101
|
Thacker G, Mishra M, Sharma A, Singh AK, Sanyal S, Trivedi AK. CDK2 destabilizes tumor suppressor C/EBPα expression through ubiquitin‐mediated proteasome degradation in acute myeloid leukemia. J Cell Biochem 2019; 121:2839-2850. [DOI: 10.1002/jcb.29516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Gatha Thacker
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
| | - Mukul Mishra
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
| | - Akshay Sharma
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
| | | | - Sabyasachi Sanyal
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
| | - Arun Kumar Trivedi
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
- Academy of Scientific and Innovative Research (AcSIR), CSIR‐CDRI Lucknow UP India
| |
Collapse
|
102
|
Brumbaugh J, Kim IS, Ji F, Huebner AJ, Di Stefano B, Schwarz BA, Charlton J, Coffey A, Choi J, Walsh RM, Schindler JW, Anselmo A, Meissner A, Sadreyev RI, Bernstein BE, Hock H, Hochedlinger K. Inducible histone K-to-M mutations are dynamic tools to probe the physiological role of site-specific histone methylation in vitro and in vivo. Nat Cell Biol 2019; 21:1449-1461. [PMID: 31659274 PMCID: PMC6858577 DOI: 10.1038/s41556-019-0403-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022]
Abstract
Development and differentiation are associated with profound changes to histone modifications, yet their in vivo function remains incompletely understood. Here, we generated mouse models expressing inducible histone H3 lysine-to-methionine (K-to-M) mutants, which globally inhibit methylation at specific sites. Mice expressing H3K36M developed severe anaemia with arrested erythropoiesis, a marked haematopoietic stem cell defect, and rapid lethality. By contrast, mice expressing H3K9M survived up to a year and showed expansion of multipotent progenitors, aberrant lymphopoiesis and thrombocytosis. Additionally, some H3K9M mice succumbed to aggressive T cell leukaemia/lymphoma, while H3K36M mice exhibited differentiation defects in testis and intestine. Mechanistically, induction of either mutant reduced corresponding histone trimethylation patterns genome-wide and altered chromatin accessibility as well as gene expression landscapes. Strikingly, discontinuation of transgene expression largely restored differentiation programmes. Our work shows that individual chromatin modifications are required at several specific stages of differentiation and introduces powerful tools to interrogate their roles in vivo.
Collapse
Affiliation(s)
- Justin Brumbaugh
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO, USA
| | - Ik Soo Kim
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Aaron J Huebner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Benjamin A Schwarz
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jocelyn Charlton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Amy Coffey
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jiho Choi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ryan M Walsh
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeffrey W Schindler
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Bradley E Bernstein
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanno Hock
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
103
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
104
|
Abdel-Azim H, Sun W, Wu L. Strategies to generate functionally normal neutrophils to reduce infection and infection-related mortality in cancer chemotherapy. Pharmacol Ther 2019; 204:107403. [PMID: 31470030 DOI: 10.1016/j.pharmthera.2019.107403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023]
Abstract
Neutrophils form an essential part of innate immunity against infection. Cancer chemotherapy-induced neutropenia (CCIN) is a condition in which the number of neutrophils in a patient's bloodstream is decreased, leading to increased susceptibility to infection. Granulocyte colony-stimulating factor (GCSF) has been the only approved treatment for CCIN over two decades. To date, CCIN-related infection and mortality remain a significant concern, as neutrophils generated in response to administered GCSF are functionally immature and cannot effectively fight infection. This review summarizes the molecular regulatory mechanisms of neutrophil granulocytic differentiation and innate immunity development, dissects the biology of GCSF in myeloid expansion, highlights the shortcomings of GCSF in CCIN treatment, updates the recent advance of a selective retinoid agonist that promotes neutrophil granulocytic differentiation, and evaluates the benefits of developing GCSF biosimilars to increase access to GCSF biologics versus seeking a new mode to fundamentally advance GCSF therapy for treatment of CCIN.
Collapse
Affiliation(s)
- Hisham Abdel-Azim
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Weili Sun
- Pediatric Hematology-Oncology, City of Hope National Medical Center, 1500 E. Duarte road, Duarte, CA 91010, USA
| | - Lingtao Wu
- Research and Development, Therapeutic Approaches, 2712 San Gabriel Boulevard, Rosemead, CA 91770, USA.
| |
Collapse
|
105
|
Thoms JAI, Beck D, Pimanda JE. Transcriptional networks in acute myeloid leukemia. Genes Chromosomes Cancer 2019; 58:859-874. [PMID: 31369171 DOI: 10.1002/gcc.22794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease characterized by a diverse range of recurrent molecular aberrations that occur in many different combinations. Components of transcriptional networks are a common target of these aberrations, leading to network-wide changes and deployment of novel or developmentally inappropriate transcriptional programs. Genome-wide techniques are beginning to reveal the full complexity of normal hematopoietic stem cell transcriptional networks and the extent to which they are deregulated in AML, and new understandings of the mechanisms by which AML cells maintain self-renewal and block differentiation are starting to emerge. The hope is that increased understanding of the network architecture in AML will lead to identification of key oncogenic dependencies that are downstream of multiple network aberrations, and that this knowledge will be translated into new therapies that target these dependencies. Here, we review the current state of knowledge of network perturbation in AML with a focus on major mechanisms of transcription factor dysregulation, including mutation, translocation, and transcriptional dysregulation, and discuss how these perturbations propagate across transcriptional networks. We will also review emerging mechanisms of network disruption, and briefly discuss how increased knowledge of network disruption is already being used to develop new therapies.
Collapse
Affiliation(s)
- Julie A I Thoms
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Dominik Beck
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - John E Pimanda
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
106
|
Radhakrishnan S, Syed R, Takei H, Kobayashi IS, Nakamura E, Sultana F, Kamal A, Tenen DG, Kobayashi SS. Styryl quinazolinones and its ethynyl derivatives induce myeloid differentiation. Bioorg Med Chem Lett 2019; 29:2286-2289. [PMID: 31278031 DOI: 10.1016/j.bmcl.2019.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
Abstract
The tumor suppressor transcription factor CCAAT enhancer-binding protein α (C/EBPα) expression is downregulated in myeloid leukemias and enhancement of C/EBPα expression induces granulocytic differentiation in leukemic cells. Previously we reported that Styryl quinazolinones induce myeloid differentiation in HL-60 cells by upregulating C/EBPα expression. To identify more potent molecule that can induce leukemic cell differentiation we synthesized and evaluated new series of styryl quinazolinones, ethynyl styryl quinazolinones, styryl quinolinones and thienopyrimidinones. Thienopyrimidinones were found toxic and styryl quinolinones were found inactive. Ethynyl styryl quinazolinone 39 and styryl quinazolinone 5 were found active on par with the earlier reported analogues 1 and 2 suggesting that the 5-nitro furan-2-yl styryl quinazolinones find a real promise in leukemic cell differentiation. The improved potency of 5 suggested that further modifications in the 5-nitro furan-2-yl styryl quinazolinones can be at the phenyl substitution at the 3-position of the quinazolinone ring apart from the 5-position of the heteroaryl ring.
Collapse
Affiliation(s)
- Sridhar Radhakrishnan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Riyaz Syed
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Department of Chemistry, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500 085, India
| | - Hisashi Takei
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Ikei S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Eugene Nakamura
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Farheen Sultana
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Ahmed Kamal
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110 062, India
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Susumu S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan.
| |
Collapse
|
107
|
Abstract
Neutrophils are implicated in almost every stage of oncogenesis and paradoxically display anti- and pro-tumor properties. Accumulating evidence indicates that neutrophils display diversity in their phenotype resulting from functional plasticity and/or changes to granulopoiesis. In cancer, neutrophils at a range of maturation stages can be identified in the blood and tissues (i.e., outside of their developmental niche). The functional capacity of neutrophils at different states of maturation is poorly understood resulting from challenges in their isolation, identification, and investigation. Thus, the impact of neutrophil maturity on cancer progression and therapy remains enigmatic. In this review, we discuss the identification, prevalence, and function of immature and mature neutrophils in cancer and the potential impact of this on tumor progression and cancer therapy.
Collapse
Affiliation(s)
- John B. G. Mackey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Seth B. Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Leo M. Carlin
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| |
Collapse
|
108
|
Wang W, Xia X, Mao L, Wang S. The CCAAT/Enhancer-Binding Protein Family: Its Roles in MDSC Expansion and Function. Front Immunol 2019; 10:1804. [PMID: 31417568 PMCID: PMC6684943 DOI: 10.3389/fimmu.2019.01804] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Immunosuppressive cells have been highlighted in research due to their roles in tumor progression and treatment failure. Myeloid-derived suppressor cells (MDSCs) are among the major immunosuppressive cell populations in the tumor microenvironment, and transcription factors (TFs) are likely involved in MDSC expansion and activation. As key regulatory TFs, members of the CCAAT/enhancer-binding protein (C/EBP) family possibly modulate many biological processes, including cell growth, differentiation, metabolism, and death. Current evidence suggests that C/EBPs maintain critical regulation of MDSCs and are involved in the differentiation and function of MDSCs within the tumor microenvironment. To better understand the MDSC-associated transcriptional network and identify new therapy targets, we herein review recent findings about the C/EBP family regarding their participation in the expansion and function of MDSCs.
