101
|
Pradier L, Carpentier N, Delalonde L, Clavel N, Bock MD, Buée L, Mercken L, Tocqué B, Czech C. Mapping the APP/presenilin (PS) binding domains: the hydrophilic N-terminus of PS2 is sufficient for interaction with APP and can displace APP/PS1 interaction. Neurobiol Dis 1999; 6:43-55. [PMID: 10078972 DOI: 10.1006/nbdi.1998.0212] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in presenilin 1 and presenilin 2 (PS1 and PS2, respectively) genes cause the large majority of familial forms of early-onset Alzheimer's disease. The physical interaction between presenilins and APP has been recently described using coimmunoprecipitation. With a similar technique, we confirmed this interaction and have mapped the interaction domains on both PS2 and APP. Using several carboxy-terminal truncated forms of PS2, we demonstrated that the hydrophilic amino terminus of PS2 (residues 1 to 87, PS2NT) was sufficient for interaction with APP. Interestingly, only a construct with a leader peptide for secretion (SecPS2NT) and not its cytosolic counterpart was shown to interact with APP. For APP, we could demonstrate interaction of PS2 with the last 100 but not the last 45 amino acids of APP, including therefore the A beta region. Accordingly, SecPS2NT is capable of binding to A beta-immunoreactive species in conditioned medium. In addition, a second region in the extracellular domain of APP also interacted with PS2. Comparable results with PS1 indicate that the two presenilins share similar determinants of binding to APP. Confirming these results, SecPS2NT is able to inhibit PS1/APP interaction. Such a competition makes it unlikely that the PS/APP interaction results from nonspecific aggregation of PS in transfected cells. The physical interaction of presenilins with a region encompassing the A beta sequence of APP could be causally related to the misprocessing of APP and the production of A beta1-42.
Collapse
Affiliation(s)
- L Pradier
- Gene Medicine Department, Rhône-Poulenc Rorer, Vitry, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
The broad host range and superior infectivity of alphaviruses have encouraged the development of efficient expression vectors for Semliki Forest virus (SFV) and Sindbis virus (SIN). The generation of high-titer recombinant alphavirus stocks has allowed high-level expression of a multitude of nuclear, cytoplasmic, membrane-associated and secreted proteins in a variety of different cell lines and primary cell cultures. Despite the viral cytopathogenic effects, functional assays on recombinant proteins are possible for a time-period of at least 24 hours post-infection. The high percentage (80-95%) of primary neurons infected with SFV has allowed localization and functional studies of recombinant proteins in these primary cell cultures. Through multiple infection studies the interaction of receptor and G protein subunits has become feasible. Establishment of efficient scale-up procedures has allowed production of large quantities of recombinant protein. Potential gene therapy applications of alphaviruses could be demonstrated by injection of recombinant SIN particles expressing beta-galactosidase into mouse brain. Tissue/cell specific infection has been achieved by introduction of an IgG-binding domain of protein A domain into one of the spike proteins of SIN. This enabled efficient targeting of infection to human lymphoblastoid cells.
Collapse
Affiliation(s)
- K Lundstrom
- F. Hoffman-La Roche, Research Laboratories, Basel, Switzerland
| |
Collapse
|
103
|
|
104
|
Haass C, Baumeister R. What do we learn from a few familial Alzheimer's disease cases? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 54:137-45. [PMID: 9850922 DOI: 10.1007/978-3-7091-7508-8_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Alzheimer's disease is the most common form of dementia. About 90% of the cases occur sporadically whereas in 10% of the cases mutations were found within three different genes. Mutations in the gene encoding the beta-Amyloid precursor protein (beta APP) are located in the ultimate neighborhood of the three proteases (secretases) involved in proteolytic processing of beta APP. These mutations cause an increased production of the long form of Amyloid beta-peptide (A beta) the major component of Amyloid plaques. In contrast to the 40 amino acid form (A beta 40), the 42 amino acid form (A beta 42) aggregates more rapidly, kills cultured neurons more efficiently, and precipitates preferentially in amyloid plaques. Interestingly, mutations in the Presenilin genes which are responsible for more then 40% of all familial AD cases also cause enhanced production of the elongated form of A beta. Therefore mutations in three different genes directly effect A beta production in a pathological manner, which strongly supports the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- C Haass
- Central Institute for Mental Health, Department of Molecular Biology, Mannheim, Federal Republic of Germany
| | | |
Collapse
|
105
|
Ye Y, Fortini ME. Characterization of Drosophila Presenilin and its colocalization with Notch during development. Mech Dev 1998; 79:199-211. [PMID: 10349633 DOI: 10.1016/s0925-4773(98)00169-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutant Presenilin proteins cause early-onset familial Alzheimer's disease in humans and Caenorhabditis elegans Presenilins may facilitate Notch receptor signaling. We have isolated a Drosophila Presenilin homologue and determined the spatial and temporal distribution of the encoded protein as well as its localization relative to the fly Notch protein. In contrast to previous mRNA in situ studies, we find that Presenilin is widely expressed throughout oogenesis, embryogenesis, and imaginal development, and generally accumulates at comparable levels in neuronal and nonneuronal tissues. Double immunolabeling with Notch antibodies revealed that Presenilin and Notch are coexpressed in many tissues throughout Drosophila development and display partially overlapping subcellular localizations, supporting a possible functional link between Presenilin and Notch.
Collapse
Affiliation(s)
- Y Ye
- Department of Genetics, University of Pennsylvania School of Medicine, Stellar-Chance Laboratories 709C, Philadelphia 19104, USA
| | | |
Collapse
|
106
|
Steiner H, Capell A, Pesold B, Citron M, Kloetzel PM, Selkoe DJ, Romig H, Mendla K, Haass C. Expression of Alzheimer's disease-associated presenilin-1 is controlled by proteolytic degradation and complex formation. J Biol Chem 1998; 273:32322-31. [PMID: 9822712 DOI: 10.1074/jbc.273.48.32322] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous mutations causing early onset Alzheimer's disease have been identified in the presenilin (PS) genes, particularly the PS1 gene. Like the mutations identified within the beta-amyloid precursor protein gene, PS mutations cause the increased generation of a highly neurotoxic variant of amyloid beta-peptide. PS proteins are proteolytically processed to an N-terminal approximately 30-kDa (NTF) and a C-terminal approximately 20-kDa fragment (CTF20) that form a heterodimeric complex. We demonstrate that this complex is resistant to proteolytic degradation, whereas the full-length precursor is rapidly degraded. Degradation of the PS1 holoprotein is sensitive to inhibitors of the proteasome. Formation of a heterodimeric complex is required for the stability of both PS1 fragments, since fragments that do not co-immunoprecipitate with the PS complex are rapidly degraded by the proteasome. Mutant PS fragments not incorporated into the heterodimeric complex lose their pathological activity in abnormal amyloid beta-peptide generation even after inhibition of their proteolytic degradation. The PS1 heterodimeric complex can be attacked by proteinases of the caspase superfamily that generate an approximately 10-kDa proteolytic fragment (CTF10) from CTF20. CTF10 is rapidly degraded most likely by a calpain-like cysteine proteinase. From these data we conclude that PS1 metabolism is highly controlled by multiple proteolytic activities indicating that subtle changes in fragment generation/degradation might be important for Alzheimer's disease-associated pathology.
Collapse
Affiliation(s)
- H Steiner
- Central Institute of Mental Health, Department of Molecular Biology, J5, 68159 Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Naruse S, Thinakaran G, Luo JJ, Kusiak JW, Tomita T, Iwatsubo T, Qian X, Ginty DD, Price DL, Borchelt DR, Wong PC, Sisodia SS. Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron 1998; 21:1213-21. [PMID: 9856475 DOI: 10.1016/s0896-6273(00)80637-6] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the trafficking and metabolism of the beta-amyloid precursor protein (APP), an APP homolog (APLP1), and TrkB in neurons that lack PS1. We report that PS1-deficient neurons fail to secrete Abeta, and that the rate of appearance of soluble APP derivatives in the conditioned medium is increased. Remarkably, carboxyl-terminal fragments (CTFs) derived from APP and APLP1 accumulate in PS1-deficient neurons. Hence, PS1 plays a role in promoting intramembrane cleavage and/or degradation of membrane-bound CTFs. Moreover, the maturation of TrkB and BDNF-inducible TrkB autophosphorylation is severely compromised in neurons lacking PS1. We conclude that PS1 plays an essential role in modulating trafficking and metabolism of a selected set of membrane and secretory proteins in neurons.
