101
|
Inoue R, Matsuki NA, Jing G, Kanematsu T, Abe K, Hirata M. The inhibitory effect of alendronate, a nitrogen-containing bisphosphonate on the PI3K-Akt-NFkappaB pathway in osteosarcoma cells. Br J Pharmacol 2005; 146:633-41. [PMID: 16100524 PMCID: PMC1751194 DOI: 10.1038/sj.bjp.0706373] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 07/20/2005] [Indexed: 11/09/2022] Open
Abstract
1 Bisphosphonates are inhibitors of tumor cell growth as well as of bone resorption by inducing cell apoptosis. However, little is known regarding the mechanisms by which the drug induces cell apoptosis. The aim of the present study was to determine the effect of alendronate, one of the nitrogen-containing bisphosphonates on the phoshoinositide 3-kinase (PI3K)-Akt-NFkappaB pathway, the major cell survival pathway. 2 The PI3K-Akt-NFkappaB pathway was activated in the osteosarcoma cell line MG-63 treated with tumor necrosis factor-alpha or insulin. Saos-2 was also used in some experiments. This was assessed by the production of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), increased PI3K activity, phosphorylation of Akt at serine 473 and threonine 308, increase in activity of the inhibitor of nuclear factor kappaB (IkappaB) kinase (IKK) and finally phosphorylation of IkappaB and its subsequent degradation. 3 Pretreatment with alendronate at 100 microM for 24 h prior to the stimulation with tumor necrosis factor-alpha or insulin partially inhibited the IkappaB phosphorylation and degradation. These events were more clearly observed in the presence of inhibitors of proteasomes, which are responsible for the degradation of IkappaB. The drug also partially inhibited the activity of IKK, but almost fully inhibited the phosphorylation of Akt and the production of PtdIns(3,4,5)P(3). 4 The inhibitory effect of alendronate on IkappaB phosphorylation and degradation was not attenuated by the exogenous addition of geranylgeraniol to replenish the cytosolic isoprenyl lipid substrate. 5 The present findings demonstrate that alendronate inhibited the PI3K-Akt-NFkappaB cell survival pathway at the point of PI3K activation, thus indicating the presence of new targets of alendronate.
Collapse
Affiliation(s)
- Ryosuke Inoue
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science and Station for Collaborative Research, Kyushu University, Fukuoka 812-8582, Japan
- Special Patient Oral Care Unit of Kyushu University Hospital, Kyushu University, Fukuoka 812-8582, Japan
| | - Nori-aki Matsuki
- Department of Oral and Maxillofacial Oncology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Gao Jing
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science and Station for Collaborative Research, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Kanematsu
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science and Station for Collaborative Research, Kyushu University, Fukuoka 812-8582, Japan
| | - Kihachiro Abe
- Special Patient Oral Care Unit of Kyushu University Hospital, Kyushu University, Fukuoka 812-8582, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science and Station for Collaborative Research, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
102
|
Shin HM, Jung SH, Kim Y. Suppressive effect of novel aromatic diamine compound on nuclear factor-kappaB-dependent expression of inducible nitric oxide synthase in macrophages. Eur J Pharmacol 2005; 521:1-8. [PMID: 16183054 DOI: 10.1016/j.ejphar.2005.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 07/12/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
N1-benzyl-4-methylbenzene-1,2-diamine (BMD) is a novel synthetic compound. In the present study, BMD compound was discovered to inhibit nitric oxide (NO) production in macrophages RAW 264.7. BMD compound attenuated lipopolysaccharide (LPS)-induced synthesis of both mRNA and protein of inducible nitric oxide synthase (iNOS), and inhibited LPS-induced iNOS promoter activity, indicating that the aromatic diamine compound could down-regulate iNOS expression at the transcription level. As a mechanism of the anti-inflammatory action, suppression of BMD compound on nuclear factor (NF)-kappaB activation has been documented. BMD compound exhibited dose-dependent inhibitory effect on LPS-mediated NF-kappaB transcriptional activity in the macrophages. Further, the compound inhibited LPS-mediated nuclear translocation of NF-kappaB p65 and DNA binding activity of NF-kappaB complex, in parallel, but did not affect LPS-mediated degradation of inhibitory kappaBalpha protein (IkappaBalpha). These results indicate that BMD compound could inhibit nuclear localization step of NF-kappaB p65 without affecting IkappaBalpha degradation. Finally, BMD compound could provide an invaluable tool to investigate NF-kappaB-dependent iNOS expression, in addition to its therapeutic potential in NO-associated inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Mo Shin
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju 361-763, Korea
| | | | | |
Collapse
|
103
|
Li Q, Lu Q, Bottero V, Estepa G, Morrison L, Mercurio F, Verma IM. Enhanced NF-kappaB activation and cellular function in macrophages lacking IkappaB kinase 1 (IKK1). Proc Natl Acad Sci U S A 2005; 102:12425-30. [PMID: 16116086 PMCID: PMC1194954 DOI: 10.1073/pnas.0505997102] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IkappaB kinase (IKK) complex plays a key regulatory role in macrophages for NF-kappaB activation during both innate and adaptive immune responses. Because IKK1-/- mice died at birth, we differentiated functional macrophages from embryonic day 15.5 IKK1 mutant embryonic liver. The embryonic liver-derived macrophage (ELDM) showed enhanced phagocytotic clearance of bacteria, more efficient antigen-presenting capacity, elevated secretion of several key proinflammatory cytokines and chemokines, and known NFkappaB target genes. Increased NFkappaB activity in IKK1 mutant ELDM was the result of prolonged degradation of IkappaBalpha in response to infectious pathogens. The delayed restoration of IkappaBalpha in pathogen-activated IKK1-/- ELDM was a direct consequence of uncontrolled IKK2 kinase activity. We hypothesize that IKK1 plays a checkpoint role in the proper control of IkappaBalpha kinase activity in innate and adaptive immunity.