Collapse
Affiliation(s)
- Wenxin Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
109
|
Yokoyama N, Kim YJ, Hirabayashi Y, Tabe Y, Takamori K, Ogawa H, Iwabuchi K. Kras promotes myeloid differentiation through Wnt/β-catenin signaling. FASEB Bioadv 2019; 1:435-449. [PMID: 32123842 PMCID: PMC6996383 DOI: 10.1096/fba.2019-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Wild-type Kras, a small GTPase, inactivates Ras growth-promoting signaling. However, the role of Kras in differentiation of myeloid cells remains unclear. This study showed the involvement of Kras in a novel regulatory mechanism underlying the dimethyl sulfoxide (DMSO)-induced differentiation of human acute myeloid leukemia HL-60 cells. Kras was found to positively regulate DMSO-induced differentiation, with the activity of Kras increasing upon DMSO. Inhibition of Kras attenuated CD11b expression in differentiated HL-60 cells. GSK3β, an important component of Wnt signaling, was found to be a downstream signal of Kras. Phosphorylation of GSK3β was markedly enhanced by DMSO treatment. Moreover, inhibition of GSK3β enhanced CD11b expression and triggered the accumulation in the nucleus of β-catenin and Tcf in response to DMSO. Inhibitors of β-catenin-mediated pathways blocked CD11b expression, further indicating that β-catenin is involved in the differentiation of HL-60 cells. Elevated expression of C/EBPα and C/EBPɛ accompanied by the expression of granulocyte colony-stimulating factor (G-CSF) receptor was observed during differentiation. Taken together, these findings suggest that Kras engages in cross talk with the Wnt/β-catenin pathway upon DMSO treatment of HL-60 cells, thereby regulating the granulocytic differentiation of HL-60 cells. These results indicate that Kras acts as a tumor suppressor during the differentiation of myeloid cells.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
| | - Yeon-Jeong Kim
- Laboratory for Neuronal Growth Mechanisms Riken Brain Science Institutes Saitama Japan
| | - Yoshio Hirabayashi
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
- Cellular Informatics Laboratory RIKEN Wako Saitama Japan
| | - Yoko Tabe
- Department of Laboratory Medicine Juntendo University School of Medicine Hospital Hongo Tokyo Japan
| | - Kenji Takamori
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
- Infection Control Nursing Juntendo University Graduate School of Health Care and Nursing Urayasu Chiba Japan
- Laboratory of Biochemistry Juntendo University Faculty of Health Care and Nursing Urayasu Chiba Japan
| |
Collapse
|
110
|
Repele A, Krueger S, Bhattacharyya T, Tuineau MY. The regulatory control of Cebpa enhancers and silencers in the myeloid and red-blood cell lineages. PLoS One 2019; 14:e0217580. [PMID: 31181110 PMCID: PMC6557489 DOI: 10.1371/journal.pone.0217580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Cebpa encodes a transcription factor (TF) that plays an instructive role in the development of multiple myeloid lineages. The expression of Cebpa itself is finely modulated, as Cebpa is expressed at high and intermediate levels in neutrophils and macrophages respectively and downregulated in non-myeloid lineages. The cis-regulatory logic underlying the lineage-specific modulation of Cebpa's expression level is yet to be fully characterized. Previously, we had identified 6 new cis-regulatory modules (CRMs) in a 78kb region surrounding Cebpa. We had also inferred the TFs that regulate each CRM by fitting a sequence-based thermodynamic model to a comprehensive reporter activity dataset. Here, we report the cis-regulatory logic of Cebpa CRMs at the resolution of individual binding sites. We tested the binding sites and functional roles of inferred TFs by designing and constructing mutated CRMs and comparing theoretical predictions of their activity against empirical measurements in a myeloid cell line. The enhancers were confirmed to be activated by combinations of PU.1, C/EBP family TFs, Egr1, and Gfi1 as predicted by the model. We show that silencers repress the activity of the proximal promoter in a dominant manner in G1ME cells, which are derived from the red-blood cell lineage. Dominant repression in G1ME cells can be traced to binding sites for GATA and Myb, a motif shared by all of the silencers. Finally, we demonstrate that GATA and Myb act redundantly to silence the proximal promoter. These results indicate that dominant repression is a novel mechanism for resolving hematopoietic lineages. Furthermore, Cebpa has a fail-safe cis-regulatory architecture, featuring several functionally similar CRMs, each of which contains redundant binding sites for multiple TFs. Lastly, by experimentally demonstrating the predictive ability of our sequence-based thermodynamic model, this work highlights the utility of this computational approach for understanding mammalian gene regulation.
Collapse
Affiliation(s)
- Andrea Repele
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Shawn Krueger
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Tapas Bhattacharyya
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Michelle Y Tuineau
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| |
Collapse
|
111
|
Piazzi M, Bavelloni A, Gallo A, Faenza I, Blalock WL. Signal Transduction in Ribosome Biogenesis: A Recipe to Avoid Disaster. Int J Mol Sci 2019; 20:ijms20112718. [PMID: 31163577 PMCID: PMC6600399 DOI: 10.3390/ijms20112718] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
Energetically speaking, ribosome biogenesis is by far the most costly process of the cell and, therefore, must be highly regulated in order to avoid unnecessary energy expenditure. Not only must ribosomal RNA (rRNA) synthesis, ribosomal protein (RP) transcription, translation, and nuclear import, as well as ribosome assembly, be tightly controlled, these events must be coordinated with other cellular events, such as cell division and differentiation. In addition, ribosome biogenesis must respond rapidly to environmental cues mediated by internal and cell surface receptors, or stress (oxidative stress, DNA damage, amino acid depletion, etc.). This review examines some of the well-studied pathways known to control ribosome biogenesis (PI3K-AKT-mTOR, RB-p53, MYC) and how they may interact with some of the less well studied pathways (eIF2α kinase and RNA editing/splicing) in higher eukaryotes to regulate ribosome biogenesis, assembly, and protein translation in a dynamic manner.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | | | - Angela Gallo
- RNA Editing Laboratory, Dipartimento di Oncoematologia, IRCCS, Ospedale Pediatrica Bambino Gesù, 00146 Rome, Italy.
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40126 Bologna, Italy.
| | - William L Blalock
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
112
|
FLT3-ITD and CEBPA Mutations Predict Prognosis in Acute Myelogenous Leukemia Irrespective of Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:941-948. [DOI: 10.1016/j.bbmt.2018.11.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023]
|
113
|
Identification of a novel enhancer of CEBPE essential for granulocytic differentiation. Blood 2019; 133:2507-2517. [PMID: 30952671 DOI: 10.1182/blood.2018886077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
CCAAT/enhancer binding protein ε (CEBPE) is an essential transcription factor for granulocytic differentiation. Mutations of CEBPE occur in individuals with neutrophil-specific granule deficiency (SGD), which is characterized by defects in neutrophil maturation. Cebpe-knockout mice also exhibit defects in terminal differentiation of granulocytes, a phenotype reminiscent of SGD. Analysis of DNase I hypersensitive sites sequencing data revealed an open chromatin region 6 kb downstream of the transcriptional start site of Cebpe in murine myeloid cells. We identified an interaction between this +6-kb region and the core promoter of Cebpe using circular chromosome conformation capture sequencing (4C-seq). To understand the role of this putative enhancer in transcriptional regulation of Cebpe, we targeted it using catalytically inactive Cas9 fused to Krüppel-associated box (KRAB) domain and observed a significant downregulation of transcript and protein levels of CEBPE in cells expressing guide RNA targeting the +6-kb region. To further investigate the role of this novel enhancer further in myelopoiesis, we generated mice with deletion of this region using CRISPR/Cas9 technology. Germline deletion of the +6-kb enhancer resulted in reduced levels of CEBPE and its target genes and caused a severe block in granulocytic differentiation. We also identified binding of CEBPA and CEBPE to the +6-kb enhancer, which suggests their role in regulating the expression of Cebpe In summary, we have identified a novel enhancer crucial for regulating expression of Cebpe and required for normal granulocytic differentiation.
Collapse
|
114
|
Lipid Accumulation and Chronic Kidney Disease. Nutrients 2019; 11:nu11040722. [PMID: 30925738 PMCID: PMC6520701 DOI: 10.3390/nu11040722] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity and hyperlipidemia are the most prevalent independent risk factors of chronic kidney disease (CKD), suggesting that lipid accumulation in the renal parenchyma is detrimental to renal function. Non-esterified fatty acids (also known as free fatty acids, FFA) are especially harmful to the kidneys. A concerted, increased FFA uptake due to high fat diets, overexpression of fatty acid uptake systems such as the CD36 scavenger receptor and the fatty acid transport proteins, and a reduced β-oxidation rate underlie the intracellular lipid accumulation in non-adipose tissues. FFAs in excess can damage podocytes, proximal tubular epithelial cells and the tubulointerstitial tissue through various mechanisms, in particular by boosting the production of reactive oxygen species (ROS) and lipid peroxidation, promoting mitochondrial damage and tissue inflammation, which result in glomerular and tubular lesions. Not all lipids are bad for the kidneys: polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to help lag the progression of chronic kidney disease (CKD). Lifestyle interventions, especially dietary adjustments, and lipid-lowering drugs can contribute to improve the clinical outcome of patients with CKD.
Collapse
|
115
|
Trib1 regulates eosinophil lineage commitment and identity by restraining the neutrophil program. Blood 2019; 133:2413-2426. [PMID: 30917956 DOI: 10.1182/blood.2018872218] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
Eosinophils and neutrophils are critical for host defense, yet gaps in understanding how granulocytes differentiate from hematopoietic stem cells (HSCs) into mature effectors remain. The pseudokinase tribbles homolog 1 (Trib1) is an important regulator of granulocytes; knockout mice lack eosinophils and have increased neutrophils. However, how Trib1 regulates cellular identity and function during eosinophilopoiesis is not understood. Trib1 expression markedly increases with eosinophil-lineage commitment in eosinophil progenitors (EoPs), downstream of the granulocyte/macrophage progenitor (GMP). Using hematopoietic- and eosinophil-lineage-specific Trib1 deletion, we found that Trib1 regulates both granulocyte precursor lineage commitment and mature eosinophil identity. Conditional Trib1 deletion in HSCs reduced the size of the EoP pool and increased neutrophils, whereas deletion following eosinophil lineage commitment blunted the decrease in EoPs without increasing neutrophils. In both modes of deletion, Trib1-deficient mice expanded a stable population of Ly6G+ eosinophils with neutrophilic characteristics and functions, and had increased CCAAT/enhancer binding protein α (C/EBPα) p42. Using an ex vivo differentiation assay, we found that interleukin 5 (IL-5) supports the generation of Ly6G+ eosinophils from Trib1-deficient cells, but is not sufficient to restore normal eosinophil differentiation and development. Furthermore, we demonstrated that Trib1 loss blunted eosinophil migration and altered chemokine receptor expression, both in vivo and ex vivo. Finally, we showed that Trib1 controls eosinophil identity by modulating C/EBPα. Together, our findings provide new insights into early events in myelopoiesis, whereby Trib1 functions at 2 distinct stages to guide eosinophil lineage commitment from the GMP and suppress the neutrophil program, promoting eosinophil terminal identity and maintaining lineage fidelity.
