101
|
Kuzirian MS, Paradis S. Emerging themes in GABAergic synapse development. Prog Neurobiol 2011; 95:68-87. [PMID: 21798307 DOI: 10.1016/j.pneurobio.2011.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/30/2011] [Accepted: 07/03/2011] [Indexed: 12/25/2022]
Abstract
Glutamatergic synapse development has been rigorously investigated for the past two decades at both the molecular and cell biological level yet a comparable intensity of investigation into the cellular and molecular mechanisms of GABAergic synapse development has been lacking until relatively recently. This review will provide a detailed overview of the current understanding of GABAergic synapse development with a particular emphasis on assembly of synaptic components, molecular mechanisms of synaptic development, and a subset of human disorders which manifest when GABAergic synapse development is disrupted. An unexpected and emerging theme from these studies is that glutamatergic and GABAergic synapse development share a number of overlapping molecular and cell biological mechanisms that will be emphasized in this review.
Collapse
Affiliation(s)
- Marissa S Kuzirian
- Brandeis Univeristy, Department of Biology, National Center for Behavioral Genomics, Volen Center for Complex Systems, Waltham, MA 02453, USA
| | | |
Collapse
|
102
|
Maturation of the GABAergic transmission in normal and pathologic motoneurons. Neural Plast 2011; 2011:905624. [PMID: 21785735 PMCID: PMC3140191 DOI: 10.1155/2011/905624] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/17/2011] [Indexed: 12/14/2022] Open
Abstract
γ-aminobutyric acid (GABA) acting on Cl−-permeable ionotropic type A (GABAA) receptors (GABAAR) is the major inhibitory neurotransmitter in the adult central nervous system of vertebrates. In immature brain structures, GABA exerts depolarizing effects mostly contributing to the expression of spontaneous activities that are instructive for the construction of neural networks but GABA also acts as a potent trophic factor. In the present paper, we concentrate on brainstem and spinal motoneurons that are largely targeted by GABAergic interneurons, and we bring together data on the switch from excitatory to inhibitory effects of GABA, on the maturation of the GABAergic system and GABAAR subunits. We finally discuss the role of GABA and its GABAAR in immature hypoglossal motoneurons of the spastic (SPA) mouse, a model of human hyperekplexic syndrome.
Collapse
|
103
|
Cellular correlate of assembly formation in oscillating hippocampal networks in vitro. Proc Natl Acad Sci U S A 2011; 108:E607-16. [PMID: 21768381 DOI: 10.1073/pnas.1103546108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons form transiently stable assemblies that may underlie cognitive functions, including memory formation. In most brain regions, coherent activity is organized by network oscillations that involve sparse firing within a well-defined minority of cells. Despite extensive work on the underlying cellular mechanisms, a fundamental question remains unsolved: how are participating neurons distinguished from the majority of nonparticipators? We used physiological and modeling techniques to analyze neuronal activity in mouse hippocampal slices during spontaneously occurring high-frequency network oscillations. Network-entrained action potentials were exclusively observed in a defined subset of pyramidal cells, yielding a strict distinction between participating and nonparticipating neurons. These spikes had unique properties, because they were generated in the axon without prior depolarization of the soma. GABA(A) receptors had a dual role in pyramidal cell recruitment. First, the sparse occurrence of entrained spikes was accomplished by intense perisomatic inhibition. Second, antidromic spike generation was facilitated by tonic effects of GABA in remote axonal compartments. Ectopic spike generation together with strong somatodendritic inhibition may provide a cellular mechanism for the definition of oscillating assemblies.
Collapse
|
104
|
Luscher B, Fuchs T, Kilpatrick CL. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 2011; 70:385-409. [PMID: 21555068 DOI: 10.1016/j.neuron.2011.03.024] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 12/22/2022]
Abstract
Proper developmental, neural cell-type-specific, and activity-dependent regulation of GABAergic transmission is essential for virtually all aspects of CNS function. The number of GABA(A) receptors in the postsynaptic membrane directly controls the efficacy of GABAergic synaptic transmission. Thus, regulated trafficking of GABA(A) receptors is essential for understanding brain function in both health and disease. Here we summarize recent progress in the understanding of mechanisms that allow dynamic adaptation of cell surface expression and postsynaptic accumulation and function of GABA(A) receptors. This includes activity-dependent and cell-type-specific changes in subunit gene expression, assembly of subunits into receptors, as well as exocytosis, endocytic recycling, diffusion dynamics, and degradation of GABA(A) receptors. In particular, we focus on the roles of receptor-interacting proteins, scaffold proteins, synaptic adhesion proteins, and enzymes that regulate the trafficking and function of receptors and associated proteins. In addition, we review neuropeptide signaling pathways that affect neural excitability through changes in GABA(A)R trafficking.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
105
|
Lewis DA, Fish KN, Arion D, Gonzalez-Burgos G. Perisomatic inhibition and cortical circuit dysfunction in schizophrenia. Curr Opin Neurobiol 2011; 21:866-72. [PMID: 21680173 DOI: 10.1016/j.conb.2011.05.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/04/2011] [Accepted: 05/17/2011] [Indexed: 01/06/2023]
Abstract
Deficits of cognitive control in schizophrenia are associated with altered gamma oscillations in the prefrontal cortex. Paralbumin basket interneurons, which innervate the perisomatic region of pyramidal neurons, appear to play a key role in generating cortical gamma oscillations. In the prefrontal cortex of subjects with schizophrenia, alterations are present in both pre- and post-synaptic markers of the strength of GABA inputs from parvalbumin basket neurons to pyramidal neurons. These alterations may contribute to the neural substrate for impaired gamma oscillations in schizophrenia.
Collapse
Affiliation(s)
- David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| | | | | | | |
Collapse
|
106
|
Imbrosci B, Mittmann T. Functional consequences of the disturbances in the GABA-mediated inhibition induced by injuries in the cerebral cortex. Neural Plast 2011; 2011:614329. [PMID: 21766043 PMCID: PMC3135051 DOI: 10.1155/2011/614329] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 04/05/2011] [Indexed: 11/18/2022] Open
Abstract
Cortical injuries are often reported to induce a suppression of the intracortical GABAergic inhibition in the surviving, neighbouring neuronal networks. Since GABAergic transmission provides the main source of inhibition in the mammalian brain, this condition may lead to hyperexcitability and epileptiform activity of cortical networks. However, inhibition plays also a crucial role in limiting the plastic properties of neuronal circuits, and as a consequence, interventions aiming to reestablish a normal level of inhibition might constrain the plastic capacity of the cortical tissue. A promising strategy to minimize the deleterious consequences of a modified inhibitory transmission without preventing the potential beneficial effects on cortical plasticity may be to unravel distinct GABAergic signaling pathways separately mediating these positive and negative events. Here, gathering data from several recent studies, we provide new insights to better face with this "double coin" condition in the attempt to optimize the functional recovery of patients.
Collapse
Affiliation(s)
- Barbara Imbrosci
- Institute of Physiology and Pathophysiology, Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | | |
Collapse
|
107
|
Bailey JL, O’Connor V, Hannah M, Hewlett L, Biggs TE, Sundstrom LE, Findlay MW, Chad JE. In vitro CNS tissue analogues formed by self-organisation of reaggregated post-natal brain tissue. J Neurochem 2011; 117:1020-32. [DOI: 10.1111/j.1471-4159.2011.07276.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
108
|
Kriebel M, Metzger J, Trinks S, Chugh D, Harvey RJ, Harvey K, Volkmer H. The cell adhesion molecule neurofascin stabilizes axo-axonic GABAergic terminals at the axon initial segment. J Biol Chem 2011; 286:24385-93. [PMID: 21576239 DOI: 10.1074/jbc.m110.212191] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cell adhesion molecules regulate synapse formation and maintenance via transsynaptic contact stabilization involving both extracellular interactions and intracellular postsynaptic scaffold assembly. The cell adhesion molecule neurofascin is localized at the axon initial segment of granular cells in rat dentate gyrus, which is mainly targeted by chandelier cells. Lentiviral shRNA-mediated knockdown of neurofascin in adult rat brain indicates that neurofascin regulates the number and size of postsynaptic gephyrin scaffolds, the number of GABA(A) receptor clusters as well as presynaptic glutamate decarboxylase-positive terminals at the axon initial segment. By contrast, overexpression of neurofascin in hippocampal neurons increases gephyrin cluster size presumably via stimulation of fibroblast growth factor receptor 1 signaling pathways.