Collapse
Affiliation(s)
- Qiutang Li
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Ortego M, Gómez-Hernández A, Vidal C, Sánchez-Galán E, Blanco-Colio LM, Martín-Ventura JL, Tuñón J, Diaz C, Hernández G, Egido J. HMG-CoA reductase inhibitors reduce I kappa B kinase activity induced by oxidative stress in monocytes and vascular smooth muscle cells. J Cardiovasc Pharmacol 2005; 45:468-75. [PMID: 15821443 DOI: 10.1097/01.fjc.0000159042.50488.e5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reactive oxygen species, such as superoxide anion (O2-) and hydrogen peroxide (H2O2), may act as second messengers of intracellular signaling and play a key role in the pathogenesis of atherosclerosis. The nuclear factor kappaB (NF-kappa B) is a redox-sensitive transcription factor that is involved in this process. The aim of the present study was to investigate the molecular mechanisms of action of statins on cultured vascular smooth muscle cells (VSMC) and monocytic cells (THP-1) under oxidative stress. In THP-1 and cultured VSMC, O2- caused an increase in NF-kappa B activation (P < 0.05) that was correlated with inhibitory I kappa B-alpha degradation. Atorvastatin or simvastatin decreased NF-kappa B activation induced by oxidative stress by around 50% in both cell types and was correlated with the I kappa B-alpha levels. In monocytes, O2- increased I kappa B kinase (IKK)-1 and IKK-2 activity (P < 0.05) and p38 and p42/44 activation and phosphorylation, which was reduced by statins. PD 98059 (p42/44 inhibitor) and SB20358 (p38 inhibitor) decreased NF-kappa B binding activity and prevented I kappa B-alpha degradation. However, we only observed a reduction in IKK-1 and IKK-2 activity with PD98059. Statins diminish NF-kappa B activation elicited by oxidative stress through the inhibition of IKK-1/-2, p38, and p42/44 activation. These data may help to further understand the molecular mechanisms of statins in cardiovascular disease.
Collapse
Affiliation(s)
- Monica Ortego
- Vascular Research Unit, Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Kawakami H, Tomita M, Matsuda T, Ohta T, Tanaka Y, Fujii M, Hatano M, Tokuhisa T, Mori N. Transcriptional activation of survivin through the NF-kappaB pathway by human T-cell leukemia virus type I tax. Int J Cancer 2005; 115:967-74. [PMID: 15729715 DOI: 10.1002/ijc.20954] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Survivin, a unique member of the inhibitor of apoptosis protein family, is overexpressed in many cancers and considered to play an important role in oncogenesis. We previously reported the survivin expression profile in ATL, a CD4-positive T-cell malignancy caused by HTLV-I. HTLV-I Tax is thought to play an important role in immortalization of T cells. We have shown also that the expression of Tax protected the mouse T-cell line CTLL-2 against apoptosis induced by deprivation of IL-2 and converted its growth from being IL-2 dependent to being IL-2 independent through the NF-kappaB pathway. In our study, we demonstrate that constitutive expression of survivin was associated with resistance to apoptosis after IL-2 deprivation in Tax-expressing CTLL-2 cells. Transient transfection assays showed that survivin promoter was transactivated by Tax, via the activation of NF-kappaB. Pharmacological NF-kappaB inhibition resulted in suppression of survivin expression and caused apoptosis of Tax-expressing CTLL-2 cells. Our findings suggest that activated NF-kappaB signaling contributes directly to malignant progression of ATL by preventing apoptosis, acting through the prosurvival protein survivin.
Collapse
Affiliation(s)
- Hirochika Kawakami
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Ear T, Cloutier A, McDonald PP. Constitutive Nuclear Expression of the IκB Kinase Complex and Its Activation in Human Neutrophils. THE JOURNAL OF IMMUNOLOGY 2005; 175:1834-42. [PMID: 16034126 DOI: 10.4049/jimmunol.175.3.1834] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A singular feature of human neutrophils is that they constitutively express substantial amounts of NF-kappaB/Rel proteins and IkappaB-alpha in the nucleus. In this study, we show that in these cells, IkappaB kinase alpha (IKKalpha), IKKbeta, and IKKgamma also partially localize to the nucleus, whereas IKK-related kinases (IKKepsilon, TANK-binding kinase-1) are strictly cytoplasmic, and the NF-kappaB-inducing kinase is strictly nuclear. Following neutrophil activation, IKKbeta and IKKgamma become transiently phosphorylated in both the cytoplasm and nucleus, whereas IKKalpha transiently vanishes from both compartments in what appears to be an IKKbeta-dependent process. These responses are paralleled by the degradation of IkappaB-alpha, and by the phosphorylation of RelA on serine 536, in both compartments. Although both proteins can be IKK substrates, inhibition of IKK prevented IkappaB-alpha phosphorylation, while that of RelA was mostly unaffected. Finally, we provide evidence that the nuclear IKK isoforms (alpha, beta, gamma) associate with chromatin following neutrophil activation, which suggests a potential role in gene regulation. This is the first study to document IKK activation and the phosphorylation of NF-kappaB/Rel proteins in primary neutrophils. More importantly, our findings unveil a hitherto unsuspected mode of activation for the IKK/IkappaB signaling cascade within the cell nucleus.
Collapse
Affiliation(s)
- Thornin Ear
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
107
|
Abstract
NF-kappaB, a family of related transcription factors, has been a focus of intense scientific research during the past decade. Multiple stimuli, both extracellular and intracellular, lead to its activation. The NF-kappaB pathway regulates expression of a diverse array of genes involved in different biological processes. Various pathological states are characterized by the dysregulated NF-kappaB pathway. Recently, NF-kappaB activation has been connected with multiple aspects of oncogenesis and serves as an important mechanism to regulate cell survival in response to chemotherapy by activating different genes that inhibit apoptosis. Several methods of inhibiting NF-kappaB activation, such as antisense oligonucleotides, proteosome inhibitors and RNA interference (RNAi) are currently under investigation. RNAi represents a powerful tool to better define the role of specific genes in different signal transduction pathways and has recently been used to define the function of genes that regulate the NF-kappaB pathway. This review discusses the emerging role of RNAi to dissect the function of regulatory factors in the NF-kappaB pathway and its potential use as a targeted therapy.