Collapse
|
116
|
Han L, Madan V, Mayakonda A, Dakle P, Woon TW, Shyamsunder P, Nordin HBM, Cao Z, Sundaresan J, Lei I, Wang Z, Koeffler HP. Chromatin remodeling mediated by ARID1A is indispensable for normal hematopoiesis in mice. Leukemia 2019; 33:2291-2305. [PMID: 30858552 PMCID: PMC6756219 DOI: 10.1038/s41375-019-0438-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022]
Abstract
Precise regulation of chromatin architecture is vital to physiological processes including hematopoiesis. ARID1A is a core component of the mammalian SWI/SNF complex, which is one of the ATP-dependent chromatin remodeling complexes. To uncover the role of ARID1A in hematopoietic development, we utilized hematopoietic cell-specific deletion of Arid1a in mice. We demonstrate that ARID1A is essential for maintaining the frequency and function of hematopoietic stem cells and its loss impairs the differentiation of both myeloid and lymphoid lineages. ARID1A deficiency led to a global reduction in open chromatin and ensuing transcriptional changes affected key genes involved in hematopoietic development. We also observed that silencing of ARID1A affected ATRA-induced differentiation of NB4 cells, suggesting its role in granulocytic differentiation of human leukemic cells. Overall, our study provides a comprehensive elucidation of the function of ARID1A in hematopoiesis and highlights the central role of ARID1A-containing SWI/SNF complex in maintaining chromatin dynamics in hematopoietic cells.
Collapse
Affiliation(s)
- Lin Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Teoh Weoi Woon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Zeya Cao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Janani Sundaresan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ienglam Lei
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA.,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital, Singapore, Singapore
| |
Collapse
|
117
|
Ulirsch JC, Lareau CA, Bao EL, Ludwig LS, Guo MH, Benner C, Satpathy AT, Kartha VK, Salem RM, Hirschhorn JN, Finucane HK, Aryee MJ, Buenrostro JD, Sankaran VG. Interrogation of human hematopoiesis at single-cell and single-variant resolution. Nat Genet 2019; 51:683-693. [PMID: 30858613 PMCID: PMC6441389 DOI: 10.1038/s41588-019-0362-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 01/28/2019] [Indexed: 11/16/2022]
Abstract
Widespread linkage disequilibrium and incomplete annotation of cell-to-cell state variation represent substantial challenges to elucidating mechanisms of trait-associated genetic variation. Here, we perform genetic fine-mapping for blood cell traits in the UK Biobank to identify putative causal variants. These variants are enriched in genes encoding for proteins in trait-relevant biological pathways and in accessible chromatin of hematopoietic progenitors. For regulatory variants, we explore patterns of developmental enhancer activity, predict molecular mechanisms, and identify likely target genes. In several instances, we localize multiple independent variants to the same regulatory element or gene. We further observe that variants with pleiotropic effects preferentially act in common progenitor populations to direct the production of distinct lineages. Finally, we leverage fine-mapped variants in conjunction with continuous epigenomic annotations to identify trait-cell type enrichments within closely related populations and in single cells. Our study provides a comprehensive framework for single-variant and single-cell analyses of genetic associations. Fine mapping of blood cell traits in UK Biobank identifies putative causal variants and enrichment of fine-mapped variants in accessible chromatin of hematopoietic progenitor cells. The study provides an analytical framework for single-variant and single-cell analyses of genetic associations.
Collapse
Affiliation(s)
- Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Caleb A Lareau
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Erik L Bao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Leif S Ludwig
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael H Guo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Christian Benner
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vinay K Kartha
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Rany M Salem
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Joel N Hirschhorn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Hilary K Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Schmidt Fellows Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin J Aryee
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
118
|
Different Faces for Different Places: Heterogeneity of Neutrophil Phenotype and Function. J Immunol Res 2019; 2019:8016254. [PMID: 30944838 PMCID: PMC6421822 DOI: 10.1155/2019/8016254] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/22/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] Open
Abstract
As the most abundant leukocytes in the circulation, neutrophils are committed to innate and adaptive immune effector function to protect the human body. They are capable of killing intruding microbes through various ways including phagocytosis, release of granules, and formation of extracellular traps. Recent research has revealed that neutrophils are heterogeneous in phenotype and function and can display outstanding plasticity in both homeostatic and disease states. The great flexibility and elasticity arm neutrophils with important regulatory and controlling functions in various disease states such as autoimmunity and inflammation as well as cancer. Hence, this review will focus on recent literature describing neutrophils' variable and diverse phenotypes and functions in different contexts.
Collapse
|
119
|
Churpek JE, Bresnick EH. Transcription factor mutations as a cause of familial myeloid neoplasms. J Clin Invest 2019; 129:476-488. [PMID: 30707109 DOI: 10.1172/jci120854] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The initiation and evolution of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are driven by genomic events that disrupt multiple genes controlling hematopoiesis. Human genetic studies have discovered germline mutations in single genes that instigate familial MDS/AML. The best understood of these genes encode transcription factors, such as GATA-2, RUNX1, ETV6, and C/EBPα, which establish and maintain genetic networks governing the genesis and function of blood stem and progenitor cells. Many questions remain unanswered regarding how genes and circuits within these networks function in physiology and disease and whether network integrity is exquisitely sensitive to or efficiently buffered from perturbations. In familial MDS/AML, mutations change the coding sequence of a gene to generate a mutant protein with altered activity or introduce frameshifts or stop codons or disrupt regulatory elements to alter protein expression. Each mutation has the potential to exert quantitatively and qualitatively distinct influences on networks. Consistent with this mechanistic diversity, disease onset is unpredictable and phenotypic variability can be considerable. Efforts to elucidate mechanisms and forge prognostic and therapeutic strategies must therefore contend with a spectrum of patient-specific leukemogenic scenarios. Here we illustrate mechanistic advances in our understanding of familial MDS/AML syndromes caused by germline mutations of hematopoietic transcription factors.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
120
|
A topological view of human CD34 + cell state trajectories from integrated single-cell output and proteomic data. Blood 2019; 133:927-939. [PMID: 30622121 DOI: 10.1182/blood-2018-10-878025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/23/2018] [Indexed: 12/11/2022] Open
Abstract
Recent advances in single-cell molecular analytical methods and clonal growth assays are enabling more refined models of human hematopoietic lineage restriction processes to be conceptualized. Here, we report the results of integrating single-cell proteome measurements with clonally determined lymphoid, neutrophilic/monocytic, and/or erythroid progeny outputs from >1000 index-sorted CD34+ human cord blood cells in short-term cultures with and without stromal cells. Surface phenotypes of functionally examined cells were individually mapped onto a molecular landscape of the entire CD34+ compartment constructed from single-cell mass cytometric measurements of 14 cell surface markers, 20 signaling/cell cycle proteins, and 6 transcription factors in ∼300 000 cells. This analysis showed that conventionally defined subsets of CD34+ cord blood cells are heterogeneous in their functional properties, transcription factor content, and signaling activities. Importantly, this molecular heterogeneity was reduced but not eliminated in phenotypes that were found to display highly restricted lineage outputs. Integration of the complete proteomic and functional data sets obtained revealed a continuous probabilistic topology of change that includes a multiplicity of lineage restriction trajectories. Each of these reflects progressive but variable changes in the levels of specific signaling intermediates and transcription factors but shared features of decreasing quiescence. Taken together, our results suggest a model in which increasingly narrowed hematopoietic output capabilities in neonatal CD34+ cord blood cells are determined by a history of external stimulation in combination with innately programmed cell state changes.
Collapse
|
121
|
Abstract
Research during the last decade has generated numerous insights on the presence, phenotype, and function of myeloid cells in cardiovascular organs. Newer tools with improved detection sensitivities revealed sizable populations of tissue-resident macrophages in all major healthy tissues. The heart and blood vessels contain robust numbers of these cells; for instance, 8% of noncardiomyocytes in the heart are macrophages. This number and the cell's phenotype change dramatically in disease conditions. While steady-state macrophages are mostly monocyte independent, macrophages residing in the inflamed vascular wall and the diseased heart derive from hematopoietic organs. In this review, we will highlight signals that regulate macrophage supply and function, imaging applications that can detect changes in cell numbers and phenotype, and opportunities to modulate cardiovascular inflammation by targeting macrophage biology. We strive to provide a systems-wide picture, i.e., to focus not only on cardiovascular organs but also on tissues involved in regulating cell supply and phenotype, as well as comorbidities that promote cardiovascular disease. We will summarize current developments at the intersection of immunology, detection technology, and cardiovascular health.
Collapse
Affiliation(s)
- Vanessa Frodermann
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
122
|
Dvořák M, Dvořáková M. Genes and Mechanisms Responsible for Expansion of Acute Myeloid Leukaemia Blasts. Folia Biol (Praha) 2019; 65:11-23. [PMID: 31171078 DOI: 10.14712/fb2019065010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Acute myeloid leukaemia (AML) is the leading form of fatal acute leukaemia in adults. AML is a heterogeneous disease with respect to responsible mutations and chromosomal abnormalities as well as to their clinicopathological image. In recent years, great progress has been made in techniques allowing detection of genetic changes in both de novo AML and in secondary AML induced by other haematological disorders or therapy, and in detection of residual disease after therapy. Accumulated knowledge allowed better understanding of the molecules and mechanisms involved not only in the formation and expansion of a primary leukaemia-founding clone, but also of a temporal order of changes leading to the fully malignant phenotype. The recent knowledge of bone marrow (BM) compartments and interrelations among various BM resident and recruited cell types helps in understanding the AML development. The progress in the techniques and knowledge will result in the development and use of molecularly targeted therapies tailored to individual patient needs.
