101
|
Hogg BV, Kacprzyk J, Molony EM, O'Reilly C, Gallagher TF, Gallois P, McCabe PF. An in vivo root hair assay for determining rates of apoptotic-like programmed cell death in plants. PLANT METHODS 2011; 7:45. [PMID: 22165954 PMCID: PMC3266644 DOI: 10.1186/1746-4811-7-45] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/13/2011] [Indexed: 05/09/2023]
Abstract
In Arabidopsis thaliana we demonstrate that dying root hairs provide an easy and rapid in vivo model for the morphological identification of apoptotic-like programmed cell death (AL-PCD) in plants. The model described here is transferable between species, can be used to investigate rates of AL-PCD in response to various treatments and to identify modulation of AL-PCD rates in mutant/transgenic plant lines facilitating rapid screening of mutant populations in order to identify genes involved in AL-PCD regulation.
Collapse
Affiliation(s)
- Bridget V Hogg
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
- Syngenta, Jealotts Hill International Research Centre, Bracknell, Berkshire, UK
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Elizabeth M Molony
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Conor O'Reilly
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Thomas F Gallagher
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Patrick Gallois
- Faculty of Life Science, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
102
|
Paul JY, Becker DK, Dickman MB, Harding RM, Khanna HK, Dale JL. Apoptosis-related genes confer resistance to Fusarium wilt in transgenic 'Lady Finger' bananas. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:1141-1148. [PMID: 21819535 DOI: 10.1111/j.1467-7652.2011.00639.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases of banana (Musa spp.). Apart from resistant cultivars, there are no effective control measures for the disease. We investigated whether the transgenic expression of apoptosis-inhibition-related genes in banana could be used to confer disease resistance. Embryogenic cell suspensions of the banana cultivar, 'Lady Finger', were stably transformed with animal genes that negatively regulate apoptosis, namely Bcl-xL, Ced-9 and Bcl-2 3' UTR, and independently transformed plant lines were regenerated for testing. Following a 12-week exposure to Foc race 1 in small-plant glasshouse bioassays, seven transgenic lines (2 × Bcl-xL, 3 × Ced-9 and 2 × Bcl-2 3' UTR) showed significantly less internal and external disease symptoms than the wild-type susceptible 'Lady Finger' banana plants used as positive controls. Of these, one Bcl-2 3' UTR line showed resistance that was equivalent to that of wild-type Cavendish bananas that were included as resistant negative controls. Further, the resistance of this line continued for 23-week postinoculation at which time the experiment was terminated. Using TUNEL assays, Foc race 1 was shown to induce apoptosis-like features in the roots of wild-type 'Lady Finger' plants consistent with a necrotrophic phase in the life cycle of this pathogen. This was further supported by the observed reduction in these effects in the roots of the resistant Bcl-2 3' UTR-transgenic line. This is the first report on the generation of transgenic banana plants with resistance to Fusarium wilt.
Collapse
Affiliation(s)
- Jean-Yves Paul
- Centre for Tropical Crops and Biocommodities, Faculty of Science and Technology, Queensland University of Technology, Brisbane, Qld, Australia
| | | | | | | | | | | |
Collapse
|
103
|
Saucedo-García M, Guevara-García A, González-Solís A, Cruz-García F, Vázquez-Santana S, Markham JE, Lozano-Rosas MG, Dietrich CR, Ramos-Vega M, Cahoon EB, Gavilanes-Ruíz M. MPK6, sphinganine and the LCB2a gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in Arabidopsis. THE NEW PHYTOLOGIST 2011; 191:943-957. [PMID: 21534970 DOI: 10.1111/j.1469-8137.2011.03727.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Long chain bases (LCBs) are sphingolipid intermediates acting as second messengers in programmed cell death (PCD) in plants. Most of the molecular and cellular features of this signaling function remain unknown. We induced PCD conditions in Arabidopsis thaliana seedlings and analyzed LCB accumulation kinetics, cell ultrastructure and phenotypes in serine palmitoyltransferase (spt), mitogen-activated protein kinase (mpk), mitogen-activated protein phosphatase (mkp1) and lcb-hydroxylase (sbh) mutants. The lcb2a-1 mutant was unable to mount an effective PCD in response to fumonisin B1 (FB1), revealing that the LCB2a gene is essential for the induction of PCD. The accumulation kinetics of LCBs in wild-type (WT) and lcb2a-1 plants and reconstitution experiments with sphinganine indicated that this LCB was primarily responsible for PCD elicitation. The resistance of the null mpk6 mutant to manifest PCD on FB1 and sphinganine addition and the failure to show resistance on pathogen infection and MPK6 activation by FB1 and LCBs indicated that MPK6 mediates PCD downstream of LCBs. This work describes MPK6 as a novel transducer in the pathway leading to LCB-induced PCD in Arabidopsis, and reveals that sphinganine and the LCB2a gene are required in a PCD process that operates as one of the more effective strategies used as defense against pathogens in plants.
Collapse
Affiliation(s)
- Mariana Saucedo-García
- Dpto. de Bioquímica, Fac. de Química, Universidad Nacional Autónoma de México, México D.F., 04510 México
| | - Arturo Guevara-García
- Dpto. de Biología Molecular de Plantas, Inst. de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62271, Morelos, México
| | - Ariadna González-Solís
- Dpto. de Bioquímica, Fac. de Química, Universidad Nacional Autónoma de México, México D.F., 04510 México
| | - Felipe Cruz-García
- Dpto. de Bioquímica, Fac. de Química, Universidad Nacional Autónoma de México, México D.F., 04510 México
| | - Sonia Vázquez-Santana
- Dpto. de Biología Comparada, Fac. de Ciencias, Universidad Nacional Autónoma de México, México D.F., 04510 México
| | | | - M Guadalupe Lozano-Rosas
- Dpto. de Bioquímica, Fac. de Química, Universidad Nacional Autónoma de México, México D.F., 04510 México
| | | | - Maricela Ramos-Vega
- Dpto. de Biología Molecular de Plantas, Inst. de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62271, Morelos, México
| | - Edgar B Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine St., Lincoln, NE 68588, USA
| | - Marina Gavilanes-Ruíz
- Dpto. de Bioquímica, Fac. de Química, Universidad Nacional Autónoma de México, México D.F., 04510 México
| |
Collapse
|
104
|
Smertenko A, Franklin-Tong VE. Organisation and regulation of the cytoskeleton in plant programmed cell death. Cell Death Differ 2011; 18:1263-70. [PMID: 21566662 PMCID: PMC3172095 DOI: 10.1038/cdd.2011.39] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 12/26/2022] Open
Abstract
Programmed cell death (PCD) involves precise integration of cellular responses to extracellular and intracellular signals during both stress and development. In recent years much progress in our understanding of the components involved in PCD in plants has been made. Signalling to PCD results in major reorganisation of cellular components. The plant cytoskeleton is known to play a major role in cellular organisation, and reorganization and alterations in its dynamics is a well known consequence of signalling. There are considerable data that the plant cytoskeleton is reorganised in response to PCD, with remodelling of both microtubules and microfilaments taking place. In the majority of cases, the microtubule network depolymerises, whereas remodelling of microfilaments can follow two scenarios, either being depolymerised and then forming stable foci, or forming distinct bundles and then depolymerising. Evidence is accumulating that demonstrate that these cytoskeletal alterations are not just a consequence of signals mediating PCD, but that they also may have an active role in the initiation and regulation of PCD. Here we review key data from higher plant model systems on the roles of the actin filaments and microtubules during PCD and discuss proteins potentially implicated in regulating these alterations.
Collapse
Affiliation(s)
- A Smertenko
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3LE, UK
| | - V E Franklin-Tong
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
105
|
Lee JS, Lee SH, Kim JH, Park CB. Artificial photosynthesis on a chip: microfluidic cofactor regeneration and photoenzymatic synthesis under visible light. LAB ON A CHIP 2011; 11:2309-2311. [PMID: 21655630 DOI: 10.1039/c1lc20303g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present a microfluidic artificial photosynthetic platform that incorporates quantum dots and redox enzymes for photoenzymatic synthesis of fine chemicals under visible light. Similar to natural photosynthesis, photochemical cofactor regeneration takes place in the light-dependent reaction zone, which is then coupled with the light-independent, enzymatic synthesis in the downstream of the microchannel.
Collapse
Affiliation(s)
- Joon Seok Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | | | | | | |
Collapse
|
106
|
The role of the parenchyma sheath and PCD during the development of oil cavities in Pterodon pubescens (Leguminosae-Papilionoideae). C R Biol 2011; 334:535-43. [DOI: 10.1016/j.crvi.2011.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 01/06/2023]
|
107
|
He S, Tan G, Liu Q, Huang K, Ren J, Zhang X, Yu X, Huang P, An C. The LSD1-interacting protein GILP is a LITAF domain protein that negatively regulates hypersensitive cell death in Arabidopsis. PLoS One 2011; 6:e18750. [PMID: 21526181 PMCID: PMC3079718 DOI: 10.1371/journal.pone.0018750] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/17/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Hypersensitive cell death, a form of avirulent pathogen-induced programmed cell death (PCD), is one of the most efficient plant innate immunity. However, its regulatory mechanism is poorly understood. AtLSD1 is an important negative regulator of PCD and only two proteins, AtbZIP10 and AtMC1, have been reported to interact with AtLSD1. METHODOLOGY/PRINCIPAL FINDINGS To identify a novel regulator of hypersensitive cell death, we investigate the possible role of plant LITAF domain protein GILP in hypersensitive cell death. Subcellular localization analysis showed that AtGILP is localized in the plasma membrane and its plasma membrane localization is dependent on its LITAF domain. Yeast two-hybrid and pull-down assays demonstrated that AtGILP interacts with AtLSD1. Pull-down assays showed that both the N-terminal and the C-terminal domains of AtGILP are sufficient for interactions with AtLSD1 and that the N-terminal domain of AtLSD1 is involved in the interaction with AtGILP. Real-time PCR analysis showed that AtGILP expression is up-regulated by the avirulent pathogen Pseudomonas syringae pv. tomato DC3000 avrRpt2 (Pst avrRpt2) and fumonisin B1 (FB1) that trigger PCD. Compared with wild-type plants, transgenic plants overexpressing AtGILP exhibited significantly less cell death when inoculated with Pst avrRpt2, indicating that AtGILP negatively regulates hypersensitive cell death. CONCLUSIONS/SIGNIFICANCE These results suggest that the LITAF domain protein AtGILP localizes in the plasma membrane, interacts with AtLSD1, and is involved in negatively regulating PCD. We propose that AtGILP functions as a membrane anchor, bringing other regulators of PCD, such as AtLSD1, to the plasma membrane. Human LITAF domain protein may be involved in the regulation of PCD, suggesting the evolutionarily conserved function of LITAF domain proteins in the regulation of PCD.