Collapse
Affiliation(s)
- Jun Guo
- Division of Hematology-Oncology, Department of Medicine, Harold Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
108
|
Yang Q, Huang W, Jozwik C, Lin Y, Glasman M, Caohuy H, Srivastava M, Esposito D, Gillette W, Hartley J, Pollard HB. Cardiac glycosides inhibit TNF-alpha/NF-kappaB signaling by blocking recruitment of TNF receptor-associated death domain to the TNF receptor. Proc Natl Acad Sci U S A 2005; 102:9631-6. [PMID: 15983368 PMCID: PMC1160519 DOI: 10.1073/pnas.0504097102] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Digitoxin and structurally related cardiac glycoside drugs potently block activation of the TNF-alpha/NF-kappaB signaling pathway. We have hypothesized that the mechanism might be discovered by searching systematically for selective inhibitory action through the entire pathway. We report that the common action of these drugs is to block the TNF-alpha-dependent binding of TNF receptor 1 to TNF receptor-associated death domain. This drug action can be observed with native cells, such as HeLa, and reconstituted systems prepared in HEK293 cells. All other antiinflammatory effects of digitoxin on NF-kappaB and c-Jun N-terminal kinase pathways appear to follow from the blockade of this initial upstream signaling event.
Collapse
Affiliation(s)
- Qingfeng Yang
- Department of Anatomy, Physiology, and Genetics and Institute for Molecular Medicine, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Higuchi M, Matsuda T, Mori N, Yamada Y, Horie R, Watanabe T, Takahashi M, Oie M, Fujii M. Elevated expression of CD30 in adult T-cell leukemia cell lines: possible role in constitutive NF-kappaB activation. Retrovirology 2005; 2:29. [PMID: 15876358 PMCID: PMC1274245 DOI: 10.1186/1742-4690-2-29] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 05/06/2005] [Indexed: 12/17/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) is associated with the development of adult T-cell leukemia (ATL). HTLV-1 encoded Tax1 oncoprotein activates the transcription of genes involved in cell growth and anti-apoptosis through the NF-κB pathway, and is thought to play a critical role in the pathogenesis of ATL. While Tax1 expression is usually lost or minimal in ATL cells, these cells still show high constitutive NF-κB activity, indicating that genetic or epigenetic changes in ATL cells induce activation independent of Tax1. The aim of this study was to identify the molecules responsible for the constitutive activation of NF-κB in ATL cells using a retroviral functional cloning strategy. Results Using enhanced green fluorescent protein (EGFP) expression and blasticidin-resistance as selection markers, several retroviral cDNA clones exhibiting constitutive NF-κB activity in Rat-1 cells, including full-length CD30, were obtained from an ATL cell line. Exogenous stable expression of CD30 in Rat-1 cells constitutively activated NF-κB. Elevated expression of CD30 was identified in all ATL lines examined, and primary ATL cells from a small number of patients (8 out of 66 cases). Conclusion Elevated CD30 expression is considered one of the causes of constitutive NF-κB activation in ATL cells, and may be involved in ATL development.
Collapse
Affiliation(s)
- Masaya Higuchi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Takehiro Matsuda
- Division of Molecular Virology and Oncology, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Naoki Mori
- Division of Molecular Virology and Oncology, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Yasuaki Yamada
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 825-8501, Japan
| | - Ryouichi Horie
- Fourth Department of Internal Medicine, Faculty of Medicine, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
| | - Toshiki Watanabe
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-109, Japan
| | - Masahiko Takahashi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Masayasu Oie
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| |
Collapse
|
110
|
Kubo M, Morisaki T, Matsumoto K, Tasaki A, Yamanaka N, Nakashima H, Kuroki H, Nakamura K, Nakamura M, Katano M. Paclitaxel probably enhances cytotoxicity of natural killer cells against breast carcinoma cells by increasing perforin production. Cancer Immunol Immunother 2005; 54:468-76. [PMID: 15592829 PMCID: PMC11033023 DOI: 10.1007/s00262-004-0617-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 08/31/2004] [Indexed: 10/26/2022]
Abstract
Paclitaxel, a semisynthetic taxane, is one of the most active chemotherapeutic agents for the treatment of patients with breast cancer. We focused on the effect of paclitaxel on the cytotoxicity of natural killer (NK) cells. NK cells were purified by negative selection with magnetic beads from peripheral blood mononuclear cells of healthy volunteers. A human breast carcinoma cell line BT-474 and an NK cell-sensitive erythroleukemia cell line K562 were used as targets. Cytotoxicity of NK cells was determined by 51Cr-release assay with labeled target cells. Paclitaxel (1-100 nM) did not affect cellular viability, and significantly enhanced cytotoxicity of NK cells in a dose-dependent manner. Although paclitaxel did not affect Fas-ligand expression of NK cells, paclitaxel induced mRNA and protein production of perforin, an effector molecule in NK cell-mediated cytotoxicity. Concanamycin A, a potent inhibitor of the perforin-mediated cytotoxic pathway, inhibited paclitaxel-dependent NK cell-mediated cytotoxicity. Furthermore, paclitaxel induced activation of nuclear factor kappa B (NF-kappa B) in NK cells. NF-kappa B inhibitor pyrrolidine dithiocarbamate significantly suppressed both paclitaxel-induced perforin expression and NK cell cytotoxicity. Our results show for the first time that paclitaxel enhances in vitro cytotoxicity of human NK cells. Moreover, our results suggest a significant association between enhanced NK cell cytotoxicity, increased perforin production, and NF-kappa B activation.