Collapse
Affiliation(s)
- Martin Kriebel
- Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, 72770 Reutlingen, Germany
| | | | | | | | | | | | | |
Collapse
|
109
|
Hoftman GD, Lewis DA. Postnatal developmental trajectories of neural circuits in the primate prefrontal cortex: identifying sensitive periods for vulnerability to schizophrenia. Schizophr Bull 2011; 37:493-503. [PMID: 21505116 PMCID: PMC3080694 DOI: 10.1093/schbul/sbr029] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a disorder of cognitive neurodevelopment with characteristic abnormalities in working memory attributed, at least in part, to alterations in the circuitry of the dorsolateral prefrontal cortex. Various environmental exposures from conception through adolescence increase risk for the illness, possibly by altering the developmental trajectories of prefrontal cortical circuits. Macaque monkeys provide an excellent model system for studying the maturation of prefrontal cortical circuits. Here, we review the development of glutamatergic and γ-aminobutyric acid (GABA)-ergic circuits in macaque monkey prefrontal cortex and discuss how these trajectories may help to identify sensitive periods during which environmental exposures, such as those associated with increased risk for schizophrenia, might lead to the types of abnormalities in prefrontal cortical function present in schizophrenia.
Collapse
Affiliation(s)
- Gil D. Hoftman
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA
| | - David A. Lewis
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,To whom correspondence should be addressed; 3811 O'Hara Street, Biomedical Science Tower, W-1654, Pittsburgh, PA 15213, US; tel: 412-383-8548, fax: 412-624-9910, e-mail:
| |
Collapse
|
110
|
Beneyto M, Lewis DA. Insights into the neurodevelopmental origin of schizophrenia from postmortem studies of prefrontal cortical circuitry. Int J Dev Neurosci 2011; 29:295-304. [PMID: 20797429 PMCID: PMC3319737 DOI: 10.1016/j.ijdevneu.2010.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 12/19/2022] Open
Abstract
The hypothesis that schizophrenia results from a developmental, as opposed to a degenerative, process affecting the connectivity and network plasticity of the cerebral cortex is supported by findings from morphological and molecular postmortem studies. Specifically, abnormalities in the expression of protein markers of GABA neurotransmission and the lamina- and circuit-specificity of these changes in the cortex in schizophrenia, in concert with knowledge of their developmental trajectories, offer crucial insight into the vulnerability of specific cortical networks to environmental insults during different periods of development. These findings reveal potential targets for therapeutic interventions to improve cognitive function in individuals with schizophrenia, and provide guidance for future preventive strategies to preserve cortical neurotransmission in at-risk individuals.
Collapse
Affiliation(s)
- Monica Beneyto
- Department of Psychiatry, University of Pittsburgh, W1656 Biomedical Science Tower, 3811 O'Hara Street, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
111
|
Koniaris E, Drimala P, Sotiriou E, Papatheodoropoulos C. Different effects of zolpidem and diazepam on hippocampal sharp wave—ripple activity in vitro. Neuroscience 2011; 175:224-34. [DOI: 10.1016/j.neuroscience.2010.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/12/2010] [Accepted: 11/13/2010] [Indexed: 10/18/2022]
|
112
|
Thomson AM, Armstrong WE. Biocytin-labelling and its impact on late 20th century studies of cortical circuitry. BRAIN RESEARCH REVIEWS 2011; 66:43-53. [PMID: 20399808 PMCID: PMC2949688 DOI: 10.1016/j.brainresrev.2010.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 11/15/2022]
Abstract
In recognition of the impact that a powerful new anatomical tool, such as the Golgi method, can have, this essay highlights the enormous influence that biocytin-filling has had on modern neuroscience. This method has allowed neurones that have been recorded intracellularly, 'whole-cell' or juxta-cellularly, to be identified anatomically, forming a vital link between functional and structural studies. It has been applied throughout the nervous system and has become a fundamental component of our technical armoury. A comprehensive survey of the applications to which the biocytin-filling approach has been put, would fill a large volume. This essay therefore focuses on one area, neocortical microcircuitry and the ways in which combining physiology and anatomy have revealed rules that help us explain its previously indecipherable variability and complexity.
Collapse
Affiliation(s)
- Alex M Thomson
- Department of Pharmacology, The School of Pharmacy University of London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
113
|
Kuwajima M, Harris KM. GABAA receptor diversity revealed in freeze-fracture replica (commentary on Kasugai et al.). Eur J Neurosci 2010; 32:1866-7. [PMID: 21158015 DOI: 10.1111/j.1460-9568.2010.07532.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masaaki Kuwajima
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
114
|
Kasugai Y, Swinny JD, Roberts JDB, Dalezios Y, Fukazawa Y, Sieghart W, Shigemoto R, Somogyi P. Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze-fracture replica immunolabelling. Eur J Neurosci 2010; 32:1868-88. [PMID: 21073549 PMCID: PMC4487817 DOI: 10.1111/j.1460-9568.2010.07473.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hippocampal CA1 pyramidal cells, which receive γ-aminobutyric acid (GABA)ergic input from at least 18 types of presynaptic neuron, express 14 subunits of the pentameric GABA(A) receptor. The relative contribution of any subunit to synaptic and extrasynaptic receptors influences the dynamics of GABA and drug actions. Synaptic receptors mediate phasic GABA-evoked conductance and extrasynaptic receptors contribute to a tonic conductance. We used freeze-fracture replica-immunogold labelling, a sensitive quantitative immunocytochemical method, to detect synaptic and extrasynaptic pools of the alpha1, alpha2 and beta3 subunits. Antibodies to the cytoplasmic loop of the subunits showed immunogold particles concentrated on distinct clusters of intramembrane particles (IMPs) on the cytoplasmic face of the plasma membrane on the somata, dendrites and axon initial segments, with an abrupt decrease in labelling at the edge of the IMP cluster. Neuroligin-2, a GABAergic synapse-specific adhesion molecule, co-labels all beta3 subunit-rich IMP clusters, therefore we considered them synapses. Double-labelling for two subunits showed that virtually all somatic synapses contain the alpha1, alpha2 and beta3 subunits. The extrasynaptic plasma membrane of the somata, dendrites and dendritic spines showed low-density immunolabelling. Synaptic labelling densities on somata for the alpha1, alpha2 and beta3 subunits were 78-132, 94 and 79 times higher than on the extrasynaptic membranes, respectively. As GABAergic synapses occupy 0.72% of the soma surface, the fraction of synaptic labelling was 33-48 (alpha1), 40 (alpha2) and 36 (beta3)% of the total somatic surface immunolabelling. Assuming similar antibody access to all receptors, about 60% of these subunits are in extrasynaptic receptors.
Collapse
Affiliation(s)
- Yu Kasugai
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Beston BR, Jones DG, Murphy KM. Experience-dependent changes in excitatory and inhibitory receptor subunit expression in visual cortex. Front Synaptic Neurosci 2010; 2:138. [PMID: 21423524 PMCID: PMC3059668 DOI: 10.3389/fnsyn.2010.00138] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/06/2010] [Indexed: 02/01/2023] Open
Abstract
Experience-dependent development of visual cortex depends on the balance between excitatory and inhibitory activity. This activity is regulated by key excitatory (NMDA, AMPA) and inhibitory (GABAA) receptors. The composition of these receptors changes developmentally, affecting the excitatory–inhibitory (E/I) balance and synaptic plasticity. Until now, it has been unclear how abnormal visual experience affects this balance. To examine this question, we measured developmental changes in excitatory and inhibitory receptor subunits in visual cortex following normal visual experience and monocular deprivation. We used Western blot analysis to quantify expression of excitatory (NR1, NR2A, NR2B, GluR2) and inhibitory (GABAAα1, GABAAα3) receptor subunits. Monocular deprivation promoted a complex pattern of changes in receptor subunit expression that varied with age and was most severe in the region of visual cortex representing the central visual field. To characterize the multidimensional pattern of experience-dependent change in these synaptic mechanisms, we applied a neuroinformatics approach using principal component analysis. We found that monocular deprivation (i) causes a large portion of the normal developmental trajectory to be bypassed, (ii) shifts the E/I balance in favor of more inhibition, and (iii) accelerates the maturation of receptor subunits. Taken together, these results show that monocularly deprived animals have an abnormal balance of the synaptic machinery needed for functional maturation of cortical circuits and for developmental plasticity. This raises the possibility that interventions intended to treat amblyopia may need to address multiple synaptic mechanisms to produce optimal recovery.