Collapse
Affiliation(s)
- M Dvořák
- Department of Cell Differentiation, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - M Dvořáková
- Department of Cell Differentiation, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| |
Collapse
|
123
|
Nurminen V, Neme A, Seuter S, Carlberg C. Modulation of vitamin D signaling by the pioneer factor CEBPA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:96-106. [PMID: 30550771 DOI: 10.1016/j.bbagrm.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 01/31/2023]
Abstract
The myeloid master regulator CCAAT enhancer-binding protein alpha (CEBPA) is known as a pioneer factor. In this study, we report the CEBPA cistrome of THP-1 human monocytes after stimulation with the vitamin D receptor (VDR) ligand 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) for 2, 8 and 24 h. About a third of the genomic VDR binding sites co-located with those of CEBPA. In parallel, the binding strength of 5% of the CEBPA cistrome, i.e. some 1500 sites, is significantly (p < 0.001) affected by 1,25(OH)2D3. Transcriptome-wide analysis after CEBPA silencing indicated that the pioneer factor enhances both the basal expression and ligand inducibility of 70 vitamin D target genes largely involved in lipid signaling and metabolism. In contrast, CEBPA suppresses 82 vitamin D target genes many of which are related to the modulation of T cell activity by monocytes. The inducibility of the promoter-specific histone marker H3K4me3 distinguishes the former class of genes from the latter. Moreover, prominent occupancy of the myeloid pioneer factor PU.1 on 1,25(OH)2D3-sensitive CEBPA enhancers mechanistically explains the dichotomy of vitamin D target genes. In conclusion, CEBPA supports vitamin D signaling concerning actions of the innate immune system, but uses the antagonism with PU.1 for suppressing possible overreactions of adaptive immunity.
Collapse
Affiliation(s)
- Veijo Nurminen
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Antonio Neme
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Sabine Seuter
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
124
|
Wen F, Cao YX, Luo ZY, Liao P, Lu ZW. LncRNA MALAT1 promotes cell proliferation and imatinib resistance by sponging miR-328 in chronic myelogenous leukemia. Biochem Biophys Res Commun 2018; 507:1-8. [DOI: 10.1016/j.bbrc.2018.09.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|
125
|
Sardina JL, Collombet S, Tian TV, Gómez A, Di Stefano B, Berenguer C, Brumbaugh J, Stadhouders R, Segura-Morales C, Gut M, Gut IG, Heath S, Aranda S, Di Croce L, Hochedlinger K, Thieffry D, Graf T. Transcription Factors Drive Tet2-Mediated Enhancer Demethylation to Reprogram Cell Fate. Cell Stem Cell 2018; 23:727-741.e9. [DOI: 10.1016/j.stem.2018.08.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/07/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
|
126
|
Gu X, Ebrahem Q, Mahfouz RZ, Hasipek M, Enane F, Radivoyevitch T, Rapin N, Przychodzen B, Hu Z, Balusu R, Cotta CV, Wald D, Argueta C, Landesman Y, Martelli MP, Falini B, Carraway H, Porse BT, Maciejewski J, Jha BK, Saunthararajah Y. Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates. J Clin Invest 2018; 128:4260-4279. [PMID: 30015632 PMCID: PMC6159976 DOI: 10.1172/jci97117] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 07/10/2018] [Indexed: 12/23/2022] Open
Abstract
Nucleophosmin (NPM1) is among the most frequently mutated genes in acute myeloid leukemia (AML). It is not known, however, how the resulting oncoprotein mutant NPM1 is leukemogenic. To reveal the cellular machinery in which NPM1 participates in myeloid cells, we analyzed the endogenous NPM1 protein interactome by mass spectrometry and discovered abundant amounts of the master transcription factor driver of monocyte lineage differentiation PU.1 (also known as SPI1). Mutant NPM1, which aberrantly accumulates in cytoplasm, dislocated PU.1 into cytoplasm with it. CEBPA and RUNX1, the master transcription factors that collaborate with PU.1 to activate granulomonocytic lineage fates, remained nuclear; but without PU.1, their coregulator interactions were toggled from coactivators to corepressors, repressing instead of activating more than 500 granulocyte and monocyte terminal differentiation genes. An inhibitor of nuclear export, selinexor, by locking mutant NPM1/PU.1 in the nucleus, activated terminal monocytic fates. Direct depletion of the corepressor DNA methyltransferase 1 (DNMT1) from the CEBPA/RUNX1 protein interactome using the clinical drug decitabine activated terminal granulocytic fates. Together, these noncytotoxic treatments extended survival by more than 160 days versus vehicle in a patient-derived xenotransplant model of NPM1/FLT3-mutated AML. In sum, mutant NPM1 represses monocyte and granulocyte terminal differentiation by disrupting PU.1/CEBPA/RUNX1 collaboration, a transforming action that can be reversed by pharmacodynamically directed dosing of clinical small molecules.
Collapse
Affiliation(s)
- Xiaorong Gu
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Quteba Ebrahem
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Reda Z. Mahfouz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Metis Hasipek
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Francis Enane
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, and Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bartlomiej Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zhenbo Hu
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ramesh Balusu
- Department of Internal Medicine, Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Claudiu V. Cotta
- Department of Clinical Pathology, Tomsich Pathology Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - David Wald
- Department of Clinical Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | - Maria Paola Martelli
- Institute of Hematology, Center for Research in Hematology-Oncology (CREO), University of Perugia, Perugia, Italy
| | - Brunangelo Falini
- Institute of Hematology, Center for Research in Hematology-Oncology (CREO), University of Perugia, Perugia, Italy
| | - Hetty Carraway
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bo T. Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, and Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Babal K. Jha
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
127
|
Williams SC, Angerer ND, Johnson PF. C/EBP proteins contain nuclear localization signals imbedded in their basic regions. Gene Expr 2018; 6:371-85. [PMID: 9495318 PMCID: PMC6148256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The C/EBP-related proteins (C/EBPalpha, CRP1, C/EBPbeta, and C/EBPdelta) form a subfamily of bZIP (basic region/leucine zipper) transcription factors that display sequence homology within the bZIP domain. The conserved basic region contains two motifs that exhibit significant homology to the bipartite nuclear localization signal (NLS) first described in nucleoplasmin. CRP1 and C/EBPbeta proteins bearing deletions of the basic region accumulate in the cytoplasm, in contrast to their normal nuclear location. Analysis of chimeric proteins consisting of CRP1 basic region sequences fused to beta-galactosidase revealed that the CRP1 basic region contains a single NLS that differs from conventional bipartite signals in two ways. First, mutation of a pair of arginine residues at the N-terminus of the proposed NLS does not disrupt its function. Second, the CRP1 NLS requires additional nonbasic residues at its C-terminus. A basic residue within the CRP1 NLS that is not conserved within the C/EBP family is occupied instead by an uncharged residue in C/EBPalpha and C/EBPbeta. When this nonconserved arginine residue was changed to alanine the CRP1 NLS behaved as a classical bipartite signal, suggesting that bipartite NLSs are present in all family members but that NLSs of the individual members differ slightly. Additionally, mutation of critical NLS residues in the intact CRP1 and C/EBPbeta proteins showed that these elements exhibit more bipartite-like characteristics when present in their normal sequence context. Finally, we observed that a C/EBPbeta protein lacking its NLS can be localized to the nucleus when coexpressed with C/EBPalpha, indicating that a single NLS is sufficient to promote nuclear transport of a bZIP dimer.
Collapse
Affiliation(s)
- Simon C. Williams
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Nicholas D. Angerer
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Peter F. Johnson
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702-1201
- Address correspondence to Peter F. Johnson. Tel: (301) 846-1627; Fax: (301) 846-5991; E-mail:
| |
Collapse
|
128
|
Nagai K, Hou L, Li L, Nguyen B, Seale T, Shirley C, Ma H, Levis M, Ghiaur G, Duffield A, Small D. Combination of ATO with FLT3 TKIs eliminates FLT3/ITD+ leukemia cells through reduced expression of FLT3. Oncotarget 2018; 9:32885-32899. [PMID: 30250637 PMCID: PMC6152471 DOI: 10.18632/oncotarget.25972] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/02/2022] Open
Abstract
Acute myeloid leukemia (AML) patients with FLT3/ITD mutations have a poor prognosis. Monotherapy with selective FLT3 tyrosine kinase inhibitors (TKIs) have shown transient and limited efficacy due to the development of resistance. Arsenic trioxide (ATO, As2O3) has been proven effective in treating acute promyelocytic leukemia (APL) and has shown activity in some cases of refractory and relapsed AML and other hematologic malignances. We explored the feasibility of combining FLT3 TKIs with ATO in the treatment of FLT3/ITD+ leukemias. The combination of FLT3 TKIs with ATO showed synergistic effects in reducing proliferation, viability and colony forming ability, and increased apoptosis in FLT3/ITD+ cells and primary patient samples. In contrast, no cooperativity was observed against wild-type FLT3 leukemia cells. ATO reduced expression of FLT3 RNA and its upstream transcriptional regulators (HOXA9, MEIS1), and induced poly-ubiquitination and degradation of the FLT3 protein, partly through reducing its binding with USP10. ATO also synergizes with FLT3 TKIs to inactivate FLT3 autophosphorylation and phosphorylation of its downstream signaling targets, including STAT5, AKT and ERK. Furthermore, ATO combined with sorafenib, a FLT3 TKI, in vivo reduced growth of FLT3/ITD+ leukemia cells in NSG recipients. In conclusion, these results suggest that ATO is a potential candidate to study in clinical trials in combination with FLT3 TKIs to improve the treatment of FLT3/ITD+ leukemia.