Collapse
Affiliation(s)
- Shanping He
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Guihong Tan
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Qian Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Kuowei Huang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Jiao Ren
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Xu Zhang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Xiangchun Yu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Ping Huang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Chengcai An
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
108
|
Joseph B, Jini D. Salinity Induced Programmed Cell Death in Plants: Challenges and Opportunities for Salt-tolerant Plants. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/jps.2010.376.390] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
109
|
Yang MH, Lin YJ, Kuo CH, Ku KL. Medicinal mushroom Ganoderma lucidum as a potent elicitor in production of t-resveratrol and t-piceatannol in peanut calluses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:9518-22. [PMID: 20687553 DOI: 10.1021/jf102107p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phytoalexins t-resveratrol and t-piceatannol, the well-known health-promoting active components in plants, are secondary metabolites generated upon biotic or abiotic stresses. We have reported UV-irradiated peanut callus is a potent means to produce these compounds (J. Agric. Food Chem. 2005, 53, 3877). In this work, the effects of fungi and chemical elicitors on induction of t-resveratrol and t-piceatannol were examined. Results showed the investigated fungi Botryodiplodia theobromae and Reishi Ganoderma lucidum were generally more effective than chemical stress methyl jasmonate, salicylic acid, and sucrose. As high as 15.46+/-9.85 microg of t-resveratrol and 6.93+/-2.03 microg of t-piceatannol could be elicited in each gram of callus by sterilized G. lucidum mycelium (80 mg). Although much more sterilized G. ludicum mycelia was required to induce similar level of t-resveratrol and t-piceatannol in comparison to the sterilized B. theobromae mycelia (1 mg), uptake of the G. ludicum mycelium may provide a variety of health-promoting effects. Our findings suggest G. ludicum mycelium-treated peanut callus is a good source of bioactive components.
Collapse
Affiliation(s)
- Ming-Hua Yang
- Department of Food Technology, Hungkuang University, 34 Chung-Chie Road, Shalu, Taichung 433, Taiwan
| | | | | | | |
Collapse
|
110
|
Silencing of SlFTR-c, the catalytic subunit of ferredoxin:thioredoxin reductase, induces pathogenesis-related genes and pathogen resistance in tomato plants. Biochem Biophys Res Commun 2010; 399:750-4. [DOI: 10.1016/j.bbrc.2010.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 11/29/2022]
|
111
|
Kyrychenko AM, Kovalenko OG. Genetically programmed cell death: the base of homeostasis and the form of the phytoimmunity response. CYTOL GENET+ 2010. [DOI: 10.3103/s0095452710040110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
112
|
Programmed cell death involved in the schizolysigenous formation of the secretory cavity in Citrus sinensis L. (Osbeck). ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-3275-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
113
|
Naumann TA, Wicklow DT. Allozyme-specific modification of a maize seed chitinase by a protein secreted by the fungal pathogen Stenocarpella maydis. PHYTOPATHOLOGY 2010; 100:645-654. [PMID: 20528182 DOI: 10.1094/phyto-100-7-0645] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Stenocarpella maydis causes both dry-ear rot and stalk rot of maize. Maize inbred lines have varying levels of resistance to ear rot caused by S. maydis. The genetic basis of resistance appears to rely on multiple genetic factors, none of which are known. The commonly used stiff-stalk inbred line B73 has been shown to be strongly susceptible to ear rot caused by S. maydis. Here, we report that the ChitA protein alloform from B73, ChitA-F, encoded by a known allele of the chiA gene, is susceptible to modification by a protein (Stm-cmp) secreted by S. maydis. We also identify a new allele of chiA (from inbred line LH82) which encodes ChitA-S, an alloform of ChitA that is resistant to Stm-cmp modification. Chitinase zymogram analysis of seed from a commercial field showed the presence of both ChitA alloforms in healthy ears, and showed that ChitA-F but not ChitA-S was modified in ears rotted by S. maydis. The ChitA-F protein was purified from inbred line B73 and ChitA-S from LH82. ChitA-F was modified more efficiently than ChitA-S by S. maydis protein extracts in vitro. The chiA gene from LH82 was cloned and sequenced. It is a novel allele that encodes six polymorphisms relative to the known allele from B73. This is the first demonstration that the susceptibility to modification of a fungal targeted plant chitinase differs among inbred lines. These findings suggest that the LH82 chiA allele may be a specific genetic determinant that contributes to resistance to ear rot caused by S. maydis whereas the B73 allele may contribute to susceptibility.
Collapse
Affiliation(s)
- Todd A Naumann
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agriculture Utilization Research, Peoria, IL 61604, USA.
| | | |
Collapse
|
114
|
Li CY, Li WH, Li C, Gaudet DA, Laroche A, Cao LP, Lu ZX. Starch synthesis and programmed cell death during endosperm development in triticale (x Triticosecale Wittmack). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:602-615. [PMID: 20590991 DOI: 10.1111/j.1744-7909.2010.00961.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Triticale (x Triticosecale Wittmack) grains synthesize and accumulate starch as their main energy source. Starch accumulation rate and synthesis activities of ADP-glucose pyrophosphorylase, soluble starch synthases, granule-bound starch synthase and starch-branching enzyme showed similar pattern of unimodal curves during endosperm development. There was no significant difference in activity of the starch granule-bound protein isolated from total and separated starch granules at different developmental stages after anthesis in triticale. Evans Blue staining and analysis of DNA fragmentation indicated that cells of triticale endosperm undergo programmed cell death during its development. Dead cells within the endosperm were detected at 6 d post anthesis (DPA), and evidence of DNA fragmentation was first observed at 21 DPA. The period between initial detection of PCD to its rapid increase overlapped with the key stages of rapid starch accumulation during endosperm development. Cell death occurred stochastically throughout the whole endosperm, meanwhile, the activities of starch biosynthetic enzymes and the starch accumulation rate decreased in the late stages of grain filling. These results suggested that the timing and progression of PCD in triticale endosperm may interfere with starch synthesis and accumulation.
Collapse
Affiliation(s)
- Chun-Yan Li
- College of Agriculture, Shihezi University, Xinjiang 832003, China
| | | | | | | | | | | | | |
Collapse
|
115
|
Chen G, Zhang B, Zhao Z, Sui Z, Zhang H, Xue Y. 'A life or death decision' for pollen tubes in S-RNase-based self-incompatibility. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2027-2037. [PMID: 20042540 DOI: 10.1093/jxb/erp381] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mate choice is an essential process during sexual plant reproduction, in which self-incompatibility (SI) is widely adopted as an intraspecific reproductive barrier to inhibit self-fertilization by many flowering plants. Genetic studies show that a single polymorphic S-locus, encoding at least two components from both the pollen and pistil sides, controls the discrimination of self and non-self pollen. In the Solanaceae, Plantaginaceae, and Rosaceae, an S-RNase-based SI mechanism is involved in such a discrimination process. Recent studies have provided some important clues to how a decision is made to accept cross pollen or specifically to reject self pollen. In this review, the molecular features of the pistil and pollen S-specificity factors are briefly summarized and then our current knowledge of the molecular control of cross-pollen compatibility (CPC) and self-pollen incompatibility (SPI) responses, respectively, is presented. The possible biochemical mechanisms of the specificity determinant between the pistil and pollen S factors are discussed and a hypothetical S-RNase endosome sorting model is proposed to illustrate the distinct destinies of pollen tubes following compatible and incompatible pollination.
Collapse
Affiliation(s)
- Guang Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
116
|
Wang X, Liu W, Chen X, Tang C, Dong Y, Ma J, Huang X, Wei G, Han Q, Huang L, Kang Z. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC PLANT BIOLOGY 2010; 10:9. [PMID: 20067621 PMCID: PMC2817678 DOI: 10.1186/1471-2229-10-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 01/12/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. Due to special features of hexaploid wheat with large and complex genome and difficulties for transformation, and of Pst without sexual reproduction and hard to culture on media, the use of most genetic and molecular techniques in studying genes involved in the wheat-Pst interactions has been largely limited. The objective of this study was to identify transcriptionally regulated genes during an incompatible interaction between wheat and Pst using cDNA-AFLP technique RESULTS A total of 52,992 transcript derived fragments (TDFs) were generated with 64 primer pairs and 2,437 (4.6%) of them displayed altered expression patterns after inoculation with 1,787 up-regulated and 650 down-regulated. We obtained reliable sequences (>100 bp) for 255 selected TDFs, of which 113 (44.3%) had putative functions identified. A large group (17.6%) of these genes shared high homology with genes involved in metabolism and photosynthesis; 13.8% to genes with functions related to disease defense and signal transduction; and those in the remaining groups (12.9%) to genes involved in transcription, transport processes, protein metabolism, and cell structure, respectively. Through comparing TDFs identified in the present study for incompatible interaction and those identified in the previous study for compatible interactions, 161 TDFs were shared by both interactions, 94 were expressed specifically in the incompatible interaction, of which the specificity of 43 selected transcripts were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Based on the analyses of homology to genes known to play a role in defense, signal transduction and protein metabolism, 20 TDFs were chosen and their expression patterns revealed by the cDNA-AFLP technique were confirmed using the qRT-PCR analysis. CONCLUSION We uncovered a number of new candidate genes possibly involved in the interactions of wheat and Pst, of which 11 TDFs expressed specifically in the incompatible interaction. Resistance to stripe rust in wheat cv. Suwon11 is executed after penetration has occurred. Moreover, we also found that plant responses in compatible and incompatible interactions are qualitatively similar but quantitatively different soon after stripe rust fungus infection.