Collapse
Affiliation(s)
- Brett R Beston
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University Hamilton, ON, Canada
| | | | | |
Collapse
|
116
|
Beneyto M, Abbott A, Hashimoto T, Lewis DA. Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia. ACTA ACUST UNITED AC 2010; 21:999-1011. [PMID: 20843900 DOI: 10.1093/cercor/bhq169] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dysfunction of the dorsolateral prefrontal cortex (DLPFC) in schizophrenia is associated with lamina-specific alterations in particular subpopulations of interneurons. In pyramidal cells, postsynaptic γ-aminobutyric acid (GABA(A)) receptors containing different α subunits are inserted preferentially in distinct subcellular locations targeted by inputs from specific interneuron subpopulations. We used in situ hybridization to quantify the laminar expression of α1, α2, α3, and α5 subunit, and of β1-3 subunit, mRNAs in the DLFPC of schizophrenia, and matched normal comparison subjects. In subjects with schizophrenia, mean GABA(A) α1 mRNA expression was 17% lower in layers 3 and 4, α2 expression was 14% higher in layer 2, α5 expression was 15% lower in layer 4, and α3 expression did not differ relative to comparison subjects. The mRNA expression of β2, which preferentially assembles with α1 subunits, was also 20% lower in layers 3 and 4, whereas β1 and β3 mRNA levels were not altered in schizophrenia. These expression differences were not attributable to medication effects or other potential confounds. These findings suggest that GABA neurotransmission in the DLPFC is altered at the postsynaptic level in a receptor subunit- and layer-specific manner in subjects with schizophrenia and support the hypothesis that GABA neurotransmission in this illness is predominantly impaired in certain cortical microcircuits.
Collapse
Affiliation(s)
- Monica Beneyto
- Department of Psychiatry, University of Pittsburgh, W1656 Biomedical Science Tower, 3811 O'Hara Street, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
117
|
Prefrontal GABA(A) receptor alpha-subunit expression in normal postnatal human development and schizophrenia. J Psychiatr Res 2010; 44:673-81. [PMID: 20100621 DOI: 10.1016/j.jpsychires.2009.12.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 12/08/2009] [Accepted: 12/18/2009] [Indexed: 11/23/2022]
Abstract
Cortical GABA deficits that are consistently reported in schizophrenia may reflect an etiology of failed normal postnatal neurotransmitter maturation. Previous studies have found prefrontal cortical GABA(A) receptor alpha subunit alterations in schizophrenia, yet their relationship to normal developmental expression profiles in the human cortex has not been determined. The aim of this study was to quantify GABA(A) receptor alpha-subunit mRNA expression patterns in human dorsolateral prefrontal cortex (DLPFC) during normal postnatal development and in schizophrenia cases compared to controls. Transcript levels of GABA(A) receptor alpha subunits were measured using microarray and qPCR analysis of 60 normal individuals aged 6weeks to 49years and in 37 patients with schizophrenia/schizoaffective disorder and 37 matched controls. We detected robust opposing changes in cortical GABA(A) receptor alpha1 and alpha5 subunits during the first few years of postnatal development, with a 60% decrease in alpha5 mRNA expression and a doubling of alpha1 mRNA expression with increasing age. In our Australian schizophrenia cohort we detected decreased GAD67 mRNA expression (p=0.0012) and decreased alpha5 mRNA expression (p=0.038) in the DLPFC with no significant change of other alpha subunits. Our findings confirm that GABA deficits (reduced GAD67) are a consistent feature of schizophrenia postmortem brain studies. Our study does not confirm alterations in cortical alpha1 or alpha2 mRNA levels in the schizophrenic DLPFC, as seen in previous studies, but instead we report a novel down-regulation of alpha5 subunit mRNA suggesting that post-synaptic alterations of inhibitory receptors are an important feature of schizophrenia but may vary between cohorts.
Collapse
|
118
|
Sweet RA, Fish KN, Lewis DA. Mapping Synaptic Pathology within Cerebral Cortical Circuits in Subjects with Schizophrenia. Front Hum Neurosci 2010; 4:44. [PMID: 20631852 PMCID: PMC2903233 DOI: 10.3389/fnhum.2010.00044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 04/26/2010] [Indexed: 11/18/2022] Open
Abstract
Converging lines of evidence indicate that schizophrenia is characterized by impairments of synaptic machinery within cerebral cortical circuits. Efforts to localize these alterations in brain tissue from subjects with schizophrenia have frequently been limited to the quantification of structures that are non-selectively identified (e.g., dendritic spines labeled in Golgi preparations, axon boutons labeled with synaptophysin), or to quantification of proteins using methods unable to resolve relevant cellular compartments. Multiple label fluorescence confocal microscopy represents a means to circumvent many of these limitations, by concurrently extracting information regarding the number, morphology, and relative protein content of synaptic structures. An important adaptation required for studies of human disease is coupling this approach to stereologic methods for systematic random sampling of relevant brain regions. In this review article we consider the application of multiple label fluorescence confocal microscopy to the mapping of synaptic alterations in subjects with schizophrenia and describe the application of a novel, readily automated, iterative intensity/morphological segmentation algorithm for the extraction of information regarding synaptic structure number, size, and relative protein level from tissue sections obtained using unbiased stereological principles of sampling. In this context, we provide examples of the examination of pre- and post-synaptic structures within excitatory and inhibitory circuits of the cerebral cortex.
Collapse
Affiliation(s)
- Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Pittsburgh, PA, USA
| | | | | |
Collapse
|
119
|
Thomson AM, Jovanovic JN. Mechanisms underlying synapse-specific clustering of GABA(A) receptors. Eur J Neurosci 2010; 31:2193-203. [PMID: 20550567 DOI: 10.1111/j.1460-9568.2010.07252.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A principle that arises from a body of previous work is that each presynaptic terminal recognises its postsynaptic partner and that each postsynaptic site recognises the origin of the synaptic bouton innervating it. In response, the presynaptic terminal sequesters the proteins whose interactions result in the dynamic transmitter release pattern and chemical modulation appropriate for that connection. In parallel, the postsynaptic site sequesters, inserts or captures the receptors and postsynaptic density proteins appropriate for that type of synapse. The focus of this review is the selective clustering of GABA(A) receptors (GABA(A)R) at synapses made by each class of inhibitory interneurone. This provides a system in which the mechanisms underlying transynaptic recognition can be explored. There are many synaptic proteins, often with several isoforms created by post-translational modifications. Complex cascades of interactions between these proteins, on either side of the synaptic cleft, are essential for normal function, normal transmitter release and postsynaptic responsiveness. Interactions between presynaptic and postsynaptic proteins that have binding domains in the synaptic cleft are proposed here to result in a local cleft structure that captures and stabilises only the appropriate subtype of GABA(A)Rs, allowing others to drift away from that synapse, either to be captured by another synapse, or internalised.
Collapse
Affiliation(s)
- Alex M Thomson
- The School of Pharmacy, London University, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
120
|
Szabó GG, Holderith N, Gulyás AI, Freund TF, Hájos N. Distinct synaptic properties of perisomatic inhibitory cell types and their different modulation by cholinergic receptor activation in the CA3 region of the mouse hippocampus. Eur J Neurosci 2010; 31:2234-46. [PMID: 20529124 PMCID: PMC2916217 DOI: 10.1111/j.1460-9568.2010.07292.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/16/2010] [Accepted: 04/23/2010] [Indexed: 01/13/2023]
Abstract
Perisomatic inhibition originates from three types of GABAergic interneurons in cortical structures, including parvalbumin-containing fast-spiking basket cells (FSBCs) and axo-axonic cells (AACs), as well as cholecystokinin-expressing regular-spiking basket cells (RSBCs). These interneurons may have significant impact in various cognitive processes, and are subjects of cholinergic modulation. However, it is largely unknown how cholinergic receptor activation modulates the function of perisomatic inhibitory cells. Therefore, we performed paired recordings from anatomically identified perisomatic interneurons and pyramidal cells in the CA3 region of the mouse hippocampus. We determined the basic properties of unitary inhibitory postsynaptic currents (uIPSCs) and found that they differed among cell types, e.g. GABA released from axon endings of AACs evoked uIPSCs with the largest amplitude and with the longest decay measured at room temperature. RSBCs could also release GABA asynchronously, the magnitude of the release increasing with the discharge frequency of the presynaptic interneuron. Cholinergic receptor activation by carbachol significantly decreased the uIPSC amplitude in all three types of cell pairs, but to different extents. M2-type muscarinic receptors were responsible for the reduction in uIPSC amplitudes in FSBC- and AAC-pyramidal cell pairs, while an antagonist of CB(1) cannabinoid receptors recovered the suppression in RSBC-pyramidal cell pairs. In addition, carbachol suppressed or even eliminated the short-term depression of uIPSCs in FSBC- and AAC-pyramidal cell pairs in a frequency-dependent manner. These findings suggest that not only are the basic synaptic properties of perisomatic inhibitory cells distinct, but acetylcholine can differentially control the impact of perisomatic inhibition from different sources.
