transport complex KdpFABC, is regulated by the sensor kinase KdpD and the response regulator KdpE. KdpD is a bifunctional enzyme catalyzing the autophosphorylation by ATP and the dephosphorylation of the corresponding response regulator KdpE. Here, we demonstrate that the phosphatase activity of KdpD is dependent on ATP, whereas GTP, ITP, CTP, ADP, and GDP have no effect. The phosphatase activity requires only ATP binding, because nonhydrolyzable analogs (adenosine-5'-[gamma-thio]triphosphate and adenosine-5'-[beta,gamma-imido]triphosphate) work as well. However, KdpD proteins missing amino acids 12-128 are characterized by a phosphatase activity that is independent of ATP. These proteins are still able to respond to K+ starvation, but an increase in osmolarity is no longer sensed. Comparison of different KdpD sequences reveals a conserved motif in this amino acid region that is very similar to a classical ATP-binding site (Walker A motif). Replacement of the conserved Gly37, Lys38, and Thr39 residues in the consensus ATP-binding sequence results in a KdpD protein that causes a kdpFABC expression pattern comparable with that seen with KdpD proteins missing amino acids 12-128. However, in vitro phosphatase activity is comparable with that of wild-type KdpD. These results suggest that amino acids 12-128 of KdpD are important for its activity and that an additional ATP-binding site in the N-terminal region seems to be involved in modulation of the phosphatase activity.
Collapse
Affiliation(s)
- K Jung
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, D-49069 Osnabrück, Germany.
| | | |
Collapse
|
106
|
de Zamaroczy M. Structural homologues P(II) and P(Z) of Azospirillum brasilense provide intracellular signalling for selective regulation of various nitrogen-dependent functions. Mol Microbiol 1998; 29:449-63. [PMID: 9720864 DOI: 10.1046/j.1365-2958.1998.00938.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
P(II) (glnB) is a signal transduction protein that in Azospirillum brasilense is specifically required for nitrogen fixation. Little is known about whether and how its homologue P(Z) (glnZ) participates in the regulation of cellular functions. In this study, we have shown the regulatory action of the two proteins by analysing the relevant single and double null-mutant strains. The transcription of glnZ is monocistronic, and it starts mainly from a sigma54-dependent promoter, activated by NtrC. glnZ expression is dependent on the ntr system, even under conditions of nitrogen excess, and is greatly enhanced in the presence of aspartate. P(Z) is uridylylated in response to nitrogen limitation, like P(II), although different amounts of the two proteins are synthesized. P(II) is required for the dephosphorylation of NtrC. Thus, in the absence of P(II), the repression of nitrate assimilation is not promoted, which, in turn, leads to a high rate of ammonium excretion. Unexpectedly, P(II) and P(Z) proteins are not essential for the reversible modification of glutamine synthetase. (Methyl)ammonium transport into the cell is negatively regulated by P(Z). The growth of a double-mutant strain (glnB::kan; glnZ::omega) is drastically disabled, although wild-type growth is restored by complementation with either glnB or glnZ. We conclude that P(II) and P(Z), despite their structural similarity, are involved in different regulatory processes, except for that required for cell growth.
Collapse
Affiliation(s)
- M de Zamaroczy
- Unité de Physiologie Cellulaire (CNRS URA 1300), Département des Biotechnologies, Institut Pasteur, Paris, France.
| |
Collapse
|
107
|
Travers A, Muskhelishvili G. DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. J Mol Biol 1998; 279:1027-43. [PMID: 9642081 DOI: 10.1006/jmbi.1998.1834] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prokaryotic transcriptional activation often involves the formation of DNA microloops upstream of the polymerase binding site. There is substantial evidence that these microloops function to bring activator and polymerase into close spatial proximity. However additional functions are suggested by the ability of certain activators, of which FIS is the best characterised example, to facilitate polymerase binding, promoter opening and polymerase escape. We review here the evidence for the concept that the topology of the microloop formed by such activators is tightly coupled to the structural transitions in DNA mediated by RNA polymerase. In this process, which we term torsional transmission, a major function of the activator is to act as a local topological homeostat. We argue that the same mechanism may also be employed in site-specific DNA inversion.
Collapse
Affiliation(s)
- A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, England
| | | |
Collapse
|
108
|
Cullen PJ, Bowman WC, Hartnett DF, Reilly SC, Kranz RG. Translational activation by an NtrC enhancer-binding protein. J Mol Biol 1998; 278:903-14. [PMID: 9600852 DOI: 10.1006/jmbi.1998.1745] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Rhodobacter capsulatus NtrC protein is a bacterial enhancer-binding protein that activates the transcription of at least five genes by a mechanism that does not require the RpoN RNA polymerase sigma factor. The nifR3-ntrB-ntrC operon in R. capsulatus codes for the nitrogen-sensing two component regulators NtrB and NtrC, as well as for NifR3, a protein of unknown function that is highly conserved in both prokaryotes and eukaryotes. Evidence of a unique translational control of NifR3 mediated directly by the NtrC enhancer-binding protein is reported. The nifR3-ntrB-ntrC operon is expressed from a single promoter upstream of nifR3 with the levels of transcript equivalent in wild-type and ntrC mutants under nitrogen-limited or nitrogen-sufficient conditions. LacZ reporter analyses of this operon and immunological quantitation of NifR3 and NtrC demonstrate that, unlike NtrC levels which remain constant, production of NifR3 is at least ten to 40-fold reduced in NtrC- strains. NifR3 is increased at least fivefold upon nitrogen limitation whereas NtrC production is constitutive. Surprisingly, the purified NtrC protein binds cooperatively to the nifR3 promoter region in vitro at two sets of tandem binding sites centered at +1 and -81 nucleotides relative to the transcriptional start site. Deletion analysis demonstrates that the upstream tandem sites are essential for nitrogen and NtrC-dependent production of NifR3 in vivo , but are not necessary for nifR3 transcription. These experiments indicate that NtrC stimulates the translation of the NifR3 messenger RNA while tethered to the promoter DNA. This is in contrast to five other promoters (nifA1, nifA2, glnB, mopA and anfA) in R. capsulatus which are transcriptionally activated by NtrC bound to one set of tandem binding sites that are centered greater than 100 bp upstream of the transcriptional start site.
Collapse
Affiliation(s)
- P J Cullen
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
109
|
Purich DL. Advances in the enzymology of glutamine synthesis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1998; 72:9-42. [PMID: 9559050 DOI: 10.1002/9780470123188.ch2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Meister's proposal of a gamma-glutamyl-P intermediate in the glutamine synthetase reaction set the scene for understanding how the stepwise activation of the carboxyl group greatly increased its susceptibility toward nucleophilic attack and amide bond synthesis. Topics covered in this review include: the discovery of the enzymatic synthesis of glutamine; the role of glutamine synthetase in defining the thermodynamics of ATPases; early isotopic tracer studies of the synthetase reaction; the proposed intermediacy of gamma-glutamyl-phosphate; the mechanism of methionine sulfoximine inhibition; stereochemical mapping of the enzyme's active site; detection of enzyme reaction cycle intermediates; borohydride trapping of gamma-glutamyl-P; positional isotope exchanges catalyzed by glutamine synthetase; regulation of bacterial enzyme; and a brief account of how knowledge of the atomic structure of bacterial glutamine synthetase has clarified ligand binding interactions. Concluding remarks also address how the so-called "Protein Ligase Problem" may be solved by extending the catalytic versatility of carboxyl-group activating enzymes.
Collapse
Affiliation(s)
- D L Purich
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville 32610, USA
| |
Collapse
|
110
|
Sevenich FW, Langowski J, Weiss V, Rippe K. DNA binding and oligomerization of NtrC studied by fluorescence anisotropy and fluorescence correlation spectroscopy. Nucleic Acids Res 1998; 26:1373-81. [PMID: 9490780 PMCID: PMC147426 DOI: 10.1093/nar/26.6.1373] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fluorescence anisotropy and fluorescence correlation spectroscopy measurements of rhodamine-labeled DNA oligonucleotide duplexes have been used to determine equilibrium binding constants for DNA binding of the prokaryotic transcription activator protein NtrC. Measurements were made with wild-type NtrC from Escherichia coli and the constitutively active mutant NtrCS160Ffrom Salmonella using DNA duplexes with one or two binding sites. The following results were obtained: (i) the dissociation constant K d for binding of one NtrC dimer to a single binding site was the same for the wild-type and mutant proteins within the error of measurement. (ii) The value of K d decreased from 1.4 +/- 0.7 x 10(-11) M at 15 mM K acetate to 5.8 +/- 2.6 x 10(-9) M at 600 mM K acetate. From the salt dependence of the dissociation constant we calculated that two ion pairs form upon binding of one dimeric protein to the DNA. (iii) Binding of two NtrC dimers to the DNA duplex with two binding sites occured with essentially no cooperativity. Titration curves of NtrCS160Fbinding to the same duplex demonstrated that more than two protein dimers of the mutant protein could bind to the DNA.