Collapse
Affiliation(s)
- S Naruse
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Yang Y, Turner RS, Gaut JR. The chaperone BiP/GRP78 binds to amyloid precursor protein and decreases Abeta40 and Abeta42 secretion. J Biol Chem 1998; 273:25552-5. [PMID: 9748217 DOI: 10.1074/jbc.273.40.25552] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies of cellular amyloid precursor protein (APP) metabolism demonstrate a beta-/gamma-secretase pathway resident to the endoplasmic reticulum (ER)/Golgi resulting in intracellular generation of soluble APP (APPsbeta) and Abeta42 peptide. Thus, these intracellular compartments may be key sites of amyloidogenic APP metabolism and Alzheimer's disease pathogenesis. We hypothesized that the ER chaperone immunoglobulin binding protein (BiP/GRP78) binds to and facilitates correct folding of nascent APP. Metabolic labeling and immunoprecipitation of transiently transfected human embryonic kidney 293 cells demonstrated co-precipitation of APP with GRP78, revealing their transient interaction in the ER. Maturation of cellular APP was impaired by this interaction. Furthermore, the levels of APPs, Abeta40, and Abeta42 recovered in conditioned medium were lower compared with cells transfected with APP alone. Co-expression with APP of GRP78 T37G, an ATPase mutant, almost completely blocked cellular APP maturation as well as recovery of APPs, Abeta40, and Abeta42 in conditioned medium. The inhibitory effects of GRP78 and GRP78 T37G on Abeta40 and Abeta42 secretion were magnified by co-expression with the Swedish mutation of APP (K670N/M671L). Collectively, these data suggest a transient and direct interaction of GRP78 with APP in the ER that modulates intracellular APP maturation and processing and may facilitate its correct folding.
Collapse
Affiliation(s)
- Y Yang
- Department of Neurology, University of Michigan Medical Center, and Veterans Affairs Medical Center Geriatric Research, Education and Clinical Center, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
109
|
Borchelt DR, Wong PC, Sisodia SS, Price DL. Transgenic mouse models of Alzheimer's disease and amyotrophic lateral sclerosis. Brain Pathol 1998; 8:735-57. [PMID: 9804381 PMCID: PMC8098285 DOI: 10.1111/j.1750-3639.1998.tb00198.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the past several years, there has been enormous progress in generating transgenic mice that model aspects of human neurodegenerative diseases. These studies build upon the efforts of molecular geneticists who have identified a number of genes that, when mutated, cause familial forms of these diseases. In this review, we focus on the mutations that cause familial forms of Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), and transgenic mouse models that develop clinical and pathological abnormalities resembling those occurring in the human diseases.
Collapse
Affiliation(s)
- D R Borchelt
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
110
|
|
111
|
Tomita T, Tokuhiro S, Hashimoto T, Aiba K, Saido TC, Maruyama K, Iwatsubo T. Molecular dissection of domains in mutant presenilin 2 that mediate overproduction of amyloidogenic forms of amyloid beta peptides. Inability of truncated forms of PS2 with familial Alzheimer's disease mutation to increase secretion of Abeta42. J Biol Chem 1998; 273:21153-60. [PMID: 9694871 DOI: 10.1074/jbc.273.33.21153] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in presenilin (PS) 1 or PS2 genes account for the majority of early-onset familial Alzheimer's disease, and these mutations have been shown to increase production of species of amyloid beta peptide (Abeta) ending at residue 42, i.e. the most amyloidogenic form of Abeta. To gain insight into the molecular mechanisms whereby mutant PS induces overproduction of Abeta42, we constructed cDNAs encoding mutant and/or truncated forms of PS2 and examined the secretion of Abeta42 from COS or neuro2a cells transfected with these genes. Cells expressing full-length PS2 harboring both N141I and M239V mutations in the same polypeptide induced overproduction of Abeta42, although the levels of Abeta42 were comparable with those in cells engineered to express PS2 with one or the other of these PS2 mutations. In contrast, cells engineered to express partially truncated PS2 (eliminating the COOH-terminal third of PS2 while retaining the endoproteolytic NH2-terminal fragment) and harboring a N141I mutation, as well as cells expressing COOH-terminal fragments of PS2, did not overproduce Abeta42, and the levels of Abeta42 were comparable with those in cells that expressed full-length, wild-type PS2 or fragments thereof. These data indicate that: (i) the Abeta42-promoting effects of mutant PS2 proteins reach the maximum level with a given single amino acid substitution (i.e. N141I or M239V); and (ii) the expression of full-length mutant PS2 is required for the overproduction of Abeta42. Hence, cooperative interactions of NH2- and COOH-terminal fragments generated from full-length mutant PS2 may be important for the overproduction of Abeta42 that may underlie familial Alzheimer's disease.
Collapse
Affiliation(s)
- T Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
112
|
Haass C, Grünberg J, Capell A, Wild-Bode C, Leimer U, Walter J, Yamazaki T, Ihara I, Zweckbronner I, Jakubek C, Baumeister R. Proteolytic processing of Alzheimer's disease associated proteins. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 53:159-67. [PMID: 9700654 DOI: 10.1007/978-3-7091-6467-9_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Amyloid beta-peptide (A beta), the major component of senile plaques, is generated by proteolytic processing from the beta-amyloid precursor protein (beta APP). Mutations within the beta APP gene cause early onset familial AD (FAD) by affecting A beta generation. Interestingly, the much more abundant mutations within the presenilin (PS) genes also result in the abnormal generation of a 42 residue A beta (A beta 42), thus clearly supporting a pivotal role of A beta for the pathology of AD. PS proteins are proteolytically processed into stable 30 kDa N-terminal fragments (NTF) and 20 kDa C-terminal fragments (CTF). Beside the conventional proteolytic pathway. PS proteins can also be cleaved further C-terminal by proteases of the caspase superfamily. PS proteins were localized within the endoplasmic reticulum (ER) and early Golgi, compartments which we have demonstrated to be involved in A beta 42 generation and intracellular accumulation. Using Caenorhabditis elegans as a simple animal model, we demonstrate that PS proteins are involved in NOTCH signaling FAD causing mutations interfere with the biological function of PS proteins in NOTCH signaling.
Collapse
Affiliation(s)
- C Haass
- Central Institute for Mental Health, Department of Molecular Biology, Mannheim, Federal Republic of Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Presenilin-1 (PS-1) is localized to chromosome 14 and presenilin-2 (PS-2) to chromosome 1. Mutations in these genes, primarily in PS-1, account for an estimated 60% of early onset familial Alzheimer's disease cases (FAD), while FAD cases account for about 10% of all Alzheimer's disease (AD) cases. The mutations are minor but are 100% penetrant, suggesting that the proteins have acquired a toxic gain in function. The proteins have multiple transmembrane domains and have been reported to be localized to the Golgi apparatus, endoplasmic reticulum, nuclear membranes and cell surface membranes. They are thought to have functions associated with vesicular trafficking, Notch signaling and apoptosis. PS mutants show relative increases in the amount of A beta42/43 compared with A beta40 in plasma, fibroblasts and brain, observations which have been taken as a possible mechanism of their role in AD. In brain, the mRNAs for these two genes are localized primarily in neurons, with the strongest in situ hybridization signals being observed in the hippocampus, cerebellum and cerebral cortex. In AD, signals detected in the hippocampus are weaker than those in normals, while signals in the cerebellum are comparable. Immunohistochemical localization of the proteins is also primarily in neurons, and, at least for PS-1, is reduced in AD affected areas. PS-1 is localized to granular structures which are most abundant in cell bodies and dendrites. The functions of the presenilins are not yet known, but available evidence points to pyramidal neurons as the most logical site for pathological change in AD.
Collapse
Affiliation(s)
- P L McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
114
|
DiCiommo DP, Bremner R. Rapid, high level protein production using DNA-based Semliki Forest virus vectors. J Biol Chem 1998; 273:18060-6. [PMID: 9660762 DOI: 10.1074/jbc.273.29.18060] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Semliki Forest virus (SFV) vectors can be produced faster, and have a wider host range, than baculovirus vectors. However, the original SFV system requires in vitro manipulation of RNA. We have generated a system that is wholly DNA-based. Both the replicon vector, encoding SFV polymerase and the protein of interest, and the helper vector, encoding viral structural proteins, were modified so that expression was RNA polymerase II-dependent. Transfection of the modified replicon plasmid alone generated 20-30-fold more protein than obtained from a simple expression vector. Expression required the SFV replicase, which amplifies replicon RNA. The SFV-based vector generated 10-20-fold more protein than a plasmid based on Sindbis virus. Cotransfection of SFV replicon and helper vectors generated viral titers of around 10(6) infectious particles/ml. A single electroporation, plated on one 10-cm plate, generated enough virus (10(7) particles) to produce >500 microg of protein. Wild type, replication proficient virus was not detected in three tests utilizing almost 10(8) viral particles, a distinct advantage over a DNA Sindbis-based system in which over half the virus particles generated are fully infectious. The new SFV vectors significantly enhance the utility of this expression system.