Collapse
Affiliation(s)
- Gergely G Szabó
- Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesH-1083 Budapest, Hungary
| | - Noémi Holderith
- Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesH-1083 Budapest, Hungary
| | - Attila I Gulyás
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Tamás F Freund
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Norbert Hájos
- Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesH-1083 Budapest, Hungary
| |
Collapse
|
121
|
Chalphin AV, Saha MS. The specification of glycinergic neurons and the role of glycinergic transmission in development. Front Mol Neurosci 2010; 3:11. [PMID: 20461146 PMCID: PMC2866564 DOI: 10.3389/fnmol.2010.00011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 03/23/2010] [Indexed: 12/16/2022] Open
Abstract
Glycine's role as an inhibitory neurotransmitter in the adult vertebrate nervous system has been well characterized in a number of different model organisms. However, a full understanding of glycinergic transmission requires a knowledge of how glycinergic synapses emerge and the role of glycinergic signaling during development. Recent literature has provided a detailed picture of the developmental expression of many of the molecular components that comprise the glycinergic phenotype, namely the glycine transporters and the glycine receptor subunits; the transcriptional networks leading to the expression of this important neurotransmitter phenotype are also being elucidated. An equally important focus of research has revealed the critical role of glycinergic signaling in sculpting many different aspects of neural development. This review examines the current literature detailing the expression patterns of the components of the glycinergic phenotype in various vertebrate model organisms over the course of development and the molecular mechanisms governing the expression of the glycinergic phenotype. The review then surveys the recent work on the role of glycinergic signaling in the developing nervous system and concludes with an overview of areas for further research.
Collapse
|
122
|
Abstract
Action potentials (APs) provide the primary means of rapid information transfer in the nervous system. Where exactly these signals are initiated in neurons has been a basic question in neurobiology and the subject of extensive study. Converging lines of evidence indicate that APs are initiated in a discrete and highly specialized portion of the axon-the axon initial segment (AIS). The authors review key aspects of the organization and function of the AIS and focus on recent work that has provided important insights into its electrical signaling properties. In addition to its main role in AP initiation, the new findings suggest that the AIS is also a site of complex AP modulation by specific types of ion channels localized to this axonal domain.
Collapse
Affiliation(s)
- Brian D Clark
- Smilow Neuroscience Program, and Departments of Physiology and Neuroscience and Biochemistry, Smilow Research Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
123
|
Two-photon uncaging of gamma-aminobutyric acid in intact brain tissue. Nat Chem Biol 2010; 6:255-257. [PMID: 20173751 DOI: 10.1038/nchembio.321] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/18/2009] [Indexed: 11/09/2022]
Abstract
We have synthesized a photosensitive (or caged) 4-carboxymethoxy-5,7-dinitroindolinyl (CDNI) derivative of gamma-aminobutyric acid (GABA). Two-photon excitation of CDNI-GABA produced rapid activation of GABAergic currents in neurons in brain slices with an axial resolution of approximately 2 mum and enabled high-resolution functional mapping of GABA-A receptors. Two-photon uncaging of GABA, the main inhibitory neurotransmitter, should allow detailed studies of receptor function and synaptic integration with subcellular precision.
Collapse
|
124
|
Abstract
Impaired cognitive functioning, including deficits in working memory, is considered to be a core and disabling feature of schizophrenia that is difficult to treat. Deficits in working memory in schizophrenia are attributable, at least in part, to specific pathological alterations in the neuronal circuitry of the dorsolateral prefrontal cortex that involve, but are not restricted to, disturbances in glutamate, GABA, and dopamine neurotransmission. Cannabis use provides an example of an environmental exposure that may have a deleterious impact on these neurotransmitter systems and thereby contribute to worsening of cognitive functioning in schizophrenia. Increasing knowledge of the nature of the molecular alterations in these cortical circuits may lead to the development of new pathophysiologically informed treatment options for cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- David W Volk
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, BST W1653, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
125
|
Vargas-Caballero M, Martin LJ, Salter MW, Orser BA, Paulsen O. alpha5 Subunit-containing GABA(A) receptors mediate a slowly decaying inhibitory synaptic current in CA1 pyramidal neurons following Schaffer collateral activation. Neuropharmacology 2009; 58:668-75. [PMID: 19941877 PMCID: PMC2814005 DOI: 10.1016/j.neuropharm.2009.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/25/2022]
Abstract
GABA(A) receptors that contain the alpha5 subunit (alpha5GABA(A)Rs) are highly expressed in the hippocampus, and have been implicated in learning and memory processes. They generate a tonic form of inhibition that regulates neuronal excitability. Recently it was shown that alpha5GABA(A)Rs also contribute to slow phasic inhibition of CA1 pyramidal neurons following local stimulation in the stratum lacunosum moleculare. However, it is unknown whether alpha5GABA(A)Rs can also be recruited indirectly by stimulation of Schaffer collaterals. Here, we studied GABAergic currents evoked by stimulation in the stratum radiatum of CA1 in the presence and absence of CNQX to block AMPA receptor-mediated excitation. We tested their sensitivity to gabazine and two drugs acting at the benzodiazepine site of alpha1/alpha2/alpha3 or alpha5GABA(A)Rs (400 nM zolpidem and 20 nM L-655,708, respectively). IPSCs evoked by stimulation in the stratum radiatum in the presence of CNQX were potentiated by zolpidem, blocked by 1 muM gabazine and were relatively insensitive to L-655,708 consistent with the lack of alpha5GABA(A)Rs. In contrast, IPSCs evoked by stimulation of Schaffer collaterals had a significant gabazine-insensitive component. This component was attenuated by L-655,708 and enhanced by burst stimulation. Furthermore, the L-655,708-sensitive current was absent in recordings from mice lacking alpha5GABA(A)Rs (gabra5(-/-) mice). These results show that alpha5GABA(A)R-mediated phasic inhibition is activated by the Schaffer collateral pathway and provide evidence for activity pattern-dependent participation of alpha5GABA(A)Rs in inhibition.
Collapse
Affiliation(s)
- Mariana Vargas-Caballero
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom.
| | | | | | | | | |
Collapse
|
126
|
Lewis DA. Neuroplasticity of excitatory and inhibitory cortical circuits in schizophrenia. DIALOGUES IN CLINICAL NEUROSCIENCE 2009. [PMID: 19877495 PMCID: PMC3075863 DOI: 10.31887/dcns.2009.11.3/dalewis] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder characterized by deficits in cognitive processes mediated by the circuitry of the dorsolateral prefrontal cortex (DLPFC). These deficits are associated with a range of alterations in DLPFC circuitry, some of which reflect the pathology of the illness and others of which reflect the neuroplasticity of the brain in response to the underlying disease process. This article reviews disturbances in excitatory and inhibitory components of DLPFC circuitry from the perspective of developmental neuroplasticity and discusses their implications for the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- David A Lewis
- Department of Psychiatry, University of Pittsburgh, PA 15213, USA.
| |
Collapse
|
127
|
Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T, Zhang M, Paarmann I, Fuchs C, Harvey K, Jedlicka P, Schwarzacher SW, Betz H, Harvey RJ, Brose N, Zhang W, Varoqueaux F. Neuroligin 2 Drives Postsynaptic Assembly at Perisomatic Inhibitory Synapses through Gephyrin and Collybistin. Neuron 2009; 63:628-42. [DOI: 10.1016/j.neuron.2009.08.023] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 08/23/2009] [Accepted: 08/24/2009] [Indexed: 11/27/2022]
|
128
|
Eyre MD, Kerti K, Nusser Z. Molecular diversity of deep short-axon cells of the rat main olfactory bulb. Eur J Neurosci 2009; 29:1397-407. [PMID: 19344330 DOI: 10.1111/j.1460-9568.2009.06703.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Local circuit GABAergic interneurons comprise the most diverse cell populations of neuronal networks. Interneurons have been characterized and categorized based on their axo-somato-dendritic morphologies, neurochemical content, intrinsic electrical properties and their firing in relation to in-vivo population activity. Great advances in our understanding of their roles have been facilitated by their selective identification. Recently, we have described three major subtypes of deep short-axon cells (dSACs) of the main olfactory bulb (MOB) based on their axo-dendritic distributions and synaptic connectivity. Here, we investigated whether dSACs also display pronounced molecular diversity and whether distinct dSAC subtypes selectively express certain molecules. Multiple immunofluorescent labeling revealed that the most commonly used molecular markers of dSACs (e.g. vasoactive intestinal polypeptide, calbindin and nitric oxide synthase) label only very small subpopulations (< 7%). In contrast, voltage-gated potassium channel subunits Kv2.1, Kv3.1b, Kv4.3 and the GABA(A) receptor alpha1 subunit are present in 70-95% of dSACs without showing any dSAC subtype-selective expression. However, metabotropic glutamate receptor type 1alpha mainly labels dSACs that project to the glomerular layer (GL-dSAC subtype) and comprise approximately 20% of the total dSAC population. Analysing these molecular markers with stereological methods, we estimated the total number of dSACs in the entire MOB to be approximately 13,500, which is around a quarter of the number of mitral cells. Our results demonstrate a large molecular heterogeneity of dSACs and reveal a unique neurochemical marker for one dSAC subtype. Based on our results, dSAC subtype-specific genetic modifications will allow us to decipher the role of GL-dSACs in shaping the dynamic activity of the MOB network.