Collapse
Affiliation(s)
- Makoto Kubo
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Takashi Morisaki
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Kotaro Matsumoto
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Akira Tasaki
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Naoki Yamanaka
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Hiroshi Nakashima
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Hideo Kuroki
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Katsuya Nakamura
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Masafumi Nakamura
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Mitsuo Katano
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| |
Collapse
|
111
|
Kim BH, Cho SM, Reddy AM, Kim YS, Min KR, Kim Y. Down-regulatory effect of quercitrin gallate on nuclear factor-kappa B-dependent inducible nitric oxide synthase expression in lipopolysaccharide-stimulated macrophages RAW 264.7. Biochem Pharmacol 2005; 69:1577-83. [PMID: 15896337 DOI: 10.1016/j.bcp.2005.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 03/16/2005] [Indexed: 12/27/2022]
Abstract
Quercetin 3-O-beta-(2''-galloyl)-rhamnopyranoside (QGR) is a naturally occurring quercitrin gallate, a polyphenolic compound isolated from Persicaria lapathifolia (Polygonaceae). In the present study, QGR compound was discovered to have inhibitory effect on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated macrophages RAW 264.7. QGR compound attenuated LPS-induced synthesis of both mRNA and protein of inducible nitric oxide synthase (iNOS), in parallel, and inhibited LPS-induced luciferase expression as a reporter of iNOS promoter activity in the macrophages. As a mechanism of the anti-inflammatory action shown by QGR compound, suppression of nuclear factor (NF)-kappaB activation has been documented. QGR compound exhibited inhibitory effect on LPS-mediated NF-kappaB transcriptional activity in macrophages RAW 264.7. Furthermore, the compound inhibited LPS-mediated nuclear translocation of NF-kappaB p65 and DNA binding activity of NF-kappaB complex, in parallel, but did not influence LPS-mediated IkappaBalpha degradation. Taken together, QGR compound suppressed LPS-mediated NF-kappaB activation, specifically to nuclear localization step of NF-kappaB p65, which was attributable to its down-regulatory action on LPS-induced NO production and iNOS expression.
Collapse
Affiliation(s)
- Byung Hak Kim
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
112
|
Uchihara JN, Krensky AM, Matsuda T, Kawakami H, Okudaira T, Masuda M, Ohta T, Takasu N, Mori N. Transactivation of the CCL5/RANTES gene by Epstein-Barr virus latent membrane protein 1. Int J Cancer 2005; 114:747-55. [PMID: 15609310 DOI: 10.1002/ijc.20784] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chemokines and chemokine receptors mediate lymphocyte migration and tissue localization. To analyze CCL5 (RANTES) expression by EBV-infected cells, we examined the expression of CCL5 in BL cell lines. Among 4 BL cell lines, those infected with EBV selectively expressed the CCL5 gene and secreted CCL5. Four cell lines also expressed CCR5, a receptor for CCL5. EBV-encoded LMP-1, a pleiotropic protein that effects gene expression, cell transformation, growth and death, induces expression of CCL5 mRNA and secretion of CCL5 in the EBV-negative BL cell line BJAB and the embryonic kidney cell line 293T. HDACI-stimulated endogenous LMP-1 also induced CCL5 expression in an EBV-positive BL cell line. Analysis of the CCL5 promoter revealed that it is activated by both LMP-1 C-terminal activation domains, CTAR-1 and CTAR-2, which can activate NF-kappaB signaling. Coexpression of IkappaBalpha, IkappaBbeta, IKKalpha, IKKbeta, NIK and TRAF2 dominant-negative constructs, with LMP-1 inhibited the activation of the CCL5 promoter by LMP-1, suggesting that LMP-1 induces CCL5 via NF-kappaB signaling. The NF-kappaB binding sites, R(A/B), located at positions -71 to -43 relative to the putative transcription start site in the CCL5 promoter, were essential for the activation of CCL5 gene expression by LMP-1. These results indicate that the activation of the NF-kappaB pathway by LMP-1 is required for the activation of CCL5 expression.
Collapse
Affiliation(s)
- Jun-Nosuke Uchihara
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Kaiser WJ, Offermann MK. Apoptosis Induced by the Toll-Like Receptor Adaptor TRIF Is Dependent on Its Receptor Interacting Protein Homotypic Interaction Motif. THE JOURNAL OF IMMUNOLOGY 2005; 174:4942-52. [PMID: 15814722 DOI: 10.4049/jimmunol.174.8.4942] [Citation(s) in RCA: 292] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TLRs detect specific molecular features of microorganisms and subsequently engage distinct signaling networks through the differential use of Toll/IL-1R (TIR)-domain-containing adapter proteins. In this study, we investigated the control of apoptosis by the TIR domain-containing adapter proteins MyD88, TIR-domain containing adapter protein (TIRAP), TIR-domain-containing adapter-inducing IFN-beta (TRIF), TRIF-related adapter molecule (TRAM), and sterile alpha motifs and beta-catenin/armadillo repeats (SARM). Upon overexpression, TRIF was the sole TIR-adapter to potently engage mammalian cell death signaling pathways. TRIF-induced cell death required caspase activity initiated by the Fas/Apo-1-associated DD protein-caspase-8 axis and was unaffected by inhibitors of the intrinsic apoptotic machinery. The proapoptotic potential of TRIF mapped to the C-terminal region that was found to harbor a receptor interacting protein (RIP) homotypic interaction motif (RHIM). TRIF physically interacted with the RHIM-containing proteins RIP1 and RIP3, and deletion and mutational analyses revealed that the RHIM in TRIF was essential for TRIF-induced apoptosis and contributed to TRIF-induced NF-kappa B activation. The domain that was required for induction of apoptosis could activate NF-kappa B but not IFN regulatory factor-3, yet the activation of NF-kappa B could be blocked by superrepressor I kappa B alpha without blocking apoptosis. Thus, the ability of TRIF to induce apoptosis was not dependent on its ability to activate either IFN regulatory factor-3 or NF-kappa B but was dependent on the presence of an intact RHIM. TRIF serves as an adaptor for both TLR3 and TLR4, receptors that are activated by dsRNA and LPS, respectively. These molecular motifs are encountered during viral and bacterial infection, and the apoptosis that occurs when TRIF is engaged represents an important host defense to limit the spread of infection.