Collapse
Affiliation(s)
- D P DiCiommo
- Eye Research Institute of Canada, Toronto, Ontario M5T 2S8
| | | |
Collapse
|
115
|
Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 1998. [PMID: 9614221 DOI: 10.1523/jneurosci.18-12-04439.1998] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many cases of autosomal dominant early onset Alzheimer's disease (AD) result from mutations in the gene encoding presenilin-1 (PS-1). PS-1 is an integral membrane protein expressed ubiquitously in neurons throughout the brain in which it is located primarily in endoplasmic reticulum (ER). Although the pathogenic mechanism of PS-1 mutations is unknown, recent findings suggest that PS mutations render neurons vulnerable to apoptosis. Because increasing evidence indicates that mitochondrial alterations contribute to neuronal death in AD, we tested the hypothesis that PS-1 mutations sensitize neurons to mitochondrial failure. PC12 cell lines expressing a PS-1 mutation (L286V) exhibited increased sensitivity to apoptosis induced by 3-nitropropionic acid (3-NP) and malonate, inhibitors of succinate dehydrogenase, compared with control cell lines and lines overexpressing wild-type PS-1. The apoptosis-enhancing action of mutant PS-1 was prevented by antioxidants (propyl gallate and glutathione), zVAD-fmk, and cyclosporin A, indicating requirements of reactive oxygen species (ROS), caspases, and mitochondrial permeability transition in the cell death process. 3-NP induced a rapid elevation of [Ca2+]i, which was followed by caspase activation, accumulation of ROS, and decreases in mitochondrial reducing potential and transmembrane potential in cells expressing mutant PS-1. The calcium chelator BAPTA AM and agents that block calcium release from ER and influx through voltage-dependent channels prevented mitochondrial ROS accumulation and membrane depolarization and apoptosis. Our data suggest that by perturbing subcellular calcium homeostasis presenilin mutations sensitize neurons to mitochondria-based forms of apoptosis that involve oxidative stress.
Collapse
|
116
|
Tan Y, Hong J, Doan T, McConlogue L, Maltese WA. Presenilin-1 mutations associated with familial Alzheimer's disease do not disrupt protein transport from the endoplasmic reticulum to the Golgi apparatus. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1407:69-78. [PMID: 9639678 DOI: 10.1016/s0925-4439(98)00031-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in genes encoding presenilin-1 (PS1) and presenilin-2 (PS2) have been linked to familial forms of Alzheimer's disease (AD). Cells expressing mutant presenilins produce elevated levels of Abeta42, the major amyloid peptide found in AD plaques. The mechanism whereby this occurs remains unknown, but the localization of presenilins to endoplasmic reticulum (ER) and Golgi compartments has suggested that they may function in intracellular trafficking pathways involved in processing beta-amyloid precursor proteins (APP). To test this possibility, we coexpressed PS1(wt), PS1(M146L), or PS1(L286V) in HEK293 cells together with the LDL receptor, a classic glycoprotein marker that undergoes post-translational O-glycosylation in the Golgi compartment. Pulse-chase analysis of the receptor indicated that mutant presenilins had no effect on ER-->Golgi transport. Similar results were obtained when the studies were carried out with cells expressing the Swedish variant of APP (SWAPP751) instead of the LDL receptor. Moreover, secretion of the soluble exodomain polypeptide fragments of SWAPP751 that arise from alpha-secretase and beta-secretase cleavage was not markedly affected by the PS1 mutants. Despite the lack of discernible effect of the PS1 mutants on trafficking of proteins through the Golgi apparatus, they caused a substantial increase in the proportion of Abeta42 relative to total Abeta in the culture medium. The results suggest that mutant forms of PS1 cause elevated production of Abeta42 by a mechanism that is independent of a major disruption of exocytic trafficking of APP.
Collapse
Affiliation(s)
- Y Tan
- Hood Research Program, Weis Center for Research, Pennsylvania State University College of Medicine, 100 N. Academy Avenue, Danville PA, 17822-2616, USA
| | | | | | | | | |
Collapse
|
117
|
Smine A, Xu X, Nishiyama K, Katada T, Gambetti P, Yadav SP, Wu X, Shi YC, Yasuhara S, Homburger V, Okamoto T. Regulation of brain G-protein go by Alzheimer's disease gene presenilin-1. J Biol Chem 1998; 273:16281-8. [PMID: 9632688 DOI: 10.1074/jbc.273.26.16281] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate a possible association between G-proteins and presenilin-1 (PS-1), a series of glutathione S-transferase-fusion proteins containing portions of PS-1 were prepared and used in vitro in binding experiments with tissue and recombinant G-proteins. The results demonstrate that the 39 C-terminal amino acids of PS-1 selectively bind the brain G-protein, Go. Addition of guanosine 5'-3-O-(thio)triphosphate promoted Go dissociation from PS-1, indicating that this domain mimics the function of G-protein-coupling domains found in receptors. The 39-amino acid synthetic polypeptide activated Go in a magnesium ion-dependent manner. Physical interaction of full-length PS-1 and Go was also demonstrated. Following transfection of Goalpha and N-terminally FLAG-tagged PS-1 in COS-7 cells, Go was immunoprecipitated by FLAG antibodies. In addition, endogenous PS-1 and Goalpha were colocalized immunocytochemically in human glioma cell lines. The results indicate that PS-1 regulates Go activities in living cells.
Collapse
Affiliation(s)
- A Smine
- The Lerner Research Institute, Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Keller JN, Guo Q, Holtsberg FW, Bruce-Keller AJ, Mattson MP. Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 1998; 18:4439-50. [PMID: 9614221 PMCID: PMC6792705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many cases of autosomal dominant early onset Alzheimer's disease (AD) result from mutations in the gene encoding presenilin-1 (PS-1). PS-1 is an integral membrane protein expressed ubiquitously in neurons throughout the brain in which it is located primarily in endoplasmic reticulum (ER). Although the pathogenic mechanism of PS-1 mutations is unknown, recent findings suggest that PS mutations render neurons vulnerable to apoptosis. Because increasing evidence indicates that mitochondrial alterations contribute to neuronal death in AD, we tested the hypothesis that PS-1 mutations sensitize neurons to mitochondrial failure. PC12 cell lines expressing a PS-1 mutation (L286V) exhibited increased sensitivity to apoptosis induced by 3-nitropropionic acid (3-NP) and malonate, inhibitors of succinate dehydrogenase, compared with control cell lines and lines overexpressing wild-type PS-1. The apoptosis-enhancing action of mutant PS-1 was prevented by antioxidants (propyl gallate and glutathione), zVAD-fmk, and cyclosporin A, indicating requirements of reactive oxygen species (ROS), caspases, and mitochondrial permeability transition in the cell death process. 3-NP induced a rapid elevation of [Ca2+]i, which was followed by caspase activation, accumulation of ROS, and decreases in mitochondrial reducing potential and transmembrane potential in cells expressing mutant PS-1. The calcium chelator BAPTA AM and agents that block calcium release from ER and influx through voltage-dependent channels prevented mitochondrial ROS accumulation and membrane depolarization and apoptosis. Our data suggest that by perturbing subcellular calcium homeostasis presenilin mutations sensitize neurons to mitochondria-based forms of apoptosis that involve oxidative stress.
Collapse
Affiliation(s)
- J N Keller
- Molecular and Cellular Biology Group, Department of Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
119
|
Borg JP, Yang Y, De Taddéo-Borg M, Margolis B, Turner RS. The X11alpha protein slows cellular amyloid precursor protein processing and reduces Abeta40 and Abeta42 secretion. J Biol Chem 1998; 273:14761-6. [PMID: 9614075 DOI: 10.1074/jbc.273.24.14761] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Constitutive amyloid precursor protein (APP) metabolism results in the generation of soluble APP (APPs) and Abeta peptides, including Abeta40 and Abeta42-the major component of amyloid plaques in Alzheimer's disease brain. The phosphotyrosine binding (PTB) domain of X11 binds to a peptide containing a YENPTY motif found in the carboxyl terminus of APP. We have cloned the full-length X11 gene now referred to as X11alpha. Coexpression of X11alpha with APP results in comparatively greater levels of cellular APP and less APPs, Abeta40, and Abeta42 recovered in conditioned medium of transiently transfected HEK 293 cells. These effects are impaired by a single missense mutation of either APP (Y682G within the YENPTY motif) or X11alpha (F608V within the PTB domain), which diminishes their interaction, thus demonstrating specificity. The inhibitory effect of X11alpha on Abeta40 and Abeta42 secretion is amplified by coexpression with the Swedish mutation of APP (K595N/M596L), which promotes its amyloidogenic processing. Pulse-chase analysis demonstrates that X11alpha prolongs the half-life of APP from approximately 2 h to approximately 4 h. The effects of X11alpha on cellular APP and APPs recovery were confirmed in a 293 cell line stably transfected with APP. The specific binding of the PTB domain of X11alpha to the YENPTY motif-containing peptide of APP appears to slow cellular APP processing and thus reduces recovery of its soluble fragments APPs, Abeta40, and Abeta42 in conditioned medium of transfected HEK 293 cells. X11alpha may be involved in APP trafficking and metabolism in neurons and thus may be implicated in amyloidogenesis in normal aging and Alzheimer's disease brain.
Collapse
Affiliation(s)
- J P Borg
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
120
|
Shen Y, Li R. Expressing mRNAs for presenilin-1 and amyloid precursor protein (APP-695) from same neuronal populations in rat hippocampus. Brain Res Bull 1998; 46:233-6. [PMID: 9667817 DOI: 10.1016/s0361-9230(97)00455-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Presenilin-1 gene (PS1, s182) encoding a protein that contains seven transmembrane domains was recently identified as a risk factor for Alzheimer's disease (AD). Mutations on this gene may contribute to pathogenesis of AD. In this study, we used in situ hybridization histochemistry to detect the expression of PS1 in neurons in the hippocampal formation and cerebral cortex of the rat brain. Specifically, mRNAs of PS1 were predominantly found in pyramidal neurons in CA1, CA3, and granule cells in the hilar region of the dentate gyrus of the hippocampus and in the external and internal pyramidal layers of the cerebral cortex. The same neuronal populations express the amyloid protein precursor (APP-695). Transgenic mice expressing a mutated APP-695 produced increased levels of beta-amyloid (A beta) and exhibited behavioral deficits. These results lead us to suggest that when PS1 and APP-695 colocalize in neurons in the brain, PS1 may play a regulatory role in production of (A beta) protein of AD.