Collapse
Affiliation(s)
- Mark D Eyre
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
129
|
Charych EI, Liu F, Moss SJ, Brandon NJ. GABA(A) receptors and their associated proteins: implications in the etiology and treatment of schizophrenia and related disorders. Neuropharmacology 2009; 57:481-95. [PMID: 19631671 DOI: 10.1016/j.neuropharm.2009.07.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 07/02/2009] [Accepted: 07/13/2009] [Indexed: 02/05/2023]
Abstract
Gamma-aminobutyric acid type A (GABA(A)) receptors play an important role in mediating fast synaptic inhibition in the brain. They are ubiquitously expressed in the CNS and also represent a major site of action for clinically relevant drugs. Recent technological advances have greatly clarified the molecular and cellular roles played by distinct GABA(A) receptor subunit classes and isoforms in normal brain function. At the same time, postmortem and genetic studies have linked neuropsychiatric disorders including schizophrenia and bipolar disorder with GABAergic neurotransmission and various specific GABA(A) receptor subunits, while evidence implicating GABA(A)R-associated proteins is beginning to emerge. In this review we discuss the mounting genetic, molecular, and cellular evidence pointing toward a role for GABA(A) receptor heterogeneity in both schizophrenia etiology and therapeutic development. Finally, we speculate on the relationship between schizophrenia-related disorders and selected GABA(A) receptor associated proteins, key regulators of GABA(A) receptor trafficking, targeting, clustering, and anchoring that often carry out these functions in a subtype-specific manner.
Collapse
Affiliation(s)
- Erik I Charych
- Wyeth Research, Neuroscience Discovery, Princeton NJ 08852, USA.
| | | | | | | |
Collapse
|
130
|
Long-term sensory deprivation selectively rearranges functional inhibitory circuits in mouse barrel cortex. Proc Natl Acad Sci U S A 2009; 106:12156-61. [PMID: 19584253 DOI: 10.1073/pnas.0900922106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term whisker removal alters the balance of excitation and inhibition in rodent barrel cortex, yet little is known about the contributions of individual cells and synapses in this process. We studied synaptic inhibition in four major types of neurons in live tangential slices that isolate layer 4 in the posteromedial barrel subfield. Voltage-clamp recordings of layer 4 neurons reveal that fast decay of synaptic inhibition requires alpha1-containing GABA(A) receptors. After 7 weeks of deprivation, we found that GABA(A)-receptor-mediated inhibitory postsynaptic currents (IPSCs) in the inhibitory low-threshold-spiking (LTS) cell recorded in deprived barrels exhibited faster decay kinetics and larger amplitudes in whisker-deprived barrels than those in nondeprived barrels in age-matched controls. This was not observed in other cell types. Additionally, IPSCs recorded in LTS cells from deprived barrels show a marked increase in zolpidem sensitivity. To determine if the faster IPSC decay in LTS cells from deprived barrels indicates an increase in alpha1 subunit functionality, we deprived alpha1(H101R) mutant mice with zolpidem-insensitive alpha1-containing GABA(A) receptors. In these mice and matched wild-type controls, IPSC decay kinetics in LTS cells were faster after whisker removal; however, the deprivation-induced sensitivity to zolpidem was reduced in alpha1(H101R) mice. These data illustrate a change of synaptic inhibition in LTS cells via an increase in alpha1-subunit-mediated function. Because alpha1 subunits are commonly associated with circuit-specific plasticity in sensory cortex, this switch in LTS cell synaptic inhibition may signal necessary circuit changes required for plastic adjustments in sensory-deprived cortex.
Collapse
|
131
|
Hashimoto T, Nguyen QL, Rotaru D, Keenan T, Arion D, Beneyto M, Gonzalez-Burgos G, Lewis DA. Protracted developmental trajectories of GABAA receptor alpha1 and alpha2 subunit expression in primate prefrontal cortex. Biol Psychiatry 2009; 65:1015-23. [PMID: 19249749 PMCID: PMC2882199 DOI: 10.1016/j.biopsych.2009.01.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/22/2008] [Accepted: 01/08/2009] [Indexed: 01/31/2023]
Abstract
BACKGROUND In schizophrenia, working memory dysfunction is associated with altered expression of gamma-aminobutyric acid (GABA)(A) receptor alpha1 and alpha2 subunits in the dorsolateral prefrontal cortex (DLPFC). In rodents, cortical alpha subunit expression shifts from low alpha1 and high alpha2 to high alpha1 and low alpha2 during early postnatal development. Because these two alpha subunits confer different functional properties to the GABA(A) receptors containing them, we determined whether this shift in alpha1 and alpha2 subunit expression continues through adolescence in the primate DLPFC, potentially contributing to the maturation of working memory during this developmental period. METHODS Levels of GABA(A) receptor alpha1 and alpha2 subunit mRNAs were determined in the DLPFC of monkeys aged 1 week, 4 weeks, 3 months, 15-17 months (prepubertal), and 43-47 months (postpubertal) and in adult monkeys using in situ hybridization, followed by the quantification of alpha1 subunit protein by western blotting. We also performed whole-cell patch clamp recording of miniature inhibitory postsynaptic potentials (mIPSPs) in DLPFC slices prepared from pre- and postpubertal monkeys. RESULTS The mRNA and protein levels of alpha1 and alpha2 subunits progressively increased and decreased, respectively, throughout postnatal development including adolescence. Furthermore, as predicted by the different functional properties of alpha1-containing versus alpha2-containing GABA(A) receptors, the mIPSP duration was significantly shorter in postpubertal than in prepubertal animals. CONCLUSIONS In contrast to rodents, the developmental shift in GABA(A) receptor alpha subunit expression continues through adolescence in primate DLPFC, inducing a marked change in the kinetics of GABA neurotransmission. Disturbances in this shift might underlie impaired working memory in schizophrenia.
Collapse
|
132
|
Nusser Z. Variability in the subcellular distribution of ion channels increases neuronal diversity. Trends Neurosci 2009; 32:267-74. [PMID: 19299025 DOI: 10.1016/j.tins.2009.01.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/07/2009] [Accepted: 01/07/2009] [Indexed: 01/08/2023]
Abstract
The exact location of an ion channel on the axo-somato-dendritic surface of a nerve cell crucially affects its functional impact. Recent high-resolution immunolocalization experiments examining the distribution of GABA and glutamate receptors, voltage-gated potassium and sodium channels and hyperpolarization-activated mixed cation (HCN) channels clearly demonstrate the lack of simple rules concerning their subcellular distribution. For example, the density of HCN1 subunits in pyramidal cells increases 60-fold from soma to distal dendrites but is uniform over the somato-dendritic surface of olfactory bulb external tufted cells and is highest in the axon of cortical and cerebellar basket cells. Such findings highlight the necessity of determining the precise subcellular location and density of each ion channel in every cell type. Here, I suggest that variations in the subcellular distribution of ion channels are previously unrecognized means of increasing neuronal diversity and, thus, the computational power of the brain.
Collapse
Affiliation(s)
- Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary.
| |
Collapse
|
133
|
Jia F, Goldstein PA, Harrison NL. The modulation of synaptic GABA(A) receptors in the thalamus by eszopiclone and zolpidem. J Pharmacol Exp Ther 2009; 328:1000-6. [PMID: 19033556 DOI: 10.1124/jpet.108.146084] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eszopiclone (Lunesta; Sepracor, Marlborough, MA) and zolpidem [N,N,6-trimethyl-2-(4-methylphenyl)-imidazo(1,2-a)pyridine-3-acetamide] are among the most commonly prescribed hypnotics in use in the United States. The thalamus plays a pivotal role in sleep regulation and rhythmicity. Two distinct subtypes of synaptic GABA(A) receptors (GABA(A)-Rs), alpha(1)beta(2)gamma(2) and alpha(3)beta(3)gamma(2), are expressed in thalamocortical relay neurons and in interneurons of the RTN (reticular thalamic nucleus), respectively. Thalamocortical neurons also express extrasynaptic GABA(A)-Rs composed of alpha(4)beta(2)delta subunits. In this study, we compared the effects of eszopiclone and zolpidem on miniature inhibitory postsynaptic currents (IPSCs), spontaneous IPSCs, and tonic inhibition in the mouse thalamus. Eszopiclone (0.1-1 microM) slowed the decay phase of IPSCs recorded from RTN neurons, whereas zolpidem was less effective and increased the decay time constant only at > or = 0.3 microM. IPSCs of RTN neurons were more sensitive to eszopiclone than zolpidem at all concentrations tested. On the other hand, IPSCs of relay neurons in the ventrobasal nucleus (VB) were more sensitive to zolpidem than eszopiclone. Zolpidem (0.1-1 microM) prolonged the decay of IPSCs from VB neurons, whereas eszopiclone increased the decay time constant only at > or = 0.3 microM. Neither of these two hypnotics affected tonic inhibition in relay neurons. Our results demonstrate that eszopiclone has greater efficacy at synaptic GABA(A)-Rs of RTN neurons than in relay neurons, whereas zolpidem exerts bigger effects on relay neurons than RTN neurons. This distinct pattern of activity on thalamic neurons may contribute to some of the observed differences in the clinical effects of these two hypnotics.
