101
|
Nakagawa I, Kurokawa K, Yamashita A, Nakata M, Tomiyasu Y, Okahashi N, Kawabata S, Yamazaki K, Shiba T, Yasunaga T, Hayashi H, Hattori M, Hamada S. Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res 2003; 13:1042-55. [PMID: 12799345 PMCID: PMC403657 DOI: 10.1101/gr.1096703] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Group Astreptococcus (GAS) is a gram-positive bacterial pathogen that causes various suppurative infections and nonsuppurative sequelae. Since the late 1980s, streptococcal toxic-shock like syndrome (STSS) and severe invasive GAS infections have been reported globally. Here we sequenced the genome of serotype M3 strain SSI-1, isolated from an STSS patient in Japan, and compared it with those of other GAS strains. The SSI-1 genome is composed of 1,884,275 bp, and 1.7 Mb of the sequence is highly conserved relative to strain SF370 (serotype M1) and MGAS8232 (serotype M18), and almost completely conserved relative to strain MGAS315 (serotype M3). However, a large genomic rearrangement has been shown to occur across the replication axis between the homologous rrn-comX1 regions and between two prophage-coding regions across the replication axis. Atotal of 1 Mb of chromosomal DNA is inverted across the replication axis. Interestingly, the recombinations between the prophage regions are within the phage genes, and the genes encoding superantigens and mitogenic factors are interchanged between two prophages. This genomic rearrangement occurs in 65% of clinical isolates (64/94) collected after 1990, whereas it is found in only 25% of clinical isolates (7/28) collected before 1985. These observations indicate that streptococcal phages represent important plasticity regions in the GAS chromosome where recombination between homologous phage genes can occur and result not only in new phage derivatives, but also in large chromosomal rearrangements.
Collapse
Affiliation(s)
- Ichiro Nakagawa
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Biswas I, Scott JR. Identification of rocA, a positive regulator of covR expression in the group A streptococcus. J Bacteriol 2003; 185:3081-90. [PMID: 12730168 PMCID: PMC154078 DOI: 10.1128/jb.185.10.3081-3090.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the group A streptococcus (GAS; Streptococcus pyogenes), a two-component system known as CovRS (or CsrRS) regulates about 15% of the genes, including several important virulence factors like the hyaluronic acid capsule. Most of these genes, including covR itself, are negatively regulated by CovR. We have isolated two independent ISS1 insertions in an open reading frame (ORF) that increases CovR expression as measured by a Pcov-gusA reporter fusion in single copy in the GAS chromosome. This ORF, named rocA for "regulator of Cov," activates covR transcription about threefold. As expected, a rocA mutant is mucoid and produces more transcript from the has promoter since this promoter is repressed by CovR. This effect is dependent on the presence of a wild-type covR gene. In contrast to its activation of Pcov, RocA negatively regulates its own expression. This autoregulation is not dependent on the presence of the covR gene. All the phenotypes of the rocA mutant were complemented by the presence of the rocA gene on a plasmid. The rocA gene is present in strains of all nine M serotypes of GAS tested and is absent from strains representing 11 other groups of streptococci and related bacteria, including strains of the closely related group C and G streptococci. It seems likely that rocA plays an important role in the pathogenesis of GAS since it affects expression of the global regulator CovR.
Collapse
Affiliation(s)
- Indranil Biswas
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
103
|
Staali L, Mörgelin M, Björck L, Tapper H. Streptococcus pyogenes expressing M and M-like surface proteins are phagocytosed but survive inside human neutrophils. Cell Microbiol 2003; 5:253-65. [PMID: 12675683 DOI: 10.1046/j.1462-5822.2003.00272.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Strains of the Gram-positive human pathogen Streptococcus pyogenes (group A streptococcus) that express surface-associated M or M-like proteins survive and grow in non-immune fresh human blood. This is generally accepted to be caused by an antiphagocytic property of these proteins. However, in most previous studies, an inhibition of the internalization of the bacteria into host cells has not been studied or not directly demonstrated. Therefore, in the present paper, we used flow cytometry, fluorescence microscopy and electron microscopy to study phagocytosis by human neutrophils of wild-type S. pyogenes and strains deficient in expression of M protein and/or the M-like protein H. The results demonstrate that all strains of S. pyogenes tested, including the wild-type AP1 strain, induce actin polymerization and are efficiently phagocytosed by human neutrophils. In addition, using classical bactericidal assays, we show that the wild-type AP1 strain can survive inside neutrophils, whereas mutant strains are rapidly killed. We conclude that the ability of virulent S. pyogenes to survive and multiply in whole blood is most likely not possible to explain only by an antiphagocytic effect of bacterial surface components. Instead, our data suggest that bacterial evasion of host defences occurs intracellularly and that survival inside human neutrophils may contribute to the pathogenesis of S. pyogenes and the recurrence of S. pyogenes infections.
Collapse
Affiliation(s)
- Leïla Staali
- Department of Cell and Molecular Biology, Lund University, Tornavägen 10, SE-221 84 Lund, Sweden
| | | | | | | |
Collapse
|
104
|
Robinson KA, Rothrock G, Phan Q, Sayler B, Stefonek K, Van Beneden C, Levine OS. Risk for severe group A streptococcal disease among patients' household contacts. Emerg Infect Dis 2003; 9:443-7. [PMID: 12702224 PMCID: PMC2957982 DOI: 10.3201/eid0904.020369] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
From January 1997 to April 1999, we determined attack rates for cases of invasive group A streptococcal (GAS) disease in household contacts of index patients using data from Active Bacterial Core Surveillance sites. Of 680 eligible index-patient households, 525 (77.2%) were enrolled in surveillance. Of 1,514 household contacts surveyed, 127 (8.4%) sought medical care, 24 (1.6%) required hospital care, and none died during the 30-day reference period. One confirmed GAS case in a household contact was reported (attack rate, 66.1/100,000 household contacts). One household contact had severe GAS-compatible illness without confirmed etiology. Our study suggests that subsequent cases of invasive GAS disease can occur, albeit rarely. The risk estimate from this study is important for developing recommendations on the use of chemoprophylaxis for household contacts of persons with invasive GAS disease.
Collapse
|
105
|
Abstract
Necrotizing fasciitis (NF) is a distinctive soft tissue infection usually caused by Group A beta-hemolytic streptococcus, often seen in association with varicella in the previously healthy child. Its fulminant course is associated with great morbidity and high case-fatality rates, especially when it occurs in conjunction with streptococcal toxic shock syndrome. It differs from simple cellulitis in clinical presentation, appearance on examination, and need for urgent surgical intervention. The patient is irritable and complains of severe pain in the involved site, which is usually the extremity. On examination, exquisite pain on palpation of the involved site is confirmed, which is out of proportion to the cutaneous findings. Shock, multiorgran failure, and death will ensue if the diagnosis is not promptly recognized. The five keys to management include fluid management, aggressive debridement of necrotic tissues, anticipation and management of multisystem organ failure, appropriate parenteral antimicrobial therapy using penicillin and clindamycin, and use of intravenous immunoglobulin (IVIG).
Collapse
Affiliation(s)
- Mary Anne Jackson
- Children's Mercy Hospital, University of Missouri-Kansas City-School of Medicine, Kansas City, MO, USA
| | | | | |
Collapse
|
106
|
Smoot LM, McCormick JK, Smoot JC, Hoe NP, Strickland I, Cole RL, Barbian KD, Earhart CA, Ohlendorf DH, Veasy LG, Hill HR, Leung DYM, Schlievert PM, Musser JM. Characterization of two novel pyrogenic toxin superantigens made by an acute rheumatic fever clone of Streptococcus pyogenes associated with multiple disease outbreaks. Infect Immun 2002; 70:7095-104. [PMID: 12438391 PMCID: PMC133074 DOI: 10.1128/iai.70.12.7095-7104.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Revised: 08/08/2002] [Accepted: 08/29/2002] [Indexed: 11/20/2022] Open
Abstract
The pathogenesis of acute rheumatic fever (ARF) is poorly understood. We identified two contiguous bacteriophage genes, designated speL and speM, encoding novel inferred superantigens in the genome sequence of an ARF strain of serotype M18 group A streptococcus (GAS). speL and speM were located at the same genomic site in 33 serotype M18 isolates, and no nucleotide sequence diversity was observed in the 33 strains analyzed. Furthermore, the genes were absent in 13 non-M18 strains tested. These data indicate a recent acquisition event by a distinct clone of serotype M18 GAS. speL and speM were transcribed in vitro and upregulated in the exponential phase of growth. Purified SpeL and SpeM were pyrogenic and mitogenic for rabbit splenocytes and human peripheral blood mononuclear cells in picogram amounts. SpeL preferentially expanded human T cells expressing T-cell receptors Vbeta1, Vbeta5.1, and Vbeta23, and SpeM had specificity for Vbeta1 and Vbeta23 subsets, indicating that both proteins had superantigen activity. SpeL was lethal in two animal models of streptococcal toxic shock, and SpeM was lethal in one model. Serologic studies indicated that ARF patients were exposed to serotype M18 GAS, SpeL, and SpeM. The data demonstrate that SpeL and SpeM are pyrogenic toxin superantigens and suggest that they may participate in the host-pathogen interactions in some ARF patients.