Collapse
Affiliation(s)
- F W Sevenich
- Deutsches Krebsforschungszentrum, Abteilung Biophysik der Makromolekule, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
111
|
Salto R, Delgado A, Michán C, Marqués S, Ramos JL. Modulation of the function of the signal receptor domain of XylR, a member of a family of prokaryotic enhancer-like positive regulators. J Bacteriol 1998; 180:600-4. [PMID: 9457863 PMCID: PMC106927 DOI: 10.1128/jb.180.3.600-604.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The XylR protein controls expression from the Pseudomonas putida TOL plasmid upper pathway operon promoter (Pu) in response to aromatic effectors. XylR-dependent stimulation of transcription from a Pu::lacZ fusion shows different induction kinetics with different effectors. With toluene, activation followed a hyperbolic curve with an apparent K of 0.95 mM and a maximum beta-galactosidase activity of 2,550 Miller units. With o-nitrotoluene, in contrast, activation followed a sigmoidal curve with an apparent K of 0.55 mM and a Hill coefficient of 2.65. m-Nitrotoluene kept the XylR regulator in an inactive transcriptional form. Therefore, upon binding of an effector, the substituent on the aromatic ring leads to productive or unproductive XylR forms. The different transcriptional states of the XylR regulator are substantiated by XylR mutants. XylRE172K is a mutant regulator that is able to stimulate transcription from the Pu promoter in the presence of m-nitrotoluene; however, its response to m-aminotoluene was negligible, in contrast with the wild-type regulator. These results illustrate the importance of the electrostatic interactions in effector recognition and in the stabilization of productive and unproductive forms by the regulator upon aromatic binding. XylRD135N and XylRD135Q are mutant regulators that are able to stimulate transcription from Pu in the absence of effectors, whereas substitution of Glu for Asp135 in XylRD135E resulted in a mutant whose ability to recognize effectors was severely impaired. Therefore, the conformation of mutant XylRD135Q as well as XylRD135N seemed to mimic that of the wild-type regulator when effector binding occurred, whereas mutant XylRD135E seemed to be blocked in a conformation similar to that of wild-type XylR and XylRE172K upon binding to an inhibitor molecule such as m-nitrotoluene or m-aminotoluene.
Collapse
Affiliation(s)
- R Salto
- Department of Biochemistry, Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| | | | | | | | | |
Collapse
|
112
|
Bertoni G, Marqués S, de Lorenzo V. Activation of the toluene-responsive regulator XylR causes a transcriptional switch between sigma54 and sigma70 promoters at the divergent Pr/Ps region of the TOL plasmid. Mol Microbiol 1998; 27:651-9. [PMID: 9489676 DOI: 10.1046/j.1365-2958.1998.00715.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanism by which XylR, the toluene-responsive activator of the sigma54-dependent Pu and Ps promoters of the Pseudomonas TOL plasmid pWW0, downregulates its own sigma70 promoter Prhas been examined. An in vitro transcription system was developed in order to reproduce the repression of Probserved in cells of P. putida (pWW0) both in the presence and in the absence of the XylR inducer, benzyl alcohol. DNA templates bearing the two sigma70-RNA polymerase (RNAP) binding sites of Pr, which overlap the upstream activating sequences (UAS) for XylR in the divergent sigma54 promoter Ps, were transcribed in the presence of a constitutively active XylR variant deleted of its N-terminal domain (XylRdeltaA). The addition of ATP, known to trigger multimerization of the regulator at the UAS, enhanced the repression of Pr by XylR. Furthermore, we observed activation of the divergent sigma54 promoter Ps during Pr downregulation by XylRdeltaA. These results support the notion that activation of XylR by aromatic inducers in vivo triggers a transcriptional switch between Pr and Ps. Such a switch is apparently caused by the ATP-dependent multimerization and strong DNA binding of the protein required for activation of the sigma54 promoter. This device could reset the level of XylR expression during activation of the sigma54 Pu and Ps promoters of the TOL plasmid.
Collapse
Affiliation(s)
- G Bertoni
- Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
113
|
Vénien-Bryan C, Balavoine F, Toussaint B, Mioskowski C, Hewat EA, Helme B, Vignais PM. Structural study of the response regulator HupR from Rhodobacter capsulatus. Electron microscopy of two-dimensional crystals on a nickel-chelating lipid. J Mol Biol 1997; 274:687-92. [PMID: 9405151 DOI: 10.1006/jmbi.1997.1431] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two-dimensional crystals of the histidine-tagged-HupR protein, a transcriptional regulator from the photosynthetic bacterium Rhodobacter capsulatus, were obtained upon specific interaction with a Ni2+-chelated lipid monolayer. HupR is a response regulator of the NtrC family; it activates the transcription of the structural genes, hupSLC, of the [NiFe]hydrogenase. The lipid (Ni-NTA-DOGA) uses the metal chelator nitrilotriacetic group as the hydrophilic headgroup and contains unsaturated oleyl tails to provide the fluidity necessary for two-dimensional protein crystallization. A projection map of the full-length protein at 18 A resolution was generated by analysing electron microscopy micrographs of negatively stained crystals. The HupR protein appeared to be dimeric and revealed a characteristic "propeller-like" motif. Each monomer forms an L-shaped structure.
Collapse
Affiliation(s)
- C Vénien-Bryan
- Institut de Biologie Structurale Jean-Pierre Ebel (CEA-CNRS), 41 av. des Martyrs, Grenoble cedex 1, 38027, France
| | | | | | | | | | | | | |
Collapse
|
114
|
Wang RH, Tao L, Trumbore MW, Berger SL. Turnover of the acyl phosphates of human and murine prothymosin alpha in vivo. J Biol Chem 1997; 272:26405-12. [PMID: 9334215 DOI: 10.1074/jbc.272.42.26405] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Prothymosin alpha is a small, highly acidic, abundant, nuclear, mammalian protein which is essential for cell growth. Our laboratory has recently shown that primate prothymosin alpha contains stoichiometric amounts of phosphate on the glutamyl groups of the protein and that in vitro the phosphate undergoes rapid hydrolysis or transfer to a nearby serine residue. Here an assay for the presence of acyl phosphates in vivo has been developed by measuring stable phosphoserine and phosphothreonine in vitro. The assay was used to determine the half-life of the acyl phosphates on prothymosin alpha in vivo by pulse-labeling HeLa cells with [32P]orthophosphate and chasing using three different techniques: permeabilization with digitonin to allow extracellular ATP to equilibrate with the intracellular pool; electroporation in the presence of ATP to reduce the specific activity of [32P]ATP by expansion of the pool; and incubation with inorganic phosphate. Regardless of the method, the phosphate turned over with a half-life of 75-90 min. The ability of cells to phosphorylate old prothymosin alpha molecules was established by demonstrating equivalent labeling of the protein with [32P]orthophosphate in the presence and absence of cycloheximide. The half-life of the acyl phosphates was also studied in resting and growing NIH3T3 cells, with measured values of 30-35 and 70 min, respectively. Our data suggest that the "activity" of prothymosin alpha involves the turnover of its acyl phosphates and that it participates in a function common to all nucleated mammalian cells regardless of whether they are quiescent or undergoing rapid proliferation. This is the first measurement of the stability of protein-bound acyl phosphates in vivo.