Collapse
Affiliation(s)
- Fan Jia
- C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Cornell Medical College, NewYork, New York 10065, USA
| | | | | |
Collapse
|
134
|
Zarnowska ED, Keist R, Rudolph U, Pearce RA. GABAA receptor alpha5 subunits contribute to GABAA,slow synaptic inhibition in mouse hippocampus. J Neurophysiol 2008; 101:1179-91. [PMID: 19073796 DOI: 10.1152/jn.91203.2008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
gamma-Aminobutyric acid type A (GABA(A)) receptor alpha5 subunits, which are heavily expressed in the hippocampus, are potential drug targets for improving cognitive function. They are found at synaptic and extrasynaptic sites and have been shown to mediate tonic inhibition in pyramidal neurons. We tested the hypothesis that alpha5 subunits also contribute to synaptic inhibition by measuring the effect of diazepam (DZ) on spontaneous and stimulus-evoked inhibitory postsynaptic currents (IPSCs) in genetically modified mice carrying a point mutation in the alpha5 subunit (alpha5-H105R) that renders those receptors insensitive to benzodiazepines. In wild type mice, DZ (1 microM) increased the amplitude of spontaneous IPSCs (sIPSCs) and stimulus-evoked GABA(A,slow) IPSCs (eIPSCs) and prolonged the decay of GABA(A,fast) sIPSCs. In alpha5-mutant mice, DZ increased the amplitude of a small-amplitude subset of sIPSCs (<50 pA) and eIPSCs (<300 pA) GABA(A,slow) and prolonged the decay of GABA(A,fast) sIPSCs, but failed to increase the amplitude of larger sIPSCs and eIPSCs GABA(A,slow). These results indicate that alpha5 subunits contribute to a large-amplitude subset of GABA(A,slow) synapses and implicate these synapses in modulation of cognitive function by drugs that target alpha5 subunits.
Collapse
Affiliation(s)
- Ewa D Zarnowska
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53711, USA.
| | | | | | | |
Collapse
|
135
|
Differing effects of intracortical circuits on plasticity. Exp Brain Res 2008; 193:555-63. [PMID: 19048237 DOI: 10.1007/s00221-008-1658-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
Abstract
Practice of a motor task leads to an increase in amplitude of motor-evoked potentials (MEP) in the exercised muscle. This is termed practice-dependent plasticity, and is abolished by the NMDA antagonist dextromethorphan and the GABA(A) agonist lorazepam. Here, we sought to determine whether specific subtypes of GABA(A) circuits are responsible for this effect by comparing the action of the non-selective agonist, lorazepam with that of the selective GABA(A)-alpha(1) receptor agonist, zolpidem. In seven healthy subjects, transcranial magnetic stimulation (TMS) was used to quantify changes in amplitude of MEP after practice of a ballistic motor task. In addition we measured how the same drugs affected MEP amplitudes and the excitability of a number of cortical inhibitory circuits [short-interval intracortical inhibition (SICI), short-interval afferent inhibition (SAI) and long-interval intracortical inhibition]. This allowed us to explore correlations between drugs effects in measures of cortical excitability and practice-dependent plasticity of MEP amplitudes. As previously reported, lorazepam increased SICI and decreased SAI, while zolpidem only decreased SAI. The new findings were that practice-dependent plasticity of MEPs was impaired by lorazepam but not zolpidem, and that this was negatively correlated with lorazepam-induced changes in SICI but not SAI. This suggests that the intracortical circuits involved in SICI (and not neurons expressing GABA(A)-alpha(1) receptor subunits that are implicated in SAI) may be involved in controlling the amount of practice-dependent MEP plasticity.
Collapse
|
136
|
Gonzalez-Burgos G, Lewis DA. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull 2008; 34:944-61. [PMID: 18586694 PMCID: PMC2518635 DOI: 10.1093/schbul/sbn070] [Citation(s) in RCA: 411] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Synchronization of neuronal activity in the neocortex may underlie the coordination of neural representations and thus is critical for optimal cognitive function. Because cognitive deficits are the major determinant of functional outcome in schizophrenia, identifying their neural basis is important for the development of new therapeutic interventions. Here we review the data suggesting that phasic synaptic inhibition mediated by specific subtypes of cortical gamma-aminobutyric acid (GABA) neurons is essential for the production of synchronized network oscillations. We also discuss evidence indicating that GABA neurotransmission is altered in schizophrenia and propose mechanisms by which such alterations can decrease the strength of inhibitory connections in a cell-type-specific manner. We suggest that some alterations observed in the neocortex of schizophrenia subjects may be compensatory responses that partially restore inhibitory synaptic efficacy. The findings of altered neural synchrony and impaired cognitive function in schizophrenia suggest that such compensatory responses are insufficient and that interventions aimed at augmenting the efficacy of GABA neurotransmission might be of therapeutic value.
Collapse
|
137
|
Möhler H, Rudolph U, Boison D, Singer P, Feldon J, Yee BK. Regulation of cognition and symptoms of psychosis: Focus on GABAA receptors and glycine transporter 1`. Pharmacol Biochem Behav 2008; 90:58-64. [DOI: 10.1016/j.pbb.2008.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 02/28/2008] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
|
138
|
The clustering of GABA(A) receptor subtypes at inhibitory synapses is facilitated via the direct binding of receptor alpha 2 subunits to gephyrin. J Neurosci 2008; 28:1356-65. [PMID: 18256255 DOI: 10.1523/jneurosci.5050-07.2008] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Classical benzodiazepine sensitive GABA(A) receptor subtypes, the major mediators of fast synaptic inhibition in the brain are heteropentamers that can be assembled from alpha1-3/5, beta1-3, and gamma2 subunits, but how neurons orchestrate their selective accumulation at synapses remains obscure. We have identified a 10 amino acid hydrophobic motif within the intracellular domain of the alpha2 subunit that regulates the accumulation of GABA(A) receptors at inhibitory synaptic sites on both axon initial segments and dendrites in a mechanism dependent on the inhibitory scaffold protein gephyrin. This motif was sufficient to target CD4 (cluster of differentiation molecule 4) molecules to inhibitory synapses, and was also critical in regulating the direct binding of alpha2 subunits to gephyrin in vitro. Our results thus reveal that the specific accumulation of GABA(A) receptor subtypes containing alpha2 subunits at inhibitory synapses is dependent on their ability to bind gephyrin.
Collapse
|
139
|
Kotak VC, Takesian AE, Sanes DH. Hearing loss prevents the maturation of GABAergic transmission in the auditory cortex. Cereb Cortex 2008; 18:2098-108. [PMID: 18222937 PMCID: PMC2517109 DOI: 10.1093/cercor/bhm233] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Inhibitory neurotransmission is a critical determinant of neuronal network gain and dynamic range, suggesting that network properties are shaped by activity during development. A previous study demonstrated that sensorineural hearing loss (SNHL) in gerbils leads to smaller inhibitory potentials in L2/3 pyramidal neurons in the thalamorecipient auditory cortex, ACx. Here, we explored the mechanisms that account for proper maturation of γ-amino butyric acid (GABA)ergic transmission. SNHL was induced at postnatal day (P) 10, and whole-cell voltage-clamp recordings were obtained from layer 2/3 pyramidal neurons in thalamocortical slices at P16–19. SNHL led to an increase in the frequency of GABAzine-sensitive (antagonist) spontaneous (s) and miniature (m) inhibitory postsynaptic currents (IPSCs), accompanied by diminished amplitudes and longer durations. Consistent with this, the amplitudes of minimum-evoked IPSCs were also reduced while their durations were longer. The α1- and β2/3 subunit–specific agonists zolpidem and loreclezole increased control but not SNHL sIPSC durations. To test whether SNHL affected the maturation of GABAergic transmission, sIPSCs were recorded at P10. These sIPSCs resembled the long SNHL sIPSCs. Furthermore, zolpidem and loreclezole were ineffective in increasing their durations. Together, these data strongly suggest that the presynaptic release properties and expression of key postsynaptic GABAA receptor subunits are coregulated by hearing.