Collapse
Affiliation(s)
- Laura M Smoot
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Lei B, DeLeo FR, Reid SD, Voyich JM, Magoun L, Liu M, Braughton KR, Ricklefs S, Hoe NP, Cole RL, Leong JM, Musser JM. Opsonophagocytosis-inhibiting mac protein of group a streptococcus: identification and characteristics of two genetic complexes. Infect Immun 2002; 70:6880-90. [PMID: 12438365 PMCID: PMC133040 DOI: 10.1128/iai.70.12.6880-6890.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, it was reported that a streptococcal Mac protein (designated Mac(5005)) made by serotype M1 group A Streptococcus (GAS) is a homologue of human CD11b that inhibits opsonophagocytosis and killing of GAS by human polymorphonuclear leukocytes (PMNs) (B. Lei, F. R. DeLeo, N. P. Hoe, M. R. Graham, S. M. Mackie, R. L. Cole, M. Liu, H. R. Hill, D. E. Low, M. J. Federle, J. R. Scott, and J. M. Musser, Nat. Med. 7:1298-1305, 2001). To study mac variation and expression of the Mac protein, the gene in 67 GAS strains representing 36 distinct M protein serotypes was sequenced. Two distinct genetic complexes were identified, and they were designated complex I and complex II. Mac variants in each of the two complexes were closely related, but complex I and complex II variants differed on average at 50.66 +/- 5.8 amino acid residues, most of which were located in the middle one-third of the protein. Complex I Mac variants have greater homology with CD11b than complex II variants. GAS strains belonging to serotypes M1 and M3, the most abundant M protein serotypes responsible for human infections in many case series, have complex I Mac variants. The mac gene was cloned from representative strains assigned to complexes I and II, and the Mac proteins were purified to apparent homogeneity. Both Mac variants had immunoglobulin G (IgG)-endopeptidase activity. In contrast to Mac(5005) (complex I), Mac(8345) (complex II) underwent autooxidation of its cysteine residues, resulting in the loss of IgG-endopeptidase activity. A Mac(5005) Cys94Ala site-specific mutant protein was unable to cleave IgG but retained the ability to inhibit IgG-mediated phagocytosis by human PMNs. Thus, the IgG-endopeptidase activity was not essential for the key biological function of Mac(5005). Although Mac(5005) and Mac(8345) each have an Arg-Gly-Asp (RGD) motif, the proteins differed in their interactions with human integrins alpha(v)beta(3) and alpha(IIb)beta(3). Binding of Mac(5005) to integrins alpha(v)beta(3) and alpha(IIb)beta(3) was mediated primarily by the RGD motif in Mac(5005), whereas binding of Mac(8345) involved the RGD motif and a region in the middle one-third of the molecule whose sequence is different in Mac(8345) and Mac(5005). Taken together, the data add to the emerging theme in GAS pathogenesis that allelic variation in virulence genes contributes to fundamental differences in host-pathogen interactions among strains.
Collapse
Affiliation(s)
- Benfang Lei
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Banks DJ, Beres SB, Musser JM. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol 2002; 10:515-21. [PMID: 12419616 DOI: 10.1016/s0966-842x(02)02461-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human bacterial pathogen group A Streptococcus (GAS) causes many different diseases including pharyngitis, tonsillitis, impetigo, scarlet fever, streptococcal toxic shock syndrome, necrotizing fasciitis and myositis, and the post-infection sequelae glomerulonephritis and rheumatic fever. The frequency and severity of GAS infections increased in the 1980s and 1990s, but the cause of this increase is unknown. Recently, genome sequencing of serotype M1, M3 and M18 strains revealed many new proven or putative virulence factors that are encoded by phages or phage-like elements. Importantly, these genetic elements account for an unexpectedly large proportion of the difference in gene content between the three strains. These new genome-sequencing studies have provided evidence that temporally and geographically distinct epidemics, and the complex array of GAS clinical presentations, might be related in part to the acquisition or evolution of phage-encoded virulence factors. We anticipate that new phage-encoded virulence factors will be identified by sequencing the genomes of additional GAS strains, including organisms non-randomly associated with particular clinical syndromes.
Collapse
Affiliation(s)
- David J Banks
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
109
|
Reid SD, Green NM, Sylva GL, Voyich JM, Stenseth ET, DeLeo FR, Palzkill T, Low DE, Hill HR, Musser JM. Postgenomic analysis of four novel antigens of group a streptococcus: growth phase-dependent gene transcription and human serologic response. J Bacteriol 2002; 184:6316-24. [PMID: 12399501 PMCID: PMC151937 DOI: 10.1128/jb.184.22.6316-6324.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of three group A Streptococcus genomes (serotypes M1, M3, and M18) recently identified four previously undescribed genes that encode extracellular proteins. Each of these genes encode proteins with an LPXTG amino acid motif that covalently links many virulence factors produced by gram-positive bacteria to the cell surface. Western immunoblot analysis of serum samples obtained from 80 patients with invasive infections, noninvasive soft tissue infections, pharyngitis, and rheumatic fever indicated that these four proteins are expressed in vivo. However, the level of gene transcript and the time of maximal gene transcription varied in representative serotype M1, M3, and M18 strains. Surface expression of two proteins was confirmed by flow cytometry. Studies using a mouse infection model suggest that antibodies specific for one of the proteins (Spy0843) may contribute to a protective host immune response against a serotype M1 infection. These results are additional evidence that postgenomic strategies provide new ways to identify and investigate novel bacterial proteins that may participate in host-pathogen interactions or serve as targets for therapeutics research.
Collapse
Affiliation(s)
- Sean D Reid
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Hidalgo-Grass C, Ravins M, Dan-Goor M, Jaffe J, Moses AE, Hanski E. A locus of group A Streptococcus involved in invasive disease and DNA transfer. Mol Microbiol 2002; 46:87-99. [PMID: 12366833 DOI: 10.1046/j.1365-2958.2002.03127.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Group A streptococcus (GAS) causes diseases ranging from benign to severe infections such as necrotizing fasciitis (NF). The reasons for the differences in severity of streptococcal infections are unexplained. We developed the polymorphic-tag-lengths-transposon-mutagenesis (PTTM) method to identify virulence genes in vivo. We applied PTTM on an emm14 strain isolated from a patient with NF and screened for mutants of decreased virulence, using a mouse model of human soft-tissue infection. A mutant that survived in the skin but was attenuated in its ability to reach the spleen and to cause a lethal infection was identified. The transposon was inserted into a small open reading frame (ORF) in a locus termed sil, streptococcal invasion locus. sil contains at least five genes (silA-E) and is highly homologous to the quorum-sensing competence regulons of Streptococcus pneumoniae. silA and silB encode a putative two-component system whereas silD and silE encode two putative ABC transporters. silC is a small ORF of unknown function preceded by a combox promoter. Insertion and deletion mutants of sil had a diminished lethality in the animal model. Virulence of a deletion mutant of silC was restored when injected together with the avirulent emm14-deletion mutant, but not when these mutants were injected into opposite flanks of a mouse. DNA transfer between these mutants occurred in vivo but could not account for the complementation of virulence. DNA exchange between the emm14-deletion mutant and mutants of sil occurred also in vitro, at a frequency of approximately 10-8 for a single antibiotic marker. Whereas silC and silD mutants exchanged markers with the emm14 mutant, silB mutant did not. Thus, we identified a novel locus, which controls GAS spreading into deeper tissues and could be involved in DNA transfer.
Collapse
Affiliation(s)
- Carlos Hidalgo-Grass
- Department of Clinical Microbiology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
111
|
Lei B, Smoot LM, Menning HM, Voyich JM, Kala SV, Deleo FR, Reid SD, Musser JM. Identification and characterization of a novel heme-associated cell surface protein made by Streptococcus pyogenes. Infect Immun 2002; 70:4494-500. [PMID: 12117961 PMCID: PMC128137 DOI: 10.1128/iai.70.8.4494-4500.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of the genome sequence of a serotype M1 group A Streptococcus (GAS) strain identified a gene encoding a previously undescribed putative cell surface protein. The gene was cloned from a serotype M1 strain, and the recombinant protein was overexpressed in Escherichia coli and purified to homogeneity. The purified protein was associated with heme in a 1:1 stoichiometry. This streptococcal heme-associated protein, designated Shp, was produced in vitro by GAS, located on the bacterial cell surface, and accessible to specific antibody raised against the purified recombinant protein. Mice inoculated subcutaneously with GAS and humans with invasive infections and pharyngitis caused by GAS seroconverted to Shp, indicating that Shp was produced in vivo. The blood of mice actively immunized with Shp had significantly higher bactericidal activity than the blood of unimmunized mice. The shp gene was cotranscribed with eight contiguous genes, including homologues of an ABC transporter involved in iron uptake in gram-negative bacteria. Our results indicate that Shp is a novel cell surface heme-associated protein.
Collapse
Affiliation(s)
- Benfang Lei
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Beres SB, Sylva GL, Barbian KD, Lei B, Hoff JS, Mammarella ND, Liu MY, Smoot JC, Porcella SF, Parkins LD, Campbell DS, Smith TM, McCormick JK, Leung DYM, Schlievert PM, Musser JM. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci U S A 2002; 99:10078-83. [PMID: 12122206 PMCID: PMC126627 DOI: 10.1073/pnas.152298499] [Citation(s) in RCA: 363] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2002] [Accepted: 05/17/2002] [Indexed: 11/18/2022] Open
Abstract
Genome sequences are available for many bacterial strains, but there has been little progress in using these data to understand the molecular basis of pathogen emergence and differences in strain virulence. Serotype M3 strains of group A Streptococcus (GAS) are a common cause of severe invasive infections with unusually high rates of morbidity and mortality. To gain insight into the molecular basis of this high-virulence phenotype, we sequenced the genome of strain MGAS315, an organism isolated from a patient with streptococcal toxic shock syndrome. The genome is composed of 1,900,521 bp, and it shares approximately 1.7 Mb of related genetic material with genomes of serotype M1 and M18 strains. Phage-like elements account for the great majority of variation in gene content relative to the sequenced M1 and M18 strains. Recombination produces chimeric phages and strains with previously uncharacterized arrays of virulence factor genes. Strain MGAS315 has phage genes that encode proteins likely to contribute to pathogenesis, such as streptococcal pyrogenic exotoxin A (SpeA) and SpeK, streptococcal superantigen (SSA), and a previously uncharacterized phospholipase A(2) (designated Sla). Infected humans had anti-SpeK, -SSA, and -Sla antibodies, indicating that these GAS proteins are made in vivo. SpeK and SSA were pyrogenic and toxic for rabbits. Serotype M3 strains with the phage-encoded speK and sla genes increased dramatically in frequency late in the 20th century, commensurate with the rise in invasive disease caused by M3 organisms. Taken together, the results show that phage-mediated recombination has played a critical role in the emergence of a new, unusually virulent clone of serotype M3 GAS.