Collapse
Affiliation(s)
- R H Wang
- Section on Genes and Gene Products, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
115
|
Trumbore MW, Wang RH, Enkemann SA, Berger SL. Prothymosin alpha in vivo contains phosphorylated glutamic acid residues. J Biol Chem 1997; 272:26394-404. [PMID: 9334214 DOI: 10.1074/jbc.272.42.26394] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human and monkey prothymosin alpha contain activated carbonyl groups on glutamic acid residues. Three lines of evidence indicate the existence of unusual phosphates. 1) Prothymosin alpha continued to be metabolically labeled with [32P]orthophosphoric acid despite a mutation at Ser1, the sole site of phosphate in purified bovine prothymosin alpha (Sburlati, A. R., De La Rosa, A., Batey, D. W., Kurys, G. L., Manrow, R. E., Pannell, L. K., Martin, B. M., Sheeley, D. M., and Berger, S. L. (1993) Biochemistry 32, 4587-4596). 2) Immediately upon cell lysis, the pH stability curves of metabolically labeled native [32P]prothymosin alpha or a [32P]histidine-tagged variant resembled the pH stability curve of acetyl phosphate. 3) After a brief incubation at pH 7, these curves changed from a pattern diagnostic for an acyl phosphate to that characteristic of a serine or threonine phosphate, an observation consistent with transfer of phosphate in vitro. Our data indicate that most of prothymosin alpha's phosphates are subject instantaneously to hydrolysis, based on the observation that greater than 90% of the phosphate initially found at pH 7 disappeared at the extremes of pH. Rapid loss of phosphate was not affected by the presence of phosphatase inhibitors including 50 mM sodium fluoride, 1 mM okadaic acid, and 0.5 mM calyculin A. The amount of phosphate missing could not be ascertained, but the trifling amount recovered on Ser or Thr depended heavily on conditions favoring the transient survival of labile phosphate. Further analysis using COS cells lysed in the presence of sodium borohydride showed that: 1) phosphate recovered on prothymosin alpha decreased 8-fold when lysates were treated with borohydride; 2) the reagent caused 4-8 glutamic acid residues/molecule to vanish; 3) using [3H]NaBH4, label was introduced into proline, a product derived from reductive cleavage of phosphoglutamate; and 4) [3H]proline was localized almost exclusively to a peptide with pronounced homology to the histone binding site of nucleoplasmin, a chromatin remodeling protein found in Xenopus laevis. Our data demonstrate that prothymosin alpha is energy-rich by virtue of stoichiometric amounts of glutamyl phosphate.
Collapse
Affiliation(s)
- M W Trumbore
- Section on Genes and Gene Products, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
116
|
Nohaile M, Kern D, Wemmer D, Stedman K, Kustu S. Structural and functional analyses of activating amino acid substitutions in the receiver domain of NtrC: evidence for an activating surface. J Mol Biol 1997; 273:299-316. [PMID: 9367763 DOI: 10.1006/jmbi.1997.1296] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The bacterial enhancer-binding protein NtrC activates transcription when phosphorylated on aspartate 54 in its amino (N)-terminal regulatory domain or when altered by constitutively activating amino acid substitutions. The N-terminal domain of NtrC, which acts positively on the remainder of the protein, is homologous to a large family of signal transduction domains called receiver domains. Phosphorylation of an aspartate residue in a receiver domain modulates the function of a downstream target, but the accompanying structural changes are not clear. In the present work we examine structural and functional differences between the wild-type receiver domain of NtrC and mutant forms carrying constitutively activating substitutions. Combinations of such substitutions resulted in both increased structural changes in the N-terminal domain, monitored by NMR chemical shift differences, and increased transcriptional activation by the full-length protein. Structural changes caused by substitutions outside the active site (D86N and A89T) were not only local but extended over a substantial portion of the N-terminal domain including the region from alpha-helix 3 to beta-strand 5 ("3445 face") and propagating to the active site. Interestingly, the activating substitution of glutamate for aspartate at the site of phosphorylation (D54E) also triggered structural changes in the 3445 face. Thus, the active site and the 3445 face appear to interact. Implications with respect to how phosphorylation may affect the structure of receiver domains and how structural changes may be communicated to the remainder of NtrC are discussed.
Collapse
Affiliation(s)
- M Nohaile
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
117
|
Liu W, Hulett FM. Bacillus subtilis PhoP binds to the phoB tandem promoter exclusively within the phosphate starvation-inducible promoter. J Bacteriol 1997; 179:6302-10. [PMID: 9335276 PMCID: PMC179543 DOI: 10.1128/jb.179.20.6302-6310.1997] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Several gene products, including three two-component systems, make up a signal transduction network that controls the phosphate starvation response in Bacillus subtilis. Epistasis experiments indicate that PhoP, a response regulator, is furthest downstream of the known regulators in the signaling pathway that regulates Pho regulon genes. We report the overexpression, purification, and use of PhoP in investigating its role in Pho regulon gene activation. PhoP was a substrate for both the kinase and phosphatase activities of its cognate sensor kinase, PhoR. It was not phosphorylated by acetyl phosphate. Purified phosphorylated PhoP (PhoPP) had a half-life of approximately 2.5 h, which was reduced to about 15 min by addition of the same molar amount of *PhoR (the cytoplasmic region of PhoR). ATP significantly increased phosphatase activity of *PhoR on PhoPP. In gel filtration and cross-linking studies, both PhoP and PhoPP were shown to be dimers. The dimerization domain was located within the 135 amino acids at the N terminus of PhoP. Phosphorylated or unphosphorylated PhoP bound to one of the alkaline phosphatase gene promoters, the phoB promoter. Furthermore, PhoP bound exclusively to the -18 to -73 region (relative to the transcriptional start site +1) of the phosphate starvation-inducible promoter (Pv) but not to the adjacent developmentally regulated promoter (Ps). These data corroborate the genetic data for phoB regulation and suggest that activation of phoB is via direct interaction between PhoP and the phoB promoter. Studies of the phosphorylation, oligomerization, and DNA binding activity of the PhoP protein demonstrate that its N-terminal phosphorylation and dimerization domain and its C-terminal DNA binding domain function independently of one another, distinguishing PhoP from other response regulators, such as PhoB (Escherichia coli) and NtrC.
Collapse
Affiliation(s)
- W Liu
- Department of Biological Sciences, University of Illinois at Chicago, 60607, USA
| | | |
Collapse
|
118
|
Gupte G, Woodward C, Stout V. Isolation and characterization of rcsB mutations that affect colanic acid capsule synthesis in Escherichia coli K-12. J Bacteriol 1997; 179:4328-35. [PMID: 9209051 PMCID: PMC179257 DOI: 10.1128/jb.179.13.4328-4335.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Regulation of colanic acid polysaccharide capsule synthesis in Escherichia coli requires the proteins RcsC and RcsB, in addition to several other proteins. By sequence similarity, these two proteins appear to be members of the two-component sensor-effector regulatory family found in bacteria. The present study characterizes the functional domains of RcsB. We have isolated mutations in rcsB that are able to suppress an rcsC "up" mutation (i.e., leading to increase in cps transcription) that normally results in constitutive expression of the capsule. In addition, constitutive capsule mutations in rcsB have been isolated. From the characterization of the mutants and by analogy to the three-dimensional structure of CheY, we have begun to define different domains of RcsB and to assign functions to them. A few of the constitutive capsule mutations were localized in an acidic pocket that has been proposed to play a crucial role in phosphorylation of RcsB. As seen in other two-component systems, an aspartate-to-glutamate substitution at the presumed site of phosphorylation of RcsB resulted in constitutive capsule expression. Lastly, several of our rcsB mutants were found to be allele specific (rcsC137 specific) for rcsC, suggesting a physical as well as functional interaction between RcsC and RcsB proteins.
Collapse
Affiliation(s)
- G Gupte
- Department of Microbiology and Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe 85287-2701, USA
| | | | | |
Collapse
|
119
|
Jiang P, Zucker P, Atkinson MR, Kamberov ES, Tirasophon W, Chandran P, Schefke BR, Ninfa AJ. Structure/function analysis of the PII signal transduction protein of Escherichia coli: genetic separation of interactions with protein receptors. J Bacteriol 1997; 179:4342-53. [PMID: 9209053 PMCID: PMC179259 DOI: 10.1128/jb.179.13.4342-4353.1997] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The PII protein, encoded by glnB, is known to interact with three bifunctional signal transducing enzymes (uridylyltransferase/uridylyl-removing enzyme, adenylyltransferase, and the kinase/phosphatase nitrogen regulator II [NRII or NtrB]) and three small-molecule effectors, glutamate, 2-ketoglutarate, and ATP. We constructed 15 conservative alterations of PII by site-specific mutagenesis of glnB and also isolated three random glnB mutants affecting nitrogen regulation. The abilities of the 18 altered PII proteins to interact with the PII receptors and the small-molecule effectors 2-ketoglutarate and ATP were examined by using purified components. Results with certain mutants suggested that the specificity for the various protein receptors was altered; other mutations affected the interaction with all three receptors and the small-molecule effectors to various extents. The apex of the large solvent-exposed T loop of the PII protein (P. D. Carr, E. Cheah, P. M. Suffolk, S. G. Vasudevan, N. E. Dixon, and D. L. Ollis, Acta Crytallogr. Sect. D 52:93-104, 1996), which includes the site of PII modification, was not required for the binding of small-molecule effectors but was necessary for the interaction with all three receptors. Mutations altering residues of this loop or affecting the nearby B loop of PII, which line a cleft between monomers in the trimeric PII, affected the interactions with protein receptors and the binding of small-molecule ligands. Thus, our results support the predictions made from structural studies that the exposed loops of PII and cleft formed at their interface are the sites of regulatory interactions.