Collapse
Affiliation(s)
- Xiaojie Wang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Wei Liu
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xianming Chen
- USDA-ARS and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Chunlei Tang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yanling Dong
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jinbiao Ma
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xueling Huang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Guorong Wei
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qingmei Han
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lili Huang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhensheng Kang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| |
Collapse
|
117
|
Joshi R, Shukla A, Mani SC, Kumar P. Hypoxia induced non-apoptotic cellular changes during aerenchyma formation in rice (Oryza sativa L.) roots. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2010; 16:99-106. [PMID: 23572959 PMCID: PMC3550622 DOI: 10.1007/s12298-010-0012-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The stress of low oxygen concentrations in a waterlogged environment is minimized in some plants that produce aerenchyma, a tissue characterized by prominent intercellular spaces. It is produced by the predictable collapse of root cortex cells, indicating a programmed cell death (PCD) and facilitates gas diffusion between root and the aerial environment. The objective of this study was to characterize the cellular changes take place during aerenchyma formation in root of rice that accompany PCD. Scanning electron microscopy and transmission electron microscopy were used for cellular analysis of roots. Aerenchyma development was observed in both aerobic and flooded conditions. Structural changes in membranes and organelles were examined during development of root cortex cells to compare with previous examples of PCD. There was an initial collapse which started at a specific position in the mid cortex, indicating loss of turgor, and the cytoplasm became more electron dense. These cells were distinct in shape from those located towards the periphery. Mitochondria and endoplasmic reticulum appeared normal at this early stage though the tonoplast lost its integrity. Subsequently it underwent further degeneration while the plasmalemma retracted from the cell wall followed by death of neighboring cells followed a radial path. However, pycnosis of the nucleus, blebbing of plasma membrane and production of apoptotic bodies were not found which in turn indicated nonapoptotic PCD during aerenchyma formation in rice.
Collapse
Affiliation(s)
- Rohit Joshi
- />Department of Plant Physiology, G.B.P.U.A&T., Pantnagar, U.S. Nagar, Uttarakhand, 263 145 India
| | - Alok Shukla
- />Department of Plant Physiology, G.B.P.U.A&T., Pantnagar, U.S. Nagar, Uttarakhand, 263 145 India
| | - S. C. Mani
- />Department of Plant Breeding and Genetics, G.B.P.U.A&T., Pantnagar, U.S. Nagar, Uttarakhand, 263 145 India
| | - Pramod Kumar
- />Division of Plant Physiology, Indian Agriculture Research Institute, New Delhi, 110 012 India
| |
Collapse
|
118
|
Xi L, Moscou MJ, Meng Y, Xu W, Caldo RA, Shaver M, Nettleton D, Wise RP. Transcript-based cloning of RRP46, a regulator of rRNA processing and R gene-independent cell death in barley-powdery mildew interactions. THE PLANT CELL 2009; 21:3280-95. [PMID: 19861556 PMCID: PMC2782283 DOI: 10.1105/tpc.109.066167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Programmed cell death (PCD) plays a pivotal role in plant development and defense. To investigate the interaction between PCD and R gene-mediated defense, we used the 22K Barley1 GeneChip to compare and contrast time-course expression profiles of Blumeria graminis f. sp hordei (Bgh) challenged barley (Hordeum vulgare) cultivar C.I. 16151 (harboring the Mla6 powdery mildew resistance allele) and its fast neutron-derived Bgh-induced tip cell death1 mutant, bcd1. Mixed linear model analysis identified genes associated with the cell death phenotype as opposed to R gene-mediated resistance. One-hundred fifty genes were found at the threshold P value < 0.0001 and a false discovery rate <0.6%. Of these, 124 were constitutively overexpressed in the bcd1 mutant. Gene Ontology and rice (Oryza sativa) alignment-based annotation indicated that 68 of the 124 overexpressed genes encode ribosomal proteins. A deletion harboring six genes on chromosome 5H cosegregates with bcd1-specified cell death and is associated with misprocessing of rRNAs but segregates independent of R gene-mediated resistance. Barley stripe mosaic virus-induced gene silencing of one of the six deleted genes, RRP46 (rRNA-processing protein 46), phenocopied bcd1-mediated tip cell death. These findings suggest that RRP46, a critical component of the exosome core, mediates RNA processing and degradation involved in cell death initiation as a result of attempted penetration by Bgh during the barley-powdery mildew interaction but is independent of gene-for-gene resistance.
Collapse
Affiliation(s)
- Liu Xi
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
| | - Matthew J. Moscou
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
- Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa 50011-3260
| | - Yan Meng
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
| | - Weihui Xu
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
| | - Rico A. Caldo
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
| | - Miranda Shaver
- National Institutes of Health–National Science Foundation Bioinformatics and Computational Systems Biology Summer Institute, Ames, Iowa 50011-1020
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210
| | - Roger P. Wise
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
- Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa 50011-3260
- National Institutes of Health–National Science Foundation Bioinformatics and Computational Systems Biology Summer Institute, Ames, Iowa 50011-1020
- Corn Insects and Crop Genetics Research, U.S. Department of Agriculture–Agricultural Research Service, Iowa State University, Ames, Iowa 50011-1020
- Address correspondence to
| |
Collapse
|
119
|
Yoon J, Chung WI, Choi D. NbHB1, Nicotiana benthamiana homeobox 1, is a jasmonic acid-dependent positive regulator of pathogen-induced plant cell death. THE NEW PHYTOLOGIST 2009; 184:71-84. [PMID: 19645736 DOI: 10.1111/j.1469-8137.2009.02967.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Induction of cell death is an important component of plant defense against pathogens. There have been many reports on the role of phytohormones in pathogen-induced cell death, but jasmonic acid (JA) has not been implicated as a regulator of the response. Here, we report the function of NbHB1, Nicotiana benthamiana homeobox1, in pathogen-induced cell death in connection with JA signaling. Involvement of NbHB1 in cell death was analysed by gain- and loss-of-function studies using Agrobacterium-mediated transient overexpression and virus-induced gene silencing, respectively. Expression of NbHB1 following pathogen inoculations and various treatments was monitored by reverse transcription polymerase chain reaction. Transcript levels of NbHB1 were upregulated by infection with virulent and avirulent bacterial pathogens. Ectopic expression of NbHB1 accelerated cell death following treatment with darkness, methyl jasmonate, or pathogen inoculation. Conversely, when NbHB1 was silenced, pathogen-induced cell death was delayed. NbHB1-induced cell death was also delayed by silencing of NbCOI1, indicating a requirement for JA-mediated signaling. Overexpression of the domain-deleted proteins of NbHB1 revealed that the homeodomain, leucine zipper, and part of the variable N-terminal region were necessary for NbHB1 functionality. These results strongly suggest the role of NbHB1 in pathogen-induced plant cell death via the JA-mediated signaling pathway.
Collapse
Affiliation(s)
- Joonseon Yoon
- Department of Biological Sciences, KAIST, Daejeon, 305-701, Republic of Korea
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Won-Il Chung
- Department of Biological Sciences, KAIST, Daejeon, 305-701, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
120
|
Chen X, Wang Y, Li J, Jiang A, Cheng Y, Zhang W. Mitochondrial proteome during salt stress-induced programmed cell death in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:407-15. [PMID: 19217306 DOI: 10.1016/j.plaphy.2008.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 12/29/2008] [Accepted: 12/31/2008] [Indexed: 05/19/2023]
Abstract
It has been shown that mitochondria play a pivotal role in plant programmed cell death (PCD). Previous study established a salt stress-induced PCD model in rice (Oryza sativa L. cv. WYJ 8th) root tip cells, demonstrated by DNA laddering, cytochrome c release, and TUNEL positive reaction. In this study, the role of mitochondria during the early phase of PCD (2h-PCD) was analyzed in rice roots. After 2h-PCD induction, the integrity of mitochondria decreased slightly, consistent with a small release of cytochrome c. 2h-PCD partially inhibited electron transport, resulting in oxidative burst in mitochondria. However, ATP production maintained constant. Mitochondria proteome were analyzed by two-dimensional IEF/SDS-PAGE before and after 2h-PCD induction, and eight PCD-related proteins were identified. Among them, four proteins were up-regulated after PCD induction, which included glycoside hydrolase, mitochondrial heat shock protein 70, 20S proteasome subunit, and Cu/Zn-superoxide dismutase, and four were down-regulated, namely ATP synthase beta subunit, cytochrome c oxidase subunit 6b, S-adenosylmethionine synthetase 2, and transcription initiation factor eIF-3 epsilon. These results suggested that ATP synthase may not be the major producer of ATP in mitochondria during the early stage of PCD in rice. Glycoside hydrolase may be involved in ETC impairment and ROS burst, and mitochondrial HSP70 is a potential candidate for PCD regulation. The possible roles of other proteins on PCD initiation were also discussed.
Collapse
Affiliation(s)
- Xi Chen
- Department of Biochemistry and Molecular Biology, Nanjing Agricultural University, Weigang, China
| | | | | | | | | | | |
Collapse
|
121
|
Nagano M, Ihara-Ohori Y, Imai H, Inada N, Fujimoto M, Tsutsumi N, Uchimiya H, Kawai-Yamada M. Functional association of cell death suppressor, Arabidopsis Bax inhibitor-1, with fatty acid 2-hydroxylation through cytochrome b₅. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:122-134. [PMID: 19054355 DOI: 10.1111/j.1365-313x.2008.03765.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bax inhibitor-1 (BI-1) is a widely conserved cytoprotective protein localized in the endoplasmic reticulum (ER) membrane. We identified Arabidopsis cytochrome b(5) (AtCb5) as an interactor of Arabidopsis BI-1 (AtBI-1) by screening the Arabidopsis cDNA library with the split-ubiquitin yeast two-hybrid (suY2H) system. Cb5 is an electron transfer protein localized mainly in the ER membrane. In addition, a bimolecular fluorescence complementation (BiFC) assay and fluorescence resonance energy transfer (FRET) analysis confirmed that AtBI-1 interacted with AtCb5 in plants. On the other hand, we found that the AtBI-1-mediated suppression of cell death in yeast requires Saccharomyces cerevisiae fatty acid hydroxylase 1 (ScFAH1), which had a Cb5-like domain at the N terminus and interacted with AtBI-1. ScFAH1 is a sphingolipid fatty acid 2-hydroxylase localized in the ER membrane. In contrast, AtFAH1 and AtFAH2, which are functional ScFAH1 homologues in Arabidopsis, had no Cb5-like domain, and instead interacted with AtCb5 in plants. These results suggest that AtBI-1 interacts with AtFAHs via AtCb5 in plant cells. Furthermore, the overexpression of AtBI-1 increased the level of 2-hydroxy fatty acids in Arabidopsis, indicating that AtBI-1 is involved in fatty acid 2-hydroxylation.