Collapse
Affiliation(s)
- Stephen B Beres
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
DelVecchio A, Maley M, Currie BJ, Sriprakash KS. NAD-glycohydrolase production and speA and speC distribution in Group A streptococcus (GAS) isolates do not correlate with severe GAS diseases in the Australian population. J Clin Microbiol 2002; 40:2642-4. [PMID: 12089296 PMCID: PMC120539 DOI: 10.1128/jcm.40.7.2642-2644.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes isolates from a tropical region and a subtropical region of Australia with high and low incidences of severe streptococcal diseases, respectively, were analyzed for speA, speB, and speC gene distributions and NAD-glycohydrolase expression. No direct correlation of these characteristics with a propensity to cause invasive diseases was observed.
Collapse
|
114
|
Smoot JC, Korgenski EK, Daly JA, Veasy LG, Musser JM. Molecular analysis of group A Streptococcus type emm18 isolates temporally associated with acute rheumatic fever outbreaks in Salt Lake City, Utah. J Clin Microbiol 2002; 40:1805-10. [PMID: 11980963 PMCID: PMC130927 DOI: 10.1128/jcm.40.5.1805-1810.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute rheumatic fever (ARF) and subsequent rheumatic heart disease are rare but serious sequelae of group A Streptococcus (GAS) infections in most western countries. Salt Lake City (SLC), Utah, and the surrounding intermountain region experienced a resurgence of ARF in 1985 which has persisted. The largest numbers of cases were encountered in 1985-1986 and in 1997-1998. Organisms with a mucoid colony phenotype when grown on blood agar plates were temporally associated with the higher incidence of ARF. To develop an understanding of the molecular population genetic structure of GAS strains associated with ARF in the SLC region, 964 mucoid and nonmucoid pharyngeal isolates recovered in SLC from 1984 to 1999 were studied by sequencing the emm gene. Isolates with an emm18 allele were further characterized by sequencing the spa, covR, and covS genes. Peak periods of ARF were associated with GAS isolates possessing an emm18 allele encoding the protein found in serotype M18 isolates. Among the serotype M18 isolates, the difference in the number of C repeats produced three size variants. Variation was limited in spa, a gene that encodes a streptococcal protective antigen, and covR and covS, genes that encode a two-component regulatory system that, when inactivated, results in a mucoid phenotype and enhanced virulence in mouse infection models. Pulsed-field gel electrophoresis showed a single restriction profile for serotype M18 organisms isolated during both peak periods of ARF. In SLC, the incidence of ARF coresurged with the occurrence of GAS serotype M18 isolates that have very restricted genetic variation.
Collapse
Affiliation(s)
- James C Smoot
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | | | | | | | |
Collapse
|
115
|
Smoot JC, Barbian KD, Van Gompel JJ, Smoot LM, Chaussee MS, Sylva GL, Sturdevant DE, Ricklefs SM, Porcella SF, Parkins LD, Beres SB, Campbell DS, Smith TM, Zhang Q, Kapur V, Daly JA, Veasy LG, Musser JM. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc Natl Acad Sci U S A 2002; 99:4668-73. [PMID: 11917108 PMCID: PMC123705 DOI: 10.1073/pnas.062526099] [Citation(s) in RCA: 311] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Indexed: 11/18/2022] Open
Abstract
Acute rheumatic fever (ARF), a sequelae of group A Streptococcus (GAS) infection, is the most common cause of preventable childhood heart disease worldwide. The molecular basis of ARF and the subsequent rheumatic heart disease are poorly understood. Serotype M18 GAS strains have been associated for decades with ARF outbreaks in the U.S. As a first step toward gaining new insight into ARF pathogenesis, we sequenced the genome of strain MGAS8232, a serotype M18 organism isolated from a patient with ARF. The genome is a circular chromosome of 1,895,017 bp, and it shares 1.7 Mb of closely related genetic material with strain SF370 (a sequenced serotype M1 strain). Strain MGAS8232 has 178 ORFs absent in SF370. Phages, phage-like elements, and insertion sequences are the major sources of variation between the genomes. The genomes of strain MGAS8232 and SF370 encode many of the same proven or putative virulence factors. Importantly, strain MGAS8232 has genes encoding many additional secreted proteins involved in human-GAS interactions, including streptococcal pyrogenic exotoxin A (scarlet fever toxin) and two uncharacterized pyrogenic exotoxin homologues, all phage-associated. DNA microarray analysis of 36 serotype M18 strains from diverse localities showed that most regions of variation were phages or phage-like elements. Two epidemics of ARF occurring 12 years apart in Salt Lake City, UT, were caused by serotype M18 strains that were genetically identical, or nearly so. Our analysis provides a critical foundation for accelerated research into ARF pathogenesis and a molecular framework to study the plasticity of GAS genomes.
Collapse
Affiliation(s)
- James C Smoot
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Barnham MRD, Weightman NC, Anderson AW, Tanna A. Streptococcal toxic shock syndrome: a description of 14 cases from North Yorkshire, UK. Clin Microbiol Infect 2002; 8:174-81. [PMID: 12010172 DOI: 10.1046/j.1469-0691.2002.00396.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To analyze the clinical and laboratory features of patients diagnosed with streptococcal toxic shock syndrome (TSS) in North Yorkshire from 1986 to 1999. METHODS Records of patients with features satisfying the published criteria for streptococcal TSS were reviewed from laboratory and clinical records made at the time and from the hospital case notes. Isolates of streptococci were analyzed for serotype and genes encoding for the production of streptococcal pyrogenic exotoxins. RESULTS Fourteen patients satisfied the entry criteria. In one district, where the data were complete, the annual incidence of detected streptococcal TSS rose from 1.1 to 9.5 cases per million population in the 1990s. TSS was associated with various M serotypes of group A streptococci and various exotoxin genotypes. Two cases (14% of the series) were associated with severe group G streptococcal infection. The fatality rate was 64%, and the mode of time to death was 4 days. Local tissue necrosis occurred in 71% of cases, including necrotizing fasciitis, intrathoracic and intra-abdominal forms. Non-steroidal anti-inflammatory drugs (NSAIDs) had been taken around the time of onset of disease by 92% of the patients with TSS. CONCLUSIONS There has been a dramatic increase in the number of detected cases of streptococcal TSS over the 14 years since the first case was recognized here. There was a wide range of invasive forms of infection, a high fatality rate even in fit young adults, and a rapid course from onset to death. There was a high association of TSS with aggressive streptococcal infection producing local tissue necrosis.
Collapse
Affiliation(s)
- M R D Barnham
- Department of Microbiology, Harrogate District Hospital, North Yorkshire, UK.
| | | | | | | |
Collapse
|
117
|
Mikić D, Bojić I, Djokić M, Stanić V, Stepić V, Mićević D, Rudnjanin S, Radosavljević A, Mićić J, Tomanović B, Begović V, Popović S. [Necrotizing fasciitis caused by group A streptococcus]. VOJNOSANIT PREGL 2002; 59:203-7. [PMID: 12053474 DOI: 10.2298/vsp0202203m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The first case of the confirmed necrotizing fasciitis caused by Group A Streptococcus in Yugoslavia was presented. Male patient, aged 28, in good health, suddenly developed symptoms and signs of severe infective syndrome and intensive pain in the axillary region. Parenteral antibiotic, substitutional and supportive therapy was conducted along with the radical surgical excision of the necrotizing tissue. The patient did not develop streptococcal toxic shock syndrome thanks to the early established diagnosis and timely applied aggressive treatment. He was released from the hospital as completely cured two months after the admission.
Collapse
|
118
|
Terao Y, Kawabata S, Kunitomo E, Nakagawa I, Hamada S. Novel laminin-binding protein of Streptococcus pyogenes, Lbp, is involved in adhesion to epithelial cells. Infect Immun 2002; 70:993-7. [PMID: 11796638 PMCID: PMC127702 DOI: 10.1128/iai.70.2.993-997.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lbp gene, which encodes a laminin-binding protein (Lbp) of Streptococcus pyogenes, was found in all S. pyogenes M types. An Lbp-deficient mutant showed a significantly lower efficiency of adhesion to HEp-2 cells than did the wild-type strain. These results indicate that Lbp is one of the important S. pyogenes adhesins.