Collapse
Affiliation(s)
- P Jiang
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0606, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Arcondéguy T, Huez I, Tillard P, Gangneux C, de Billy F, Gojon A, Truchet G, Kahn D. The Rhizobium meliloti PII protein, which controls bacterial nitrogen metabolism, affects alfalfa nodule development. Genes Dev 1997; 11:1194-206. [PMID: 9159400 DOI: 10.1101/gad.11.9.1194] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Symbiotic nitrogen fixation involves the development of specialized organs called nodules within which plant photosynthates are exchanged for combined nitrogen of bacterial origin. To determine the importance of bacterial nitrogen metabolism in symbiosis, we have characterized a key regulator of this metabolism in Rhizobium meliloti, the uridylylatable P(II) protein encoded by glnB. We have constructed both a glnB null mutant and a point mutant making nonuridylylatable P(II). In free-living conditions, P(II) is required for expression of the ntrC-dependent gene glnII and for adenylylation of glutamine synthetase I. P(II) is also required for efficient infection of alfalfa but not for expression of nitrogenase. However alfalfa plants inoculated with either glnB mutant are nitrogen-starved in the absence of added combined nitrogen. We hypothesize that P(II) controls expression or activity of a bacteroid ammonium transporter required for a functional nitrogen-fixing symbiosis. Therefore, the P(II) protein affects both Rhizobium nitrogen metabolism and alfalfa nodule development.
Collapse
Affiliation(s)
- T Arcondéguy
- Unité Mixte de Recherches (UMR) 215 Institut National de la Recherche Agronomique (INRA)/Centre National de la Recherche Scientifique (CNRS), Castanet-Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Jung K, Tjaden B, Altendorf K. Purification, reconstitution, and characterization of KdpD, the turgor sensor of Escherichia coli. J Biol Chem 1997; 272:10847-52. [PMID: 9099740 DOI: 10.1074/jbc.272.16.10847] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In response to K+ availability or medium osmolality, the sensor kinase KdpD and the response regulator KdpE control the expression of the kdpFABC operon, coding for the high affinity K+-translocating Kdp ATPase of Escherichia coli. The stimulus for KdpD to undergo autophosphorylation is believed to be a change in turgor or some effect thereof, reflecting the role of K+ as an important cytoplasmic osmotic solute. The membrane-bound sensor kinase KdpD was overproduced as a fusion protein containing six contiguous histidine residues two amino acids before the C terminus. This KdpD-His6 protein was functional in vitro and in vivo. KdpD-His6 was purified from everted membrane vesicles by solubilization with the zwitterionic detergent lauryldimethylamine oxide followed by nickel chelate chromatography and ion exchange chromatography to >99% homogeneity. The solubilized protein was not active with respect to autophosphorylation, but retained the ability to bind 2-azido-ATP. KdpD-His6 was reconstituted into proteoliposomes in a unidirectional inside-out orientation as revealed by ATP accessibility and protease susceptibility. Purified and reconstituted KdpD-His6 exhibited autokinase activity, and the phosphoryl group could be transferred to KdpE. Furthermore, KdpD-His6 was found to be the only protein that mediates dephosphorylation of KdpE approximately P.
Collapse
Affiliation(s)
- K Jung
- Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, Universität Osnabrück, D-49069 Osnabrück, Federal Republic of Germany
| | | | | |
Collapse
|
122
|
North AK, Kustu S. Mutant forms of the enhancer-binding protein NtrC can activate transcription from solution. J Mol Biol 1997; 267:17-36. [PMID: 9096204 DOI: 10.1006/jmbi.1996.0838] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Activators of the sigma54-holoenzyme catalyze the isomerization of closed complexes between this polymerase and a promotor to open complexes in a reaction that depends upon hydrolysis of a nucleoside triphosphate. The activators normally bind to DNA sites with the properties of transcriptional enhancers and contact the polymerase by means of DNA loop formation. Here, we demonstrate that mutant forms of the activator nitrogen regulatory protein C (NtrC) that lack one helix of the helix-turn-helix (HTH) DNA-binding motif or the entire motif retain residual capacity to activate transcription from solution, despite the fact that they are largely unable to dimerize and have greatly decreased ability to hydrolyze ATP. We show that substitution of alanine for three hydrophilic residues in the second helix of the HTH yields a stable, dimeric form of NtrC defective in DNA-binding. Like mutant forms with deletions of one or both helices, the NtrC3ala protein failed to bind DNA in a sensitive affinity co-electrophoresis assay, indicating that its affinity for a strong enhancer was reduced by at least 5000-fold. (The assay detected enhancer-binding by two mutant forms of NtrC with single amino acid substitutions in the HTH and non-specific DNA-binding by the wild-type protein.) The phosphorylated NtrC3ala protein had normal ATPase activity in solution but, unlike the activity of the phosphorylated wild-type protein, which could be stimulated at least tenfold by an oligonucleotide carrying a strong enhancer, the ATPase activity of the phosphorylated NtrC3ala protein was not stimulated. At concentrations of 100 nM or greater, the phosphorylated NtrC3ala protein activated transcription from the major glnA promoter. In agreement with the fact that it did not show detectable DNA-binding in other assays, its ability to activate transcription was no greater on templates carrying the glnA enhancer than on templates lacking an enhancer. The results indicate that both roles of the glnA enhancer, tethering and facilitation of the formation of an active oligomer of NtrC, can be bypassed if the protein is present at high concentrations in solution.
Collapse
Affiliation(s)
- A K North
- Department of Plant Biology, University of California-Berkeley, 94720-3102, USA
| | | |
Collapse
|
123
|
Klose KE, Mekalanos JJ. Simultaneous prevention of glutamine synthesis and high-affinity transport attenuates Salmonella typhimurium virulence. Infect Immun 1997; 65:587-96. [PMID: 9009317 PMCID: PMC176100 DOI: 10.1128/iai.65.2.587-596.1997] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Salmonella typhimurium, transcription of the glnA gene (encoding glutamine synthetase) is under the control of the nitrogen-regulatory (ntr) system comprising the alternate sigma factor sigma54 (NtrA) and the two-component sensor-transcriptional activator pair NtrB and NtrC. The glnA, ntrB, and ntrC genes form an operon. We measured the virulence of S. typhimurium strains with nitrogen-regulatory mutations after intraperitoneal (i.p.) or oral inoculations of BALB/c mice. Strains with single mutations in glnA, ntrA, ntrB, or ntrC had i.p. 50% lethal doses (LD50s) of <10 bacteria, similar to the wild-type strain. However, a strain with a delta(glnA-ntrC) operon deletion had an i.p. LD50 of >10(5) bacteria, as did delta glnA ntrA and delta glnA ntrC strains, suggesting that glnA strains require an ntr-transcribed gene for full virulence. High-level transcription of the glutamine transport operon (glnHPQ) is dependent upon both ntrA and ntrC, as determined by glnHp-lacZ fusion measurements. Moreover, delta glnA glnH and delta glnA glnQ strains are attenuated, similar to delta glnA ntrA and delta glnA ntrC strains. These results reveal that access of S. typhimurium to host glutamine depends on the ntr system, which apparently is required for the transcription of the glutamine transport genes. The delta(glnA-ntrC) strain exhibited a reduced ability to survive within the macrophage cell line J774, identifying a potential host environment with low levels of glutamine. Finally, the delta(glnA-ntrC) strain, when inoculated at doses as low as 10 organisms, provided mice with protective immunity against challenge by the wild-type strain, demonstrating its potential use as a live vaccine.