Collapse
Affiliation(s)
- William J Kaiser
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
114
|
Azran I, Jeang KT, Aboud M. High levels of cytoplasmic HTLV-1 Tax mutant proteins retain a Tax-NF-κB-CBP ternary complex in the cytoplasm. Oncogene 2005; 24:4521-30. [PMID: 15806143 DOI: 10.1038/sj.onc.1208645] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The oncogenic potential of HTLV-1 Tax protein is partially ascribed to its capacity to activate NF-kappaB. The current view is that Tax acts first in the cytoplasm to dissociate NF-kappaB factors from the IkappaB proteins and enable their nuclear translocation, then Tax links p65(RelA), within the nucleus, to CBP/p300 and P/CAF, which are essential for its optimal transcriptional activity. Our present study challenges the paradigm that Tax-p65(RelA)-CBP/p300 assembly occurs in the nucleus. Using Tax mutants defective for nuclear localization we show that at low levels these mutants induce the nuclear translocation of NF-kappaB factors but not their transcriptional activity, whereas at high levels they trap CBP and free p65(RelA) in the cytoplasm and block, thereby, their transcriptional function. In contrast, wild-type (w.t.) Tax strongly stimulated NF-kappaB-dependent gene expression in all tested experimental settings. These data suggest that the Tax-p65(RelA)-CBP ternary complex is established in the cytoplasm rather than in the nucleus. When this complex is formed with w.t. Tax, the entire moiety translocates into the nucleus and exerts high transcriptional activity. However, if the complex is formed with the cytoplasmic Tax mutants, the resulting moiety is retained in the cytoplasm and is, therefore, devoid of transcriptional activity.
Collapse
Affiliation(s)
- Inbal Azran
- Department of Microbiology and Immunology, Cancer Research Center, Faculty of Health Sciences, Ben-Gurion University of Negev, Beer Sheva 84105, Israel
| | | | | |
Collapse
|
115
|
Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, Pitha PM, Fitzgerald KA, Golenbock DT. The Interferon Regulatory Factor, IRF5, Is a Central Mediator of Toll-like Receptor 7 Signaling. J Biol Chem 2005; 280:17005-12. [PMID: 15695821 DOI: 10.1074/jbc.m412584200] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon regulatory factors (IRFs) are critical components of virus-induced immune activation and type I interferon regulation. IRF3 and IRF7 are activated in response to a variety of viruses or after engagement of Toll-like receptor (TLR) 3 and TLR4 by double-stranded RNA and lipopolysaccharide, respectively. The activation of IRF5, is much more restricted. Here we show that in contrast to IRF3 and IRF7, IRF5 is not a target of the TLR3 signaling pathway but is activated by TLR7 or TLR8 signaling. We also demonstrate that MyD88, interleukin 1 receptor-associated kinase 1, and tumor necrosis factor receptor-associated factor 6 are required for the activation of IRF5 and IRF7 in the TLR7 signaling pathway. Moreover, ectopic expression of IRF5 enabled type I interferon production in response to TLR7 signaling, whereas knockdown of IRF5 by small interfering RNA reduced type I interferon induction in response to the TLR7 ligand, R-848. IRF5 and IRF7, therefore, emerge from these studies as critical mediators of TLR7 signaling.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Antigens, Differentiation/metabolism
- Biological Assay
- Cell Line
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Dose-Response Relationship, Drug
- Electroporation
- Genes, Reporter
- Glutathione Transferase/metabolism
- Humans
- Interferon Regulatory Factor-3
- Interferon Regulatory Factor-7
- Interferon Regulatory Factors
- Interferon Type I/metabolism
- Ligands
- Lipopolysaccharides/metabolism
- Membrane Glycoproteins/metabolism
- Microscopy, Confocal
- Models, Biological
- Myeloid Differentiation Factor 88
- Phosphorylation
- RNA Interference
- RNA, Double-Stranded/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/metabolism
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- Toll-Like Receptor 3
- Toll-Like Receptor 4
- Toll-Like Receptor 7
- Toll-Like Receptor 8
- Toll-Like Receptors
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transfection
Collapse
Affiliation(s)
- Annett Schoenemeyer
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Kabe Y, Ando K, Hirao S, Yoshida M, Handa H. Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 2005; 7:395-403. [PMID: 15706086 DOI: 10.1089/ars.2005.7.395] [Citation(s) in RCA: 445] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reduction/oxidation (redox) regulation mediates numerous cellular responses and contributes to several physiological diseases. The transcription factor nuclear factor kappaB (NF-kappaB) is known to be a redox-sensitive factor. NF-kappaB plays a central role in immune responses and inflammation, through regulation of the gene expression of a large number of cytokines and other immune response genes. NF-kappaB is trapped in the cytoplasm in stimulated cells and translocates into the nucleus in response to several stimuli, including oxidative stress. Reactive oxygen species enhance the signal transduction pathways for NF-kappaB activation in the cytoplasm and translocation into the nucleus. In contrast, the DNA binding activity of oxidized NF-kappaB is significantly diminished, and that activity is restored by reducing enzymes, such as thioredoxin or redox factor 1. This review describes the signal transduction pathways for NF-kappaB activation and redox regulation of NF-kB activation in the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Yasuaki Kabe
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
117
|
Yun YP, Joo JD, Lee JY, Nam HY, Kim YH, Lee KH, Lim CS, Kim HJ, Lim YG, Lim Y. Induction of nuclear factor-kappaB activation through TAK1 and NIK by diesel exhaust particles in L2 cell lines. Toxicol Lett 2005; 155:337-42. [PMID: 15603929 DOI: 10.1016/j.toxlet.2004.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 10/22/2004] [Accepted: 10/26/2004] [Indexed: 11/22/2022]
Abstract
Diesel exhaust particles (DEPs) are known to induce allergic responses in airway epithelial cells, such as the production of various cytokines via nuclear factor-kappa B (NF-kappaB). However, the intracellular signal transduction pathways underlying this phenomenon have not been fully examined. This study showed that DEP induced NF-kappaB activity via transforming growth factor-beta activated kinase 1 (TAK1) and NF-kappaB-inducing kinase (NIK) in L2 rat lung epithelial cells. DEP induced the NF-kB dependent reporter activity approximately two- to three-fold in L2 cells. However, this effect was abolished by the expression of the dominant negative forms of TAK1 or NIK. Furthermore, it was shown that DEP induced TAK1 phosphorylation in the L2 cells. These results suggest that TAK1 and NIK are important mediators of DEP-induced NF-kappaB activation.