Collapse
Affiliation(s)
- Yutaka Terao
- Department of Oral Microbiology, Osaka University Faculty of Dentistry, Suita-Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
119
|
McCormick JK, Yarwood JM, Schlievert PM. Toxic shock syndrome and bacterial superantigens: an update. Annu Rev Microbiol 2002; 55:77-104. [PMID: 11544350 DOI: 10.1146/annurev.micro.55.1.77] [Citation(s) in RCA: 489] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Toxic shock syndrome (TSS) is an acute onset illness characterized by fever, rash formation, and hypotension that can lead to multiple organ failure and lethal shock, as well as desquamation in patients that recover. The disease is caused by bacterial superantigens (SAGs) secreted from Staphylococcus aureus and group A streptococci. SAGs bypass normal antigen presentation by binding to class II major histocompatibility complex molecules on antigen-presenting cells and to specific variable regions on the beta-chain of the T-cell antigen receptor. Through this interaction, SAGs activate T cells at orders of magnitude above antigen-specific activation, resulting in massive cytokine release that is believed to be responsible for the most severe features of TSS. This review focuses on clinical and epidemiological aspects of TSS, as well as important developments in the genetics, biochemistry, immunology, and structural biology of SAGs. From the evolutionary relationships between these important toxins, we propose that there are five distinct groups of SAGs.
Collapse
Affiliation(s)
- J K McCormick
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
120
|
Baker M, Gutman DM, Papageorgiou AC, Collins CM, Acharya KR. Structural features of a zinc binding site in the superantigen strepococcal pyrogenic exotoxin A (SpeA1): implications for MHC class II recognition. Protein Sci 2001; 10:1268-73. [PMID: 11369867 PMCID: PMC2374012 DOI: 10.1110/ps.330101] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Streptococcal pyrogenic exotoxin A (SpeA) is produced by Streptococcus pyogenes, and has been associated with severe infections such as scarlet fever and Streptococcal Toxic Shock Syndrome (STSS). In this study, the crystal structure of SpeA1 (the product of speA allele 1) in the presence of 2.5 mM zinc was determined at 2.8 A resolution. The protein crystallizes in the orthorhombic space group P2(1)2(1)2, with four molecules in the crystallographic asymmetric unit. The final structure has a crystallographic R-factor of 21.4% for 7,031 protein atoms, 143 water molecules, and 4 zinc atoms (one zinc atom per molecule). Four protein ligands-Glu 33, Asp 77, His 106, and His 110-form a zinc binding site that is similar to the one observed in a related superantigen, staphylococcoal enterotoxin C2. Mutant toxin forms substituting Ala for each of the zinc binding residues were generated. The affinity of these mutants for zinc ion confirms the composition of this metal binding site. The implications of zinc binding to SpeA1 for MHC class II recognition are explored using a molecular modeling approach. The results indicate that, despite their common overall architecture, superantigens appear to have multiple ways of complex formation with MHC class II molecules.
Collapse
Affiliation(s)
- M Baker
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | | | | | | |
Collapse
|
121
|
Abstract
Many newly described or "re-emerging" infectious diseases may present to the dermatologist, often with potentially life-threatening implications. Prompt recognition and early intervention can greatly diminish the morbidity and mortality associated with these diseases.
Collapse
Affiliation(s)
- S M Manders
- Division of Dermatology, University of Medicine and Dentistry, New Jersey-Robert Wood Johnson Medical School at Camden, Camden, New Jersey, USA.
| |
Collapse
|
122
|
Terao Y, Kawabata S, Kunitomo E, Murakami J, Nakagawa I, Hamada S. Fba, a novel fibronectin-binding protein from Streptococcus pyogenes, promotes bacterial entry into epithelial cells, and the fba gene is positively transcribed under the Mga regulator. Mol Microbiol 2001; 42:75-86. [PMID: 11679068 DOI: 10.1046/j.1365-2958.2001.02579.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In infection by Streptococcus pyogenes, fibronectin (Fn)-binding proteins play important roles as adhesins and invasins. Here, we present a novel Fn-binding protein of S. pyogenes that exhibits a low similarity to other Fn-binding proteins reported. After searching the Oklahoma Streptococcal Genome Sequencing Database for open reading frames (ORFs) with an LPXTG motif, nine ORFs were found among those recognized as putative surface proteins, and one of them was designated as Fba. The fba gene was found in M types 1, 2, 4, 22, 28 and 49 of S. pyogenes, but not in other serotypes or groups of streptococci. Fba, a 37.8 kDa protein, possesses three or four proline-rich repeat domains and exhibits a high homology to FnBPA, the Fn-binding protein of Staphylococcus aureus. Recombinant Fba exhibited a strong binding ability to Fn. In addition, Fba-deficient mutants showed diminished invasive capabilities to HEp-2 cells and low mortality in mice following skin infection. The fba gene was located downstream of the mga regulon and analysis using an mga-inactivated mutant revealed that it was transcribed under the control of the Mga regulator. These results indicate that Fba is a novel protein and one of the important virulence factors of S. pyogenes.
Collapse
Affiliation(s)
- Y Terao
- Department of Oral Microbiology, Osaka University Faculty of Dentistry, Suita-Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
123
|
Proft T, Arcus VL, Handley V, Baker EN, Fraser JD. Immunological and biochemical characterization of streptococcal pyrogenic exotoxins I and J (SPE-I and SPE-J) from Streptococcus pyogenes. THE JOURNAL OF IMMUNOLOGY 2001; 166:6711-9. [PMID: 11359827 DOI: 10.4049/jimmunol.166.11.6711] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, we described the identification of novel streptococcal superantigens (SAgs) by mining the Streptococcus pyogenes M1 genome database at Oklahoma University. Here, we report the cloning, expression, and functional analysis of streptococcal pyrogenic exotoxin (SPE)-J and another novel SAg (SPE-I). SPE-I is most closely related to SPE-H and staphylococcal enterotoxin I, whereas SPE-J is most closely related to SPE-C. Recombinant forms of SPE-I and SPE-J were mitogenic for PBL, both reaching half maximum responses at 0.1 pg/ml. Evidence from binding studies and cell aggregation assays using a human B-lymphoblastoid cell line (LG-2) suggests that both toxins exclusively bind to the polymorphic MHC class II beta-chain in a zinc-dependent mode but not to the generic MHC class II alpha-chain. The results from analysis by light scattering indicate that SPE-J exists as a dimer in solution above concentrations of 4.0 mg/ml. Moreover, SPE-J induced a rapid homotypic aggregation of LG-2 cells, suggesting that this toxin might cross-link MHC class II molecules on the cell surface by building tetramers of the type HLA-DRbeta-SPE-J-SPE-J-HLA-DRbeta. SPE-I preferably stimulates T cells bearing the Vbeta18.1 TCR, which is not targeted by any other known SAG: SPE-J almost exclusively stimulates Vbeta2.1 T cells, a Vbeta that is targeted by several other streptococcal SAgs, suggesting a specific role for this T cell subpopulation in immune defense. Despite a primary sequence diversity of 51%, SPE-J is functionally indistinguishable from SPE-C and might play a role in streptococcal disease, which has previously been addressed to SPE-C.
Collapse
Affiliation(s)
- T Proft
- Division of Molecular Medicine and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
124
|
Kazmi SU, Kansal R, Aziz RK, Hooshdaran M, Norrby-Teglund A, Low DE, Halim AB, Kotb M. Reciprocal, temporal expression of SpeA and SpeB by invasive M1T1 group a streptococcal isolates in vivo. Infect Immun 2001; 69:4988-95. [PMID: 11447177 PMCID: PMC98591 DOI: 10.1128/iai.69.8.4988-4995.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The streptococcal pyrogenic exotoxins (Spes) play a central role in the pathogenesis of invasive group A streptococcal (GAS) infections. The majority of recent invasive GAS infections have been caused by an M1T1 strain that harbors the genes for several streptococcal superantigens, including speA, speB, speF, speG, and smeZ. However, considerable variation in the expression of Spe proteins among clonal M1 isolates has been found, and many of the speA-positive M1 strains do not produce detectable amounts of SpeA in vitro. This study was designed to test the hypothesis that speA gene expression can be induced in vivo. A mouse infection chamber model that allows sequential sampling of GAS isolates at various time points postinfection was developed and used to monitor the kinetics of Spe production in vivo. Micropore Teflon diffusion chambers were implanted subcutaneously in BALB/c mice, and after 3 weeks the pores became sealed with connective tissue and sterile fluid containing a white blood cell infiltrate accumulated inside the infection chambers. Representative clonal M1T1 isolates expressing no detectable SpeA were inoculated into the implanted chambers, and the expression of SpeA in the aspirated aliquots of the chamber fluid was analyzed on successive days postinfection. Expression of SpeA was detected in the chamber fluid as early as days 3 to 5 postinfection in most animals, with a significant increase in expression by day 7 in all infected mice. Isolates recovered from the chamber and grown in vitro continued to produce SpeA even after 21 passages in vitro, suggesting stable switch on of the speA gene. A temporal relation between the upregulation of SpeA expression and the downregulation of SpeB expression was observed in vivo. These data suggest that in vivo host and/or environmental signals induced speA gene expression and suppressed speB gene expression. This underscores the role of the host-pathogen interaction in regulating the expression of streptococcal virulence factors in vivo. The model described here should facilitate such studies.
Collapse
Affiliation(s)
- S U Kazmi
- Research Service, Veterans Affairs Medical Center, Memphis, Tennessee 38104, USA
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Reid SD, Green NM, Buss JK, Lei B, Musser JM. Multilocus analysis of extracellular putative virulence proteins made by group A Streptococcus: population genetics, human serologic response, and gene transcription. Proc Natl Acad Sci U S A 2001; 98:7552-7. [PMID: 11416223 PMCID: PMC34706 DOI: 10.1073/pnas.121188598] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase-PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.