Collapse
Affiliation(s)
- K E Klose
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
124
|
Lu Q, Park H, Egger LA, Inouye M. Nucleoside-diphosphate kinase-mediated signal transduction via histidyl-aspartyl phosphorelay systems in Escherichia coli. J Biol Chem 1996; 271:32886-93. [PMID: 8955129 DOI: 10.1074/jbc.271.51.32886] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nucleoside-diphosphate kinase (NDP kinase), a key enzyme in nucleotide metabolism, is also known to be involved in growth and developmental control and tumor metastasis suppression. Interestingly, we find that coexpression of NDP kinase with Taz1, a Tar/EnvZ chimera, in the absence of its native signal, can activate a porin gene ompC-lacZ expression in Escherichia coli. Further studies show that NDP kinase can act as a protein kinase to phosphorylate histidine protein kinases such as EnvZ and CheA which are members of the His-Asp phosphorelay signal transduction systems in E. coli. Instead of ATP, the exclusive phosphodonor for histidine kinases, GTP can be utilized in vitro in the presence of NDP kinase to phosphorylate EnvZ and CheA, which then transfer the phosphoryl group to OmpR and CheY, the respective response regulators. The direct involvement of GTP for the phosphorylation of EnvZ through NDP kinase was further demonstrated by the use of a mutant EnvZ, which lost ability to be autophosphorylated with ATP. Phospho-OmpR thus formed can bind specifically to an ompF promoter sequence. These results suggest that NDP kinase may play a physiological role in signal transduction.
Collapse
Affiliation(s)
- Q Lu
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
125
|
Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 1996; 86:865-75. [PMID: 8808622 DOI: 10.1016/s0092-8674(00)80162-2] [Citation(s) in RCA: 660] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An osmosensing mechanism in the budding yeast (Saccharomyces cerevisiae) involves both a two-component signal transducer (Sln1p, Ypd1p and Ssk1p) and a MAP kinase cascade (Ssk2p/Ssk22p, Pbs2p, and Hog1p). The transmembrane protein Sln1p contains an extracellular sensor domain and cytoplasmic histidine kinase and receiver domains, whereas the cytoplasmic protein Ssk1p contains a receiver domain. Ypd1p binds to both Sln1p and Ssk1p and mediates the multistep phosphotransfer reaction (phosphorelay). This phosphorelay system is initiated by the autophosphorylation of Sln1p at His576. This phosphate is then sequentially transferred to Sln1p-Asp-1144, then to Ypd1p-His64, and finally to Ssk1p-Asp554. We propose that the multistep phosphorelay mechanism is a universal signal transduction apparatus utilized both in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- F Posas
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
126
|
Pérez-Martín J, de Lorenzo V. ATP binding to the sigma 54-dependent activator XylR triggers a protein multimerization cycle catalyzed by UAS DNA. Cell 1996; 86:331-9. [PMID: 8706137 DOI: 10.1016/s0092-8674(00)80104-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The events that take place at the prokaryotic enhancer of the Pu promoter of Pseudomonas putida prior to the engagement of the sigma 54-RNA polymerase (sigma 54-RNAP) have been studied in vitro. ATP hydrolysis by XylR, the cognate regulator of the system, is preceded by the multimerization of XylR at the enhancer, which is itself triggered by the sole allosteric effect of ATP binding to the protein. Since ADP is unable to support multimerization, ATP hydrolysis might be followed by a return to the nonmultimerized state. This notion is supported further by the properties of mutant proteins that seem to be frozen, in either the nonmultimerized or the multimerized state, respectively. These results support a cyclic mechanism of ATP-dependent association/dissociation of XylR at the promoter UAS that precedes any involvement of the polymerase in transcription initiation.
Collapse
Affiliation(s)
- J Pérez-Martín
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
127
|
Cullen PJ, Bowman WC, Kranz RG. In vitro reconstitution and characterization of the Rhodobacter capsulatus NtrB and NtrC two-component system. J Biol Chem 1996; 271:6530-6. [PMID: 8626457 DOI: 10.1074/jbc.271.11.6530] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Enhancer-dependent transcription in enteric bacteria depends upon an activator protein that binds DNA far upstream from the promoter and an alternative sigma factor (sigma 54) that binds with the core RNA polymerase at the promoter. In the photosynthetic bacterium Rhodobacter capsulatus, the NtrB and NtrC proteins (RcNtrB and RcNtrC) are putative members of a two-component system that is novel because the enhancer-binding RcNtrC protein activates transcription of sigma 54-independent promoters. To reconstitute this putative two-component system in vitro, the ReNtrB protein was overexpressed in Escherichia coli and purified as a maltose-binding protein fusion (MBP-RcNtrB). MBP-RcNtrB autophosphorylates in vitro to the same steady state level and with the same stability as the Salmonella typhimurium NtrB (StNtrB) protein but at a lower initial rate. MBP-RcNtrB autophosphorylates the S.typhimurium NtrC (St-NtrC) and RcNtrC proteins in vitro. The enteric NtrC protein is also phosphorylated in vivo by RcNtrB because plasmids that encode either RcNtrB or MBP-Rc-NtrB activate transcription of an NtrC-dependent nifL-lacZ fusion. The rate of phosphotransfer to RcNtrC and autophosphatase activity of phosphorylated RcNtrC (RcNtrC---P) are comparable to the StNtrC protein. However, the RcNtrC protein appears to be a specific RcNtrB P phosphatase since RcNtrC is not phosphorylated by small molecular weight phosphate compounds or by the StNtrB protein. RcNtrC forms a dimer in solution, and RcNtrC - P binds the upstream tandem binding sites of the g1nB promoter 4-fold better than the unphos-phorylated RcNtrC protein, presumably due to oligomerization of RcNtrC -P. Therefore, the R. capsulatus NtrB and NtrC proteins form a two-component system similar to other NtrC-like systems, where specific Rc- NtrB phosphotransfer to the RcNtrC protein results in increased oligoinerization at the enhancer but with subsequent activation of a sigma 54-independent promoter.
Collapse
Affiliation(s)
- P J Cullen
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
128
|
Dutta R, Inouye M. Reverse phosphotransfer from OmpR to EnvZ in a kinase-/phosphatase+ mutant of EnvZ (EnvZ.N347D), a bifunctional signal transducer of Escherichia coli. J Biol Chem 1996; 271:1424-9. [PMID: 8576133 DOI: 10.1074/jbc.271.3.1424] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
EnvZ of Escherichia coli is a transmembrane histidine kinase belonging to the family of two-component signal transducing systems prevalent in prokaryotes and recently discovered in eukaryotes. In response to changes in medium osmolarity EnvZ regulates the level of phosphorylated OmpR, its conjugate response-regulating transcription factor for ompF and ompC genes. EnvZ has dual opposing enzymatic activities; OmpR-phosphorylase (kinase) and phospho-OmpR-dephosphorylase (phosphatase). The osmotic signal is proposed to regulate the ratio of the kinase to the phosphatase activities of EnvZ to modulate the level of OmpR phosphorylation. In this work we used a COOH-terminal fragment of a previously identified kinase-/phosphatase+ EnvZ mutant (EnvZ-N347D) to demonstrate that the phosphoryl group on phospho-OmpR is transferred back to EnvZ to the same histidine residue (His243) that is utilized for the autokinase reaction by the wild type protein. Phospho-EnvZ-N347D thus formed could also transfer its phosphoryl group back to OmpR. The phosphotransfer reaction from phospho-OmpR to EnvZ.N347D was inhibited by ADP while Mg2+ ions stimulated the dephosphorylation reaction, resulting in release of inorganic phosphate. These results indicate that the energy levels of phosphoryl groups on OmpR and EnvZ are very similar and that the phosphatase reaction in the EnvZ.N347D mutant involves a reversal of the phosphotransfer reaction from EnvZ to OmpR using the identical His243 residue.
Collapse
Affiliation(s)
- R Dutta
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
129
|
Blumenthal RM, Borst DW, Matthews RG. Experimental analysis of global gene regulation in Escherichia coli. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 55:1-86. [PMID: 8787606 DOI: 10.1016/s0079-6603(08)60189-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R M Blumenthal
- Department of Microbiology, Medical College of Ohio, Toledo 43699, USA
| | | | | |
Collapse
|
130
|
Chapter 6 Cyclic cascades in cellular regulation. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1569-2582(96)80093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
131
|
Abstract
Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn.