Collapse
Affiliation(s)
- Young-Pil Yun
- Department of Occupational and Environmental Medicine, St. Mary's Hospital, The Catholic University of Korea, 62 Youido-dong, Youngdunpo-gu, Seoul 150-713, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Matsuda T, Almasan A, Tomita M, Uchihara JN, Masuda M, Ohshiro K, Takasu N, Yagita H, Ohta T, Mori N. Resistance to Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis and constitutive expression of Apo2L/TRAIL in human T-cell leukemia virus type 1-infected T-cell lines. J Virol 2005; 79:1367-78. [PMID: 15650163 PMCID: PMC544134 DOI: 10.1128/jvi.79.3.1367-1378.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Adult T-cell leukemia (ATL), a CD4+-T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1), is difficult to cure, and novel treatments are urgently needed. Apo2 ligand (Apo2L; also tumor necrosis factor-related apoptosis-inducing ligand [TRAIL]) has been implicated in antitumor therapy. We found that HTLV-1-infected T-cell lines and primary ATL cells were more resistant to Apo2L-induced apoptosis than uninfected cells. Interestingly, HTLV-1-infected T-cell lines and primary ATL cells constitutively expressed Apo2L mRNA. Inducible expression of the viral oncoprotein Tax in a T-cell line up-regulated Apo2L mRNA. Analysis of the Apo2L promoter revealed that this gene is activated by Tax via the activation of NF-kappaB. The sensitivity to Apo2L was not correlated with expression levels of Apo2L receptors, intracellular regulators of apoptosis (FLICE-inhibitory protein and active Akt). NF-kappaB plays a crucial role in the pathogenesis and survival of ATL cells. The resistance to Apo2L-induced apoptosis was reversed by N-acetyl-L-leucinyl-L-leucinyl-lLnorleucinal (LLnL), an NF-kappaB inhibitor. LLnL significantly induced the Apo2L receptors DR4 and DR5. Our results suggest that the constitutive activation of NF-kappaB is essential for Apo2L gene induction and protection against Apo2L-induced apoptosis and that suppression of NF-kappaB may be a useful adjunct in clinical use of Apo2L against ATL.
Collapse
Affiliation(s)
- Takehiro Matsuda
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
del Rio R, Rincón M, Layseca-Espinosa E, Fierro NA, Rosenstein Y, Pedraza-Alva G. PKCtheta is required for the activation of human T lymphocytes induced by CD43 engagement. Biochem Biophys Res Commun 2005; 325:133-43. [PMID: 15522211 DOI: 10.1016/j.bbrc.2004.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Indexed: 12/12/2022]
Abstract
The turnover of phosphoinositides leading to PKC activation constitutes one of the principal axes of intracellular signaling. In T lymphocytes, the enhanced and prolonged PKC activation resulting from the engagement of the TcR and co-receptor molecules ensures a productive T cell response. The CD43 co-receptor promotes activation and proliferation, by inducing IL-2 secretion and CD69 expression. CD43 engagement has been shown to promote phosphoinositide turnover and DAG production. Moreover, PKC activation was found to be required for the activation of the MAP kinase pathway in response to CD43 ligation. Here we show that CD43 engagement led to the membrane translocation and enzymatic activity of specific PKC isoenzymes: cPKC (alpha/beta), nPKC (epsilon and theta;), aPKC (zeta) and PKCmu. We also show that activation of PKCtheta; resulting from CD43 ligation induced CD69 expression through an ERK-dependent pathway leading to AP-1, NF-kappaB activation and an ERK independent pathway promoting NFAT activation. Together, these data suggest that PKCtheta; plays a critical role in the co-stimulatory functions of CD43 in human T cells.