Collapse
Affiliation(s)
- Minoru Nagano
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 2009; 11:861-905. [PMID: 19239350 DOI: 10.1089/ars.2008.2177] [Citation(s) in RCA: 764] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have multifaceted roles in the orchestration of plant gene expression and gene-product regulation. Cellular redox homeostasis is considered to be an "integrator" of information from metabolism and the environment controlling plant growth and acclimation responses, as well as cell suicide events. The different ROS forms influence gene expression in specific and sometimes antagonistic ways. Low molecular antioxidants (e.g., ascorbate, glutathione) serve not only to limit the lifetime of the ROS signals but also to participate in an extensive range of other redox signaling and regulatory functions. In contrast to the low molecular weight antioxidants, the "redox" states of components involved in photosynthesis such as plastoquinone show rapid and often transient shifts in response to changes in light and other environmental signals. Whereas both types of "redox regulation" are intimately linked through the thioredoxin, peroxiredoxin, and pyridine nucleotide pools, they also act independently of each other to achieve overall energy balance between energy-producing and energy-utilizing pathways. This review focuses on current knowledge of the pathways of redox regulation, with discussion of the somewhat juxtaposed hypotheses of "oxidative damage" versus "oxidative signaling," within the wider context of physiological function, from plant cell biology to potential applications.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Agriculture, Food and Rural Development, Agriculture Building, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
123
|
Jiménez C, Capasso JM, Edelstein CL, Rivard CJ, Lucia S, Breusegem S, Berl T, Segovia M. Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:815-28. [PMID: 19251986 PMCID: PMC2652065 DOI: 10.1093/jxb/ern330] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 11/20/2008] [Accepted: 11/24/2008] [Indexed: 05/23/2023]
Abstract
Programmed cell death is necessary for homeostasis in multicellular organisms and it is also widely recognized to occur in unicellular organisms. However, the mechanisms through which it occurs in unicells, and the enzymes involved within the final response is still the subject of heated debate. It is shown here that exposure of the unicellular microalga Dunaliella viridis to several environmental stresses, induced different cell death morphotypes, depending on the stimulus received. Senescent cells demonstrated classical and unambiguous apoptotic-like characteristics such as chromatin condensation, DNA fragmentation, intact organelles, and blebbing of the cell membrane. Acute heat shock caused general swelling and altered plasma membrane, but the presence of chromatin clusters and DNA strand breaks suggested a necrotic-like event. UV irradiated cells presented changes typical for necrosis, together with apoptotic characteristics resembling an intermediate cell-death phenotype termed aponecrosis-like. Cells subjected to hyperosmotic shock revealed chromatin spotting without DNA fragmentation, and extensive cytoplasmic swelling and vacuolization, comparable to a paraptotic-like cell death phenotype. Nitrogen-starved cells showed pyknosis, blebbing, and cytoplasmic consumption, indicating a similarity to autophagic/vacuolar-like cell death. The caspase-like activity DEVDase was measured by using the fluorescent substrate Ac-DEVD-AMC and antibodies against the human caspase-3 active enzyme cross-reacted with bands, the intensity of which paralleled the activity. All the environmental stresses tested produced a substantial increase in both DEVDase activity and protein levels. The irreversible caspase-3 inhibitor Z-DEVD-FMK completely inhibited the enzymatic activity whereas serine and aspartyl proteases inhibitors did not. These results show that cell death in D. viridis does not conform to a single pattern and that environmental stimuli may produce different types of cell death depending on the type and intensity of the stimulus, all of which help to understand the cell death-dependent and cell death-independent functions of caspase-like proteins. Hence, these data support the theory that alternative, non-apoptotic programmed cell death (PCDs), exist either in parallel or in an independent manner with apoptosis and were already present in single-celled organisms that evolved some 1.2-1.6 billion years ago.
Collapse
Affiliation(s)
- Carlos Jiménez
- Department of Ecology, Faculty of Sciences, University of Málaga, Bvd. Louis Pasteur s/n, E-29071 Málaga, Spain
| | - Juan M. Capasso
- Department of Renal Diseases and Hypertension, School of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Av. Denver, CO 80262, USA
| | - Charles L. Edelstein
- Department of Renal Diseases and Hypertension, School of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Av. Denver, CO 80262, USA
| | - Christopher J. Rivard
- Department of Renal Diseases and Hypertension, School of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Av. Denver, CO 80262, USA
| | - Scott Lucia
- Department of Pathology, School of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Av. Denver, CO 80262, USA
| | - Sophia Breusegem
- Department of Renal Diseases and Hypertension, School of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Av. Denver, CO 80262, USA
| | - Tomás Berl
- Department of Renal Diseases and Hypertension, School of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Av. Denver, CO 80262, USA
| | - María Segovia
- Department of Ecology, Faculty of Sciences, University of Málaga, Bvd. Louis Pasteur s/n, E-29071 Málaga, Spain
| |
Collapse
|
124
|
Chibucos MC, Collmer CW, Torto-Alalibo T, Gwinn-Giglio M, Lindeberg M, Li D, Tyler BM. Programmed cell death in host-symbiont associations, viewed through the Gene Ontology. BMC Microbiol 2009; 9 Suppl 1:S5. [PMID: 19278553 PMCID: PMC2654665 DOI: 10.1186/1471-2180-9-s1-s5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Manipulation of programmed cell death (PCD) is central to many host microbe interactions. Both plant and animal cells use PCD as a powerful weapon against biotrophic pathogens, including viruses, which draw their nutrition from living tissue. Thus, diverse biotrophic pathogens have evolved many mechanisms to suppress programmed cell death, and mutualistic and commensal microbes may employ similar mechanisms. Necrotrophic pathogens derive their nutrition from dead tissue, and many produce toxins specifically to trigger programmed cell death in their hosts. Hemibiotrophic pathogens manipulate PCD in a most exquisite way, suppressing PCD during the biotrophic phase and stimulating it during the necrotrophic phase. This mini-review will summarize the mechanisms that have evolved in diverse microbes and hosts for controlling PCD and the Gene Ontology terms developed by the Plant-Associated Microbe Gene Ontology (PAMGO) Consortium for describing those mechanisms.
Collapse
Affiliation(s)
- Marcus C Chibucos
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | | | | | | | | | |
Collapse
|
125
|
Lindeberg M, Biehl BS, Glasner JD, Perna NT, Collmer A, Collmer CW. Gene Ontology annotation highlights shared and divergent pathogenic strategies of type III effector proteins deployed by the plant pathogen Pseudomonas syringae pv tomato DC3000 and animal pathogenic Escherichia coli strains. BMC Microbiol 2009; 9 Suppl 1:S4. [PMID: 19278552 PMCID: PMC2654664 DOI: 10.1186/1471-2180-9-s1-s4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genome-informed identification and characterization of Type III effector repertoires in various bacterial strains and species is revealing important insights into the critical roles that these proteins play in the pathogenic strategies of diverse bacteria. However, non-systematic discipline-specific approaches to their annotation impede analysis of the accumulating wealth of data and inhibit easy communication of findings among researchers working on different experimental systems. The development of Gene Ontology (GO) terms to capture biological processes occurring during the interaction between organisms creates a common language that facilitates cross-genome analyses. The application of these terms to annotate type III effector genes in different bacterial species – the plant pathogen Pseudomonas syringae pv tomato DC3000 and animal pathogenic strains of Escherichia coli – illustrates how GO can effectively describe fundamental similarities and differences among different gene products deployed as part of diverse pathogenic strategies. In depth descriptions of the GO annotations for P. syringae pv tomato DC3000 effector AvrPtoB and the E. coli effector Tir are described, with special emphasis given to GO capability for capturing information about interacting proteins and taxa. GO-highlighted similarities in biological process and molecular function for effectors from additional pathosystems are also discussed.
Collapse
Affiliation(s)
- Magdalen Lindeberg
- Department of Plant Pathology, Cornell University, Ithaca, NY 14850, USA.
| | | | | | | | | | | |
Collapse
|
126
|
Guo B, Liang Y, Zhu Y. Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? JOURNAL OF PLANT PHYSIOLOGY 2009; 166:20-31. [PMID: 18313167 DOI: 10.1016/j.jplph.2008.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 12/30/2007] [Accepted: 01/03/2008] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) may accelerate the cell death of cadmium-stressed roots to avoid cadmium (Cd) uptake by plants or may play positive roles in protecting the stressed roots from Cd-induced damage. To test these hypotheses, we performed a series of split-root hydroponic experiments with one-half of rice (Oryza sativa L. cv. Jiahua 1) roots exposed to 50 microM Cd and the other half not exposed. The objectives were to elucidate the effects of SA pretreatment on the time-dependent changes of H(2)O(2) levels in roots, antioxidant defense system in different organs, root cell death and the dynamic distribution of Cd in the plants. In the split-root system, a higher Cd uptake rate was observed in the Cd-stressed portions of roots compared with the treatment with the whole roots exposed to Cd. Furthermore, an appreciable amount of Cd was translocated from the Cd-exposed roots to the unexposed roots and trace amounts of Cd were released into the external solution. The split-root method also caused the two root portions to respond differently to Cd stress. The activities of major antioxidant enzymes (superoxide dismutase, SOD; peroxidase, POD; and catalase, CAT) were significantly suppressed in the Cd-treated roots, hence leading to H(2)O(2) burst, lipid peroxidation, cell death and growth inhibition. By contrast, in the non-Cd-treated roots, the activities of enzymes (SOD, CAT, and POD) and root growth were persistently stimulated during the experimental period. The H(2)O(2) accumulation and lipid peroxidation were also induced in the non-Cd-treated roots, but they were significantly lower than those of the Cd-treated roots. The concentrations of glutathione (GSH) and non-protein thiols (NPT) in the Cd-treated roots were significantly higher than those of the untreated roots. SA pretreatment elevated enzymatic and non-enzymatic antioxidants, and the concentrations of GSH and NPT in roots and shoots, hence leading to alleviation of the oxidative damage as indicated by the lowered H(2)O(2) and MDA levels. Furthermore, SA pretreatment mitigated the Cd-induced growth inhibition in both roots and shoots and increased transpiration compared with non-SA-pretreatment under Cd exposure. It is concluded that Cd can be partly transferred from the Cd-exposed roots to Cd-unexposed roots and that cell death can be accelerated in the Cd-stressed roots in response to Cd stress. The SA-enhanced Cd tolerance in rice can be attributed to SA-elevated enzymatic and non-enzymatic antioxidants and NPT, and to SA-regulated Cd uptake, transport and distribution in plant organs.