Collapse
Affiliation(s)
- Vibhakar C Kotak
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | | | | |
Collapse
|
140
|
Abstract
The core features of schizophrenia include deficits in cognitive processes mediated by the circuitry of the dorsolateral prefrontal cortex (DLPFC). These deficits are associated with a range of molecular and morphological alterations in the DLPFC, each of which could be a cause, consequence, or compensation in relation to other changes, and thus reflect the neuroplasticity of the brain in response to the underlying disease process. In this review, we consider disturbances in excitatory, inhibitory, and modulatory connections of DLPFC circuitry from the perspective of disease- and development-related neuroplasticity and discuss their implications for the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
141
|
Saarelainen KS, Ranna M, Rabe H, Sinkkonen ST, Möykkynen T, Uusi-Oukari M, Linden AM, Lüddens H, Korpi ER. Enhanced behavioral sensitivity to the competitive GABA agonist, gaboxadol, in transgenic mice over-expressing hippocampal extrasynaptic alpha6beta GABA(A) receptors. J Neurochem 2007; 105:338-50. [PMID: 18021290 DOI: 10.1111/j.1471-4159.2007.05136.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The behavioral and functional significance of the extrasynaptic inhibitory GABA(A) receptors in the brain is still poorly known. We used a transgenic mouse line expressing the GABA(A) receptor alpha6 subunit gene in the forebrain under the Thy-1.2 promoter (Thy1alpha6) mice ectopically expressing alpha6 subunits especially in the hippocampus to study how extrasynaptically enriched alphabeta(gamma2)-type receptors alter animal behavior and receptor responses. In these mice extrasynaptic alpha6beta receptors make up about 10% of the hippocampal GABA(A) receptors resulting in imbalance between synaptic and extrasynaptic inhibition. The synthetic GABA-site competitive agonist gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; 3 mg/kg) induced remarkable anxiolytic-like response in the light : dark exploration and elevated plus-maze tests in Thy1alpha6 mice, while being almost inactive in wild-type mice. The transgenic mice also lost quicker and for longer time their righting reflex after 25 mg/kg gaboxadol than wild-type mice. In hippocampal sections of Thy1alpha6 mice, the alpha6beta receptors could be visualized autoradiographically by interactions between gaboxadol and GABA via [(35)S]TBPS binding to the GABA(A) receptor ionophore. Gaboxadol inhibition of the binding could be partially prevented by GABA. Electrophysiology of recombinant GABA(A) receptors revealed that GABA was a partial agonist at alpha6beta3 and alpha6beta3delta receptors, but a full agonist at alpha6beta3gamma2 receptors when compared with gaboxadol. The results suggest strong behavioral effects via selective pharmacological activation of enriched extrasynaptic alphabeta GABA(A) receptors, and the mouse model represents an example of the functional consequences of altered balance between extrasynaptic and synaptic inhibition.
Collapse
Affiliation(s)
- Kati S Saarelainen
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Ali AB, Thomson AM. Synaptic alpha 5 subunit-containing GABAA receptors mediate IPSPs elicited by dendrite-preferring cells in rat neocortex. Cereb Cortex 2007; 18:1260-71. [PMID: 17951598 DOI: 10.1093/cercor/bhm160] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Previous studies indicated that one class of dendrite-preferring hippocampal interneurones inhibits pyramidal cells via alpha 5 gamma-aminobutyric acid (GABA(A)) receptors whereas parvalbumin- and CCK-containing basket cells act via alpha1 and alpha2/3 GABA(A) receptors, respectively. This study asked whether there is selective insertion of different alpha subunit-containing GABA(A) receptors at neocortical inhibitory synapses innervated by specific classes of interneurones. The benzodiazepine site pharmacology of inhibitory postsynaptic potentials (IPSPs) elicited in neocortical pyramidal cells by 3 classes of interneurones was explored with dual whole-cell recordings in neocortical slices from juvenile rats (P18-23). Fast IPSPs activated by multipolar interneurones with narrow spikes and nonadapting firing patterns were powerfully enhanced by the alpha1-preferring agonist zolpidem, suggesting mediation via larger proportion of alpha1 GABA(A) receptors than those activated by multipolar, adapting interneurones, which were less strongly enhanced by zolpidem, but equally insensitive to the alpha 5-selective inverse agonist IA alpha 5 (MSD, Essex, UK) suggesting mediation predominantly via alpha2/3 GABA(A) receptors. In contrast, the IPSPs elicited by bitufted, dendrite-preferring interneurones were reduced by IA alpha 5 and by zinc and insensitive to zolpidem despite enhancement by the broad-spectrum agonist, diazepam. Thus insertion of GABA(A) receptors at synapses on neocortical pyramids is input-specific, with proximal inhibition employing alpha1 and alpha2/3 GABA(A) receptors and dendrite-preferring bitufted interneurones activating alpha 5 GABA(A) receptors.
Collapse
Affiliation(s)
- Afia B Ali
- Department of Pharmacology, School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
143
|
Epsztein J, Ben-Ari Y, Represa A, Crépel V. Late-onset epileptogenesis and seizure genesis: lessons from models of cerebral ischemia. Neuroscientist 2007; 14:78-90. [PMID: 17914086 DOI: 10.1177/1073858407301681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Patients surviving ischemic stroke often express delayed epileptic syndromes. Late poststroke seizures occur after a latency period lasting from several months to years after the insult. These seizures might result from ischemia-induced neuronal death and associated morphological and physiological changes that are only partly elucidated. This review summarizes the long-term morphofunctional alterations observed in animal models of both focal and global ischemia that could explain late-onset seizures and epileptogenesis. In particular, this review emphasizes the change in GABAergic and glutamatergic signaling leading to hyperexcitability and seizure genesis.
Collapse
Affiliation(s)
- Jérôme Epsztein
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 29, and Université de La Méditerranée, Marseille Cedex, France
| | | | | | | |
Collapse
|
144
|
Smith SS, Shen H, Gong QH, Zhou X. Neurosteroid regulation of GABA(A) receptors: Focus on the alpha4 and delta subunits. Pharmacol Ther 2007; 116:58-76. [PMID: 17512983 PMCID: PMC2657726 DOI: 10.1016/j.pharmthera.2007.03.008] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 03/29/2007] [Indexed: 11/24/2022]
Abstract
Neurosteroids, such as the progesterone metabolite 3alpha-OH-5alpha[beta]-pregnan-20-one (THP or [allo]pregnanolone), function as potent positive modulators of the GABA(A) receptor (GABAR) when acutely administered. However, fluctuations in the circulating levels of this steroid at puberty, across endogenous ovarian cycles, during pregnancy or following chronic stress produce periods of prolonged exposure and withdrawal, where changes in GABAR subunit composition may occur as compensatory responses to sustained levels of inhibition. A number of laboratories have demonstrated that both chronic administration of THP as well as its withdrawal transiently increase expression of the alpha4 subunit of the GABAR in several areas of the central nervous system (CNS) as well as in in vitro neuronal systems. Receptors containing this subunit are insensitive to benzodiazepine (BDZ) modulation and display faster deactivation kinetics, which studies suggest underlie hyperexcitability states. Similar increases in alpha4 expression are triggered by withdrawal from other GABA-modulatory compounds, such as ethanol and BDZ, suggesting a common mechanism. Other studies have reported puberty or estrous cycle-associated increases in delta-GABAR, the most sensitive target of these steroids which underlies a tonic inhibitory current. In the studies reported here, the effect of steroids on inhibition, which influence anxiety state and seizure susceptibility, depend not only on the subunit composition of the receptor but also on the direction of Cl(-) current generated by these target receptors. The effect of neurosteroids on GABAR function thus results in behavioral outcomes relevant for pubertal mood swings, premenstrual dysphoric disorder and catamenial epilepsy, which are due to fluctuations in endogenous steroids.
Collapse
Affiliation(s)
- Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | | | | | |
Collapse
|
145
|
Szabadics J, Tamás G, Soltesz I. Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast. Proc Natl Acad Sci U S A 2007; 104:14831-6. [PMID: 17785408 PMCID: PMC1964542 DOI: 10.1073/pnas.0707204104] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Phasic (synaptic) and tonic (extrasynaptic) inhibition represent the two most fundamental forms of GABA(A) receptor-mediated transmission. Inhibitory postsynaptic currents (IPSCs) generated by GABA(A) receptors are typically extremely rapid synaptic events that do not last beyond a few milliseconds. Although unusually slow GABA(A) IPSCs, lasting for tens of milliseconds, have been observed in recordings of spontaneous events, their origin and mechanisms are not known. We show that neocortical GABA(A,slow) IPSCs originate from a specialized interneuron called neurogliaform cells. Compared with classical GABA(A,fast) IPSCs evoked by basket cells, single spikes in neurogliaform cells evoke extraordinarily prolonged GABA(A) responses that display tight regulation by transporters, low peak GABA concentration, unusual benzodiazepine modulation, and spillover. These results reveal a form of GABA(A) receptor mediated communication by a dedicated cell type that produces slow ionotropic responses with properties intermediate between phasic and tonic inhibition.