Collapse
Affiliation(s)
- Roxana del Rio
- Instituto de Biotecnología/Universidad Nacional Autónoma de México, AP 510-3 Cuernavaca, Mor. 62250, Mexico
| | | | | | | | | | | |
Collapse
|
120
|
Zhang L, Cui R, Cheng X, Du J. Antiapoptotic Effect of Serum and Glucocorticoid-Inducible Protein Kinase Is Mediated by Novel Mechanism Activating IκB Kinase. Cancer Res 2005. [DOI: 10.1158/0008-5472.457.65.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Serum and glucocorticoid inducible protein kinase (SGK) plays a crucial role in promoting cell survival, but the mechanisms for this response are not clear. We show that SGK is involved in the regulation of apoptosis in breast cancer cells by modulating the transcriptional activity of nuclear transcription factor κB (NF-κB). High levels of SGK expression were observed in human breast cancer samples. When SGK was reduced the apoptotic rate increased, and increased SGK activity prevents serum withdrawal–induced apoptosis. SGK-induced cell survival was abolished by a dominant-negative form of IκB kinase β (IKKβ, K44A) or a null mutation of IKKβ in mouse embryonic fibroblast cells indicating involvement of the NF-κB pathway. Serum-induced SGK or increased expression of SGK activated NF-κB transcriptional activity, whereas small interference RNA to SGK blocked NF-κB activity. Coexpression of SGK and IKKβ significantly increased the activation of NF-κB (versus expression of IKKβ alone). Expression of dominant-negative IKKβ K44A, IκBα AA, and kinase-dead SGK (127KM) blocked the ability of SGK to stimulate NF-κB activity, suggesting that IKKβ is a target of SGK. We also show that SGK enhances the ability of IKKβ to phosphorylate endogenous IκBα in cells or recombinant glutathione S-transferase-IκBα in vitro and increases IκBα degradation; SGK physically associates with and activates IKKβ in MDA231 cells via phosphorylation of Ser181 in IKKβ. Taken together, we conclude that SGK acts as an oncogene in breast cancer cells through activation of the IKK-NF-κB pathway, thereby preventing apoptosis. Blocking SGK expression/activity represents a potential therapeutic approach for breast cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Jie Du
- 1Internal Medicine, Departments of
- 3Human Biological Chemistry & Genetics, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
121
|
Brown TT, Zelnik DL, Dobs AS, Evans DB, Chiao PJ. Fish oil supplementation in the treatment of cachexia in pancreatic cancer patients. INTERNATIONAL JOURNAL OF GASTROINTESTINAL CANCER 2005. [PMID: 15361649 DOI: 10.1385/ijgc:] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Patients with pancreatic cancer often experience a loss of weight and appetite, known as the anorexia-cachexia syndrome, which is associated with decreased quality of life and reduced survival. Research into the biological mechanisms of cachexia has demonstrated that an array of inflammatory mediators and tumor-derived factors cause appetite suppression, skeletal muscle proteolysis, and lipolysis,producing an overall hypercatabolic state that contributes to loss of fat and lean body mass. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown to modulate levels of proinflammatory cytokines, hepatic acute phase proteins, eicosanoids, and tumor-derived factors in animal models of cancer and may reverse some aspects of the process of cachexia. Results of clinical trials of n-3 PUFAs in the form of fish oils have been mixed, but should encourage further investigation into dietary fish oil supplementation, including the most effective route of administration and the proper dosage to promote optimal weight maintenance and to limit side effects. Concerns about standardization and quality control should also be considered. With the current available evidence, a recommendation for the use of omega 3 polyunsaturated fatty acids in pancreatic cancer cachexia is premature.
Collapse
Affiliation(s)
- Todd T Brown
- Johns Hopkins University School of Medicine, Division of Endocrinology and Metabolism, Center for Complementary and Alternative Medicine, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
122
|
Singhirunnusorn P, Suzuki S, Kawasaki N, Saiki I, Sakurai H. Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-beta-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J Biol Chem 2004; 280:7359-68. [PMID: 15590691 DOI: 10.1074/jbc.m407537200] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transforming growth factor-beta-activated kinase 1 (TAK1) mitogen-activated protein kinase kinase kinase has been shown to be activated by cellular stresses including tumor necrosis factor-alpha (TNF-alpha). Here, we characterized the molecular mechanisms of cellular stress-induced TAK1 activation, focusing mainly on the phosphorylation of TAK1 at Thr-187 and Ser-192 in the activation loop. Thr-187 and Ser-192 are conserved among species from Caenorhabditis elegans to human, and their replacement with Ala resulted in inactivation of TAK1. Immunoblotting with a novel phospho-TAK1 antibody revealed that TNF-alpha significantly induced the phosphorylation of endogenous TAK1 at Thr-187, and subsequently the phosphorylated forms of TAK1 rapidly disappeared. Intermolecular autophosphorylation of Thr-187 was essential for TAK1 activation. RNA interference and overexpression experiments demonstrated that TAK1-binding protein TAB1 and TAB2 were involved in the phosphorylation of TAK1, but they regulated TAK1 phosphorylation differentially. Furthermore, SB203580 and p38alpha small interfering RNA enhanced TNF-alpha-induced Thr-187 phosphorylation as well as TAK1 kinase activity, indicating that the phosphorylation is affected by p38alpha/TAB1/TAB2-mediated feedback control of TAK1. These results indicate critical roles of Thr-187 phosphorylation in the stress-induced rapid and transient activation of TAK1 in a signaling complex containing TAB1 and TAB2.
Collapse
Affiliation(s)
- Pattama Singhirunnusorn
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, 21st Century Center of Excellence (COE) Program, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan
| | | | | | | | | |
Collapse
|
123
|
Oh SM, Pyo CW, Kim Y, Choi SY. Neutrophil lactoferrin upregulates the human p53 gene through induction of NF-kappaB activation cascade. Oncogene 2004; 23:8282-91. [PMID: 15378004 DOI: 10.1038/sj.onc.1208021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neutrophil lactoferrin (Lf) was previously shown to act as a transcriptional activator in various mammalian cells. Here, we describe that Lf specifically transactivates the p53 tumor suppressor gene through the activation of nuclear factor-kappaB (NF-kappaB) and consequently regulates p53-responsive oncogenes. In HeLa cervical carcinoma cells stably expressing Lf (HeLa-Lf), expression of mdm2 and p21waf1/cip1 as well as p53 was greatly enhanced. Transient expression of Lf also markedly transactivates transcription of a p53 promoter-driven reporter and NF-kappaB-driven reporters in various mammalian cells. However, mutation of the NF-kappaB site or treatment with an NF-kappaB inhibitor abrogated the transactivation, suggesting that NF-kappaB should play an essential role in the Lf-induced transactivation. Increased binding activity and nuclear translocation of p65 in response to Lf strongly support these findings. Furthermore, Lf-mediated NF-kappaB activation is diminished in IKKalpha- or IKKbeta-deficient mouse embryonic fibroblast cells. The activation of both IKKs and NF-kappaB by Lf is over-ridden by the expression of dominant-negative mutants of NIK, MEKK1, IKKalpha and IKKbeta. Collectively, we conclude that overexpressed Lf directly relays signals to upstream components responsible for NF-kappaB activation, thereby leading to the activation of NF-kappaB target genes.