Collapse
Affiliation(s)
- Kozo Nagai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lihong Hou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Li Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bao Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tessa Seale
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney Shirley
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hayley Ma
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Levis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gabriel Ghiaur
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Duffield
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald Small
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
129
|
Styryl Quinazolinones as Potential Inducers of Myeloid Differentiation via Upregulation of C/EBPα. Molecules 2018; 23:molecules23081938. [PMID: 30081475 PMCID: PMC6222906 DOI: 10.3390/molecules23081938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022] Open
Abstract
The CCAAT enhancer-binding protein α (C/EBPα) plays an important role in myeloid cell differentiation and in the enhancement of C/EBPα expression/activity, which can lead to granulocytic differentiation in acute myeloid leukemia (AML) cells. We found that styryl quinazolinones induce upregulation of C/EBPα expression, and thereby induce myeloid differentiation in human myeloid leukemia cell lines. We screened a series of active styryl quinazolinones and evaluated the structure⁻activity relationship (SAR) of these small molecules in inducing C/EBPα expression-thereby prompting the leukemic cells to differentiate. We observed that compound 78 causes differentiation at 3 μM concentration, while 1 induces differentiation at 10 μM concentration. We also observed an increase in the expression of neutrophil differentiation marker CD11b upon treatment with 78. Both the C/EBPα and C/EBPε levels were found to be upregulated by treatment with 78. These SAR findings are inspiration to develop further modified styryl quinazolinones, in the path of this novel differentiation therapy, which can contribute to the care of patients with AML.
Collapse
|
130
|
Nakamura M, Wu L, Griffin JD, Kojika S, Goi K, Inukai T, Sugita K. Notch1 activation enhances proliferation via activation of cdc2 and delays differentiation of myeloid progenitors. Leuk Res 2018; 72:34-44. [PMID: 30086426 DOI: 10.1016/j.leukres.2018.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/21/2018] [Accepted: 07/28/2018] [Indexed: 11/16/2022]
Abstract
Accumulating evidence indicates that the Notch signaling pathway has crucial roles in the control of fate decision and differentiation in numerous cell types. However, the role of Notch signaling in regulating proliferation and differentiation of myeloid progenitor cells remains controversial. To elucidate this issue, we modulated Notch activity through transducing a constitutively activated form of Notch1 and/or a dominant-negative form of MAML1 (DNMAML1) into myeloid progenitor 32D cells and assessed their effects on cell proliferation and differentiation. We found that Notch1 activation enhances proliferation and delays granulocytic differentiation of 32D cells. The enhanced proliferation due to activated Notch1 signaling was associated with upregulation of c-Myc, followed by decreased expression of p21 and p27, and increased cdc2 kinase activity, through a mechanism that was not blocked by DNMAML1. Conversely, Notch1 activation significantly delayed granulocytic differentiation and maintained a part of myeloid progenitor cells in an immature stage, and this Notch1-mediated effect was dependent on MAML. The Notch1-induced effects on mye myeloid cell proliferation and differentiation were likely mediated by induction of c-Myc and repression of PU.1, respectively. Thus, Notch1 signaling plays an important part in modulating proliferation and differentiation in MAML-independent and -dependent manners and promoting expansion of myeloid progenitors.
Collapse
Affiliation(s)
- Makoto Nakamura
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamamashi 409-3898, Japan.
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, UF health Cancer Center, University of Florida, 1376 Mowry Rd, Gainesville, FL 32610-3363, United States
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, United States
| | - Satoru Kojika
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamamashi 409-3898, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamamashi 409-3898, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamamashi 409-3898, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamamashi 409-3898, Japan
| |
Collapse
|
131
|
Guo H, Barberi T, Suresh R, Friedman AD. Progression from the Common Lymphoid Progenitor to B/Myeloid PreproB and ProB Precursors during B Lymphopoiesis Requires C/EBPα. THE JOURNAL OF IMMUNOLOGY 2018; 201:1692-1704. [PMID: 30061199 DOI: 10.4049/jimmunol.1800244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
Abstract
The C/EBPα transcription factor is required for myelopoiesis, with prior observations suggesting additional contributions to B lymphopoiesis. Cebpa expression is evident in common lymphoid progenitor (CLP) and preproB cells but is absent in proB and preB cells. We previously observed that marrow lacking the Cebpa +37 kb enhancer is impaired in producing B cells upon competitive transplantation. Additionally, a Cebpa enhancer/promoter-hCD4 transgene is expressed in B/myeloid CFU. Extending these findings, pan-hematopoietic murine Cebpa enhancer deletion using Mx1-Cre leads to expanded CLP, fewer preproB cells, markedly reduced proB and preB cells, and reduced mature B cells, without affecting T cell numbers. In contrast, enhancer deletion at the proB stage using Mb1-Cre does not impair B cell maturation. Further evaluation of CLP reveals that the Cebpa transgene is expressed almost exclusively in Flt3+ multipotent CLP versus B cell-restricted Flt3- CLP. In vitro, hCD4+ preproB cells produce both B and myeloid cells, whereas hCD4- preproB cells only produce B cells. Additionally, a subset of hCD4- preproB cells express high levels of RAG1-GFP, as seen also in proB cells. Global gene expression analysis indicates that hCD4+ preproB cells express proliferative pathways, whereas B cell development and signal transduction pathways predominate in hCD4- preproB cells. Consistent with these changes, Cebpa enhancer-deleted preproB cells downmodulate cell cycle pathways while upregulating B cell signaling pathways. Collectively, these findings indicate that C/EBPα is required for Flt3+ CLP maturation into preproB cells and then for proliferative Cebpaint B/myeloid preproB cells to progress to Cebpalo B cell-restricted preproB cells and finally to Cebpaneg proB cells.
Collapse
Affiliation(s)
- Hong Guo
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Theresa Barberi
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Rahul Suresh
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| |
Collapse
|
132
|
Chlebowska-Tuz J, Sokolowska O, Gaj P, Lazniewski M, Firczuk M, Borowiec K, Sas-Nowosielska H, Bajor M, Malinowska A, Muchowicz A, Ramji K, Stawinski P, Sobczak M, Pilch Z, Rodziewicz-Lurzynska A, Zajac M, Giannopoulos K, Juszczynski P, Basak GW, Plewczynski D, Ploski R, Golab J, Nowis D. Inhibition of protein disulfide isomerase induces differentiation of acute myeloid leukemia cells. Haematologica 2018; 103:1843-1852. [PMID: 30002127 PMCID: PMC6278960 DOI: 10.3324/haematol.2018.190231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
A cute myeloid leukemia is a malignant disease of immature myeloid cells. Despite significant therapeutic effects of differentiation-inducing agents in some acute myeloid leukemia subtypes, the disease remains incurable in a large fraction of patients. Here we show that SK053, a thioredoxin inhibitor, induces differentiation and cell death of acute myeloid leukemia cells. Considering that thioredoxin knock-down with short hairpin RNA failed to exert antiproliferative effects in one of the acute myeloid leukemia cell lines, we used a biotin affinity probe-labeling approach to identify potential molecular targets for the effects of SK053. Mass spectrometry of proteins precipitated from acute myeloid leukemia cells incubated with biotinylated SK053 used as a bait revealed protein disulfide isomerase as a potential binding partner for the compound. Biochemical, enzymatic and functional assays using fluorescence lifetime imaging confirmed that SK053 binds to and inhibits the activity of protein disulfide isomerase. Protein disulfide isomerase knockdown with short hairpin RNA was associated with inhibition of cell growth, increased CCAAT enhancer-binding protein α levels, and induction of differentiation of HL-60 cells. Molecular dynamics simulation followed by the covalent docking indicated that SK053 binds to the fourth thioredoxin-like domain of protein disulfide isomerase. Differentiation of myeloid precursor cells requires the activity of CCAAT enhancer-binding protein α, the function of which is impaired in acute myeloid leukemia cells through various mechanisms, including translational block by protein disulfide isomerase. SK053 increased the levels of CCAAT enhancer-binding protein α and upregulated mRNA levels for differentiation-associated genes. Finally, SK053 decreased the survival of blasts and increased the percentage of cells expressing the maturation-associated CD11b marker in primary cells isolated from bone marrow or peripheral blood of patients with acute myeloid leukemia. Collectively, these results provide a proof-of-concept that protein disulfide isomerase inhibition has potential as a therapeutic strategy for the treatment of acute myeloid leukemia and for the development of small-molecule inhibitors of protein disulfide isomerase.