Collapse
Affiliation(s)
- János Szabadics
- *Department of Anatomy and Neurobiology, University of California, 193 Irvine Hall, Irvine, CA 92697; and
- HAS Research Group for Cortical Microcircuits, Department of Comparative Physiology, University of Szeged, Kozep fasor 52, H-6726, Szeged, Hungary
| | - Gábor Tamás
- HAS Research Group for Cortical Microcircuits, Department of Comparative Physiology, University of Szeged, Kozep fasor 52, H-6726, Szeged, Hungary
| | - Ivan Soltesz
- *Department of Anatomy and Neurobiology, University of California, 193 Irvine Hall, Irvine, CA 92697; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
146
|
Baude A, Bleasdale C, Dalezios Y, Somogyi P, Klausberger T. Immunoreactivity for the GABAA receptor alpha1 subunit, somatostatin and Connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus. Cereb Cortex 2007; 17:2094-107. [PMID: 17122364 DOI: 10.1093/cercor/bhl117] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Parvalbumin (PV)-expressing interneurons synchronize cortical neurons through gamma-aminobutyric acidergic (GABAergic) synapses. Three types of PV-containing interneurons populate stratum pyramidale of the hippocampal CA1 area: basket cells targeting somata and proximal dendrites, axoaxonic cells innervating axon initial segments, and bistratified cells targeting the dendrites of pyramidal cells. We tested whether this axonal specialization is accompanied by a differential expression of molecules involved in neuronal signaling. Immunofluorescence evaluation of interneurons labeled by neurobiotin in vivo shows that axoaxonic cells express significantly less GABA(A) receptor alpha1 subunit in the plasma membrane than basket and bistratified cells. Electron microscopic immunogold labeling reveals that this subunit contributes heavily to extrasynaptic receptors providing a substrate for tonic inhibition. Results from additional immunofluorescence experiments were consistent with the finding that only bistratified cells express the neuropeptide somatostatin. From the molecular profiles, we estimate that basket, bistratified, and axoaxonic cells represent about 60%, 25%, and 15%, respectively, of PV-containing cells in CA1 stratum pyramidale. In addition, all 3 interneuron classes form connexin36-immunopositive dendrodendritic gap junctions. The differential expression of signaling molecules and the relative frequency of cells reflect the specialized temporal contribution of the 3 types of PV-positive interneurons to GABA release in the network.
Collapse
Affiliation(s)
- Agnès Baude
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford University, Oxford OX1 3TH, UK
| | | | | | | | | |
Collapse
|
147
|
Schneider Gasser EM, Duveau V, Prenosil GA, Fritschy JM. Reorganization of GABAergic circuits maintains GABAA receptor-mediated transmission onto CA1 interneurons in alpha1-subunit-null mice. Eur J Neurosci 2007; 25:3287-304. [PMID: 17552997 DOI: 10.1111/j.1460-9568.2007.05558.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The majority of hippocampal interneurons strongly express GABA(A) receptors containing the alpha1 subunit, suggesting that inhibitory control of interneurons is important for proper function of hippocampal circuits. Here, we investigated with immunohistochemical and electrophysiological techniques how these GABA(A) receptors are replaced in mice carrying a targeted deletion of the alpha1-subunit gene (alpha1(0/0) mice). Using markers of five major populations of CA1 interneurons (parvalbumin, calretinin, calbindin, neuropeptide Y and somatostatin), we show that these interneurons remain unaffected in alpha1(0/0) mice. In triple immunofluorescence staining experiments combining these markers with the GABA(A) receptor alpha1, alpha2 or alpha3 subunit and gephyrin, we demonstrate a strong increase in alpha3- and alpha2-GABA(A) receptors clustered at postsynaptic sites along with gephyrin in most CA1 interneurons in alpha1(0/0) mice. The changes were cell type-specific and resulted in an increased number of GABAergic synapses on interneurons. These adjustments were mirrored functionally by retention of spontaneous IPSCs with prolonged decay kinetics, as shown by whole-cell patch-clamp recordings of CA1 interneurons. However, a significant decrease in frequency and amplitude of miniature IPSCs was evident, suggesting reduced affinity of postsynaptic receptors and/or impaired vesicular GABA release. Finally, to assess whether these compensatory changes are sufficient to protect against a pathological challenge, we tested the susceptibility of alpha1(0/0) mice against kainic acid-induced excitotoxicity. No genotype difference was observed in the effects of kainic acid, indicating that the absence of a major GABA(A) receptor subtype is functionally compensated for in hippocampal interneurons by a reorganization of inhibitory circuits.
Collapse
Affiliation(s)
- Edith M Schneider Gasser
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
148
|
Abstract
Following the classical work on presynaptic inhibition in the spinal cord, recent work has revealed an astonishing abundance and diversity of presynaptic ionotropic GABA receptors. While modern techniques allow for detailed studies at the cellular and molecular level in almost all regions of the CNS, our understanding of the function of such receptors is still far from complete. One major shortcoming is the lack of knowledge regarding chloride concentration inside axons or axon terminals. Therefore, the voltage change upon activation of presynaptic GABA receptors is difficult to predict. Moreover, even if the presynaptic potential transient was known, it turns out difficult to predict the effects on presynaptic function, which may be differentially influenced by various mechanisms, including activation or inactivation of voltage-gated ion channels and shunt effects. This review summarizes several key examples of presynaptic ionotropic GABA receptors and outlines the possible mechanisms that have to be kept in mind when unravelling this potentially important mechanism of synaptic signalling and plasticity.
Collapse
Affiliation(s)
- Andreas Draguhn
- Institut für Physiologie und Pathophysiologie, Universität Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
149
|
Abstract
Fast synaptic inhibition in the brain and spinal cord is mediated largely by ionotropic gamma-aminobutyric acid (GABA) receptors. GABAA receptors play a key role in controlling neuronal activity; thus modulating their function will have important consequences for neuronal excitation. GABAA receptors are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are involved in a number of CNS diseases, including sleep disturbances, anxiety, premenstrual syndrome, alcoholism, muscle spasms, Alzheimer's disease, chronic pain, schizophrenia, bipolar affective disorders, and epilepsy. This review focuses on the functional and pharmacological properties of GABAA receptors and trafficking as an essential mechanism underlying the dynamic regulation of synaptic strength.
Collapse
Affiliation(s)
- Guido Michels
- Department of Neuroscience, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6074, USA.
| | | |
Collapse
|
150
|
Jia F, Pignataro L, Harrison NL. GABAA receptors in the thalamus: alpha4 subunit expression and alcohol sensitivity. Alcohol 2007; 41:177-85. [PMID: 17521848 DOI: 10.1016/j.alcohol.2007.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/21/2007] [Accepted: 03/22/2007] [Indexed: 11/25/2022]
Abstract
The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) has long been implicated in the anxiolytic, amnesic, and sedative behavioral effects of alcohol. A large number of studies have investigated the interactions of alcohol with GABA receptors. Many investigators have reported effects of "high concentrations" (50-100 mM) of alcohol on GABA-mediated synaptic inhibition, but effects of the "low concentrations" (1-30 mM) of alcohol normally associated with mild intoxication have been elusive until recently. A novel form of "tonic inhibition" has been described in the central nervous system (CNS) that is generated by the persistent activation of extrasynaptic gamma-aminobutyric acid type A receptors (GABAA-Rs). These receptors are specific GABAA-R subtypes and distinct from the synaptic subtypes. Tonic inhibition regulates the excitability of individual neurons and the activity and rhythmicity of neural networks. Interestingly, several reports show that tonic inhibition is sensitive to low concentrations of alcohol. The thalamus is a structure that is critically important in the control of sleep and wakefulness. GABAergic inhibition in the thalamus plays a crucial role in the generation of sleep waves. Among the various GABAA-R subunits, the alpha1, alpha4, beta2, and delta subunits are heavily expressed in thalamic relay nuclei. Tonic inhibition has been demonstrated in thalamocortical relay neurons, where it is mediated by alpha4beta2delta GABAA-Rs. These extrasynaptic receptors are highly sensitive to gaboxadol, a novel hypnotic, but insensitive to benzodiazepines. Tonic inhibition is absent in thalamic relay neurons from alpha4 knockout mice, as are the sedative and analgesic effects of gaboxadol. The sedative effects of alcohol can promote sleep. However, alcohol also disrupts the normal sleep pattern and reduces sleep quality. As a result, sleep disturbance caused by alcohol can play a role in the progression of alcoholism. As an important regulator of sleep cycles, inhibition in the thalamus may therefore be involved in both the sedative effects of alcohol and the development of alcoholism. Investigating the effects of alcohol on both synaptic and extrasynaptic GABAA-Rs in the thalamus should help us to understand the mechanisms underlying the interaction between alcohol and sleep.
Collapse
Affiliation(s)
- Fan Jia
- Department of Anesthesiology, Weill Medical College, Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|