Collapse
Affiliation(s)
- S D Reid
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | |
Collapse
|
126
|
Müller-Alouf H, Proft T, Zollner TM, Gerlach D, Champagne E, Desreumaux P, Fitting C, Geoffroy-Fauvet C, Alouf JE, Cavaillon JM. Pyrogenicity and cytokine-inducing properties of Streptococcus pyogenes superantigens: comparative study of streptococcal mitogenic exotoxin Z and pyrogenic exotoxin A. Infect Immun 2001; 69:4141-5. [PMID: 11349089 PMCID: PMC98482 DOI: 10.1128/iai.69.6.4141-4145.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2000] [Accepted: 03/05/2001] [Indexed: 11/20/2022] Open
Abstract
Streptococcal mitogenic exotoxin Z (SMEZ), a superantigen derived from Streptococcus pyogenes, provoked expansion of human lymphocytes expressing the Vbeta 2, 4, 7 and 8 motifs of T-cell receptor. SMEZ was pyrogenic in rabbits and stimulated the expression of the T-cell activation markers CD69 and cutaneous lymphocyte-associated antigen. A variety of cytokines was released by human mononuclear leukocytes stimulated with SMEZ, which was 10-fold more active than streptococcal pyrogenic exotoxin A. Th2-derived cytokines were elicited only by superantigens and not by streptococcal cells.
Collapse
Affiliation(s)
- H Müller-Alouf
- Département de Microbiologie des Ecosystèmes, Institut Pasteur de Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Enright MC, Spratt BG, Kalia A, Cross JH, Bessen DE. Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect Immun 2001; 69:2416-27. [PMID: 11254602 PMCID: PMC98174 DOI: 10.1128/iai.69.4.2416-2427.2001] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2000] [Accepted: 01/24/2001] [Indexed: 11/20/2022] Open
Abstract
Multilocus sequence typing (MLST) is a tool that can be used to study the molecular epidemiology and population genetic structure of microorganisms. A MLST scheme was developed for Streptococcus pyogenes and the nucleotide sequences of internal fragments of seven selected housekeeping loci were obtained for 212 isolates. A total of 100 unique combinations of housekeeping alleles (allelic profiles) were identified. The MLST scheme was highly concordant with several other typing methods. The emm type, corresponding to a locus that is subject to host immune selection, was determined for each isolate; of the >150 distinct emm types identified to date, 78 are represented in this report. For a given emm type, the majority of isolates shared five or more of the seven housekeeping alleles. Stable associations between emm type and MLST were documented by comparing isolates obtained decades apart and/or from different continents. For the 33 emm types for which more than one isolate was examined, only five emm types were present on widely divergent backgrounds, differing at four or more of the housekeeping loci. The findings indicate that the majority of emm types examined define clones or clonal complexes. In addition, an MLST database is made accessible to investigators who seek to characterize other isolates of this species via the internet (http://www.mlst.net).
Collapse
Affiliation(s)
- M C Enright
- Wellcome Trust Centre for the Epidemiology of Infectious Diseases, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
128
|
Lukomski S, Nakashima K, Abdi I, Cipriano VJ, Shelvin BJ, Graviss EA, Musser JM. Identification and characterization of a second extracellular collagen-like protein made by group A Streptococcus: control of production at the level of translation. Infect Immun 2001; 69:1729-38. [PMID: 11179350 PMCID: PMC98079 DOI: 10.1128/iai.69.3.1729-1738.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recent study found that group A Streptococcus (GAS) expresses a cell surface protein with similarity to human collagen (S. Lukomski, K. Nakashima, I. Abdi, V. J. Cipriano, R. M. Ireland, S. R. Reid, G. G. Adams, and J. M. Musser, Infect. Immun. 68:6542-6553, 2000). This streptococcal collagen-like protein (Scl) contains a long region of Gly-X-X motifs and was produced by serotype M1 GAS strains. In the present study, a second member of the scl gene family was identified and designated scl2. The Scl2 protein also has a collagen-like region, which in M1 strains is composed of 38 contiguous Gly-X-X triplet motifs. The scl2 gene was present in all 50 genetically diverse GAS strains studied. The Scl2 protein is highly polymorphic, and the number of Gly-X-X motifs in the 50 strains studied ranged from 31 in one serotype M1 strain to 79 in serotype M28 and M77 isolates. The scl1 and scl2 genes were simultaneously transcribed in the exponential phase, and the Scl proteins were also produced. Scl1 and Scl2 were identified in a cell-associated form and free in culture supernatants. Production of Scl1 is regulated by Mga, a positive transcriptional regulator that controls expression of several GAS virulence factors. In contrast, production of Scl2 is controlled at the level of translation by variation in the number of short-sequence pentanucleotide repeats (CAAAA) located immediately downstream of the GTG (Val) start codon. Control of protein production by this molecular mechanism has not been identified previously in GAS. Together, the data indicate that GAS simultaneously produces two extracellular human collagen-like proteins in a regulated fashion.
Collapse
Affiliation(s)
- S Lukomski
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
McCormick JK, Pragman AA, Stolpa JC, Leung DY, Schlievert PM. Functional characterization of streptococcal pyrogenic exotoxin J, a novel superantigen. Infect Immun 2001; 69:1381-8. [PMID: 11179302 PMCID: PMC98031 DOI: 10.1128/iai.69.3.1381-1388.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Streptococcal toxic shock syndrome (STSS) is a highly lethal, acute-onset illness that is a subset of invasive streptococcal disease. The majority of clinical STSS cases have been associated with the pyrogenic toxin superantigens (PTSAgs) streptococcal pyrogenic exotoxin A or C (SPE A or C), although cases have been reported that are not associated with either of these exotoxins. Recent genome sequencing projects have revealed a number of open reading frames that potentially encode proteins with similarity to SPEs A and C and to other PTSAgs. Here, we describe the cloning, expression, purification, and functional characterization of a novel exotoxin termed streptococcal pyrogenic exotoxin J (SPE J). Purified recombinant SPE J (rSPE J) expressed from Escherichia coli stimulated the expansion of both rabbit splenocytes and human peripheral blood lymphocytes, preferentially expanded human T cells displaying Vbeta2, -3, -12, -14, and -17 on their T-cell receptors, and was active at concentrations as low as 5 x 10(-6) microg/ml. Furthermore, rSPE J induced fevers in rabbits and was lethal in two models of STSS. Biochemically, SPE J had a predicted molecular weight of 24,444 and an isoelectric point of 7.7 and lacked the ability to form the cystine loop structure characteristic of many PTSAgs. SPE J shared 19.6, 47.1, 38.8, 18.1, 19.6, and 24.4% identity with SPEs A, C, G, and H, streptococcal superantigen, and streptococcal mitogenic exotoxin Z-2, respectively, and was immunologically cross-reactive with SPE C. The characterization of a seventh functional streptococcal PTSAg raises important questions relating to the evolution of the streptococcal superantigens.
Collapse
Affiliation(s)
- J K McCormick
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
130
|
Reid SD, Hoe NP, Smoot LM, Musser JM. Group A Streptococcus: allelic variation, population genetics, and host-pathogen interactions. J Clin Invest 2001; 107:393-9. [PMID: 11181637 PMCID: PMC199275 DOI: 10.1172/jci11972] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- S D Reid
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|
131
|
Mylvaganam H, Bjorvatn B, Osland A. Polymorphism of the virulence regulon and allelic variations of the sic gene among the emm1 isolates of group A Streptococcus from western Norway. Microb Pathog 2001; 30:71-9. [PMID: 11162187 DOI: 10.1006/mpat.2000.0408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
With the objective of finding genetic markers of invasiveness, 43 isolates of group A streptococcus, isolated in western Norway and from both severe invasive disease and superficial infections, were studied initially by restriction fragment length polymorphism of the virulence regulon (virR -RFLP). Polymorphism that seemed to be related to the severity of infection was observed within the emm1 sequence type, which included 11 invasive and seven non-invasive isolates. These emm1 isolates were further investigated by restriction mapping of the virR and sequence analysis of a polymorphic region, which revealed the presence of a hypervariable sic gene. Of the nine distinct sic alleles, seven were found in single isolates, of which only two were from patients with invasive disease. The other two alleles were shared among nine invasive and two non-invasive isolates. The presence of only two sic allotypes in nine of the 11 invasive isolates, as compared to a different allele in each of the five non-invasive, contemporary isolates supports the hypothesis that selection of the sic variants occurs at mucosal surfaces and implicates mainly two clones among the invasive emm1 isolates.
Collapse
Affiliation(s)
- H Mylvaganam
- Department of Microbiology and Immunology, The Gade Institute, University of Bergen, Bergen, P.B. 8100, Norway.
| | | | | |
Collapse
|
132
|
Kawabata S, Kunitomo E, Terao Y, Nakagawa I, Kikuchi K, Totsuka K, Hamada S. Systemic and mucosal immunizations with fibronectin-binding protein FBP54 induce protective immune responses against Streptococcus pyogenes challenge in mice. Infect Immun 2001; 69:924-30. [PMID: 11159987 PMCID: PMC97971 DOI: 10.1128/iai.69.2.924-930.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to examine the suitability of fibronectin-binding protein FBP54 as a putative vaccine for Streptococcus pyogenes infections. When the distribution of the fbp54 gene among the clinical isolates representing various M serotypes was tested by PCR and Southern blot assays, it was found that all of the strains possess this gene. Furthermore, a significant increase in immunoglobulin G (IgG) antibody titers against FBP54 was observed in sera from patients with S. pyogenes infections compared with those from healthy volunteers (P < 0.005). Mice were immunized with FBP54 subcutaneously, orally, or nasally. An enzyme-linked immunosorbent assay revealed that antigen-specific IgG antibodies were induced in the sera of immunized mice, while high salivary levels of IgA antibodies were detected after oral and nasal immunizations. Mice subcutaneously or orally immunized with FBP54 survived significantly longer following the challenge with S. pyogenes than did nonimmunized mice (P < 0.001). These results indicate that FBP54 is a promising vaccine for the prevention of S. pyogenes infections.