Collapse
Affiliation(s)
- Justyna Chlebowska-Tuz
- Department of Immunology, Medical University of Warsaw.,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw
| | - Olga Sokolowska
- Department of Immunology, Medical University of Warsaw.,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw.,Postgraduate School of Molecular Medicine, Medical University of Warsaw
| | - Pawel Gaj
- Department of Immunology, Medical University of Warsaw.,Laboratory of Human Cancer Genetics, Center of New Technologies, University of Warsaw
| | - Michal Lazniewski
- Laboratory of Functional and Structural Genomics, Center of New Technologies, University of Warsaw.,Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw
| | | | | | - Hanna Sas-Nowosielska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw
| | | | - Agata Malinowska
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw
| | | | - Kavita Ramji
- Department of Immunology, Medical University of Warsaw
| | - Piotr Stawinski
- Department of Medical Genetics, Center of Biostructure Research, Medical University of Warsaw
| | - Mateusz Sobczak
- Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw
| | - Zofia Pilch
- Department of Immunology, Medical University of Warsaw
| | | | - Malgorzata Zajac
- Department of Experimental Hematooncology, Medical University of Lublin
| | | | - Przemyslaw Juszczynski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw
| | - Grzegorz W Basak
- Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Center of New Technologies, University of Warsaw.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw
| | - Rafal Ploski
- Department of Medical Genetics, Center of Biostructure Research, Medical University of Warsaw
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw .,Center for Preclinical Research and Technology, Medical University of Warsaw
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw .,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw.,Genomic Medicine, Medical University of Warsaw, Poland
| |
Collapse
|
133
|
Regulation of Expression of CEBP Genes by Variably Expressed Vitamin D Receptor and Retinoic Acid Receptor α in Human Acute Myeloid Leukemia Cell Lines. Int J Mol Sci 2018; 19:ijms19071918. [PMID: 29966306 PMCID: PMC6073189 DOI: 10.3390/ijms19071918] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/24/2022] Open
Abstract
All-trans-retinoic acid (ATRA) and 1α,25-dihydroxyvitamin D (1,25D) are potent inducers of differentiation of myeloid leukemia cells. During myeloid differentiation specific transcription factors are expressed at crucial developmental stages. However, precise mechanism controlling the diversification of myeloid progenitors is largely unknown, CCAAT/enhancer-binding protein (C/EBP) transcription factors have been characterized as key regulators of the development and function of the myeloid system. Past data point at functional redundancy among C/EBP family members during myeloid differentiation. In this study, we show that in acute myeloid leukemia (AML) cells, high expression of vitamin D receptor gene (VDR) is needed for strong and sustained upregulation of CEBPB gene, while the moderate expression of VDR is sufficient for upregulation of CEBPD in response to 1,25D. The high expression level of the gene encoding for retinoic acid receptor α (RARA) allows for high and sustained expression of CEBPB, which becomes decreased along with a decrease of RARA expression. Expression of CEBPB induced by ATRA is accompanied by upregulated expression of CEBPE with similar kinetics. Our results suggest that CEBPB is the major VDR and RARA-responsive gene among the CEBP family, necessary for expression of genes connected with myeloid functions.
Collapse
|
134
|
Cheung P, Vallania F, Warsinske HC, Donato M, Schaffert S, Chang SE, Dvorak M, Dekker CL, Davis MM, Utz PJ, Khatri P, Kuo AJ. Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging. Cell 2018; 173:1385-1397.e14. [PMID: 29706550 PMCID: PMC5984186 DOI: 10.1016/j.cell.2018.03.079] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/27/2018] [Accepted: 03/28/2018] [Indexed: 12/17/2022]
Abstract
Post-translational modifications of histone proteins and exchanges of histone variants of chromatin are central to the regulation of nearly all DNA-templated biological processes. However, the degree and variability of chromatin modifications in specific human immune cells remain largely unknown. Here, we employ a highly multiplexed mass cytometry analysis to profile the global levels of a broad array of chromatin modifications in primary human immune cells at the single-cell level. Our data reveal markedly different cell-type- and hematopoietic-lineage-specific chromatin modification patterns. Differential analysis between younger and older adults shows that aging is associated with increased heterogeneity between individuals and elevated cell-to-cell variability in chromatin modifications. Analysis of a twin cohort unveils heritability of chromatin modifications and demonstrates that aging-related chromatin alterations are predominantly driven by non-heritable influences. Together, we present a powerful platform for chromatin and immunology research. Our discoveries highlight the profound impacts of aging on chromatin modifications.
Collapse
Affiliation(s)
- Peggie Cheung
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Francesco Vallania
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hayley C Warsinske
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michele Donato
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven Schaffert
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah E Chang
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mai Dvorak
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia L Dekker
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Paul J Utz
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Alex J Kuo
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
135
|
Abstract
Neutrophils are essential to the homeostatic mission of safeguarding host tissues, responding rapidly and diversely to breaches of the host's barriers to infection, and returning tissues to a sterile state. In response to specific stimuli, neutrophils extrude modified chromatin structures decorated with specific cytoplasmic and granular proteins called neutrophil extracellular traps (NETs). Several pathways lead to this unique form of cell death (NETosis). Extracellular chromatin may have evolved to defend eukaryotic organisms against infection, and its release has at least three functions: trapping and killing of microbes, amplifying immune responses, and inducing coagulation. Here we review neutrophil development and heterogeneity with a focus on NETs, NET formation, and their relevance in host defense and disease.
Collapse
|
136
|
Shyamsunder P, Sankar H, Mayakonda A, Han L, Nordin HBM, Woon TW, Shanmugasundaram M, Dakle P, Madan V, Koeffler HP. CARD10, a CEBPE target involved in granulocytic differentiation. Haematologica 2018; 103:1269-1277. [PMID: 29773596 PMCID: PMC6068032 DOI: 10.3324/haematol.2018.190280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022] Open
Abstract
Maturation of granulocytes is dependent on controlled gene expression by myeloid lineage restricted transcription factors. CEBPE is one of the essential transcription factors required for granulocytic differentiation. Identification of downstream targets of CEBPE is vital to understand better its role in terminal granulopoiesis. In this study, we have identified Card10 as a novel target of CEBPE. We show that CEBPE binds to regulatory elements upstream of the murine Card10 locus, and expression of CARD10 is significantly reduced in Cebpe knock-out mice. Silencing Card10 in a human cell line and in murine primary cells impaired granulopoiesis, affecting expression of genes involved in myeloid cell development and function. Taken together, our data demonstrate for the first time that Card10 is expressed in granulocytes and is a direct target of CEBPE with functions extending to myeloid differentiation.
Collapse
Affiliation(s)
- Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Haresh Sankar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Lin Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | | | - Teoh Weoi Woon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA.,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital, Singapore
| |
Collapse
|
137
|
Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proc Natl Acad Sci U S A 2018; 114:5792-5799. [PMID: 28584084 DOI: 10.1073/pnas.1610622114] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Blood cells are derived from a common set of hematopoietic stem cells, which differentiate into more specific progenitors of the myeloid and lymphoid lineages, ultimately leading to differentiated cells. This developmental process is controlled by a complex regulatory network involving cytokines and their receptors, transcription factors, and chromatin remodelers. Using public data and data from our own molecular genetic experiments (quantitative PCR, Western blot, EMSA) or genome-wide assays (RNA-sequencing, ChIP-sequencing), we have assembled a comprehensive regulatory network encompassing the main transcription factors and signaling components involved in myeloid and lymphoid development. Focusing on B-cell and macrophage development, we defined a qualitative dynamical model recapitulating cytokine-induced differentiation of common progenitors, the effect of various reported gene knockdowns, and the reprogramming of pre-B cells into macrophages induced by the ectopic expression of specific transcription factors. The resulting network model can be used as a template for the integration of new hematopoietic differentiation and transdifferentiation data to foster our understanding of lymphoid/myeloid cell-fate decisions.
Collapse
|
138
|
Kunchala P, Kuravi S, Jensen R, McGuirk J, Balusu R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev 2018; 32:167-183. [DOI: 10.1016/j.blre.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022]
|
139
|
The interplay between critical transcription factors and microRNAs in the control of normal and malignant myelopoiesis. Cancer Lett 2018; 427:28-37. [PMID: 29673909 DOI: 10.1016/j.canlet.2018.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 01/04/2023]
Abstract
Myelopoiesis is a complex process driven by essential transcription factors, including C/EBPα, PU.1, RUNX1, KLF4 and IRF8. Together, these factors are critical for the control of myeloid progenitor cell expansion and lineage determination in the development of granulocytes and monocytes/macrophages. MicroRNAs (miRNAs) are expressed in a cell type and lineage specific manner. There is increasing evidence that miRNAs fine-tune the expression of hematopoietic lineage-specific transcription factors and drive the lineage decisions of hematopoietic progenitor cells. In this review, we discuss recently discovered self-activating and feed-back mechanisms in which transcription factors and miRNAs interact during myeloid cell development. Furthermore, we delineate how some of these mechanisms are affected in acute myeloid leukemia (AML) and how disrupted transcription factor-miRNA interplays contribute to leukemogenesis.