Collapse
Affiliation(s)
- Bin Guo
- Department of Plant Nutrition, College of Natural Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, PR China
| | | | | |
Collapse
|
127
|
Shoyama Y, Sugawa C, Tanaka H, Morimoto S. Cannabinoids act as necrosis-inducing factors in Cannabis sativa. PLANT SIGNALING & BEHAVIOR 2008; 3:1111-2. [PMID: 19704450 PMCID: PMC2634471 DOI: 10.4161/psb.3.12.7011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Accepted: 09/16/2008] [Indexed: 05/22/2023]
Abstract
Cannabis sativa is well known to produce unique secondary metabolites called cannabinoids. We recently discovered that Cannabis leaves induce cell death by secreting tetrahydrocannabinolic acid (THCA) into leaf tissues. Examinations using isolated Cannabis mitochondria demonstrated that THCA causes mitochondrial permeability transition (MPT) though opening of MPT pores, resulting in mitochondrial dysfunction (the important feature of necrosis). Although Ca(2+) is known to cause opening of animal MPT pores, THCA directly opened Cannabis MPT pores in the absence of Ca(2+). Based on these results, we conclude that THCA has the ability to induce necrosis though MPT in Cannabis leaves, independently of Ca(2+). We confirmed that other cannabinoids (cannabidiolic acid and cannabigerolic acid) also have MPT-inducing activity similar to that of THCA. Moreover, mitochondria of plants which do not produce cannabinoids were shown to induce MPT by THCA treatment, thus suggesting that many higher plants may have systems to cause THCA-dependent necrosis.
Collapse
Affiliation(s)
- Yoshinari Shoyama
- Graduate School of Pharmaceutical Sciences; Kyushu University; Fukuoka, Fukuoka Japan
| | | | | | | |
Collapse
|
128
|
Fellenberg C, Milkowski C, Hause B, Lange PR, Böttcher C, Schmidt J, Vogt T. Tapetum-specific location of a cation-dependent O-methyltransferase in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:132-145. [PMID: 18557837 DOI: 10.1111/j.1365-313x.2008.03576.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cation- and S-adenosyl-L-methionine (AdoMet)-dependent plant natural product methyltransferases are referred to as CCoAOMTs because of their preferred substrate, caffeoyl coenzyme A (CCoA). The enzymes are encoded by a small family of genes, some of which with a proven role in lignin monomer biosynthesis. In Arabidopsis thaliana individual members of this gene family are temporally and spatially regulated. The gene At1g67990 is specifically expressed in flower buds, and is not detected in any other organ, such as roots, leaves or stems. Several lines of evidence indicate that the At1g67990 transcript is located in the flower buds, whereas the corresponding CCoAOMT-like protein, termed AtTSM1, is located exclusively in the tapetum of developing stamen. Flowers of At1g67990 RNAi-suppressed plants are characterized by a distinct flower chemotype with severely reduced levels of the N ',N ''-bis-(5-hydroxyferuloyl)-N '''-sinapoylspermidine compensated for by N(1),N(5),N(10)-tris-(5-hydroxyferuloyl)spermidine derivative, which is characterized by the lack of a single methyl group in the sinapoyl moiety. This severe change is consistent with the observed product profile of AtTSM1 for aromatic phenylpropanoids. Heterologous expression of the recombinant protein shows the highest activity towards a series of caffeic acid esters, but 5-hydroxyferuloyl spermidine conjugates are also accepted substrates. The in vitro substrate specificity and the in vivo RNAi-mediated suppression data of the corresponding gene suggest a role of this cation-dependent CCoAOMT-like protein in the stamen/pollen development of A. thaliana.
Collapse
Affiliation(s)
- Christin Fellenberg
- Department of Secondary Metabolism, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
129
|
Struis RPWJ, Ludwig C, Barrelet T, Krähenbühl U, Rennenberg H. Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 403:196-206. [PMID: 18617221 DOI: 10.1016/j.scitotenv.2008.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/13/2008] [Accepted: 05/21/2008] [Indexed: 05/26/2023]
Abstract
Profiles of the major sulfur functional groups in mature Norway spruce wood tissue have been established for the first time. The big challenge was the development of a method suitable for sulfur speciation in samples with very low sulfur content (<100 ppm). This became possible by synchrotron X-ray absorption spectroscopy at the sulfur L-edge in total electron yield (TEY) detection mode with thin gold-coated wood slices. Functional groups were identified using sulfur compound spectra as fingerprints. Latewood of single year rings revealed metabolic plausible sulfur forms, particularly inorganic sulfide, organic disulfide, methylthiol, and highly oxidized sulfur. Form-specific profiles with Norway spruces from three different Swiss forest sites revealed high, but hitherto little-noticed, sulfur intensities attributable to natural heartwood formation and a common, but physiologically unexpected maximum around year ring 1986 with trees from the industrialized Swiss Plateau. It is hypothesized whether it may have resulted from the huge reduction in sulfur emissions after 1980 due to Swiss policy. Comparison with total S content profiles from optical emission spectroscopy underlined the more accurate and temporally better resolved TEY data with single wood year rings and it opened novel insights into the wood cell chemistry.
Collapse
Affiliation(s)
- Rudolf P W J Struis
- Paul Scherrer Institute, General Energy Research Department, LEM, CH-5232 Villigen PSI, Switzerland.
| | | | | | | | | |
Collapse
|
130
|
Lovato FA, Inoue-Nagata AK, Nagata T, de Avila AC, Pereira LAR, Resende RO. The N protein of Tomato spotted wilt virus (TSWV) is associated with the induction of programmed cell death (PCD) in Capsicum chinense plants, a hypersensitive host to TSWV infection. Virus Res 2008; 137:245-52. [PMID: 18722487 DOI: 10.1016/j.virusres.2008.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 07/13/2008] [Accepted: 07/20/2008] [Indexed: 11/30/2022]
Abstract
In sweet pepper, the Tsw gene, originally described in Capsicum chinense, has been widely used as an efficient gene for inducing a hypersensitivity response (HR) derived Tomato spotted wilt virus (TSWV) resistance. Since previously reported studies suggested that the TSWV-S RNA mutation(s) are associated with the breakdown of Tsw mediated TSWV resistance in peppers, the TSWV genes N (structural nucleocapsid protein) and NS(S) (non-structural silencing suppressor protein) were cloned into a Potato virus X (PVX)-based expression vector, and inoculated into the TSWV-resistant C. chinense genotype, PI 159236, to identify the Tsw-HR viral elicitor. Typical HR-like chlorotic and necrotic lesions followed by leaf abscission were observed only in C. chinense plants inoculated with the PVX-N construct. Cytopathological analyses of these plants identified fragmented genomic DNA, indicative of programmed cell death (PCD), in mesophyll cell nuclei surrounding PVX-N-induced necrotic lesions. The other constructs induced only PVX-like symptoms without HR-like lesions and there were no microscopic signs of PCD. The mechanism of TSWV N-gene HR induction is apparently species specific as the N gene of a related tospovirus, Tomato chlorotic spot virus, was not a HR elicitor and did not cause PCD in infected cells.
Collapse
|
131
|
Dong S, Suomeng D, Zhang Z, Zhengguang Z, Zheng X, Xiaobo Z, Wang Y, Yuanchao W. Mammalian pro-apoptotic bax gene enhances tobacco resistance to pathogens. PLANT CELL REPORTS 2008; 27:1559-69. [PMID: 18509654 DOI: 10.1007/s00299-008-0554-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 04/16/2008] [Accepted: 05/01/2008] [Indexed: 05/26/2023]
Abstract
Emerging evidence suggests that plants and animals may share certain biochemical commonalities in apoptosis, or programmed cell death (PCD) pathways, though plants lack key animal apoptosis related genes. In plants, PCD has many important functions including a role in immunity and resistance to pathogen infection. In this study, a rice phenylalanine ammonia-lyase promoter is used to regulate the expression of the mouse pro-apoptotic bax gene in transgenic tobacco plants. Ectopic expression of the bax negatively affects the growth of transgenic plants. Nonetheless, results show that the bax transgene is induced upon infection by plant pathogens and accumulation of Bax is observed by Western blot analysis. By estimating and measuring the extent of cell death, release of active oxygen species, and accumulation defense-associated gene transcripts, it is shown that bax transgenic plants mount a more robust cell death response compared to control plants. The bax transgenic tobacco plants are also more resistant to infection by Phytophthora parasitica and Ralstonia solanacearum, but have no obvious resistance to tobacco mosaic virus. These results substantiate past studies and illustrate the powerful effects mammalian bax genes may have on plant development and disease resistance.
Collapse
MESH Headings
- Animals
- Apoptosis
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Vectors
- Immunity, Innate
- Mice
- Oryza/genetics
- Phytophthora/pathogenicity
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/microbiology
- Plants, Genetically Modified/virology
- Plasmids
- Promoter Regions, Genetic
- RNA, Plant/genetics
- Ralstonia solanacearum/pathogenicity
- Reactive Oxygen Species
- Nicotiana/genetics
- Nicotiana/immunology
- Nicotiana/microbiology
- Nicotiana/virology
- Tobacco Mosaic Virus/pathogenicity
- Transformation, Genetic
- Transgenes
- bcl-2-Associated X Protein/genetics
Collapse
Affiliation(s)
- Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Nagy ED, Bennetzen JL. Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster. Genome Res 2008; 18:1918-23. [PMID: 18719093 DOI: 10.1101/gr.078766.108] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Pc locus of sorghum (Sorghum bicolor) determines dominant sensitivity to a host-selective toxin produced by the fungal pathogen Periconia circinata. The Pc region was cloned by a map-based approach and found to contain three tandemly repeated genes with the structures of nucleotide binding site-leucine-rich repeat (NBS-LRR) disease resistance genes. Thirteen independent Pc-to-pc mutations were analyzed, and each was found to remove all or part of the central gene of the threesome. Hence, this central gene is Pc. Most Pc-to-pc mutations were associated with unequal recombination. Eight recombination events were localized to different sites in a 560-bp region within the approximately 3.7-kb NBS-LRR genes. Because any unequal recombination located within the flanking NBS-LRR genes would have removed Pc, the clustering of cross-over events within a 560-bp segment indicates that a site-directed recombination process exists that specifically targets unequal events to generate LRR diversity in NBS-LRR loci.