Collapse
Affiliation(s)
- S Kawabata
- Department of Oral Microbiology, Osaka University Faculty of Dentistry, Suita-Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
133
|
Affiliation(s)
- D L Stevens
- Infectious Diseases Section, Veterans Affairs Medical Center, 500 West Fort St., Bldg 45, Boise, ID 83702, USA.
| |
Collapse
|
134
|
Pichichero ME, Gooch WM. Comparison of cefdinir and penicillin V in the treatment of pediatric streptococcal tonsillopharyngitis. Pediatr Infect Dis J 2000; 19:S171-3. [PMID: 11144400 DOI: 10.1097/00006454-200012001-00007] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Group A beta-hemolytic streptococcal (GABHS) tonsillopharyngitis continues to be a prevalent pediatric infectious disease that requires prompt treatment for relief of symptoms and to prevent complications. OBJECTIVE To compare the efficacy/tolerability of cefdinir and penicillin V in the treatment of pediatric GABHS tonsillopharyngitis as demonstrated in two clinical trials of similar design. DESIGN Multicenter, randomized, investigator-blinded trials. PATIENTS Children < or =12 years of age with sore throat, pharyngeal erythema and positive rapid streptococcal antigen test results. INTERVENTION In Study A patients took cefdinir 7 mg/kg twice daily or 14 mg/kg once daily or penicillin V 10 mg/kg 4 times daily (all regimens for 10 days). In Study B patients took cefdinir 7 mg/kg twice daily for 5 days or penicillin V 10 mg/kg 4 times daily for 10 days. MEASUREMENTS Clinical and microbiologic evaluations were conducted at multiple times during and after therapy. RESULTS Of 1274 patients 1122 were evaluable (679 patients received cefdinir; 443 received penicillin V). Clinical cure and microbiologic eradication rates were superior in the combined cefdinir treatment groups (94.9 and 92.7%, respectively), whether given once or twice daily for 10 days or twice daily for 5 days, compared with the penicillin treatment group (88.5 and 70.9%, respectively; P<0.001 for both). Adverse event rates were comparable in the 2 groups. CONCLUSION Cefdinir is a reliable and well-tolerated drug for the management of GABHS tonsillopharyngitis in children.
Collapse
Affiliation(s)
- M E Pichichero
- Elmwood Pediatric Group and University of Rochester Medical Center, NY, USA
| | | |
Collapse
|
135
|
Lei B, Mackie S, Lukomski S, Musser JM. Identification and immunogenicity of group A Streptococcus culture supernatant proteins. Infect Immun 2000; 68:6807-18. [PMID: 11083799 PMCID: PMC97784 DOI: 10.1128/iai.68.12.6807-6818.2000] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular proteins made by group A Streptococcus (GAS) play critical roles in the pathogenesis of human infections caused by this bacterium. Although many extracellular GAS proteins have been identified and characterized, there has been no systematic analysis of culture supernatant proteins. Proteins present in the culture supernatant of strains of serotype M1 (MGAS 5005) and M3 (MGAS 315) mutants lacking production of the major extracellular cysteine protease were separated by two-dimensional gel electrophoresis and identified by amino-terminal amino acid sequencing and interrogation of available databases, including a serotype M1 genome sequence. In the aggregate, amino-terminal amino acid sequence data for 66 protein spots were generated, 53 unique sequences were obtained, and 44 distinct proteins were identified. Sixteen of the 44 proteins had apparent secretion signal sequences and 27 proteins did not. Eight of the 16 proteins with apparent secretion signal sequences have not been previously described for GAS. Antibodies against most of the apparently secreted proteins were present in sera from mice infected subcutaneously with MGAS 5005 or MGAS 315. Humans with documented GAS infections (pharyngitis, acute rheumatic fever, and severe invasive disease) also had serum antibodies reacting with many of the apparently secreted proteins, indicating that they were synthesized in the course of GAS-human interaction. The genes encoding four of the eight previously undescribed and apparently secreted culture supernatant proteins were cloned, and the proteins were overexpressed in Escherichia coli. Western blot analysis with these recombinant proteins and sera from GAS-infected mice and humans confirmed the immunogenicity of these proteins. Taken together, the data provide new information about the molecular aspects of GAS-host interactions.
Collapse
Affiliation(s)
- B Lei
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|
136
|
|
137
|
Roggiani M, Stoehr JA, Olmsted SB, Matsuka YV, Pillai S, Ohlendorf DH, Schlievert PM. Toxoids of streptococcal pyrogenic exotoxin A are protective in rabbit models of streptococcal toxic shock syndrome. Infect Immun 2000; 68:5011-7. [PMID: 10948118 PMCID: PMC101724 DOI: 10.1128/iai.68.9.5011-5017.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcal pyrogenic exotoxins (SPEs) are superantigens that have been implicated in causing streptococcal toxic shock syndrome (STSS). Most notably, SPE serotype A is made by nearly all M-protein serotype 1 and 3 streptococci, the M types most associated with the illness (these strains contain one or more other SPEs, and those proteins are likely also to contribute to disease). We have prepared double-, triple-, and hexa-amino-acid mutants of SPE A by PCR and other mutagenesis procedures. The sites chosen for mutation were solvent-exposed residues thought to be important for T-cell receptor (TCR) or major histocompatibility complex (MHC) class II interaction. These mutants were nonsuperantigenic for human peripheral blood mononuclear cells and rabbit and mouse splenocytes and were nonlethal in two rabbit models of STSS. In addition, these mutants stimulated protective antibody responses. Interestingly, mutants that altered toxin binding to MHC class II were more immunogenic than mutants altering TCR binding. Collectively, these studies indicate that multiple-site mutants of SPE A are toxoids that may have use in protecting against the toxin's effects in STSS.
Collapse
Affiliation(s)
- M Roggiani
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
138
|
Earhart CA, Vath GM, Roggiani M, Schlievert PM, Ohlendorf DH. Structure of streptococcal pyrogenic exotoxin A reveals a novel metal cluster. Protein Sci 2000; 9:1847-51. [PMID: 11045630 PMCID: PMC2144691 DOI: 10.1110/ps.9.9.1847] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The streptococcal pyrogenic toxins A, B, and C (SPEA, SPEB, and SPEC) are responsible for the fever, rash, and other toxicities associated with scarlet fever and streptococcal toxic shock syndrome. This role, together with the ubiquity of diseases caused by Streptococcus pyogenes, have prompted structural analyses of SPEA by several groups. Papageorgiou et al. (1999) have recently reported the structure of SPEA crystallized in the absence of zinc. Zinc has been shown to be important in the ability of some staphylococcal and streptococcal toxins to stimulate proliferation of CD4+ T-cells. Since cadmium is more electron dense than zinc and typically binds interchangeably, we grew crystals in the presence of 10 mM CdCl2. Crystals have been obtained in three space groups, and the structure in the P2(1)2(1)2(1) crystal form has been refined to 1.9 A resolution. The structural analysis revealed an identical tetramer as well as a novel tetrahedral cluster of cadmium in all three crystal forms on a disulfide loop encompassing residues 87-98. No cadmium was bound at the site homologous to the zinc site in staphylococcal enterotoxins C (SECs) despite the high structural homology between SPEA and SECs. Subsequent soaking of crystals grown in the presence of cadmium in 10 mM ZnCl2 showed that zinc binds in this site (indicating it can discriminate between zinc and cadmium ions) using the three ligands (Asp77, His106, and His110) homologous to the SECs plus a fourth ligand (Glu33).
Collapse
Affiliation(s)
- C A Earhart
- Department of Biochemistry, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
139
|
McCormick JK, Tripp TJ, Olmsted SB, Matsuka YV, Gahr PJ, Ohlendorf DH, Schlievert PM. Development of streptococcal pyrogenic exotoxin C vaccine toxoids that are protective in the rabbit model of toxic shock syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2306-12. [PMID: 10925320 DOI: 10.4049/jimmunol.165.4.2306] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Streptococcal pyrogenic exotoxin C (SPE C) is a superantigen produced by many strains of Streptococcus pyogenes that (along with streptococcal pyrogenic exotoxin A) is highly associated with streptococcal toxic shock syndrome (STSS) and other invasive streptococcal diseases. Based on the three-dimensional structure of SPE C, solvent-exposed residues predicted to be important for binding to the TCR or the MHC class II molecule, or important for dimerization, were generated. Based on decreased mitogenic activity of various single-site mutants, the double-site mutant Y15A/N38D and the triple-site mutant Y15A/H35A/N38D were constructed and analyzed for superantigenicity, toxicity (lethality), immunogenicity, and the ability to protect against wild-type SPE C-induced STSS. The Y15A/N38D and Y15A/H35A/N38D mutants were nonmitogenic for rabbit splenocytes and human PBMCs and nonlethal in two rabbit models of STSS, yet both mutants were highly immunogenic. Animals vaccinated with the Y15A/N38D or Y15A/H35A/N38D toxoids were protected from challenge with wild-type SPE C. Collectively, these data indicate that the Y15A/N38D and Y15A/H35A/N38D mutants may be useful as toxoid vaccine candidates.