Collapse
|
140
|
Chen W, Zhu G, Jules J, Nguyen D, Li YP. Monocyte-Specific Knockout of C/ebpα Results in Osteopetrosis Phenotype, Blocks Bone Loss in Ovariectomized Mice, and Reveals an Important Function of C/ebpα in Osteoclast Differentiation and Function. J Bone Miner Res 2018; 33:691-703. [PMID: 29149533 PMCID: PMC6240465 DOI: 10.1002/jbmr.3342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 01/26/2023]
Abstract
CCAAT/enhancer-binding protein α (C/ebpα) is critical for osteoclastogenesis by regulating osteoclast (OC) lineage commitment and is also important for OC differentiation and function in vitro. However, the role of C/ebpα in postnatal skeletal development has not been reported owing to lethality in C/ebpα-/- mice from hypoglycemia within 8 hours after birth. Herein, we generated conditional knockout mice by deleting the C/ebpα gene in monocyte via LysM-Cre to examine its role in OC differentiation and function. C/ebpαf/f LysM-Cre mice exhibited postnatal osteopetrosis due to impaired osteoclastogenesis, OC lineage priming defects, as well as defective OC differentiation and activity. Furthermore, our ex vivo analysis demonstrated that C/ebpα conditional deletion significantly reduced OC differentiation, maturation, and activity while mildly repressing macrophage development. At the molecular level, C/ebpα deficiency significantly suppresses the expressions of OC genes associated with early stages of osteoclastogenesis as well as genes associated with OC differentiation and activity. We also identified numerous C/ebpα critical cis-regulatory elements on the Cathepsin K promoter that allow C/ebpα to significantly upregulate Cathepsin K expression during OC differentiation and activity. In pathologically induced mouse model of osteoporosis, C/ebpα deficiency can protect mice against ovariectomy-induced bone loss, uncovering a central role for C/ebpα in osteolytic diseases. Collectively, our findings have further established C/ebpα as a promising therapeutic target for bone loss by concurrently targeting OC lineage priming, differentiation, and activity. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Guochun Zhu
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Joel Jules
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Diep Nguyen
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Yi-Ping Li
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| |
Collapse
|
141
|
Kardosova M, Zjablovskaja P, Danek P, Angelisova P, de Figueiredo-Pontes LL, Welner RS, Brdicka T, Lee S, Tenen DG, Alberich-Jorda M. C/EBPγ is dispensable for steady-state and emergency granulopoiesis. Haematologica 2018; 103:e331-e335. [PMID: 29567783 DOI: 10.3324/haematol.2017.173781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Miroslava Kardosova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Cell Biology, Charles University, Faculty of Science, Prague, Czech Republic
| | - Polina Zjablovskaja
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,CLIP-Childhood Leukaemia Investigation, Prague, Czech Republic.,Department of Paediatric Haematology and Oncology, Charles University, Second Faculty of Medicine, Prague, Czech Republic
| | - Petr Danek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Angelisova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lorena Lobo de Figueiredo-Pontes
- Hematology/Oncology Division of the Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Brazil
| | - Robert S Welner
- Hematology/Oncology Department, University of Alabama at Birmingham, AL, USA
| | - Tomas Brdicka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sanghoon Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, Singapore.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Meritxell Alberich-Jorda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic .,CLIP-Childhood Leukaemia Investigation, Prague, Czech Republic.,Department of Paediatric Haematology and Oncology, Charles University, Second Faculty of Medicine, Prague, Czech Republic
| |
Collapse
|
142
|
Gianni M, Fratelli M, Bolis M, Kurosaki M, Zanetti A, Paroni G, Rambaldi A, Borleri G, Rochette-Egly C, Terao M, Garattini E. RARα2 and PML-RAR similarities in the control of basal and retinoic acid induced myeloid maturation of acute myeloid leukemia cells. Oncotarget 2018; 8:37041-37060. [PMID: 27419624 PMCID: PMC5514891 DOI: 10.18632/oncotarget.10556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/01/2016] [Indexed: 02/02/2023] Open
Abstract
Treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) is the first example of targeted therapy. In fact, the oncogenic fusion-protein (PML-RAR) typical of this leukemia contains the retinoid-nuclear-receptor RARα. PML-RAR is responsible for the differentiation block of the leukemic blast. Besides PML-RAR, two endogenous RARα proteins are present in APL blasts, i.e. RARα1 and RARα2. We developed different cell populations characterized by PML-RAR, RARα2 and RARα1 knock-down in the APL-derived NB4 cell-line. Unexpectedly, silencing of PML-RAR and RARα2 results in similar increases in the constitutive expression of several granulocytic differentiation markers. This is accompanied by enhanced expression of the same granulocytic markers upon exposure of the NB4 blasts to ATRA. Silencing of PML-RAR and RARα2 causes also similar perturbations in the whole genome gene-expression profiles of vehicle and ATRA treated NB4 cells. Unlike PML-RAR and RARα2, RARα1 knock-down blocks ATRA-dependent induction of several granulocytic differentiation markers. Many of the effects on myeloid differentiation are confirmed by over-expression of RARα2 in NB4 cells. RARα2 action on myeloid differentiation does not require the presence of PML-RAR, as it is recapitulated also upon knock-down in PML-RAR-negative HL-60 cells. Thus, relative to RARα1, PML-RAR and RARα2 exert opposite effects on APL-cell differentiation. These contrasting actions may be related to the fact that both PML-RAR and RARα2 interact with and inhibit the transcriptional activity of RARα1. The interaction surface is located in the carboxy-terminal domain containing the D/E/F regions and it is influenced by phosphorylation of Ser-369 of RARα1.
Collapse
Affiliation(s)
- Maurizio Gianni
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - Adriana Zanetti
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - Gabriela Paroni
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Gianmaria Borleri
- Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Cecile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 67404 Illkirch Cedex, France
| | - Mineko Terao
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milano, Italy
| |
Collapse
|
143
|
Hasan S, Naqvi AR, Rizvi A. Transcriptional Regulation of Emergency Granulopoiesis in Leukemia. Front Immunol 2018; 9:481. [PMID: 29593731 PMCID: PMC5858521 DOI: 10.3389/fimmu.2018.00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/23/2018] [Indexed: 12/16/2022] Open
Abstract
Neutropenic conditions are prevalent in leukemia patients and are often associated with increased susceptibility to infections. In fact, emergency granulopoiesis (EG), a process regulating neutrophil homeostasis in inflammatory conditions and infections, may occur improperly in leukemic conditions, leading to reduced neutrophil counts. Unfortunately, the mechanisms central to dysfunctional EG remain understudied in both leukemia patients and leukemic mouse models. However, despite no direct studies on EG response in leukemia are reported, recently certain transcription factors (TFs) have been found to function at the crossroads of leukemia and EG. In this review, we present an update on TFs that can potentially govern the fate of EG in leukemia. Transcriptional control of Fanconi DNA repair pathway genes is also highlighted, as well as the newly discovered role of Fanconi proteins in innate immune response and EG. Identifying the TFs regulating EG in leukemia and dissecting their underlying mechanisms may facilitate the discovery of therapeutic drugs for the treatment of neutropenia.
Collapse
Affiliation(s)
- Shirin Hasan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Afsar R Naqvi
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL, United States
| | - Asim Rizvi
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
144
|
Li W, Cooley LD, August K. Juvenile myelomonocytic leukemia with t(3;5)(q25;q35), Auer rods and marked myelodysplasia. Pathol Res Pract 2018; 214:919-923. [PMID: 29496305 DOI: 10.1016/j.prp.2017.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare aggressive childhood leukemia characterized by an excess proliferation of cells of granulocytic and monocytic lineages. The WHO classifies JMML with the myelodysplastic/myeloproliferative neoplasms. Myelodysplasia in JMML is usually minimal to mild. Auer rods have never been reported in JMML. We present a 2-year-old boy with splenomegaly, leukocytosis, thrombocytopenia, anemia, and excess myeloblasts with easily seen Auer rods, and marked dysgranulopoiesis and dyserythropoiesis. Conventional cytogenetic analysis showed a sole abnormality of t(3;5)(q25;q35). Microarray analysis showed a terminal 21 Mb region of copy-neutral loss of heterozygosity on 19q. Disease-related somatic NRAS mutation was detected. This case represents an unusual JMML with Auer rods and marked myelodysplasia. These unusual histopathologic features may be related to the t(3;5)(q25;q35). A t(3;5) with variable breakpoints has been reported in a small proportion of acute myeloid leukemias and myelodysplastic syndromes. To our knowledge, this is the first JMML case reported with this translocation.
Collapse
Affiliation(s)
- Weijie Li
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, USA.
| | - Linda D Cooley
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, USA
| | - Keith August
- Division of Hematology/Oncology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, USA
| |
Collapse
|
145
|
Chen W, Zhu G, Tang J, Zhou HD, Li YP. C/ebpα controls osteoclast terminal differentiation, activation, function, and postnatal bone homeostasis through direct regulation of Nfatc1. J Pathol 2018; 244:271-282. [PMID: 29083488 PMCID: PMC6240466 DOI: 10.1002/path.5001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022]
Abstract
Osteoclast lineage commitment and differentiation have been studied extensively, although the mechanism by which transcription factor(s) control osteoclast terminal differentiation, activation, and function remains unclear. CCAAT/enhancer-binding protein α (C/ebpα) has been reported to be a key regulator of osteoclast cell lineage commitment, yet C/ebpα's roles in osteoclast terminal differentiation, activation and function, and bone homeostasis, under physiological or pathological conditions, have not been studied because newborn C/ebpα-null mice die within several hours after birth. Furthermore, the function of C/ebpα in osteoclast terminal differentiation, activation, and function is largely unknown. Herein, we generated and analyzed an osteoclast-specific C/ebpα conditional knockout (CKO) mouse model via Ctsk-Cre mice and found that C/ebpα-deficient mice exhibited a severe osteopetrosis phenotype due to impaired osteoclast terminal differentiation, activation, and function, including mildly reduced osteoclast number, impaired osteoclast polarization, actin formation, and bone resorption, which demonstrated the novel function of C/ebpα in cell function and terminal differentiation. Interestingly, C/ebpα deficiency did not affect bone formation or monocyte/macrophage development. Our results further demonstrated that C/ebpα deficiency suppressed the expression of osteoclast functional genes, e.g. encoding cathepsin K (Ctsk), Atp6i (Tcirg1), and osteoclast regulator genes, e.g. encoding c-fos (Fos), and nuclear factor of activated T-cells 1 (Nfatc1), while having no effect on Pu.1 (Spi1) expression. Promoter activity mapping and ChIP assay defined the critical cis-regulatory element (CCRE) in the promoter region of Nfatc1, and also showed that the CCREs were directly associated with C/ebpα, which enhanced the promoter's activity. The deficiency of C/ebpα in osteoclasts completely blocked ovariectomy-induced bone loss, indicating that C/ebpα is a promising new target for the treatment of osteolytic diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America,Correspondence to: Yi-Ping Li, Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2606, Fax: 205-975-4919, and Wei Chen, Department of Pathology, University of Alabama at Birmingham, SHEL 815, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2605, Fax: 205-975-4919,
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America
| | - Jun Tang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America
| | - Hou-De Zhou
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America,Correspondence to: Yi-Ping Li, Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2606, Fax: 205-975-4919, and Wei Chen, Department of Pathology, University of Alabama at Birmingham, SHEL 815, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2605, Fax: 205-975-4919,
| |
Collapse
|
146
|
LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBPα-dependent enhancers in AML. Blood 2018; 131:1730-1742. [PMID: 29453291 DOI: 10.1182/blood-2017-09-807024] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/09/2018] [Indexed: 12/16/2022] Open
Abstract
Epigenetic regulators are recurrently mutated and aberrantly expressed in acute myeloid leukemia (AML). Targeted therapies designed to inhibit these chromatin-modifying enzymes, such as the histone demethylase lysine-specific demethylase 1 (LSD1) and the histone methyltransferase DOT1L, have been developed as novel treatment modalities for these often refractory diseases. A common feature of many of these targeted agents is their ability to induce myeloid differentiation, suggesting that multiple paths toward a myeloid gene expression program can be engaged to relieve the differentiation blockade that is uniformly seen in AML. We performed a comparative assessment of chromatin dynamics during the treatment of mixed lineage leukemia (MLL)-AF9-driven murine leukemias and MLL-rearranged patient-derived xenografts using 2 distinct but effective differentiation-inducing targeted epigenetic therapies, the LSD1 inhibitor GSK-LSD1 and the DOT1L inhibitor EPZ4777. Intriguingly, GSK-LSD1 treatment caused global gains in chromatin accessibility, whereas treatment with EPZ4777 caused global losses in accessibility. We captured PU.1 and C/EBPα motif signatures at LSD1 inhibitor-induced dynamic sites and chromatin immunoprecipitation coupled with high-throughput sequencing revealed co-occupancy of these myeloid transcription factors at these sites. Functionally, we confirmed that diminished expression of PU.1 or genetic deletion of C/EBPα in MLL-AF9 cells generates resistance of these leukemias to LSD1 inhibition. These findings reveal that pharmacologic inhibition of LSD1 represents a unique path to overcome the differentiation block in AML for therapeutic benefit.