Collapse
Affiliation(s)
- Y Shen
- L. J. Roberts Alzheimer's Center, Sun Health Research Institute, Sun City, AZ 85351, USA.
| | | |
Collapse
|
121
|
Skovronsky DM, Doms RW, Lee VM. Detection of a novel intraneuronal pool of insoluble amyloid beta protein that accumulates with time in culture. J Cell Biol 1998; 141:1031-9. [PMID: 9585420 PMCID: PMC2132781 DOI: 10.1083/jcb.141.4.1031] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The amyloid-beta peptide (Abeta) is produced at several sites within cultured human NT2N neurons with Abeta1-42 specifically generated in the endoplasmic reticulum/intermediate compartment. Since Abeta is found as insoluble deposits in senile plaques of the AD brain, and the Abeta peptide can polymerize into insoluble fibrils in vitro, we examined the possibility that Abeta1-40, and particularly the more highly amyloidogenic Abeta1-42, accumulate in an insoluble pool within NT2N neurons. Remarkably, we found that formic acid extraction of the NT2N cells solubilized a pool of previously undetectable Abeta that accounted for over half of the total intracellular Abeta. Abeta1-42 was more abundant than Abeta1-40 in this pool, and most of the insoluble Abeta1-42 was generated in the endoplasmic reticulum/intermediate compartment pathway. High levels of insoluble Abeta were also detected in several nonneuronal cell lines engineered to overexpress the amyloid-beta precursor protein. This insoluble intracellular pool of Abeta was exceptionally stable, and accumulated in NT2N neurons in a time-dependent manner, increasing 12-fold over a 7-wk period in culture. These novel findings suggest that Abeta amyloidogenesis may be initiated within living neurons rather than in the extracellular space. Thus, the data presented here require a reexamination of the prevailing view about the pathogenesis of Abeta deposition in the AD brain.
Collapse
Affiliation(s)
- D M Skovronsky
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
122
|
Guo Q, Robinson N, Mattson MP. Secreted beta-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-kappaB and stabilization of calcium homeostasis. J Biol Chem 1998; 273:12341-51. [PMID: 9575187 DOI: 10.1074/jbc.273.20.12341] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the presenilin-1 (PS-1) gene account for approximately 50% of the cases of autosomal dominant, early onset, inherited forms of Alzheimer's disease (AD). PS-1 is an integral membrane protein expressed in neurons and is localized primarily in the endoplasmic reticulum (ER). PS-1 mutations may promote neuronal degeneration by altering the processing of the beta-amyloid precursor protein (APP) and/or by engaging apoptotic pathways. Alternative processing of APP in AD may increase production of neurotoxic amyloid beta-peptide (Abeta) and reduce production of the neuroprotective alpha-secretase-derived form of APP (sAPPalpha). In differentiated PC12 cells expressing an AD-linked PS-1 mutation (L286V), sAPPalpha activated the transcription factor NF-kappaB and prevented apoptosis induced by Abeta. Treatment of cells with kappaB decoy DNA blocked the antiapoptotic action of sAPPalpha, demonstrating the requirement for NF-kappaB activation in the cytoprotective action of sAPPalpha. Cells expressing mutant PS-1 exhibited an aberrant pattern of NF-kappaB activity following exposure to Abeta, which was characterized by enhanced early activation of NF-kappaB followed by a prolonged depression of activity. Blockade of NF-kappaB activity in cells expressing mutant PS-1 by kappaB decoy DNA was associated with enhanced Abeta-induced increases of [Ca2+]i and mitochondrial dysfunction. Treatment of cells with sAPPalpha stabilized [Ca2+]i and mitochondrial function and suppressed oxidative stress by a mechanism involving activation of NF-kappaB. Blockade of ER calcium release prevented (and stimulation of ER calcium release by thapsigargin induced) apoptosis in cells expressing mutant PS-1, suggesting a pivotal role for ER calcium release in the proapoptotic action of mutant PS-1. Finally, a role for NF-kappaB in preventing apoptosis induced by ER calcium release was demonstrated by data showing that sAPPalpha prevents thapsigargin-induced apoptosis, an effect blocked by kappaB decoy DNA. We conclude that sAPPalpha stabilizes cellular calcium homeostasis and protects neural cells against the proapoptotic action of mutant PS-1 by a mechanism involving activation of NF-kappaB. The data further suggest that PS-1 mutations result in aberrant NF-kappaB regulation that may render neurons vulnerable to apoptosis.
Collapse
Affiliation(s)
- Q Guo
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
123
|
Small DH. The role of the amyloid protein precursor (APP) in Alzheimer's disease: does the normal function of APP explain the topography of neurodegeneration? Neurochem Res 1998; 23:795-806. [PMID: 9566620 DOI: 10.1023/a:1022471729291] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the aged population. Early-onset familial AD (FAD) involves mutations in a gene on chromosome 21 encoding the amyloid protein precursor or on chromosomes 14 or 1 encoding genes known as presenilins. All mutations examined have been found to increase the production of amyloidogenic forms of the amyloid protein (A beta), a 4 kDa peptide derived from APP. Despite the remarkable progress in elucidating the biochemical mechanisms responsible for AD, little is known about the normal function of APP. A model of how APP and A beta are involved in pathogenesis is presented. This model may explain why certain neuronal populations are selectively vulnerable in AD. It is suggested that those neurons which more readily undergo neuritic sprouting and synaptic remodelling are more vulnerable to A beta neurotoxicity.
Collapse
Affiliation(s)
- D H Small
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
124
|
Hayashi Y, Fukatsu R, Tsuzuki K, Yoshida T, Sasaki N, Kimura K, Yamaguchi H, St George-Hyslop PH, Fujii N, Takahata N. Evidence for presenilin-1 involvement in amyloid angiopathy in the Alzheimer's disease-affected brain. Brain Res 1998; 789:307-14. [PMID: 9573389 DOI: 10.1016/s0006-8993(98)00027-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Presenilin-1 (PS-1) has been identified as the protein encoded by the chromosome 14 locus that, when mutated, leads to familial Alzheimer's disease (FAD). The role PS-1 plays in the pathogenesis of Alzheimer's disease (AD) remains unclear. Using a set of antibodies raised against PS-1 synthetic peptides, polyclonal antibody to amyloid beta protein (Abeta) and end-specific antibodies against Abeta40, and Abeta42, immunohistochemical studies were performed on brain sections obtained from AD cases and controls. The PS-1 antibodies clearly stained amyloid angiopathies in AD-affected brains, but no recognizable immunoreactions were observed in any other vessels free from amyloid involvement in either AD-affected brains or controls. Abeta antibodies and the end-specific antibody against Abeta40 also decorated amyloid angiopathies, showing localization similar to that of PS-1. Western blot analyses predominantly detected protein band polypeptide species of a 50 kDa, band, presumably full-length PS-1 protein with N-terminus antisera, since these antibodies turned out to recognize a 50-kDa full-length band in cell lysate of transfected HeLa cell overexpressing PS-1. In addition, we recognized 30, 27 and 25 kDa proteins in both AD and control brain homogenate with these antibodies. In microvessel fractions extracted from brain homogenates, the 50, and 27 kDa fragments were observed in AD-affected brains but not in those of controls. C-terminus rabbit antisera reacted strongly with the 33 and 27 kDa bands, and additionally detected a small amount of full-length PS-1 protein in extracts from AD and control brains. Our present data indicate that PS-1 might be involved in the pathogenesis of amyloid angiopathy in the AD brain.
Collapse
Affiliation(s)
- Y Hayashi
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, Sapporo 060, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
The most common cause of dementia occurring in mid- to late-life is Alzheimer's disease (AD). Some cases of AD, particularly those of early onset, are familial and inherited as autosomal dominant disorders linked to the presence of mutant genes that encode the amyloid precursor protein (APP) or the presenilins (PS1 or PS2). These mutant gene products cause dysfunction/death of vulnerable populations of nerve cells important in memory, higher cognitive processes, and behavior. AD affects 7-10% of individuals > 65 years of age and perhaps 40% of individuals > 80 years of age. For the late-onset cases, the principal risk factors are age and apolipoprotein (apoE) allele type, with apoE4 allele being a susceptibility factor. In this review, we briefly discuss the clinical syndrome of AD and the neurobiology/neuropathology of the disease and then focus attention on mutant genes linked to autosomal dominant familial AD (FAD), the biology of the proteins encoded by these genes, and the recent exciting progress in investigations of genetically engineered animal models that express these mutant genes and develop some features of AD.