Collapse
Affiliation(s)
- Ervin D Nagy
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
133
|
Abstract
Amyloidogenesis is the aggregation of soluble proteins into structurally conserved fibers. Amyloid fibers are distinguished by their resistance to proteinase K, tinctorial properties and beta-sheet-rich secondary structure. Amyloid formation is a hallmark of many human diseases including Alzheimer's, Huntington's and the prion diseases. Therefore, understanding amyloidogenesis will provide insights into the development of therapeutics that target these debilitating diseases. A new class of ;functional' amyloids promises a unique glimpse at how nature has harnessed the amyloid fiber to accomplish important physiological tasks. Functional amyloids are produced by organisms spanning all aspects of cellular life. Herein we review amyloidogenesis, with special attention focused on the similarities and differences between the best characterized disease-associated amyloidogenic protein amyloid-beta and the formation of several functional amyloids. The implications of studying functional amyloidogenesis and the strategies organisms employ to limit exposure to toxic intermediates will also be discussed.
Collapse
Affiliation(s)
- Neal D Hammer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | | | | | |
Collapse
|
134
|
Andème Ondzighi C, Christopher DA, Cho EJ, Chang SC, Staehelin LA. Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds. THE PLANT CELL 2008; 20:2205-20. [PMID: 18676877 PMCID: PMC2553623 DOI: 10.1105/tpc.108.058339] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Protein disulfide isomerase (PDI) oxidizes, reduces, and isomerizes disulfide bonds, modulates redox responses, and chaperones proteins. The Arabidopsis thaliana genome contains 12 PDI genes, but little is known about their subcellular locations and functions. We demonstrate that PDI5 is expressed in endothelial cells about to undergo programmed cell death (PCD) in developing seeds. PDI5 interacts with three different Cys proteases in yeast two-hybrid screens. One of these traffics together with PDI5 from the endoplasmic reticulum through the Golgi to vacuoles, and its recombinant form is functionally inhibited by recombinant PDI5 in vitro. Peak PDI5 expression in endothelial cells precedes PCD, whereas decreasing PDI5 levels coincide with the onset of PCD-related cellular changes, such as enlargement and subsequent collapse of protein storage vacuoles, lytic vacuole shrinkage and degradation, and nuclear condensation and fragmentation. Loss of PDI5 function leads to premature initiation of PCD during embryogenesis and to fewer, often nonviable, seeds. We propose that PDI5 is required for proper seed development and regulates the timing of PCD by chaperoning and inhibiting Cys proteases during their trafficking to vacuoles before PCD of the endothelial cells. During this transitional phase of endothelial cell development, the protein storage vacuoles become the de facto lytic vacuoles that mediate PCD.
Collapse
Affiliation(s)
- Christine Andème Ondzighi
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| | | | | | | | | |
Collapse
|
135
|
Jiang AL, Cheng Y, Li J, Zhang W. A zinc-dependent nuclear endonuclease is responsible for DNA laddering during salt-induced programmed cell death in root tip cells of rice. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1134-41. [PMID: 18295371 DOI: 10.1016/j.jplph.2007.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 12/21/2007] [Accepted: 12/21/2007] [Indexed: 05/10/2023]
Abstract
DNA laddering is one of the biochemical processes characteristic of programmed cell death (PCD) both in animals and plants. However, the mechanism of DNA laddering varies in different species, even in different tissues of one organism. In the present study, we used root tip cells of rice, which have been induced by NaCl stress to undergo PCD, to analyze the endonuclease activities of cytoplasmic and nuclear extracts. Two endonucleases, a cytoplasmic of 20kDa (OsCyt20) and a nuclear of 37kDa (OsNuc37), were identified as PCD related. Our results indicated that OsCyt20 is a Ca(2+)/Mg(2+)-dependent nuclease, which is most active at neutral pH, and that OsNuc37 is Zn(2+)-dependent, with a pH optimum of 4.5-6. Both nucleases were induced at the early stage of PCD (2h salt treatment) and exhibited the highest activity approximately 4h after exposure to NaCl, paralleling with the occurrence of DNA laddering. In vitro assays of endonuclease activities further revealed that OsNuc37, a glycoprotein localized in the nucleus, is the executor for DNA laddering. The different effects of both endonucleases on DNA degradation during salt-induced PCD are discussed.
Collapse
Affiliation(s)
- Ai-Liang Jiang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, PR China
| | | | | | | |
Collapse
|
136
|
Costa MDL, Reis PAB, Valente MAS, Irsigler AST, Carvalho CM, Loureiro ME, Aragão FJL, Boston RS, Fietto LG, Fontes EPB. A new branch of endoplasmic reticulum stress signaling and the osmotic signal converge on plant-specific asparagine-rich proteins to promote cell death. J Biol Chem 2008; 283:20209-19. [PMID: 18490446 DOI: 10.1074/jbc.m802654200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NRPs (N-rich proteins) were identified as targets of a novel adaptive pathway that integrates endoplasmic reticulum (ER) and osmotic stress signals based on coordinate regulation and synergistic up-regulation by tunicamycin and polyethylene glycol treatments. This integrated pathway diverges from the molecular chaperone-inducing branch of the unfolded protein response (UPR) in several ways. While UPR-specific targets were inversely regulated by ER and osmotic stresses, NRPs required both signals for full activation. Furthermore, BiP (binding protein) overexpression in soybean prevented activation of the UPR by ER stress inducers, but did not affect activation of NRPs. We also found that this integrated pathway transduces a PCD signal generated by ER and osmotic stresses that result in the appearance of markers associated with leaf senescence. Overexpression of NRPs in soybean protoplasts induced caspase-3-like activity and promoted extensive DNA fragmentation. Furthermore, transient expression of NRPs in planta caused leaf yellowing, chlorophyll loss, malondialdehyde production, ethylene evolution, and induction of the senescence marker gene CP1. This phenotype was alleviated by the cytokinin zeatin, a potent senescence inhibitor. Collectively, these results indicate that ER stress induces leaf senescence through activation of plant-specific NRPs via a novel branch of the ER stress response.
Collapse
Affiliation(s)
- Maximiller D L Costa
- Departamento de Bioquímica e Biologia Molecular, BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Porter H, Gamette MJ, Cortes-Hernandez DG, Jensen JB. Asexual blood stages of Plasmodium falciparum exhibit signs of secondary necrosis, but not classical apoptosis after exposure to febrile temperature (40 C). J Parasitol 2008; 94:473-80. [PMID: 18564748 DOI: 10.1645/ge-1343.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
It has been shown by others that after cultures of Plasmodium falciparum were exposed to a febrile temperature of 40 C, parasitemia was reduced in the subsequent generation, suggesting a temperature-induced inhibition of trophozoites and schizonts. In the current study, influences unique to cultivation were ruled out, demonstrating that 40 C impacted the parasites directly. Metabolic profiling of DNA synthesis, protein synthesis, and glucose utilization clearly indicated that febrile temperatures had a direct effect on parasite development, beginning 20-24 hr after erythrocyte invasion. The mechanism of parasite death was investigated for evidence of temperature-induced apoptosis. Lack of typical physiological hallmarks, namely, caspase activation, characteristic mitochondrial membrane potential changes, and DNA degradation as indicated by DNA laddering, eliminated 'classical' apoptosis as a mechanism of parasite death. Parasites dying under the influence of heat, staurosporine, and chloroquine initially appeared pyknotic by light and electron microscopy (as in apoptosis), but eventual swelling and lysis of the food vacuole membrane led to secondary necrosis. Chloroquine did induce DNA laddering, but it was later attributed to occult white blood cell contaminants. While not apoptosis, the results do not rule out other forms of temperature-induced programmed cell death.
Collapse
Affiliation(s)
- Heidi Porter
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602, USA.
| | | | | | | |
Collapse
|
138
|
Williams B, Dickman M. Plant programmed cell death: can't live with it; can't live without it. MOLECULAR PLANT PATHOLOGY 2008; 9:531-44. [PMID: 18705866 PMCID: PMC6640338 DOI: 10.1111/j.1364-3703.2008.00473.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The decision of whether a cell should live or die is fundamental for the wellbeing of all organisms. Despite intense investigation into cell growth and proliferation, only recently has the essential and equally important idea that cells control/programme their own demise for proper maintenance of cellular homeostasis gained recognition. Furthermore, even though research into programmed cell death (PCD) has been an extremely active area of research there are significant gaps in our understanding of the process in plants. In this review, we discuss PCD during plant development and pathogenesis, and compare/contrast this with mammalian apoptosis.
Collapse
Affiliation(s)
- Brett Williams
- Institute for Plant Genomics and Biotechnology, Texas A&M University, Department of Plant Pathology and Microbiology, College Station, TX 77843, USA
| | | |
Collapse
|
139
|
Truernit E, Haseloff J. A simple way to identify non-viable cells within living plant tissue using confocal microscopy. PLANT METHODS 2008; 4:15. [PMID: 18573203 PMCID: PMC2442066 DOI: 10.1186/1746-4811-4-15] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 06/23/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant cell death is a normal process during plant development. Mutant plants may exhibit misregulation of this process, which can lead to severe growth defects. Simple ways of visualising cell death in living plant tissues can aid the study of plant development and physiology. RESULTS Spectral variants of the fluorescent SYTOX dyes were tested for their usefulness for the detection of non-viable cells within plant embryos and roots using confocal laser-scanning microscopy. The dyes were selective for non-viable cells and showed very little background staining in living cells. Simultaneous detection of SYTOX dye and fluorescent protein (e.g. GFP) fluorescence was possible. CONCLUSION The fluorescent SYTOX dyes are useful for an easy and quick first assay of plant cell viability in living plant samples using fluorescence and confocal laser-scanning microscopy.