Collapse
Affiliation(s)
- M J Merrick
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
132
|
Abstract
sigma 54 is the promoter recognition subunit of the form of bacterial RNA polymerase that transcribes from promoters with enhancer elements. DNase footprinting experiments show that sigma 54 is attached selectively to the template strand, which must be single-stranded for transcription initiation. sigma 54 remains bound at the promoter after core polymerase begins elongation, in contrast to the well-established sigma 70-holoenzyme transcription cycle. Permanganate footprinting experiments show that the bound sigma 54 and the elongating core RNA polymerase downstream of it are each associated with a single-strand DNA region. Template commitment assays show that the promoter-bound sigma 54 must be reconfigured before reinitiation of transcription can occur. This unexpected pathway raises interesting possibilities for transcriptional regulation, especially with regard to control at the level of reinitiation.
Collapse
Affiliation(s)
- Y Tintut
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569, USA
| | | | | |
Collapse
|
133
|
Mettke I, Fiedler U, Weiss V. Mechanism of activation of a response regulator: interaction of NtrC-P dimers induces ATPase activity. J Bacteriol 1995; 177:5056-61. [PMID: 7665484 PMCID: PMC177284 DOI: 10.1128/jb.177.17.5056-5061.1995] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
NtrC is the transcriptional activator for nitrogen-regulated promoters and, as a response regulator, belongs to the protein family of two-component systems. The activity of all response regulators is modulated by phosphorylation of the conserved N-terminal receiver domain. Phosphorylation of the dimeric NtrC has two consequences: (i) a strong increase in the cooperative binding of NtrC to two adjacent binding sites and (ii) activation of NtrC as an ATPase. Here we show that phosphorylation of NtrC is not sufficient for activation of NtrC. At low protein concentrations (50 nM), phosphorylated NtrC was only active as an ATPase upon cooperative binding to DNA. At high protein concentrations (above 50 nM), NtrC was active in the absence of DNA, and activation occurred in parallel with the formation of high-molecular-weight aggregates. We infer that activation of NtrC involves an interaction between two NtrC-P dimers and proceeds in two steps. The first step is the phosphorylation of NtrC. The second step is the interaction between two NtrC-P dimers. This interaction induces the conformational change in NtrC-P to the active conformation.
Collapse
Affiliation(s)
- I Mettke
- Department of Biology, University of Konstanz, Germany
| | | | | |
Collapse
|
134
|
Wedel A, Kustu S. The bacterial enhancer-binding protein NTRC is a molecular machine: ATP hydrolysis is coupled to transcriptional activation. Genes Dev 1995; 9:2042-52. [PMID: 7649482 DOI: 10.1101/gad.9.16.2042] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
NTRC is a prokaryotic enhancer-binding protein that activates transcription by sigma 54-holoenzyme. NTRC has an ATPase activity that is required for transcriptional activation, specifically for isomerization of closed complexes between sigma 54-holoenzyme and a promoter to open complexes. In the absence of ATP hydrolysis, there is known to be a kinetic barrier to open complex formation (i.e., the reaction proceeds so slowly that the polymerase synthesizes essentially no transcripts even from a supercoiled template). We show here that open complex formation is also thermodynamically unfavorable. In the absence of ATP hydrolysis the position of equilibrium between closed and open complexes favors the closed ones. Use of linear templates with a region of heteroduplex around the transcriptional start site--"preopened" templates--does not bypass the requirement for either NTRC or ATP hydrolysis, providing evidence that the rate-limiting step in open complex formation does not lie in DNA strand denaturation per se. These results are in contrast to recent findings regarding the ATP requirement for initiation of transcription by eukaryotic RNA polymerase II; in the latter case, the ATP requirement is circumvented by use of a supercoiled plasmid template or a preopened linear template.
Collapse
Affiliation(s)
- A Wedel
- Department of Plant Biology, University of California Berkeley 94720, USA
| | | |
Collapse
|
135
|
Abstract
In a recent report identifying the promoters of the Rhodobacter capsulatus glnBA operon, it was suggested that an internal promoter upstream of the glnA gene probably resulted in different levels of glnBA and glnA transcripts (D. Foster-Hartnett and R. G. Kranz, J. Bacteriol. 176:5171-5176, 1994). Therefore, to investigate the regulation, we constructed and examined the expression of a number of translational fusions in R. capsulatus glnBA. The results support a role for posttranscriptional regulation.
Collapse
Affiliation(s)
- R Borghese
- Biochemistry Department, University of Missouri-Columbia 65211, USA
| | | |
Collapse
|
136
|
Kamberov ES, Atkinson MR, Ninfa AJ. The Escherichia coli PII signal transduction protein is activated upon binding 2-ketoglutarate and ATP. J Biol Chem 1995; 270:17797-807. [PMID: 7629080 DOI: 10.1074/jbc.270.30.17797] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nitrogen regulation of transcription in Escherichia coli requires sensation of the intracellular nitrogen status and control of the dephosphorylation of the transcriptional activator NRI-P. This dephosphorylation is catalyzed by the bifunctional kinase/phosphatase NRII in the presence of the dissociable PII protein. The ability of PII to stimulate the phosphatase activity of NRII is regulated by a signal transducing uridylyltransferase/uridylyl-removing enzyme (UTase/UR), which converts PII to PII-UMP under conditions of nitrogen starvation; this modification prevents PII from stimulating the dephosphorylation of NRI approximately P. We used purified components to examine the binding of small molecules to PII, the effect of small molecules on the stimulation of the NRII phosphatase activity by PII, the retention of PII on immobilized NRII, and the regulation of the uridylylation of PII by the UTase/UR enzyme. Our results indicate that PII is activated upon binding ATP and either 2-ketoglutarate or glutamate, and that the liganded form of PII binds much better to immobilized NRII. We also demonstrate that the concentration of glutamine required to inhibit the uridylyltransferase activity is independent of the concentration of 2-ketoglutarate present. We hypothesize that nitrogen sensation in E. coli involves the separate measurement of glutamine by the UTase/UR protein and 2-ketoglutarate by the PII protein.
Collapse
Affiliation(s)
- E S Kamberov
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0606, USA
| | | | | |
Collapse
|
137
|
Wu J, Benson AK, Newton A. Global regulation of a sigma 54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD. J Bacteriol 1995; 177:3241-50. [PMID: 7768824 PMCID: PMC177017 DOI: 10.1128/jb.177.11.3241-3250.1995] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Biosynthesis of the Caulobacter crescentus polar flagellum requires the expression of a large number of flagellar (fla) genes that are organized in a regulatory hierarchy of four classes (I to IV). The timing of fla gene expression in the cell cycle is determined by specialized forms of RNA polymerase and the appearance and/or activation of regulatory proteins. Here we report an investigation of the role of the C. crescentus transcriptional regulatory protein FlbD in the activation of sigma 54-dependent class III and class IV fla genes of the hierarchy by reconstituting transcription from these promoters in vitro. Our results demonstrate that transcription from promoters of the class III genes flbG, flgF, and flgI and the class IV gene fliK by Escherichia coli E sigma 54 is activated by FlbD or the mutant protein FlbDS140F (where S140F denotes an S-to-F mutation at position 140), which we show here has a higher potential for transcriptional activation. In vitro studies of the flbG promoter have shown previously that transcriptional activation by the FlbD protein requires ftr (ftr for flagellar transcription regulation) sequence elements. We have now identified multiple ftr sequences that are conserved in both sequence and spatial architecture in all known class III and class IV promoters. These newly identified ftr elements are positioned ca. 100 bp from the transcription start sites of each sigma 54-dependent fla gene promoter, and our studies indicate that they play an important role in controlling the levels of transcription from different class III and class IV promoters. We have also used mutational analysis to show that the ftr sequences are required for full activation by the FlbD protein both in vitro and in vivo. Thus, our results suggest that FlbD, which is encoded by the class II flbD gene, is a global regulator that activates the cell cycle-regulated transcription from all identified sigma 54-dependent promoters in the C. crescentus fla gene hierarchy.