Collapse
|
147
|
Loke J, Chin PS, Keane P, Pickin A, Assi SA, Ptasinska A, Imperato MR, Cockerill PN, Bonifer C. C/EBPα overrides epigenetic reprogramming by oncogenic transcription factors in acute myeloid leukemia. Blood Adv 2018; 2:271-284. [PMID: 29431622 PMCID: PMC5812331 DOI: 10.1182/bloodadvances.2017012781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by recurrent mutations in the transcription regulatory machinery, resulting in abnormal growth and a block in differentiation. One type of recurrent mutations affects RUNX1, which is subject to mutations and translocations, the latter giving rise to fusion proteins with aberrant transcriptional activities. We recently compared the mechanism by which the products of the t(8;21) and the t(3;21) translocation RUNX1-ETO and RUNX1-EVI1 reprogram the epigenome. We demonstrated that a main component of the block in differentiation in both types of AML is direct repression of the gene encoding the myeloid regulator C/EBPα by both fusion proteins. Here, we examined at the global level whether C/EBPα is able to reverse aberrant chromatin programming in t(8;21) and t(3;21) AML. C/EBPα overexpression does not change oncoprotein expression or globally displace these proteins from their binding sites. Instead, it upregulates a core set of common target genes important for myeloid differentiation and represses genes regulating leukemia maintenance. This study, therefore, identifies common CEBPA-regulated pathways as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Justin Loke
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paulynn Suyin Chin
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Keane
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anna Pickin
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Salam A Assi
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anetta Ptasinska
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria Rosaria Imperato
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter N Cockerill
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Constanze Bonifer
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
148
|
Hu L, Huang W, Bei L, Broglie L, Eklund EA. TP53 Haploinsufficiency Rescues Emergency Granulopoiesis in FANCC-/- Mice. THE JOURNAL OF IMMUNOLOGY 2018; 200:2129-2139. [PMID: 29427417 DOI: 10.4049/jimmunol.1700931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/14/2018] [Indexed: 01/09/2023]
Abstract
Emergency (stress) granulopoiesis is an episodic process for the production of granulocytes in response to infectious challenge. We previously determined that Fanconi C, a component of the Fanconi DNA-repair pathway, is necessary for successful emergency granulopoiesis. Fanconi anemia results from mutation of any gene in this pathway and is characterized by bone marrow failure (BMF) in childhood and clonal progression in adolescence. Although murine Fanconi anemia models exhibit relatively normal steady-state hematopoiesis, FANCC-/- mice are unable to mount an emergency granulopoiesis response. Instead, these mice develop BMF and die during repeated unsuccessful emergency granulopoiesis attempts. In FANCC-/- mice, BMF is associated with extensive apoptosis of hematopoietic stem and progenitor cells through an undefined mechanism. In this study, we find that TP53 haploinsufficiency completely rescues emergency granulopoiesis in FANCC-/- mice and protects them from BMF during repeated emergency granulopoiesis episodes. Instead, such recurrent challenges accelerated clonal progression in FANCC-/-TP53+/- mice. In FANCC-/- mice, BMF during multiple emergency granulopoiesis attempts was associated with increased ataxia telangiectasia and Rad3-related protein (Atr) and p53 activation with each attempt. In contrast, we found progressive attenuation of expression and activity of Atr, and consequent p53 activation and apoptosis, in the bone marrow of FANCC-/-TP53+/- mice during this process. Therefore, activation of Atr-with consequent Fanconi-mediated DNA repair or p53-dependent apoptosis-is an essential component of emergency granulopoiesis and it protects the bone marrow from genotoxic stress during this process.
Collapse
Affiliation(s)
- Liping Hu
- Northwestern University, Chicago, IL 60611
| | - Weiqi Huang
- Northwestern University, Chicago, IL 60611.,Jesse Brown VA Medical Center, Chicago, IL 60612; and
| | - Ling Bei
- Northwestern University, Chicago, IL 60611.,Jesse Brown VA Medical Center, Chicago, IL 60612; and
| | | | - Elizabeth A Eklund
- Northwestern University, Chicago, IL 60611; .,Jesse Brown VA Medical Center, Chicago, IL 60612; and
| |
Collapse
|
149
|
Jules J, Li YP, Chen W. C/EBPα and PU.1 exhibit different responses to RANK signaling for osteoclastogenesis. Bone 2018; 107:104-114. [PMID: 29032174 PMCID: PMC6240464 DOI: 10.1016/j.bone.2017.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 04/14/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022]
Abstract
The transcription factors C/EBPα and PU.1 are upregulated by RANKL through activation of its receptor RANK during osteoclastogenesis and are critical for osteoclast differentiation. Herein we investigated the mechanisms underlying how C/EBPα and PU.1 regulate osteoclast differentiation in response to RANK signaling. We showed that C/EBPα or PU.1 overexpression could initiate osteoclastogenesis and upregulate the expressions of the osteoclast genes encoding the nuclear factor of activated T-cells, C1, cathepsin K, and tartrate-resistant acid phosphatase independently of RANKL. However, while PU.1 upregulated C/EBPα, C/EBPα could not upregulate PU.1. RANK has a unique cytoplasmic domain, 535IVVY538 motif, which is crucial for osteoclast differentiation. We demonstrated that mutational inactivation of RANK IVVY motif blocked osteoclast differentiation and significantly attenuated C/EBPα, but not PU.1, expression, indicating that RANK-IVVY-induced signaling is dispensable to PU.1 upregulation during osteoclastogenesis. However, C/EBPα or PU.1 overexpression failed to promote osteoclastogenesis in cells expressing mutated RANK IVVY motif. We noted that RANK-IVVY-motif inactivation significantly repressed osteoclast genes as compared with a vector control, suggesting that IVVY motif might also negatively regulate osteoclast inhibitors during osteoclastogenesis. Consistently, IVVY-motif inactivation triggered upregulation of RBP-J, a potent osteoclast inhibitor, during osteoclastogenesis. Notably, C/EBPα or PU.1 overexpression in cells expressing mutated RANK IVVY motif failed to control the deregulated RBP-J expression, resulting in repression of osteoclast genes. Accordingly, RBP-J silencing in the mutant cells rescued osteoclastogenesis with C/EBPα or PU.1 overexpression. In conclusion, we revealed that while PU.1 and C/EBPα are critical for osteoclastogenesis, they respond differently to RANKL-induced activation of RANK IVVY motif.
Collapse
Affiliation(s)
- Joel Jules
- Department of Pathology, University of Alabama, Birmingham, AL 35294, United States
| | - Yi-Ping Li
- Department of Pathology, University of Alabama, Birmingham, AL 35294, United States.
| | - Wei Chen
- Department of Pathology, University of Alabama, Birmingham, AL 35294, United States.
| |
Collapse
|
150
|
Yu SH, Zhu KY, Zhang F, Wang J, Yuan H, Chen Y, Jin Y, Dong M, Wang L, Jia XE, Gao L, Dong ZW, Ren CG, Chen LT, Huang QH, Deng M, Zon LI, Zhou Y, Zhu J, Xu PF, Liu TX. The histone demethylase Jmjd3 regulates zebrafish myeloid development by promoting spi1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:106-116. [PMID: 29378332 DOI: 10.1016/j.bbagrm.2017.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023]
Abstract
The histone demethylase Jmjd3 plays a critical role in cell lineage specification and differentiation at various stages of development. However, its function during normal myeloid development remains poorly understood. Here, we carried out a systematic in vivo screen of epigenetic factors for their function in hematopoiesis and identified Jmjd3 as a new epigenetic factor that regulates myelopoiesis in zebrafish. We demonstrated that jmjd3 was essential for zebrafish primitive and definitive myelopoiesis, knockdown of jmjd3 suppressed the myeloid commitment and enhanced the erythroid commitment. Only overexpression of spi1 but not the other myeloid regulators rescued the myeloid development in jmjd3 morphants. Furthermore, preliminary mechanistic studies demonstrated that Jmjd3 could directly bind to the spi1 regulatory region to alleviate the repressive H3K27me3 modification and activate spi1 expression. Thus, our studies highlight that Jmjd3 is indispensable for early zebrafish myeloid development by promoting spi1 expression.
Collapse
Affiliation(s)
- Shan-He Yu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China.
| | - Kang-Yong Zhu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Fan Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Juan Wang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hao Yuan
- Sino-French Research Center for Life Sciences and Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Yi Jin
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Mei Dong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Lei Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Xiao-E Jia
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Lei Gao
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Zhi-Wei Dong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Chun-Guang Ren
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Li-Ting Chen
- Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu-Hua Huang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Min Deng
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Leonard I Zon
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Pediatric Hematology/Oncology at Dana Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Yi Zhou
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Pediatric Hematology/Oncology at Dana Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China.
| | - Peng-Fei Xu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China.
| | - Ting-Xi Liu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China; Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| |
Collapse
|