Collapse
Affiliation(s)
- Elisabeth Truernit
- University of Cambridge, Department of Plant Sciences, Downing Site, Cambridge, CB2 3EA, UK
- INRA, Centre de Versailles, Institut Jean-Pierre Bourgin, Laboratoire de Biologie Cellulaire, Route de St-Cyr, 78026 Versailles cedex, France
| | - Jim Haseloff
- University of Cambridge, Department of Plant Sciences, Downing Site, Cambridge, CB2 3EA, UK
| |
Collapse
|
140
|
Kim ST, Kim SG, Kang YH, Wang Y, Kim JY, Yi N, Kim JK, Rakwal R, Koh HJ, Kang KY. Proteomics Analysis of Rice Lesion Mimic Mutant (spl1) Reveals Tightly Localized Probenazole-Induced Protein (PBZ1) in Cells Undergoing Programmed Cell Death. J Proteome Res 2008; 7:1750-60. [DOI: 10.1021/pr700878t] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sun Tae Kim
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Sang Gon Kim
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Young Hyun Kang
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Yiming Wang
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Jae-Yean Kim
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Nari Yi
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Ju-Kon Kim
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Randeep Rakwal
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Hee-Jong Koh
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Kyu Young Kang
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| |
Collapse
|
141
|
The ATG12-conjugating enzyme ATG10 Is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 2008; 178:1339-53. [PMID: 18245858 DOI: 10.1534/genetics.107.086199] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Autophagy is an important intracellular recycling system in eukaryotes that utilizes small vesicles to traffic cytosolic proteins and organelles to the vacuole for breakdown. Vesicle formation requires the conjugation of the two ubiquitin-fold polypeptides ATG8 and ATG12 to phosphatidylethanolamine and the ATG5 protein, respectively. Using Arabidopsis thaliana mutants affecting the ATG5 target or the ATG7 E1 required to initiate ligation of both ATG8 and ATG12, we previously showed that the ATG8/12 conjugation pathways together are important when plants encounter nutrient stress and during senescence. To characterize the ATG12 conjugation pathway specifically, we characterized a null mutant eliminating the E2-conjugating enzyme ATG10 that, similar to plants missing ATG5 or ATG7, cannot form the ATG12-ATG5 conjugate. atg10-1 plants are hypersensitive to nitrogen and carbon starvation and initiate senescence and programmed cell death (PCD) more quickly than wild type, as indicated by elevated levels of senescence- and PCD-related mRNAs and proteins during carbon starvation. As detected with a GFP-ATG8a reporter, atg10-1 and atg5-1 mutant plants fail to accumulate autophagic bodies inside the vacuole. These results indicate that ATG10 is essential for ATG12 conjugation and that the ATG12-ATG5 conjugate is necessary to form autophagic vesicles and for the timely progression of senescence and PCD in plants.
Collapse
|
142
|
Castillo-Olamendi L, Bravo-Garcìa A, Morán J, Rocha-Sosa M, Porta H. AtMCP1b, a chloroplast-localised metacaspase, is induced in vascular tissue after wounding or pathogen infection. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 34:1061-1071. [PMID: 32689436 DOI: 10.1071/fp07153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 10/17/2007] [Indexed: 05/08/2023]
Abstract
cDNA corresponding to the Arabidopsis type I metacaspase AtMCP1b was isolated from plants infected with Pseudomonas syringae. A positive correlation between AtMCP1b expression and cell death was observed in the presence of staurosporine, a protein kinase inhibitor that induces programmed cell death. The tissue localisation of an AtMCP1b promoter-GUS fusion was observed in the vascular tissue of transgenic plants. GUS activity increased in response to an incompatible DC3000 (avrRpm1) or a compatible DC3000 P. syringae infection, or to wounding. Confocal and immunohistochemical analysis of Arabidopsis thaliana (L.) leaves showed that an AtMCP1b-GFP fusion protein was localised in the chloroplasts. Our data support a positive correlation between AtMCP1b gene expression and cell death in response to wounding or pathogenic interactions. Moreover, the localisation of AtMCP1b gene expression within vascular tissue and cells of abscission regions strongly supports a role for AtMCP1b in programmed cell dismantling events in response to environmental and developmental triggers. The AtMCP1b-GFP subcellular localisation infers a role for the plastid organelles in PCD and, thus, in responses to pathogen attack and development.
Collapse
Affiliation(s)
- Luis Castillo-Olamendi
- Departmento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., México
| | - Armando Bravo-Garcìa
- Departmento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., México
| | - Julio Morán
- Departmento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Cuernavaca, Mor., México
| | - Mario Rocha-Sosa
- Departmento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., México
| | - Helena Porta
- Departmento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., México
| |
Collapse
|
143
|
Mastroberti AA, Mariath JEDA. Development of mucilage cells of Araucaria angustifolia (Araucariaceae). PROTOPLASMA 2008; 232:233-45. [PMID: 18239849 DOI: 10.1007/s00709-007-0274-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Accepted: 05/10/2007] [Indexed: 05/16/2023]
Abstract
The roles of mucilage cells were investigated through morphological and cytological analysis during leaf development in young Araucaria angustifolia plants. Differentiation began in leaf primordia in the shoot apex, when the young cells underwent a greater increase in volume in comparison with other mesophyll cells. The mucilage polysaccharides were synthesized by dictyosomes, from where they were taken by large vesicles and released into a cavity formed by detachment of the tonoplast, which was separated from the cytoplasm. At the end of differentiation, the cell was completely filled with mucilage, a gel consisting of a denser reticular structure surrounding less dense regions. The nucleus and cytoplasm were degenerated in mature cells. The A. angustifolia mucilage cells presented some cytological resemblances to the mucilage cells of members of some dicotyledonous families; however, differences in the dictyosomes and the secretion route were observed. Translocation and water storage of solutes was suggested by the use of the hydroxy pyrenetrisulfonic acid tri-sodium salt apoplastic tracer. The tonoplast detachment, dechromatinization, nuclear condensation, and general degeneration of the membrane systems observed during maturity indicated a programmed cell death process, one not yet described for angiosperm mucilage cells.
Collapse
Affiliation(s)
- A A Mastroberti
- Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | | |
Collapse
|
144
|
Jung HW, Lim CW, Lee SC, Choi HW, Hwang CH, Hwang BK. Distinct roles of the pepper hypersensitive induced reaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses. PLANTA 2008; 227:409-25. [PMID: 17899171 DOI: 10.1007/s00425-007-0628-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/07/2007] [Accepted: 09/08/2007] [Indexed: 05/06/2023]
Abstract
A Capsicum annuum hypersensitive induced reaction protein1 (CaHIR1) was recently proposed as a positive regulator of hypersensitive cell death in plants. Overexpression of CaHIR1 in transgenic Arabidopsis plants conferred enhanced resistance against the hemi-biotrophic Pseudomonas syringae pv. tomato (Pst) and the biotrophic Hyaloperonospora parasitica. Infection by avirulent Pseudomonas strains carrying avrRpm1 or avrRpt2 caused enhanced resistance responses in transgenic plants, suggesting that CaHIR1 is involved in basal disease resistance in a race-nonspecific manner. H. parasitica exhibited low levels of asexual sporulation on CaHIR1 seedlings. In contrast, transgenic plants were susceptible not only to the necrotrophic fungal pathogen Botrytis cinerea but were also sensitive to osmotic stress caused by high salinity and drought. To identify proteins whose expression was altered by CaHIR1 overexpression in Arabidopsis leaves, a quantitative comparative proteome analysis using two-dimensional gel electrophoresis coupled with mass spectrometry was performed. Of about 400 soluble proteins, 11 proteins involved in several metabolic pathways were up- or down-regulated by CaHIR1 overexpression. Genes encoding glycine decarboxylase (At2g35370) and an unidentified protein (At2g03440), which were strongly upregulated in CaHIR1-overexpressing Arabidopsis, were also differentially induced at the transcriptional level by Pst infection. Arabidopsis carbonic anhydrase (At3g01500), highly similar to tobacco salicylic acid-binding protein 3, was up-regulated by CaHIR1 overexpression. The activity of an anti-oxidant enzyme, cooper/zinc superoxide dismutase (At2g28190), was also attenuated in transgenic Arabidopsis by CaHIR1 overexpression. Together, these results suggest that CaHIR1 overexpression in Arabidopsis mediates plant responses to biotrophic, hemi-biotrophic and necrotrophic pathogens, as well as to osmotic stress in different ways.
Collapse
Affiliation(s)
- Ho Won Jung
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, South Korea
| | | | | | | | | | | |
Collapse
|
145
|
Paiva JAP, Garnier-Géré PH, Rodrigues JC, Alves A, Santos S, Graça J, Le Provost G, Chaumeil P, Da Silva-Perez D, Bosc A, Fevereiro P, Plomion C. Plasticity of maritime pine (Pinus pinaster) wood-forming tissues during a growing season. THE NEW PHYTOLOGIST 2008; 179:1180-1194. [PMID: 18631295 DOI: 10.1111/j.1469-8137.2008.02536.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The seasonal effect is the most significant external source of variation affecting vascular cambial activity and the development of newly divided cells, and hence wood properties. Here, the effect of edapho-climatic conditions on the phenotypic and molecular plasticity of differentiating secondary xylem during a growing season was investigated. Wood-forming tissues of maritime pine (Pinus pinaster) were collected from the beginning to the end of the growing season in 2003. Data from examination of fibre morphology, Fourier-transform infrared spectroscopy (FTIR), analytical pyrolysis, and gas chromatography/mass spectrometry (GC/MS) were combined to characterize the samples. Strong variation was observed in response to changes in edapho-climatic conditions. A genomic approach was used to identify genes differentially expressed during this growing season. Out of 3512 studied genes, 19% showed a significant seasonal effect. These genes were clustered into five distinct groups, the largest two representing genes over-expressed in the early- or late-wood-forming tissues, respectively. The other three clusters were characterized by responses to specific edapho-climatic conditions. This work provides new insights into the plasticity of the molecular machinery involved in wood formation, and reveals candidate genes potentially responsible for the phenotypic differences found between early- and late-wood.