Collapse
Affiliation(s)
- J Wu
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
138
|
Allaway D, Boesten B, O'Gara F. NtrBC-dependent expression from the Rhizobium meliloti dctA promoter in Escherichia coli. FEMS Microbiol Lett 1995; 128:241-5. [PMID: 7781970 DOI: 10.1111/j.1574-6968.1995.tb07531.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Effects of the two-component sensor-regulator pairs DctBD and NtrBC upon the expression of a dctA::phoA fusion from Rhizobium meliloti were determined under excess and limiting nitrogen concentrations in Escherichia coli. Results indicated that NtrBC affected transcription from the dctA promoter on a number of regulatory levels and under different physiological conditions in the heterologous host. However, NtrBC-dependent cross-talk was not observed in free-living R. meliloti under the conditions tested. Comparisons of the predicted amino acid sequences of DctD and NtrC from various sources indicated a specific region of the NtrC from rhizobia, which may have diverged from a consensus NtrC/DctD sequence to minimise interference between the two component systems, NtrBC and DctBD.
Collapse
Affiliation(s)
- D Allaway
- Department of Microbiology, University College Cork, Ireland
| | | | | |
Collapse
|
139
|
Edwards R, Merrick M. The role of uridylyltransferase in the control of Klebsiella pneumoniae nif gene regulation. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:189-98. [PMID: 7753028 DOI: 10.1007/bf00705649] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The glnD gene in enteric bacteria encodes a uridylyltransferase/uridylyl-removing enzyme which acts as the primary nitrogen sensor in the nitrogen regulation (Ntr) system. We have investigated the role of this enzyme in transcriptional regulation of nitrogen fixation genes in Klebsiella pneumoniae by cloning glnD from this organism and constructing a null mutant by insertional inactivation of the chromosomal gene using the omega interposon. K. pneumoniae glnD encodes a 102.3 kDa polypeptide which is highly homologous to the predicted products of both Escherichia coli glnD and Azotobacter vinelandii nfrX. The glnD-omega mutant was unable to uridylylate PII and was altered in adenylylation/deadenylylation of glutamine synthetase. Uridylyltransferase was required for derepression of ntr-regulated promoters such as glnAp2 and pnifL but was not involved in the nif-specific response to changes in nitrogen status mediated by the nifL product. We conclude that a separate, as yet uncharacterised, nitrogen control system may be responsible for nitrogen sensing by NifL.
Collapse
Affiliation(s)
- R Edwards
- Nitrogen Fixation Laboratory, University of Sussex, Brighton, UK
| | | |
Collapse
|
140
|
Fernández S, de Lorenzo V, Pérez-Martín J. Activation of the transcriptional regulator XylR of Pseudomonas putida by release of repression between functional domains. Mol Microbiol 1995; 16:205-13. [PMID: 7565083 DOI: 10.1111/j.1365-2958.1995.tb02293.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the presence of toluene, xylenes and other structural analogues, the regulatory protein XylR, of the family of transcriptional regulators which act in concert with the sigma 54 factor, activate the promoter Pu of the TOL (toluene degradation) plasmid pWWO of Pseudomonas putida. Amino acid changes Val-219-Asp and Ala-220-Pro, introducing a proline kink at the hinge region between the N-terminal A domain and the central portion of XylR, resulted in a semi-constitutive phenotype which mimicked the activating effect of aromatic inducers. This phenotype was further exacerbated by inserting extra amino acid residues within the same inter-domain region. A truncated XylR protein devoid of the signal-receiving, amino-terminal portion of the protein stimulated the cognate promoter Pu at high levels independently of inducer addition, both in Escherichia coli and in Pseudomonas putida. Replacement of the amino-terminal domain by a heterologous peptide derived from the MS2 virus polymerase resulted in a hybrid protein still able to bind DNA to the same extent in vivo as XylR, but unable to stimulate transcription. These data indicate that a key event in the activation of XylR by toluene/xylenes is the release of the repression caused by the A domain of the protein on surfaces located at the central domain of the regulator.
Collapse
Affiliation(s)
- S Fernández
- Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | | | | |
Collapse
|
141
|
Monson EK, Ditta GS, Helinski DR. The oxygen sensor protein, FixL, of Rhizobium meliloti. Role of histidine residues in heme binding, phosphorylation, and signal transduction. J Biol Chem 1995; 270:5243-50. [PMID: 7890634 DOI: 10.1074/jbc.270.10.5243] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The two-component system sensor/response regulator pair, FixL/FixJ, controls the expression of Rhizobium meliloti nitrogen fixation (nif and fix) genes in response to changes in oxygen concentration. A truncated version of FixL, FixL*, is an oxygen-binding hemoprotein kinase that phosphorylates and dephosphorylates the nif and fix gene transcriptional activator, FixJ. Phosphorylation of FixJ is required for optimal transcriptional activation, and anaerobic conditions in vitro result in a substantial increase in the level of FixJ-phosphate. In this study, site-directed mutagenesis was carried out at histidine residues in FixL*. Mutant FixL* derivatives were purified and analyzed in vitro for their heme/oxygen binding properties and phosphorylation/dephosphorylation activities. Mutation of histidine 285, the putative autophosphorylation site, to glutamine results in the loss of FixL* phosphorylation activities. However, this mutant protein retains a substantial level of FixJ-phosphate dephosphorylation activity. Mutation of histidine 194 to asparagine results in the loss of heme binding and in the failure of FixL* to regulate its phosphorylation/dephosphorylation activities in response to changes in oxygen concentration. The FixL*H194N mutant protein also exhibits an increased FixJ phosphorylation activity under aerobic conditions. This study provides further evidence for the importance of the heme binding domain of FixL* in regulating FixJ phosphorylation and dephosphorylation activities in response to oxygen.
Collapse
Affiliation(s)
- E K Monson
- Department of Biology, University of California, San Diego, La Jolla 92093-0634
| | | | | |
Collapse
|
142
|
Delgado A, Salto R, Marqués S, Ramos JL. Single amino acids changes in the signal receptor domain of XylR resulted in mutants that stimulate transcription in the absence of effectors. J Biol Chem 1995; 270:5144-50. [PMID: 7890623 DOI: 10.1074/jbc.270.10.5144] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The XylR protein positively controls expression from the Pseudomonas putida TOL plasmid sigma 54-dependent "upper" pathway operon promoter (Pu) and the xylS gene promoter (Ps), in response to the presence of aromatic effectors. Two mutant XylR regulators able to stimulate transcription from Pu and Ps in the absence of effectors were isolated. These mutants exhibited single point mutations, namely Asp135-->Asn and Pro85-->Ser. Both mutations are located in the amino termini domain of XylR, which is thought to be responsible for interactions with effectors. The effector profile of XylRP85S was similar to that of wild-type XylR protein; however, XylRD135N exhibited an altered pattern of effector recognition: with m-nitrotoluene it stimulated transcription from the Pu promoter above the high basal level, whereas this nitroarene inhibited the wild-type regulator. Previous work (Delgado, A., and Ramos, J.L. (1994) J. Biol. Chem. 269, 8059-8062) showed that residue 172 was involved in effector interactions, as mutant XylRE172K also recognized m-nitrotoluene. However, double mutant XylR135N/E172K did not stimulate transcription in the absence of effector, but retained the ability to stimulate transcription with m-nitrotoluene. Transcription mediated by XylRD135N and XylRP85S from Pu::lacZ was analyzed in detail. Like the wild-type regulator, XylRD135N and XylRP85S required sigma 54 for full transcription activation, but in contrast with the wild-type regulator, XylRD135N, but not XylRP85S, stimulated transcription from Pu in the absence of the integration host factor protein. XylRD135N, also in contrast with XylR and XylRP85S, mediated transcription from a mutant Pu promoter that lacked one of the upstream regulator binding sites (delta UAS1), but not when both upstream regulator binding sites were deleted. The level of autoregulation of XylRD135N was at least 2-fold higher than that found with the wild-type XylR regulator and the mutant XylRP85S.
Collapse
Affiliation(s)
- A Delgado
- Consejo Superior de Investigaciones Científicas, Department of Biochemistry, Molecular and Cellular Biology of Plants, Granada, Spain
| | | | | | | |
Collapse
|
143
|
Abstract
In Caulobacter crescentus, asymmetry is generated in the predivisional cell, resulting in the formation of two distinct cell types upon cell division: a motile swarmer cell and a sessile stalked cell. These progeny cell types differ in their relative programs of gene expression and DNA replication. In progeny swarmer cells, DNA replication is silenced for a defined period, but stalked cells reinitiate chromosomal DNA replication immediately following cell division. The establishment of these differential programs of DNA replication may be due to the polar localization of DNA replication proteins, differences in chromosome higher-order structure, or pole-specific transcription. The best-understood aspect of Caulobacter development is biogenesis of the polar flagellum. The genes encoding the flagellum are expressed under cell cycle control predominantly in the predivisional cell type. Transcription of flagellar genes is regulated by a trans-acting hierarchy that responds to both flagellar assembly and cell cycle cues. As the flagellar genes are expressed, their products are targeted to the swarmer pole of the predivisional cell, where assembly occurs. Specific protein targeting and compartmentalized transcription are two mechanisms that contribute to the positioning of flagellar gene products at the swarmer pole of the predivisional cell.