Collapse
MESH Headings
- Animals
- Bacterial Proteins
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/chemical synthesis
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Cells, Cultured
- Dimerization
- Disease Models, Animal
- Exotoxins/administration & dosage
- Exotoxins/chemical synthesis
- Exotoxins/genetics
- Exotoxins/immunology
- Humans
- Infusion Pumps, Implantable
- Lymphocyte Activation
- Membrane Proteins
- Models, Molecular
- Mutagenesis, Site-Directed
- Pyrogens/administration & dosage
- Pyrogens/chemical synthesis
- Pyrogens/genetics
- Pyrogens/immunology
- Rabbits
- Shock, Septic/immunology
- Shock, Septic/prevention & control
- Streptococcus pyogenes/genetics
- Streptococcus pyogenes/immunology
- Structure-Activity Relationship
- Toxoids/administration & dosage
- Toxoids/chemical synthesis
- Toxoids/genetics
- Toxoids/immunology
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- J K McCormick
- Departments ofMicrobiology and Biochemistry, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
Group A streptococci are model extracellular gram-positive pathogens responsible for pharyngitis, impetigo, rheumatic fever, and acute glomerulonephritis. A resurgence of invasive streptococcal diseases and rheumatic fever has appeared in outbreaks over the past 10 years, with a predominant M1 serotype as well as others identified with the outbreaks. emm (M protein) gene sequencing has changed serotyping, and new virulence genes and new virulence regulatory networks have been defined. The emm gene superfamily has expanded to include antiphagocytic molecules and immunoglobulin-binding proteins with common structural features. At least nine superantigens have been characterized, all of which may contribute to toxic streptococcal syndrome. An emerging theme is the dichotomy between skin and throat strains in their epidemiology and genetic makeup. Eleven adhesins have been reported, and surface plasmin-binding proteins have been defined. The strong resistance of the group A streptococcus to phagocytosis is related to factor H and fibrinogen binding by M protein and to disarming complement component C5a by the C5a peptidase. Molecular mimicry appears to play a role in autoimmune mechanisms involved in rheumatic fever, while nephritis strain-associated proteins may lead to immune-mediated acute glomerulonephritis. Vaccine strategies have focused on recombinant M protein and C5a peptidase vaccines, and mucosal vaccine delivery systems are under investigation.
Collapse
Affiliation(s)
- M W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
141
|
Abstract
Streptococcal toxic shock syndrome (strep TSS) with associated necrotizing fasciitis is a rapidly progressive process that kills 30-60% of patients in 72-96 h. Violaceous bullae, hypotension, fever, and evidence of organ failure are late clinical manifestations. Thus, the challenge to clinicians is to make an early diagnosis and to intervene with aggressive fluid replacement, emergent surgical debridement, and general supportive measures. Superantigens such as pyrogenic exotoxin A interact with monocytes and T lymphocytes in unique ways, resulting in T-cell proliferation and watershed production of monokines (e.g. tumor necrosis factor alpha, interleukin 1, interleukin 6), and lymphokines (e.g. tumor necrosis factor beta, interleukin 2, and gamma-interferon). Penicillin, though efficacious in mild Streptococcus pyogenes infection, is less effective in severe infections because of its short postantibiotic effect, inoculum effect, and reduced activity against stationary-phase organisms. Emerging treatments for strep TSS include clindamycin and intravenous gamma-globulin.
Collapse
Affiliation(s)
- D L Stevens
- Department of Medicine, University of Washington School of Medicine, Seattle, USA.
| |
Collapse
|
142
|
Haraszthy VI, Hariharan G, Tinoco EM, Cortelli JR, Lally ET, Davis E, Zambon JJ. Evidence for the role of highly leukotoxic Actinobacillus actinomycetemcomitans in the pathogenesis of localized juvenile and other forms of early-onset periodontitis. J Periodontol 2000; 71:912-22. [PMID: 10914794 DOI: 10.1902/jop.2000.71.6.912] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Actinobacillus actinomycetemcomitans leukotoxin is thought to be an important virulence factor in the pathogenesis of localized juvenile and other forms of early-onset periodontitis. Some highly leukotoxic A. actinomycetemcomitans strains produce 10 to 20 times more leukotoxin than other minimally leukotoxic strains. The distribution, clonality, and intrafamilial transmission of highly leukotoxic A. actinomycetemcomitans were examined in order to determine the importance of leukotoxin in the pathogenesis of periodontitis. METHODS The polymerase chain reaction (PCR) was used to differentiate highly leukotoxic from minimally leukotoxic strains in examining 1,023 fresh A. actinomycetemcomitans isolates and strains from our culture collection. These were obtained from 146 subjects including 71 with localized juvenile periodontitis (LJP), 4 with early-onset periodontitis, 11 with post-localized juvenile periodontitis, 41 with adult periodontitis, and 19 periodontally normal subjects. The arbitrarily primed polymerase chain reaction (AP-PCR) analysis of 30 oral isolates from each of 25 subjects was used to determine the intraoral distribution of A. actinomycetemcomitans clones. AP-PCR was also used to examine the transmission of A. actinomycetemcomitans in 30 members of 6 families. The clonality of 41 highly leukotoxic A. actinomycetemcomitans strains was evaluated by both AP-PCR and ribotyping. RESULTS Highly leukotoxic A. actinomycetemcomitans was found only in subjects with localized juvenile and early-onset periodontitis. Fifty-five percent of the LJP subjects harbored highly leukotoxic A. actinomycetemcomitans isolates. Seventy-three percent of the A. actinomycetemcomitans isolates in these subjects were highly leukotoxic. Highly leukotoxic A. actinomycetemcomitans infected younger subjects (mean age 13.95 years, range 5 to 28 years) than minimally leukotoxic (mean age 35.47 years, range 6 to 65 years). Most subjects were infected with only one A. actinomycetemcomitans genotype. However, PCR of whole dental plaques and subsequent analysis of up to 130 individual oral isolates suggested a possible shift in A. actinomycetemcomitans over time in that a few subjects harbored both highly leukotoxic and minimally leukotoxic strains. AP-PCR analysis was consistent with intrafamilial A. actinomycetemcomitans transmission. Ribotyping and AP-PCR analysis confirmed a previous report that highly leukotoxic A. actinomycetemcomitans consists of a single clonal type. CONCLUSIONS This study suggests that localized juvenile and other forms of Actinobacillus-associated periodontitis are primarily associated with the highly leukotoxic clone of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- V I Haraszthy
- Department of Restorative Dentistry, State University of New York at Buffalo, School of Dental Medicine, 14214-3092, USA.
| | | | | | | | | | | | | |
Collapse
|
143
|
Proft T, Moffatt SL, Weller KD, Paterson A, Martin D, Fraser JD. The streptococcal superantigen SMEZ exhibits wide allelic variation, mosaic structure, and significant antigenic variation. J Exp Med 2000; 191:1765-76. [PMID: 10811869 PMCID: PMC2193151 DOI: 10.1084/jem.191.10.1765] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The frequencies of the newly identified streptococcal superantigen genes smez, spe-g, and spe-h were determined in a panel of 103 clinical isolates collected between 1976 and 1998 at various locations throughout New Zealand. smez and spe-g were found in every group A Streptococcus (GAS) isolate, suggesting a chromosomal location. The spe-h gene was found in only 24% of the GAS isolates and is probably located on a mobile DNA element. The smez gene displays extensive allelic variation and appears to be in linkage equilibrium with the M/emm type. 22 novel smez alleles were identified from 21 different M/emm types in addition to the already reported alleles smez and smez-2 with sequence identities between 94. 5 and 99.9%. Three alleles are nonfunctional due to a single base pair deletion. The remaining 21 alleles encode distinct SMEZ variants. The mosaic structure of the smez gene suggests that this polymorphism has arisen from homologous recombination events rather than random point mutation. The recently resolved SMEZ-2 crystal structure shows that the polymorphic residues are mainly surface exposed and scattered over the entire protein. The allelic variation did not affect either Vbeta specificity or potency, but did result in significant antigenic differences. Neutralizing antibody responses of individual human sera against different SMEZ variants varied significantly. 98% of sera completely neutralized SMEZ-1, but only 85% neutralized SMEZ-2, a very potent variant that has not yet been found in any New Zealand isolate. SMEZ-specific Vbeta8 activity was found in culture supernatants of 66% of the GAS isolates, indicating a potential base for the development of a SMEZ targeting vaccine.
Collapse
Affiliation(s)
- Thomas Proft
- Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | - S. Louise Moffatt
- Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Kylie D. Weller
- Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | - A. Paterson
- Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Diana Martin
- Institute of Environmental Science and Research Limited, Porirua, New Zealand
| | - John D. Fraser
- Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
144
|
Shundi L, Surdeanu M, Damian M. Comparison of serotyping, ribotyping and pulsed-field gel electrophoresis for distinguishing group A Streptococcus strains isolated in Albania. Eur J Epidemiol 2000; 16:257-63. [PMID: 10870941 DOI: 10.1023/a:1007626402845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Conventional serotyping for T antigens, rRNA gene restriction fragment length polymorphism analysis (ribotyping) and pulsed-field gel electrophoresis were compared for distinguishing among group A streptococci isolated in Albania between 1980-1982 and in 1995. A total of twelve serotypes were identified among seventy GAS strains. Ribotyping revealed eight and eleven distinct patterns after digestion with HindIII and PvuII, respectively. Twenty-three strains of serotype T12 were subdivided in 10 ribotypes and 11 strains of T2 serotype were differentiated in 5 ribotypes. By comparison, PFGE generated 37 patterns after SmaI digestion. The index of discrimination, using the Hunter-Gaston formula, was applied to assess the value of these methods for interpretation of the epidemiological data. For serotyping the value of index was 0.85. The ribotyping system revealed an ID of 0.83 when the combination HindIII and PvuII was used. This index reached 0.97 for PFGE. The methods used were useful to subtype the isolates of GAS.