Collapse
Affiliation(s)
- J A P Paiva
- INRA, UMR1202, BIOGECO, Domaine de l'Hermitage, 69 route d'Arcachon, F-33612 Cestas Cedex, France
- Université de Bordeaux, UMR1202, BIOGECO, Bât B8 RdC, Av des Facultés, F-33405 Talence, France
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN, 2780-157 Oeiras, Portugal
- Tropical Research Institute of Portugal (IICT), Forestry and Forest Products Centre, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - P H Garnier-Géré
- INRA, UMR1202, BIOGECO, Domaine de l'Hermitage, 69 route d'Arcachon, F-33612 Cestas Cedex, France
- Université de Bordeaux, UMR1202, BIOGECO, Bât B8 RdC, Av des Facultés, F-33405 Talence, France
| | - J C Rodrigues
- Tropical Research Institute of Portugal (IICT), Forestry and Forest Products Centre, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - A Alves
- Tropical Research Institute of Portugal (IICT), Forestry and Forest Products Centre, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - S Santos
- Departamento de Engenharia Florestal, Instituto Superior de Agronomia, TULisbon, ISA-DEF, Tapada Ajuda, 1349-017 Lisboa, Portugal
| | - J Graça
- Departamento de Engenharia Florestal, Instituto Superior de Agronomia, TULisbon, ISA-DEF, Tapada Ajuda, 1349-017 Lisboa, Portugal
| | - G Le Provost
- INRA, UMR1202, BIOGECO, Domaine de l'Hermitage, 69 route d'Arcachon, F-33612 Cestas Cedex, France
- Université de Bordeaux, UMR1202, BIOGECO, Bât B8 RdC, Av des Facultés, F-33405 Talence, France
| | - P Chaumeil
- Université de Bordeaux, UMR1202, BIOGECO, Bât B8 RdC, Av des Facultés, F-33405 Talence, France
| | - D Da Silva-Perez
- Laboratoire Bois Process, FCBA InTechFibres, Domaine Universitaire, BP 251, 38044 Grenoble Cedex, France
| | - A Bosc
- INRA, UR Ecologie fonctionnelle et physique de l'Environnement, EPHYSE, 71 avenue Edouard Bourleaux, 33883 Villenave d'Ornon Cedex, France
| | - P Fevereiro
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN, 2780-157 Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1700 Lisboa, Portugal
| | - C Plomion
- INRA, UMR1202, BIOGECO, Domaine de l'Hermitage, 69 route d'Arcachon, F-33612 Cestas Cedex, France
- Université de Bordeaux, UMR1202, BIOGECO, Bât B8 RdC, Av des Facultés, F-33405 Talence, France
| |
Collapse
|
146
|
Kołodziejek I, Kozioł-Lipińska J, Wałeza M, Korczyński J, Mostowska A. Aspects of programmed cell death during early senescence of barley leaves: possible role of nitric oxide. PROTOPLASMA 2007; 232:97-108. [PMID: 18094926 DOI: 10.1007/s00709-007-0271-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 04/14/2007] [Indexed: 05/25/2023]
Abstract
Leaf senescence is a highly coordinated process which involves programmed cell death (PCD). Early stages of leaf senescence occurring during normal leaf ontogenesis, but not triggered by stress factors, are less well known. In this study, we correlated condensation of chromatin and nuclear DNA (nDNA) fragmentation, two main features of PCD during early senescence in barley leaves, with the appearance of nitric oxide (NO) within leaf tissue. With the help of the alkaline version of the comet assay, together with measurements of nDNA fluorescence intensity, we performed a detailed analysis of the degree of nDNA fragmentation. We localised NO in vivo and in situ within the leaf and photometrically measured its concentration with the NO-specific fluorochrome 4-amino-5-methylamino-2',7'-difluorofluorescein. We found that both nDNA fragmentation and chromatin condensation occurred quite early during barley leaf senescence and always in the same order: first nDNA fragmentation, in leaves of 6-day-old seedlings, and later chromatin condensation, in the apical part of leaves from 10-day-old seedlings. PCD did not start simultaneously even in neighbouring cells and probably did not proceed at the same rate. NO was localised in vivo and in situ within the cytoplasm, mainly in mitochondria, in leaves at the same stage as those in which chromatin condensation was observed. Localisation of NO in vascular tissue and in a large number of mesophyll cells during the senescence process might imply its transport to other parts of the leaf and its involvement in signalling between cells. The fact that the highest concentration of NO was found in the cytoplasm of mesophyll cells in the earliest stage of senescence and lower concentrations were found during later stages might suggest that NO plays an inductive role in PCD.
Collapse
Affiliation(s)
- I Kołodziejek
- Department of Plant Anatomy and Cytology, University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
147
|
Boddu J, Cho S, Muehlbauer GJ. Transcriptome analysis of trichothecene-induced gene expression in barley. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1364-1375. [PMID: 17977148 DOI: 10.1094/mpmi-20-11-1364] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fusarium head blight, caused primarily by Fusarium graminearum, is a major disease problem on barley (Hordeum vulgare L.). Trichothecene mycotoxins produced by the fungus during infection increase the aggressiveness of the fungus and promote infection in wheat (Triticum aestivum L.). Loss-of-function mutations in the TRI5 gene in F. graminearum result in the inability to synthesize trichothecenes and in reduced virulence on wheat. We examined the impact of pathogen-derived trichothecenes on virulence and the transcriptional differences in barley spikes infected with a trichothecene-producing wild-type strain and a loss-of-function tri5 trichothecene nonproducing mutant. Disease severity, fungal biomass, and floret necrosis and bleaching were reduced in spikes inoculated with the tri5 mutant strain compared with the wild-type strain, indicating that the inability to synthesize trichothecenes results in reduced virulence in barley. We detected 63 transcripts that were induced during trichothecene accumulation, including genes encoding putative trichothecene detoxification and transport proteins, ubiquitination-related proteins, programmed cell death-related proteins, transcription factors, and cytochrome P450s. We also detected 414 gene transcripts that were designated as basal defense response genes largely independent of trichothecene accumulation. Our results show that barley exhibits a specific response to trichothecene accumulation that can be separated from the basal defense response. We propose that barley responds to trichothecene accumulation by inducing at least two general responses. One response is the induction of genes encoding trichothecene detoxification and transport activities that may reduce the impact of trichothecenes. The other response is to induce genes encoding proteins associated with ubiquitination and cell death which may promote successful establishment of the disease.
Collapse
Affiliation(s)
- Jayanand Boddu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul 55108, USA
| | | | | |
Collapse
|
148
|
Lliso I, Tadeo FR, Phinney BS, Wilkerson CG, Talón M. Protein changes in the albedo of citrus fruits on postharvesting storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9047-53. [PMID: 17910511 DOI: 10.1021/jf071198a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this work, major protein changes in the albedo of the fruit peel of Murcott tangor (tangerine x sweet orange) during postharvest ageing were studied through 2D PAGE. Protein content in matured on-tree fruits and in fruits stored in nonstressing [99% relative humidity (RH) and 25 degrees C], cold (99% RH and 4 degrees C), and drought (60% RH and 25 degrees C) conditions was initially determined. Protein identification through MS/MS determinations revealed in all samples analyzed the occurrence of manganese superoxide dismutase (Mn SOD), actin, ATP synthase beta subunit (ATPase), citrus salt-stress associated protein (CitSap), ascorbate peroxidase (APX), translationally controlled tumor protein (TCTP), and a cysteine proteinase (CP) of the papain family. The latter protein was identified in two different gel spots, with different molecular mass, suggesting the simultaneous presence of the proteinase precursor and its active form. While Mn SOD, actin, ATPase, and CitSap were unchanged in the assayed conditions, TCTP and APX were downregulated during the postharvest ageing process. Ageing-induced APX repression was also reversed by drought. CP contents in albedo, which were similar in on- and off-tree fruits, were strongly dependent upon cold storage. The active/total CP protein ratio significantly increased after cold exposure. This proteomic survey indicates that major changes in protein content in the albedo of the peel of postharvest stored citrus fruits are apparently related to the activation of programmed cell death (PCD).
Collapse
Affiliation(s)
- Ignacio Lliso
- Research Technology Support Facility, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
149
|
Yang H, Yang S, Li Y, Hua J. The Arabidopsis BAP1 and BAP2 genes are general inhibitors of programmed cell death. PLANT PHYSIOLOGY 2007; 145:135-46. [PMID: 17631528 PMCID: PMC1976577 DOI: 10.1104/pp.107.100800] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Here we identify the BAP1 and BAP2 genes of Arabidopsis (Arabidopsis thaliana) as general inhibitors of programmed cell death (PCD) across the kingdoms. These two homologous genes encode small proteins containing a calcium-dependent phospholipid-binding C2 domain. BAP1 and its functional partner BON1 have been shown to negatively regulate defense responses and a disease resistance gene SNC1. Genetic studies here reveal an overlapping function of the BAP1 and BAP2 genes in cell death control. The loss of BAP2 function induces accelerated hypersensitive responses but does not compromise plant growth or confer enhanced resistance to virulent bacterial or oomycete pathogens. The loss of both BAP1 and BAP2 confers seedling lethality mediated by PAD4 and EDS1, two regulators of cell death and defense responses. Overexpression of BAP1 or BAP2 with their partner BON1 inhibits PCD induced by pathogens, the proapoptotic gene BAX, and superoxide-generating paraquat in Arabidopsis or Nicotiana benthamiana. Moreover, expressing BAP1 or BAP2 in yeast (Saccharomyces cerevisiae) alleviates cell death induced by hydrogen peroxide. Thus, the BAP genes function as general negative regulators of PCD induced by biotic and abiotic stimuli including reactive oxygen species. The dual roles of BAP and BON genes in repressing defense responses mediated by disease resistance genes and in inhibiting general PCD has implications in understanding the evolution of plant innate immunity.
Collapse
Affiliation(s)
- Huijun Yang
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
150
|
Mea MD, Serafini-Fracassini D, Duca SD. Programmed cell death: similarities and differences in animals and plants. A flower paradigm. Amino Acids 2007; 33:395-404. [PMID: 17653819 DOI: 10.1007/s00726-007-0530-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 02/01/2007] [Indexed: 12/31/2022]
Abstract
After an overview of the criteria for the definition of cell death in the animal cell and of its different types of death, a comparative analysis of PCD in the plant cell is reported. The cytological characteristics of the plant cell undergoing PCD are described. The role of plant hormones and growth factors in the regulation of this event is discussed with particular emphasis on PCD activation or prevention by polyamine treatment (doses, timing and developmental stage of the organism) in a Developmental cell death plant model: the Nicotiana tabacum (tobacco) flower corolla. Some of the effects of polyamines might be mediated by transglutaminase catalysis. The activity of this enzyme was examined in different parts of the corolla during its life span showing an acropetal trend parallel to the cell death wave. The location of transglutaminase in some sub-cellular compartments suggests that it exerts different functions in the corolla DCD.
Collapse
Affiliation(s)
- M Della Mea
- Dipartimento di Biologia, Università degli Studi di Bologna, Bologna, Italy
| | | | | |
Collapse
|