Collapse
Affiliation(s)
- D L Price
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA. ,
| | | |
Collapse
|
126
|
Thinakaran G, Regard JB, Bouton CM, Harris CL, Price DL, Borchelt DR, Sisodia SS. Stable association of presenilin derivatives and absence of presenilin interactions with APP. Neurobiol Dis 1998; 4:438-53. [PMID: 9666482 DOI: 10.1006/nbdi.1998.0171] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in two related genes, presenilin 1 and 2 presenilin 2 (PS1 and PS2), cosegregate with Alzheimer's disease. PS1 and PS2 are highly homologous polytopic membrane proteins that are subject to endoproteolytic cleavage in vivo. The resulting N- and C-terminal derivatives are the preponderant PS-related species that accumulate in cultured cells and tissue. In earlier studies, we demonstrated that PS1 N- and C-terminal derivatives accumulate to 1:1 stoichiometry and that the absolute levels of fragments are established by a tightly regulated and saturable mechanism. These findings led to the suggestion that the levels of PS1 derivatives might be determined by their association with limiting cellular components. In this study, we use in situ chemical cross-linking and coimmunoprecipitation analyses to document that the N- and C-terminal derivatives of either PS1 or PS2 can be coisolated. Moreover, and in contrast to published reports which documented that PS1 and PS2 form stable heteromeric assemblies with the beta-amyloid precursor protein (APP), we have failed to provide evidence for physiological complexes between PS1 and PS2 holoproteins or their derivatives with APP.
Collapse
Affiliation(s)
- G Thinakaran
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196
| | | | | | | | | | | | | |
Collapse
|
127
|
Tokuhiro S, Tomita T, Iwata H, Kosaka T, Saido TC, Maruyama K, Iwatsubo T. The presenilin 1 mutation (M146V) linked to familial Alzheimer's disease attenuates the neuronal differentiation of NTera 2 cells. Biochem Biophys Res Commun 1998; 244:751-5. [PMID: 9535737 DOI: 10.1006/bbrc.1998.8336] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in presenilin 1 (PS1) gene are the major cause of early-onset familial Alzheimer's disease. The biological functions of PS1 remain elusive, although accumulating evidence suggests that PS1 may play an important role in development and differentiation. To learn about the significance of PS1 in the differentiation of neuronal cells, we established NTera 2 (NT2) cell lines stably expressing wild-type (wt) or M146V mutant human PS1, and compared the differentiation of both types of cell lines into postmitotic neurons upon retinoic acid (RA) treatment. After 25 days of RA treatment, a significant proportion of cells differentiated into neurons in NT2 cells expressing wt PS1 (27.7% of total cells), which was comparable to that in untransfected cells, whereas very few cells differentiated into neurons in NT2 cells expressing M146V mutant PS1 (2.6% of total cells). These results suggest that mutant PS1 attenuates the potentials of NT2 cells to differentiate into neurons.
Collapse
Affiliation(s)
- S Tokuhiro
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
128
|
Guo Q, Christakos S, Robinson N, Mattson MP. Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function. Proc Natl Acad Sci U S A 1998; 95:3227-32. [PMID: 9501245 PMCID: PMC19724 DOI: 10.1073/pnas.95.6.3227] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/1997] [Indexed: 02/06/2023] Open
Abstract
Mutations in the presenilin 1 (PS-1) gene account for many cases of early-onset autosomal dominant inherited forms of Alzheimer's disease. Recent findings suggest that PS-1 mutations may sensitize neurons to apoptosis induced by trophic factor withdrawal and exposure to amyloid beta-peptide (Abeta). We now report that overexpression of the calcium-binding protein calbindin D28k prevents apoptosis in cultured neural cells expressing mutant PS-1 (L286V and M146V missense mutations). Elevations of the intracellular Ca2+ concentration and generation of reactive oxygen species induced by Abeta, and potentiated by mutant PS-1, were suppressed in calbindin-overexpressing cells. Impairment of mitochondrial function by Abeta (which preceded apoptosis) was exacerbated by PS-1 mutations and was largely prevented by calbindin. These findings suggest that PS-1 mutations render neurons vulnerable to apoptosis by a mechanism involving destabilization of cellular calcium homeostasis, which leads to oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Q Guo
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
129
|
Marambaud P, Ancolio K, Lopez-Perez E, Checler F. Proteasome inhibitors prevent the degradation of familial Alzheimer's disease-linked presenilin 1 and potentiate A beta 42 recovery from human cells. Mol Med 1998; 4:147-57. [PMID: 9562973 PMCID: PMC2230353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Several lines of evidence suggest that most of the early-onset forms of familial Alzheimer's disease (FAD) are due to inherited mutations borne by a chromosome 14-encoded protein, presenilin 1 (PS1). This is likely related to an increased production of amyloid beta-peptide (A beta) 42, one of the main components of the extracellular deposits called senile plaques that invade human cortical areas during the disease. MATERIALS AND METHODS We set up stably transfected HEK293 cells overexpressing wild-type (wt) and various FAD-linked mutated PS1. By Western blot analysis, we examined the influence of specific proteasome inhibitors on PS1-like immunoreactivities. Furthermore, by means of metabolic labeling and immunoprecipitation with A beta 40 and A beta 42-directed specific antibodies, we assessed the effect of the inhibitors on the production of A beta s by wt and mutated PS1-expressing cells transiently transfected with beta APP751. RESULTS We show that two distinct proteasome inhibitors, Z-IE (Ot-Bu)A-Leucinal and lactacystin, increase in a time- and dose-dependent manner the immunoreactivities of both wt and mutated PS1. Furthermore, we demonstrate that PS1 is polyubiquitinated in these cells. Other inhibitors, ineffective on the proteasome, fail to protect wt and mutated PS1-like immunoreactivities. We also establish that the FAD-linked mutations of PS1 trigger a selective increased formation of A beta 42 as reflected by higher A beta 42 over total A beta ratios when compared with wtPS1-expressing cells. Interestingly, this augmentation was further amplified by proteasome inhibitors in cells expressing mutated but not wtPS1. CONCLUSION Altogether, our data indicate that PS1 undergoes polyubiquitination in HEK293 cells and that the proteasome contributes to the degradation of wt and FAD-linked PS1, thereby directly influencing the A beta production in human cells.
Collapse
Affiliation(s)
- P Marambaud
- Institut de Pharmacologie Moléculaire et Cellulaire, UPR 411 du CNRS, Sophia Antipolis, Valbonne, France
| | | | | | | |
Collapse
|
130
|
Marambaud P, Ancolio K, Lopez-Perez E, Checler F. Proteasome Inhibitors Prevent the Degradation of Familial Alzheimer’s Disease-Linked Presenilin 1 and Potentiate Aβ42 Recovery from Human Cells. Mol Med 1998. [DOI: 10.1007/bf03401912] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
131
|
Apert C, Czech C, Faivre-Bauman A, Loudes C, Pradier L, Epelbaum J. Profiles of amyloid precursor and presenilin 2-like proteins are correlated during development of the mouse hypothalamus. J Neuroendocrinol 1998; 10:101-9. [PMID: 9535056 DOI: 10.1046/j.1365-2826.1998.00171.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The amyloid precursor protein (APP) and APP-like (APLP) material, as visualized with the Mab22C11 antibody, have previously been shown to be associated with radial glia in hypothalamus, which are known to promote neurite outgrowth. By Northern blot analysis, APP 695 mRNA levels increased steadily over hypothalamic development, APP 770 mRNA was transiently expressed at 12 days postnatally, and APLP mRNA was only weakly expressed in the hypothalamus. The developmental pattern of APP moeities in mouse hypothalamus and in fetal hypothalamic neurons in culture was compared with a presenilin 2 (PS2) related protein using an antibody developed against the N-terminal part of PS2. By Western blot analysis, APP and PS2-like immunoreactivity were visualized as a 100-130 and 52 kDa bands, respectively. An APP biphasic increase was observed during hypothalamic development in vivo. APP immunoreactivity was equally detected in neuronal and glial cultures, while PS2-like material was more concentrated in neurons. A correlation between APP/APP-like and PS2-like levels was observed during development in vivo. While APP was mostly associated with membrane fractions, a significant portion of PS2-like material was also recovered from cytosolic fractions in vitro. In contrast to native PS2 in COS-transfected cells, the PS2-like material did not aggregate after heating for 90 s at 90 degrees C. These results indicate a close association between APP and PS2-like material during hypothalamic development in vivo, and suggest that neuronal and glial cultures may provide appropriate models to test their interactions.
Collapse
Affiliation(s)
- C Apert
- Inserm U159, Centre Paul Broca, Paris, France
| | | | | | | | | | | |
Collapse
|
132
|
Okochi M, Sahara N, Kametani F, Usami M, Arai T, Tanaka K, Ishii K, Yamamoto A, Mori H. Presenilin 1 cleavage is a universal event in human organs. Neurobiol Aging 1998; 19:S3-10. [PMID: 9562459 DOI: 10.1016/s0197-4580(98)00045-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A panel of antibodies raised against various regions of human presenilin 1(PS1)--the amino-terminal domain, the domain between the transmembrane domains 1 and 2, the cleavage-site, loop domains, or carboxyl-terminal domain--was prepared to analyze PS1 in human tissues. We observed the predominance of two fragments (28-kDa NH2 and 18-kDa COOH fragments) in various tissues, including cerebral cortices. In addition to these two fragments, we found a previously unidentified amino-terminal fragment of PS1 with Mr 14 kDa in the lungs, spleen, pancreas, and testes. Using a sensitive ELISA for PS1, we measured the amount of PS1 species in tissues and found high contents of PS1 fragment in the testes. Our data show that common and unique processing pathways of PS1 occur in a tissue-dependent manner. It is likely that cleavage at the loop structure of PS1 to produce a functional form is a common event in human organs.