Collapse
Affiliation(s)
- L Shundi
- Cantacuzino Institute Bucharest, Molecular Epidemiology Laboratory, Romania
| | | | | |
Collapse
|
145
|
Kagawa TF, Cooney JC, Baker HM, McSweeney S, Liu M, Gubba S, Musser JM, Baker EN. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: an integrin-binding cysteine protease. Proc Natl Acad Sci U S A 2000; 97:2235-40. [PMID: 10681429 PMCID: PMC15784 DOI: 10.1073/pnas.040549997] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogenic bacteria secrete protein toxins that weaken or disable their host, and thereby act as virulence factors. We have determined the crystal structure of streptococcal pyrogenic exotoxin B (SpeB), a cysteine protease that is a major virulence factor of the human pathogen Streptococcus pyogenes and participates in invasive disease episodes, including necrotizing fasciitis. The structure, determined for the 40-kDa precursor form of SpeB at 1.6-A resolution, reveals that the protein is a distant homologue of the papain superfamily that includes the mammalian cathepsins B, K, L, and S. Despite negligible sequence identity, the protease portion has the canonical papain fold, albeit with major loop insertions and deletions. The catalytic site differs from most other cysteine proteases in that it lacks the Asn residue of the Cys-His-Asn triad. The prosegment has a unique fold and inactivation mechanism that involves displacement of the catalytically essential His residue by a loop inserted into the active site. The structure also reveals the surface location of an integrin-binding Arg-Gly-Asp (RGD) motif that is a feature unique to SpeB among cysteine proteases and is linked to the pathogenesis of the most invasive strains of S. pyogenes.
Collapse
Affiliation(s)
- T F Kagawa
- School of Biological Sciences, Department of Chemistry, University of Auckland, Private Bag 92-019, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Mascini EM, Jansze M, Schouls LM, Fluit AC, Verhoef J, van Dijk H. Invasive and noninvasive group A streptococcal isolates with different speA alleles in The Netherlands: genetic relatedness and production of pyrogenic exotoxins A and B. J Clin Microbiol 1999; 37:3469-74. [PMID: 10523536 PMCID: PMC85669 DOI: 10.1128/jcm.37.11.3469-3474.1999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcal pyrogenic exotoxin A (SPE-A) and SPE-B have been implicated in the pathogenesis of severe group A streptococcal (GAS) disease. We studied 31 invasive GAS strains including 18 isolates from patients with toxic shock syndrome and 22 noninvasive strains isolated in The Netherlands between 1994 and 1998. These strains were associated with the different allelic variants of the gene encoding SPE-A. We selected endemic strains with speA-positive M and T serotypes: speA2-associated M1T1 and M22-60T12 strains, speA3-associated M3T3 strains, and speA4-associated M6T6 strains. Since speA1-positive isolates were not frequently encountered, we included speA1 strains of different serotypes. The GAS strains were compared genotypically by pulsed-field gel electrophoresis and phenotypically by the in vitro production of SPE-A and SPE-B. All strains within one M and T type appeared to be of clonal origin. Most strains produced SPE-A and SPE-B, but only a minority of the speA4-positive isolates did so. Among our isolates, speA1- and speA3-positive strains produced significantly more SPE-A than speA2- and speA4-carrying strains, while SPE-B production was most pronounced among speA1- and speA2-containing strains. There was a marked degree of variability in the amounts of exotoxins produced in vitro by strains that shared the same genetic profile. We conclude that the differences in the in vitro production of SPE-A and SPE-B between our selected strains with identical M and T types were not related to either genetic heterogeneity or the clinical course of GAS disease in the patient from whom they were isolated.
Collapse
Affiliation(s)
- E M Mascini
- Eijkman-Winkler Institute for Microbiology, Infectious Diseases, and Inflammation, Utrecht University Hospital, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
147
|
Tsai PJ, Lin YS, Kuo CF, Lei HY, Wu JJ. Group A Streptococcus induces apoptosis in human epithelial cells. Infect Immun 1999; 67:4334-9. [PMID: 10456871 PMCID: PMC96749 DOI: 10.1128/iai.67.9.4334-4339.1999] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Internalization of group A streptococcus (GAS) by epithelial cells may have a role in causing invasive diseases. The purpose of this study was to examine the fate of GAS-infected epithelial cells. GAS has the ability to invade A-549 and HEp-2 cells. Both A-549 and HEp-2 cells were killed by infection with GAS. Epithelial cell death mediated by GAS was at least in part through apoptosis, as shown by changes in cellular morphology, DNA fragmentation laddering, and propidium iodide staining for hypodiploid cells. A total of 20% of A-549 cells and 11 to 13% of HEp-2 cells underwent apoptosis after 20 h of GAS infection, whereas only 1 to 2% of these cells exhibited spontaneous apoptosis. We further examined whether streptococcal pyrogenic exotoxin B (SPE B), a cysteine protease produced by GAS, was involved in the apoptosis of epithelial cells. The speB isogenic mutants had less ability to induce cell death than wild-type strains. When A-549 cells were cocultured with the mutant and SPE B for 2 h, the percentage of apoptotic cells did not increase although the number of intracellular bacteria increased to the level of wild-type strains. In addition, apoptosis was blocked by cytochalasin D treatment, which interfered with cytoskeleton function. The caspase inhibitors Z-VAD.FMK, Ac-YVAD.CMK, and Ac-DEVD.FMK inhibited GAS-induced apoptosis. These results demonstrate for the first time that GAS induces apoptosis of epithelial cells and internalization is required for apoptosis. The caspase pathway is involved in GAS-induced apoptosis, and the expression of SPE B in the cells enhances apoptosis.
Collapse
Affiliation(s)
- P J Tsai
- Departments of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
148
|
Martin C, Boyd EF, Quentin R, Massicot P, Selander RK. Enzyme polymorphism in Pseudomonas aeruginosa strains recovered from cystic fibrosis patients in France. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2587-2594. [PMID: 10517612 DOI: 10.1099/00221287-145-9-2587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Each of 314 strains of Pseudomonas aeruginosa recovered from 87 French cystic fibrosis (CF) patients was typed by multilocus enzyme electrophoresis to investigate the genetic diversity, the relatedness and the molecular epidemiology of strains isolated from cases of chronic pulmonary colonization. Comparison of allele profiles at 18 enzyme loci identified 17 electrophoretic types (ETs). Of the 314 isolates, 290 (92%) were either ET1 (n = 127) or ET2 (n = 163), which differed only at the shikimate dehydrogenase (SKD) locus. The mean genetic diversity (H) was 0.138. These results suggest that there is cross-colonization between patients and/or that two predominant groups of strains are able to colonize French CF patients. Sequential isolates collected from 18 patients during a period of 12-28 months were analysed to assess genomic variability and its relationship to clinical outcome. Six patients were colonized by a stable strain. For the others, double infections or changes in colonization over time were observed. No relationships were detected between the clinical outcome and the persistence of stable isolates, the emergence of transient superinfecting variants, the presence of multiple ETs or the shift of ET during the monitoring.
Collapse
Affiliation(s)
- Christian Martin
- Département de Microbiologie Médicale et Moléculaire, Unité de Bactériologie, CHU Bretonneau, 37044 Tours Cedex 1, France1
| | - E Fidelma Boyd
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University Park, PA 16801, USA2
| | - Roland Quentin
- Département de Microbiologie Médicale et Moléculaire, Unité de Bactériologie, CHU Bretonneau, 37044 Tours Cedex 1, France1
| | - Pascal Massicot
- Centre Héliomarin, 19 Boulevard Félix Faure, 17370 Saint Trojan-les-Bains, France3
| | - Robert K Selander
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University Park, PA 16801, USA2
| |
Collapse
|
149
|
Sriskandan S, Unnikrishnan M, Krausz T, Cohen J. Molecular analysis of the role of streptococcal pyrogenic Exotoxin A (SPEA) in invasive soft-tissue infection resulting from Streptococcus pyogenes. Mol Microbiol 1999; 33:778-90. [PMID: 10447887 DOI: 10.1046/j.1365-2958.1999.01525.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidemiological studies strongly implicate the bacterial superantigen, streptococcal pyrogenic exotoxin A (SPEA), in the pathogenesis of necrotizing soft-tissue infection and toxic shock syndrome resulting from Streptococcus pyogenes. SPEA can act as a superantigen and cellular toxin ex vivo, but its role during invasive streptococcal infection is unclear. We have disrupted the wild-type spea gene in an M1 streptococcal isolate. Supernatants from toxin-negative mutant bacteria demonstrated a 50% reduction in pro-mitogenic activity in HLA DQ-positive murine splenocyte culture, and up to 20% reduction in activity in human PBMC culture. Mutant and wild-type bacteria were then compared in mouse models of bacteraemia and streptococcal muscle infection. Disruption of spea was not associated with attenuation of virulence in either model. Indeed, a paradoxical increase in mutant strain-induced mortality was seen after intravenous infection. Intramuscular infection with the SPEA-negative mutant led to increased bacteraemia at 24 h and a reduction in neutrophils at the site of primary muscle infection. Purified SPEA led to a dose-dependent increase in peritoneal neutrophils 6 h after administration. SPEA is not a critical virulence factor in invasive soft-tissue infection or bacteraemia caused by S. pyogenes, and it could have a protective role in murine immunity to pyogenic infection. The role of this toxin may be different in hosts with augmented superantigen responsiveness.
Collapse
Affiliation(s)
- S Sriskandan
- Department of Infectious Diseases Imperial College School of Medicine aat Hammersmith Hospital, London,UK
| | | | | | | |
Collapse
|
150
|
Affiliation(s)
- B A Duff
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill 27599-7225, USA
| | | | | | | |
Collapse
|