Collapse
Affiliation(s)
- J W Gober
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | |
Collapse
|
144
|
Liu J, Magasanik B. Activation of the dephosphorylation of nitrogen regulator I-phosphate of Escherichia coli. J Bacteriol 1995; 177:926-31. [PMID: 7860602 PMCID: PMC176685 DOI: 10.1128/jb.177.4.926-931.1995] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription of sigma 54 RNA polymerase-dependent nitrogen-regulated genes is activated by nitrogen regulator I (NRI)-phosphate. The kinase NRII is responsible for the phosphorylation of NRI. It has been shown that NRII also has the ability to dephosphorylate NRI-phosphate but only when PII is present at a concentration greatly in excess of that of NRII. We have now shown that glutamate enables PII to stimulate the dephosphorylation of NRI-phosphate when present in equimolar concentration with NRII. This effect of glutamate appears to be a backup control that becomes effective when the normal regulation of PII activity is disabled.
Collapse
Affiliation(s)
- J Liu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139
| | | |
Collapse
|
145
|
Chapter 12. Bacterial Virulence as a Potential Target for Therapeutic Intervention. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1995. [DOI: 10.1016/s0065-7743(08)60925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
146
|
Kamberov ES, Atkinson MR, Chandran P, Ninfa AJ. Effect of mutations in Escherichia coli glnL (ntrB), encoding nitrogen regulator II (NRII or NtrB), on the phosphatase activity involved in bacterial nitrogen regulation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46927-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
147
|
Abstract
The enteric NtrC (NRI) protein has been the paradigm for a class of bacterial enhancer-binding proteins (EBPs) that activate transcription of RNA polymerase containing the sigma 54 factor. Activators in the NtrC class are characterized by essentially three properties: (i) they bind to sites distant from the promoters that they activate (> 100 bp upstream of the transcriptional start site), (ii) they contain a conserved nucleotide-binding fold and exhibit ATPase activity that is required for activation, and (iii) they activate the sigma 54 RNA polymerase. We have characterized the NtrC protein from a photosynthetic bacterium, Rhodobacter capsulatus, which represents a metabolically versatile group of bacteria found in aquatic environments. We have shown that the R. capsulatus NtrC protein (RcNtrC) binds to two tandem sites that are distant from promoters that it activates, nifA1 and nifA2. These tandem binding sites are shown to be important for RcNtrC-dependent nitrogen regulation in vivo. Moreover, the conserved nucleotide-binding fold of RcNtrC is required to activate nifA1 and nifA2 but is not required for DNA binding of RcNtrC to upstream activation sequences. However, nifA1 and nifA2 genes do not require the sigma 54 for activation and do not contain the highly conserved nucleotides that are present in all sigma 54-type, EBP-activated promoters. Thus, the NtrC from this photosynthetic bacterium represents a novel member of the class of bacterial EBPs. It is probable that this class of EBPs is more versatile in prokaryotes than previously envisioned.
Collapse
Affiliation(s)
- D Foster-Hartnett
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | | | |
Collapse
|
148
|
Ogura M, Kawata-Mukai M, Itaya M, Takio K, Tanaka T. Multiple copies of the proB gene enhance degS-dependent extracellular protease production in Bacillus subtilis. J Bacteriol 1994; 176:5673-80. [PMID: 8083159 PMCID: PMC196770 DOI: 10.1128/jb.176.18.5673-5680.1994] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bacillus subtilis secretes extracellular proteases whose production is positively regulated by a two-component regulatory system, DegS-DegU, and other regulatory factors including DegR. To identify an additional regulatory gene(s) for exoprotease production, we performed a shotgun cloning in the cell carrying multiple copies of degR and found a transformant producing large amounts of the exoproteases. The plasmid in this transformant, pLC1, showed a synergistic effect with multiple copies of degR on the production of the extracellular proteases, and it required degS for its enhancing effect. The DNA region responsible for the enhancement contained the proB gene, as shown by restriction analyses and sequence determination. The proB gene encoding gamma-glutamyl kinase was followed by the proA gene encoding glutamyl-gamma-semialdehyde dehydrogenase at an interval of 39 nucleotides, suggesting that the genes constitute an operon. pLC1 contained the complete proB gene and a part of proA lacking the proA C-terminal region. It was also found that proB on the chromosome showed a synergistic effect with multiple copies of degR. We consider on the basis of these results that the metabolic intermediate, gamma-glutamyl phosphate, would transmit a signal to DegS, resulting in a higher level of phosphorylated DegU. Possible involvement of DegR in this process is discussed.
Collapse
Affiliation(s)
- M Ogura
- School of Marine Science and Technology, Tokai University, Shizuoka, Japan
| | | | | | | | | |
Collapse
|
149
|
Goyard S, Bellalou J, Mireau H, Ullmann A. Mutations in the Bordetella pertussis bvgS gene that confer altered expression of the fhaB gene in Escherichia coli. J Bacteriol 1994; 176:5163-6. [PMID: 8051035 PMCID: PMC196362 DOI: 10.1128/jb.176.16.5163-5166.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The bvg locus of Bordetella pertussis, required for coordinate regulation of virulence genes in response to environmental signals, encodes two proteins, BvgS and BvgA, that belong to the bacterial two-component signal transduction systems. We have isolated spontaneous mutations of the bvg locus in Escherichia coli and analyzed their effects on the expression of fhaB::lacZY transcriptional fusions. The mutations, localized in the linker and transmitter domain of BvgS, result in increased activation of fhaB and/or in insensitivity to a modulating agent, nicotinic acid.
Collapse
Affiliation(s)
- S Goyard
- Unité de Biochimie des Régulations Cellulaires, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
150
|
Schröder I, Wolin CD, Cavicchioli R, Gunsalus RP. Phosphorylation and dephosphorylation of the NarQ, NarX, and NarL proteins of the nitrate-dependent two-component regulatory system of Escherichia coli. J Bacteriol 1994; 176:4985-92. [PMID: 8051011 PMCID: PMC196336 DOI: 10.1128/jb.176.16.4985-4992.1994] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The NarX, NarQ, and NarL proteins make up a nitrate-responsive regulatory system responsible for control of the anaerobic respiratory pathway genes in Escherichia coli, including nitrate reductase (narGHJI), dimethyl sulfoxide/trimethylamine-N-oxide reductase (dmsABC), and fumarate reductase (frdABCD) operons among others. The two membrane-bound proteins NarX and NarQ can independently sense the presence of nitrate and transfer this signal to the DNA-binding regulatory protein NarL, which controls gene expression by transcriptional activation or repression. To establish the role of protein phosphorylation in this process and to determine whether the NarX and NarQ proteins differ in their interaction with NarL, the cytoplasmic domains of NarX and NarQ were overproduced and purified. Both proteins were autophosphorylated in the presence of [gamma-32P]ATP and MgCl2 but not with [alpha-32P]ATP. Whereas these autophosphorylation reactions were unaffected by the presence of nitrate, molybdate, GTP, or AMP, ADP was an inhibitor. The phosphorylated forms of 'NarX and 'NarQ were stable for hours at room temperature. Each protein transferred its phosphoryl group to purified NarL protein, although 'NarQ-phosphate catalyzed the transfer reaction at an apparently much faster rate than did 'NarX-phosphate. In addition, NarL was autophosphorylated with acetyl phosphate but not with ATP as a substrate. NarL-phosphate remained phosphorylated for at least 3 h. However, addition of 'NarX resulted in rapid dephosphorylation of NarL-phosphate. In contrast, 'NarQ exhibited a much slower phosphatase activity with NarL-phosphate. These studies establish that the cytoplasmic domains of the two nitrate sensors 'NarX and 'NarQ differ in their ability to interact with NarL.
Collapse
Affiliation(s)
- I Schröder
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024
| | | | | | | |
Collapse
|