Collapse
Affiliation(s)
- M Okochi
- Department of Molecular Biology, Tokyo Institute of Psychiatry, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Egan SE, St-Pierre B, Leow CC. Notch receptors, partners and regulators: from conserved domains to powerful functions. Curr Top Microbiol Immunol 1997; 228:273-324. [PMID: 9401210 DOI: 10.1007/978-3-642-80481-6_11] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- S E Egan
- Division of Immunology and Cancer Research, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
134
|
Forman MS, Cook DG, Leight S, Doms RW, Lee VM. Differential effects of the swedish mutant amyloid precursor protein on beta-amyloid accumulation and secretion in neurons and nonneuronal cells. J Biol Chem 1997; 272:32247-53. [PMID: 9405428 DOI: 10.1074/jbc.272.51.32247] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Expression of the Swedish DeltaNL mutation in the beta-amyloid precursor protein (APPDeltaNL) dramatically increases Abeta generation in nonneuronal cell lines, although it is unclear whether intracellular levels of beta-amyloid (Abeta) are also elevated after APPDeltaNL expression. Furthermore, the effects of expressing APPDeltaNL in neurons on the production and secretion of Abeta-(1-40) and Abeta-(1-42) are unknown. To address these issues, we examined the generation of both intracellular and secreted Abeta-(1-40) and Abeta-(1-42) in human neuronal NT2N cells, in primary rat astrocytes, and in Chinese hamster ovary cells engineered to express wild-type APP or APPDeltaNL using a recombinant Semliki Forest virus expression system. Expression of APPDeltaNL led to a marked increase in APPbeta and the C-terminal fragment containing the entire Abeta sequence (C99) in all cells tested. However, a dramatic elevation of intracellular and secreted Abeta-(1-40) and Abeta-(1-42) was seen only in astrocytes and Chinese hamster ovary cells. The DeltaNL mutation did not cause a significant increase in intracellular or secreted Abeta-(1-40) or Abeta-(1-42) in NT2N cells. Since NT2N cells expressing APPDeltaNL accumulate much higher levels of C99 than cells expressing wild-type APP, we conclude that the rate-limiting step in Abeta production could be the further processing of C99 by gamma-secretase in these cells. These results show that the Swedish DeltaNL mutation causes nonneuronal cells to process APP via pathways more in common with the metabolism of wild-type APP in neurons.
Collapse
Affiliation(s)
- M S Forman
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | | | |
Collapse
|
135
|
Dewji NN, Singer SJ. The seven-transmembrane spanning topography of the Alzheimer disease-related presenilin proteins in the plasma membranes of cultured cells. Proc Natl Acad Sci U S A 1997; 94:14025-30. [PMID: 9391146 PMCID: PMC28426 DOI: 10.1073/pnas.94.25.14025] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/1997] [Indexed: 02/05/2023] Open
Abstract
To ascertain the membrane topography of the multi-transmembrane spanning presenilin proteins PS-1 and PS-2, anti-peptide antibodies were raised to several specific amino acid sequences in the two proteins, and, after their specificity was ascertained, the anti-peptide antibodies were used in immunofluorescent labeling of live PS-transfected, cultured DAMI cells, which are impermeable to the antibodies, as well as of their fixed and permeabilized counterparts. In such experiments, antibodies that specifically stain the intact live cells must label epitopes of the PS proteins that are on the exterior face of the plasma membrane whereas those antibodies that do not stain the live cells but do stain the fixed and permeabilized cells must label epitopes that face the cytoplasmic side of the membrane. The results obtained were entirely in accord with the predictions of the seven-transmembrane spanning topography (like that of rhodopsin and the beta-adrenergic receptor) and were totally inconsistent with the expectations for either the six- or eight-transmembrane topographies that have been proposed.
Collapse
Affiliation(s)
- N N Dewji
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0322, USA.
| | | |
Collapse
|
136
|
Mattson MP, Guo Q. Cell and molecular neurobiology of presenilins: a role for the endoplasmic reticulum in the pathogenesis of Alzheimer's disease? J Neurosci Res 1997; 50:505-13. [PMID: 9404712 DOI: 10.1002/(sici)1097-4547(19971115)50:4<505::aid-jnr1>3.0.co;2-i] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutations in genes encoding presenilin-1 (PS-1) and presenilin-2 (PS-2) cause many cases of autosomal dominant inherited forms of early-onset Alzheimer's disease (AD). PSs are expressed in neurons throughout the nervous system, with differences in abundance among cell populations. PS-1 and PS-2 each have six to eight transmembrane domains and are localized mainly in the endoplasmic reticulum (ER). PSs may interact with cytoskeletal proteins and beta-amyloid precursor protein (APP) in ways consistent with roles in membrane trafficking and APP processing. Expression of mutant PSs in cultured cells and transgenic mice results in increased production of an amyloidogenic-cytotoxic form of amyloid beta-peptide (Abeta). Neural cells expressing mutant PSs exhibit increased sensitivity to apoptosis induced by trophic factor withdrawal and Abeta. The proapoptotic action of mutant PSs involves perturbed calcium release from ER stores and increased levels of oxidative stress. PS mutations may also suppress neurotransmitter synthesis in cholinergic neurons, suggesting a role in regulation of neuronal phenotype. Homology of PSs with the C. elegans gene sel-12 and phenotypic similarities of PS-1 and Notch knockout mice suggest a developmental role for PSs in somitogenesis. Collectively, the emerging data suggest intriguing roles of PSs in neuronal plasticity and cell death and highlight the importance of the ER as a regulatory site involved in the pathogenesis of neuronal degeneration in AD.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA.
| | | |
Collapse
|
137
|
Thinakaran G, Harris CL, Ratovitski T, Davenport F, Slunt HH, Price DL, Borchelt DR, Sisodia SS. Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J Biol Chem 1997; 272:28415-22. [PMID: 9353300 DOI: 10.1074/jbc.272.45.28415] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutations in two related genes, PS1 and PS2, account for the majority of early onset cases of familial Alzheimer's disease. PS1 and PS2 are homologous polytopic membrane proteins that are processed endoproteolytically into two fragments in vivo. In the present report we examine the fate of endogenous PS1 and PS2 after overexpression of human PS1 or PS2 in mouse N2a neuroblastoma cell lines and human PS1 in transgenic mice. Remarkably, in N2a cell lines and in brains of transgenic mice expressing human PS1, accumulation of human PS1 derivatives is accompanied by a compensatory, and highly selective, decrease in the steady-state levels of murine PS1 and PS2 derivatives. Similarly, the levels of murine PS1 derivatives are diminished in cultured cells overexpressing human PS2. To define the minimal sequence requirements for "replacement" we expressed familial Alzheimer's disease-linked and experimental deletion variants of PS1. These studies revealed that compromised accumulation of murine PS1 and PS2 derivatives resulting from overexpression of human PS1 occurs in a manner independent of endoproteolytic cleavage. Our results are consistent with a model in which the abundance of PS1 and PS2 fragments is regulated coordinately by competition for limiting cellular factor(s).
Collapse
Affiliation(s)
- G Thinakaran
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA.
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Janicki S, Monteiro MJ. Increased apoptosis arising from increased expression of the Alzheimer's disease-associated presenilin-2 mutation (N141I). J Cell Biol 1997; 139:485-95. [PMID: 9334350 PMCID: PMC2139804 DOI: 10.1083/jcb.139.2.485] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutations in the genes for presenilin 1 and 2 (PS-1 and PS-2) have been linked to development of early-onset Alzheimer's disease (AD). As neither the normal function of either presenilin is known nor why mutations cause disease, we examined the properties of wild-type, truncated, and mutant PS-2 upon expression in HeLa cells. Although HeLa cells are strongly predisposed to continued mitosis, expression of PS-2 induced programmed cell death (apoptosis). Direct evidence for apoptosis was obtained by double staining for terminal deoxynucleotide transferase nick end labeling (TUNEL) and PS-2 expression and by following green fluorescent protein-tagged PS-2 over time. Deletion analysis indicates that as little as 166 NH2-terminal residues of PS-2 are sufficient for endoplasmic reticulum (ER) localization and apoptosis. Moreover, the AD- associated PS-2 missense mutation (N141I) more efficiently induced cell death compared to wild-type PS-2 despite lower mutant protein accumulation. Expression of the presenilins in several other cell lines and transgenic mice has been accompanied by rapid protein cleavage without the induction of cell death. In contrast, PS-2 expressed in HeLa cells was not cleaved, and cell death occurred. We hypothesize that full-length but not cleaved PS-2 may be important in the regulation or induction of apoptosis.
Collapse
Affiliation(s)
- S Janicki
- Medical Biotechnology Center of the University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
139
|
Abstract
Mutations in the genes encoding the presenilins cause the majority of early-onset cases of Alzheimer's disease (AD). The identification of the presenilin genes has provided new opportunities for elucidating the molecular mechanisms underlying the etiology and pathogenesis of AD. Recent progress has been made in attempts to understand the normal and pathological functions of the presenilins, emphasizing the effects of presenilin familial AD mutations on the amyloid beta-protein precursor, the presenilins themselves, and apoptotic cell death.
Collapse
Affiliation(s)
- T W Kim
- Genetics and Aging Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
140
|
Abstract
Alphavirus vectors have been used for efficient high-level expression of a variety of topologically different proteins, allowing studies of protein transport, localization and functional activity in a broad range of host cells. Complex transmembrane proteins have been produced in large quantities through the establishment of scale-up technology. Alphavirus vectors have also shown promising potential in vaccine production and preliminary gene therapy applications.
Collapse
Affiliation(s)
- K Lundstrom
- F Hoffmann-La Roche, Research Laboratories, Roche Ltd, Basel, Switzerland.
| |
Collapse
|
141
|
Culvenor JG, Maher F, Evin G, Malchiodi-Albedi F, Cappai R, Underwood JR, Davis JB, Karran EH, Roberts GW, Beyreuther K, Masters CL. Alzheimer's disease-associated presenilin 1 in neuronal cells: evidence for localization to the endoplasmic reticulum-Golgi intermediate compartment. J Neurosci Res 1997; 49:719-31. [PMID: 9335259 DOI: 10.1002/(sici)1097-4547(19970915)49:6<719::aid-jnr6>3.0.co;2-a] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recently identified Alzheimer's disease-associated presenilin 1 and 2 (PS1 and PS2) genes encode two homologous multi membrane-spanning proteins. Rabbit antibodies to the N-terminal domain of PS1 detected PS1 in human neuroblastoma SH-SY5Y wild type and PS1 transfectants (SY5Y-PS1) as well as in mouse P19, in CHO-K1 and CHO-APP770 transfected cells, in rat cerebellar granule and hippocampal neurons, and astrocytes. Immunoblotting detected full-length protein of 50 kDa, and a major presumptive cleavage product of 30 kDa. The immunofluorescence pattern resembled labeling of the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) marker protein ERGIC-53. PS1 distribution showed slight condensation after brefeldin A and more marked condensation after incubation of cells at 16 degrees C, characteristic of the ERGIC compartment. Double labeling showed colocalization of ERGIC-53 with PS1 in the SY5Y-PS1 cells. PS1 labeling of SY5Y-PS1 and P19 cells showed overlap of the cis-Golgi marker p210 and colocalization with p210 after brefeldin A which causes redistribution of p210 to the ERGIC. Expression of PS1 did not change in level or cellular distribution during development of neurons in culture. Double labeling for the amyloid precursor protein (APP) and PS1 on SY5Y-PS1 cells and CHO-APP770 cells showed some overlap under control conditions. These results indicate that PS1 is a resident protein of the ERGIC and could be involved in trafficking of proteins, including APP, between the ER and Golgi compartments.
Collapse
Affiliation(s)
- J G Culvenor
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Dewji NN, Singer SJ. Cell surface expression of the Alzheimer disease-related presenilin proteins. Proc Natl Acad Sci U S A 1997; 94:9926-31. [PMID: 9275228 PMCID: PMC23298 DOI: 10.1073/pnas.94.18.9926] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The presenilin proteins PS-1 and PS-2 are crucially involved in Alzheimer disease (AD), but their molecular functions are not known. They are integral membrane proteins, but whether they can be expressed at the surface of cells has been in dispute. Here we show by immunofluorescence experiments, using anti-peptide antibodies specific for either PS-1 or PS-2, that live cultured DAMI cells and differentiated human NT2N neuronal cells are specifically immunolabeled for their endogenous as well as transfected presenilins, although the cells cannot be immunolabeled for their intracellular tubulin, unless they are first fixed and permeabilized. These and other results establish that portions of the presenilins are indeed expressed at the surfaces of these cells. These findings support our previous proposal that the presenilins on the surface of a cell engage in intercellular interactions with the beta-amyloid precursor protein on the surface of a neighboring cell, as a critical step in the molecular and cellular mechanisms that lead to AD.
Collapse
Affiliation(s)
- N N Dewji
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
143
|
Cook DG, Forman MS, Sung JC, Leight S, Kolson DL, Iwatsubo T, Lee VM, Doms RW. Alzheimer's A beta(1-42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nat Med 1997; 3:1021-3. [PMID: 9288730 DOI: 10.1038/nm0997-1021] [Citation(s) in RCA: 340] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder involving the florid deposition of vascular and cerebral plaques composed chiefly of amyloid beta-peptide (A beta) derived from cleavage of the amyloid precursor protein (APP). Varying in length from 39 to 43 amino acids, A beta, particularly the longer A beta(42), is thought to play a significant role in AD pathogenesis. To better understand AD it is important to identify the subcellular organelles generating A beta. Studies using agents that disrupt endosomal/lysosomal function suggest that A beta is generated late in the secretory and endocytic pathways. However, much of what is known about A beta biosynthesis has been inferred by monitoring extracellular A beta levels since intracellular A beta is undetectable in most cell types. Consequently, the precise site or sites that generate A beta, or whether A beta(1-40) and A beta(1-42) are generated at the same point in the biosynthetic pathway, is not known. Using human NT2N neurons, we found that retention of APP in the endoplasmic reticulum/intermediate compartment (ER/IC) by three independent approaches eliminated production of intracellular A beta(1-40), but did not alter intracellular A beta(1-42) synthesis. These findings suggest that the ER/IC may be an important site for generating this highly amyloidogenic species of A beta.
Collapse
Affiliation(s)
- D G Cook
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Abramson Research Center, Philadelphia 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Loetscher H, Deuschle U, Brockhaus M, Reinhardt D, Nelboeck P, Mous J, Grünberg J, Haass C, Jacobsen H. Presenilins are processed by caspase-type proteases. J Biol Chem 1997; 272:20655-9. [PMID: 9252383 DOI: 10.1074/jbc.272.33.20655] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Presenilin 1 (PS1) and presenilin 2 (PS2) are endoproteolytically processed in vivo and in cell transfectants to yield 27-35-kDa N-terminal and 15-24-kDa C-terminal fragments. We have studied the cleavage of PS1 and PS2 in transiently and stably transfected hamster kidney and mouse and human neuroblastoma cells by immunoblot and pulse-chase experiments. C-terminal fragments were isolated by affinity chromatography and SDS-polyacrylamide gel electrophoresis and sequenced. The processing sites identified in PS1 and PS2 (Asp345/Ser346 and Asp329/Ser330, respectively) are typical for caspase-type proteases. Specific caspase inhibitors and cleavage site mutations confirmed the involvement of caspase(s) in PS1 and PS2 processing in cell transfectants. Fluorescent peptide substrates carrying the PS-identified cleavage sites were hydrolyzed by proteolytic activity from mouse brain. The PS2-derived peptide substrate was also cleaved by recombinant human caspase-3. Additional processing of PS2 by non-caspase-type proteases was also observed.
Collapse
Affiliation(s)
- H Loetscher
- Pharma Division, Preclinical Central Nervous System Research-GeneTechnology, F. Hoffmann-La Roche Ltd., Ch-4070 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Chyung AS, Greenberg BD, Cook DG, Doms RW, Lee VM. Novel beta-secretase cleavage of beta-amyloid precursor protein in the endoplasmic reticulum/intermediate compartment of NT2N cells. J Cell Biol 1997; 138:671-80. [PMID: 9245794 PMCID: PMC2141643 DOI: 10.1083/jcb.138.3.671] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/1997] [Revised: 05/22/1997] [Indexed: 02/04/2023] Open
Abstract
Previous studies have demonstrated that NT2N neurons derived from a human embryonal carcinoma cell line (NT2) constitutively process the endogenous wild-type beta-amyloid precursor protein (APP) to amyloid beta peptide in an intracellular compartment. These studies indicate that other proteolytic fragments generated by intracellular processing must also be present in these cells. Here we show that the NH2-terminal fragment of APP generated by beta-secretase cleavage (APPbeta) is indeed produced from the endogenous full length APP (APPFL). Pulse-chase studies demonstrated a precursor-product relationship between APPFL and APPbeta as well as intracellular and secreted APPbeta fragments. In addition, trypsin digestion of intact NT2N cells at 4 degrees C did not abolish APPbeta recovered from the cell lysates. Furthermore, the production of intracellular APPbeta from wild-type APP appears to be a unique characteristic of postmitotic neurons, since intracellular APPbeta was not detected in several non-neuronal cell lines. Significantly, production of APPbeta occurred even when APP was retained in the ER/ intermediate compartment by inhibition with brefeldin A, incubation at 15 degrees C, or by expression of exogenous APP bearing the dilysine ER retrieval motif.
Collapse
Affiliation(s)
- A S Chyung
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
146
|
Xia W, Zhang J, Perez R, Koo EH, Selkoe DJ. Interaction between amyloid precursor protein and presenilins in mammalian cells: implications for the pathogenesis of Alzheimer disease. Proc Natl Acad Sci U S A 1997; 94:8208-13. [PMID: 9223340 PMCID: PMC21582 DOI: 10.1073/pnas.94.15.8208] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/1997] [Accepted: 05/15/1997] [Indexed: 02/04/2023] Open
Abstract
Mutations in the presenilin 1 (PS1) and presenilin 2 (PS2) genes increase the production of the highly amyloidogenic 42-residue form of amyloid beta-protein (Abeta42) in a variety of cell lines and transgenic mice. To elucidate the molecular mechanism of this effect, wild-type (wt) or mutant PS1 and PS2 genes were stably transfected into Chinese hamster ovary cells expressing endogenous or transfected beta-amyloid precursor protein (APP). By immunoprecipitation/Western blot analysis, APP was consistently found to coimmunoprecipitate with PS1 or PS2 proteins. Several distinct PS1, PS2, or APP antibodies precipitated PS-APP complexes that were detectable by blotting with either APP or PS antibodies. Importantly, complex formation could be detected at endogenous protein levels in nontransfected cells. In various Chinese hamster ovary cell lines, the amounts of APP coprecipitated by PS antibodies were proportional to the expression levels of both APP and PS. APP-PS complexes also were recovered from human 293 and HS683 cells. Full maturation of APP was not required for the interaction; most APP molecules complexed with PS were solely N-glycosylated. Treatment of cells with brefeldin A or incubation at 20 degrees C did not block complex formation, suggesting that the association between APP and PS occurs in part in the endoplasmic reticulum. Complex formation was detected for both wt and mutant PS and APP proteins. Deletion of the APP C-terminal domain did not abrogate complex formation, suggesting that the interaction does not occur in the cytoplasmic domains of the proteins. Our results demonstrate that wt and mutant PS1 and PS2 proteins form complexes with APP in living cells, strongly supporting the hypothesis that mutant PS interacts with APP in a way that enhances the intramembranous proteolysis of the latter by a gamma-secretase cleaving at Abeta42.
Collapse
Affiliation(s)
- W Xia
- Department of Neurology, Harvard Medical School, Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
147
|
Neuronal localization of presenilin-1 and association with amyloid plaques and neurofibrillary tangles in Alzheimer's disease. J Neurosci 1997. [PMID: 9185547 DOI: 10.1523/jneurosci.17-13-05101.1997] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the presenilin-1 (PS1) gene is a cause of early- onset familial Alzheimer's disease (AD). Endogenous PS1 is associated with the endoplasmic reticulum in the cell body of undifferentiated SH-SY5Y neuroblastoma cells. At early stages of neuronal differentiation in rat hippocampal culture, PS1 appears in all neuritic processes and in growth cones. In mature differentiated neurons, PS1 is concentrated in the somatodendritic compartment but is also present at lower levels in axons. A similar localization of PS1 is observed in vivo in neurons of the adult human cerebral cortex. In sporadic AD, PS1 appears in the dystrophic neurites of mature amyloid plaques and co-localizes with a subset of intraneuronal neurofibrillary tangles (NFTs). About 30% of hippocampal NFTs are labeled with a highly specific antibody to the PS1 C-terminal loop domain but not with an antibody to the PS1 N terminus. This observation is consistent with a potential association of the PS1 C-terminal fragment with NFTs, because PS1 is constitutively cleaved to N- and C-terminal fragments in neurons. These results suggest that PS1 is highly expressed and broadly distributed during early stages of neuronal differentiation, consistent with a role for PS1 in neuronal differentiation. Furthermore, the co-localization of PS1 with NFTs and plaque dystrophic neurites implicates a role for PS1 in the diverse pathological manifestations of AD.
Collapse
|
148
|
Busciglio J, Hartmann H, Lorenzo A, Wong C, Baumann K, Sommer B, Staufenbiel M, Yankner BA. Neuronal localization of presenilin-1 and association with amyloid plaques and neurofibrillary tangles in Alzheimer's disease. J Neurosci 1997; 17:5101-7. [PMID: 9185547 PMCID: PMC6573321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1997] [Revised: 04/21/1997] [Accepted: 04/23/1997] [Indexed: 02/04/2023] Open
Abstract
Mutations in the presenilin-1 (PS1) gene is a cause of early- onset familial Alzheimer's disease (AD). Endogenous PS1 is associated with the endoplasmic reticulum in the cell body of undifferentiated SH-SY5Y neuroblastoma cells. At early stages of neuronal differentiation in rat hippocampal culture, PS1 appears in all neuritic processes and in growth cones. In mature differentiated neurons, PS1 is concentrated in the somatodendritic compartment but is also present at lower levels in axons. A similar localization of PS1 is observed in vivo in neurons of the adult human cerebral cortex. In sporadic AD, PS1 appears in the dystrophic neurites of mature amyloid plaques and co-localizes with a subset of intraneuronal neurofibrillary tangles (NFTs). About 30% of hippocampal NFTs are labeled with a highly specific antibody to the PS1 C-terminal loop domain but not with an antibody to the PS1 N terminus. This observation is consistent with a potential association of the PS1 C-terminal fragment with NFTs, because PS1 is constitutively cleaved to N- and C-terminal fragments in neurons. These results suggest that PS1 is highly expressed and broadly distributed during early stages of neuronal differentiation, consistent with a role for PS1 in neuronal differentiation. Furthermore, the co-localization of PS1 with NFTs and plaque dystrophic neurites implicates a role for PS1 in the diverse pathological manifestations of AD.
Collapse
Affiliation(s)
- J Busciglio
- Department of Neurology, Harvard Medical School and Division of Neuroscience, The Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Wild-Bode C, Yamazaki T, Capell A, Leimer U, Steiner H, Ihara Y, Haass C. Intracellular generation and accumulation of amyloid beta-peptide terminating at amino acid 42. J Biol Chem 1997; 272:16085-8. [PMID: 9195901 DOI: 10.1074/jbc.272.26.16085] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Amyloid beta-peptide (Abeta) is known to accumulate in senile plaques of Alzheimer's disease (AD) patients and is now widely believed to play a major role in the disease. Two populations of peptides occur terminating either at amino acid 40 or at amino acid 42 (Abeta1-40 and Abeta1-42). Alternative N-terminal cleavages produce additional heterogeneity (Abetax-40 and Abetax-42). Peptides terminating at amino acid 42 are believed to be the major player in sporadic AD as well as familial AD (FAD). Whereas the cellular mechanism for the generation of Abeta terminating at amino acid 40 is well understood, very little is known about the cleavage of Abeta after amino acid 42. By using two independent methods we demonstrate intracellular Abeta1-42 as well as Abetax-42 but less Abetax-40 and Abeta1-40 in kidney 293 cells stably transfected with wild type beta-amyloid precursor protein (betaAPP) or the FAD-associated Val/Gly mutation. Moreover, retention of betaAPP within the endoplasmic reticulum (ER) by treatment with brefeldin A does not block the cleavage at amino acid 42 but results in an increased production of all species of Abeta terminating at amino acid 42. This indicates that the cleavage after amino acid 42 can occur within the ER. Treatment of cells with monensin, which blocks transport of (betaAPP) within the Golgi causes a marked accumulation of intracellular Abetax-42 and Abetax-40. Therefore these experiments indicate that the gamma-secretase cleavage of Abeta after amino acid 42 can occur within the ER and later within the secretory pathway within the Golgi. Moreover inhibition of reinternalization by cytoplasmic deletions of betaAPP as well as inhibition of intracellular acidification by NH4Cl does not block intracellular Abeta1-42 or Abetax-42 production.
Collapse
Affiliation(s)
- C Wild-Bode
- Central Institute of Mental Health, Department of Molecular Biology, J5, 68159 Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
150
|
Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J Neurosci 1997. [PMID: 9151738 DOI: 10.1523/jneurosci.17-11-04212.1997] [Citation(s) in RCA: 354] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most autosomal dominant inherited forms of early onset Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS-1) gene on chromosome 14. PS-1 is an integral membrane protein with six to nine membrane-spanning domains and is expressed in neurons throughout the brain wherein it is localized mainly in endoplasmic reticulum (ER). The mechanism or mechanisms whereby PS-1 mutations promote neuron degeneration in AD are unknown. Recent findings suggest links among deposition of amyloid beta-peptide (Abeta), oxidative stress, disruption of ion homeostasis, and an apoptotic form of neuron death in AD. We now report that expression of the human PS-1 L286V mutation in PC12 cells increases their susceptibility to apoptosis induced by trophic factor withdrawal and Abeta. Increases in oxidative stress and intracellular calcium levels induced by the apoptotic stimuli were exacerbated greatly in cells expressing the PS-1 mutation, as compared with control cell lines and lines overexpressing wild-type PS-1. The antiapoptotic gene product Bcl-2 prevented apoptosis after NGF withdrawal from differentiated PC12 cells expressing mutant PS-1. Elevations of [Ca2+]i in response to thapsigargin, an inhibitor of the ER Ca2+-ATPase, were increased in cells expressing mutant PS-1, and this adverse effect was abolished in cells expressing Bcl-2. Antioxidants and blockers of calcium influx and release from ER protected cells against the adverse consequences of the PS-1 mutation. By perturbing cellular calcium regulation and promoting oxidative stress, PS-1 mutations may sensitize neurons to apoptotic death in AD.
Collapse
|