Collapse
Affiliation(s)
- Sang-Muk Oh
- School of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 136-701, Korea
| | | | | | | |
Collapse
|
124
|
Lee S, Andrieu C, Saltel F, Destaing O, Auclair J, Pouchkine V, Michelon J, Salaun B, Kobayashi R, Jurdic P, Kieff ED, Sylla BS. IkappaB kinase beta phosphorylates Dok1 serines in response to TNF, IL-1, or gamma radiation. Proc Natl Acad Sci U S A 2004; 101:17416-21. [PMID: 15574499 PMCID: PMC536032 DOI: 10.1073/pnas.0408061101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dok1 is an abundant Ras-GTPase-activating protein-associated tyrosine kinase substrate that negatively regulates cell growth and promotes migration. We now find that IkappaB kinase beta (IKKbeta) associated with and phosphorylated Dok1 in human epithelial cells and B lymphocytes. IKKbeta phosphorylation of Dok1 depended on Dok1 S(439), S(443), S(446), and S(450). Recombinant IKKbeta also phosphorylated Dok1 or Dok1 amino acids 430-481 in vitro. TNF-alpha, IL-1, gamma radiation, or IKKbeta overexpression phosphorylated Dok1 S(443), S(446), and S(450) in vivo, as detected with Dok1 phospho-S site-specific antisera. Moreover, Dok1 with S(439), S(443), S(446), and S(450) mutated to A was not phosphorylated by IKKbeta in vivo. Surprisingly, mutant Dok1 A(439), A(443), A(446), and A(450) differed from wild-type Dok1 in not inhibiting platelet-derived growth factor-induced extracellular signal-regulated kinase 1/2 phosphorylation or cell growth. Mutant Dok1 A(439), A(443), A(446), and A(450) also did not promote cell motility, whereas wild-type Dok1 promoted cell motility, and Dok1 E(439), E(443), E(446), and E(450) further enhanced cell motility. These data indicate that IKKbeta phosphorylates Dok1 S(439)S(443) and S(446)S(450) after TNF-alpha, IL-1, or gamma-radiation and implicate the critical Dok1 serines in Dok1 effects after tyrosine kinase activation.
Collapse
Affiliation(s)
- Sanghoon Lee
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Jaramillo M, Godbout M, Naccache PH, Olivier M. Signaling Events Involved in Macrophage Chemokine Expression in Response to Monosodium Urate Crystals. J Biol Chem 2004; 279:52797-805. [PMID: 15471869 DOI: 10.1074/jbc.m403823200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemokine production has been associated with leukocyte infiltration into the joint during gouty arthritis, and monosodium urate (MSU) crystals, the causative agent of this arthropathy, have been shown to modulate their expression. In the present study, we investigated the transductional mechanisms underlying this cellular regulation in the murine macrophage cell line B10R. We report that MSU crystals rapidly and transiently increase mRNA levels of various chemokines in a concentration-dependent manner. Examination of second messenger activation revealed that macrophage exposure to MSU crystals led to MEK1/2, ERK1/2, and inhibitory protein kappaBalpha phosphorylation as well as to NF-kappaB and AP-1 nuclear translocation. Of interest, specific blockage of the ERK1/2 pathway drastically reduced up-modulation of MSU crystal-mediated chemokine production and activation of nuclear factors. Similarly, selective inhibition of NF-kappaB suppressed NF-kappaB DNA binding activity and the induction of all chemokine transcripts. These findings indicate that ERK1/2-dependent signals seem to be required for AP-1 and NF-kappaB activation and subsequent mRNA expression of the various macrophage chemokines. In addition, transcription and stability assays performed in presence of actinomycin D showed that MSU crystal-mediated MIP-1beta mRNA up-regulation resulted solely from transcriptional control, whereas that of MIP-1alpha, MIP-2, and MCP-1 was due to both gene transcription activation and mRNA posttranscriptional stabilization. Overall, the results of this study help to define the molecular events that govern macrophage chemokine regulation in response to MSU crystals, which is of paramount importance to better understand, and eventually to tame, the inflammatory response during acute gout.
Collapse
Affiliation(s)
- Maritza Jaramillo
- Research Institute of the McGill University Health Centre, Centre for the Study of Host Resistance, Department of Medicine, McGill University, Montréal, Québec H3A 2B4, Canada
| | | | | | | |
Collapse
|
126
|
Sarkar FH, Li Y. Cell signaling pathways altered by natural chemopreventive agents. Mutat Res 2004; 555:53-64. [PMID: 15476851 DOI: 10.1016/j.mrfmmm.2004.04.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 04/26/2004] [Accepted: 04/27/2004] [Indexed: 04/30/2023]
Abstract
Epidemiological studies have indicated a significant difference in the incidence of cancers among ethnic groups, who have different lifestyles and have been exposed to different environmental factors. It has been estimated that more than two-thirds of human cancers, which are contributed by mutations in multiple genes, could be prevented by modification of lifestyle including dietary modification. The consumption of fruits, soybean and vegetables has been associated with reduced risk of several types of cancers. The in vitro and in vivo studies have demonstrated that some dietary components such as isoflavones, indole-3-carbinol (I3C), 3,3'-diindolylmethane (DIM), curcumin, (-)-epigallocatechin-3-gallate (EGCG), apigenin, etc., have shown inhibitory effects on human and animal cancers, suggesting that they may serve as chemopreventive agents. Experimental studies have also revealed that these components regulate the molecules in the cell signal transduction pathways including NF-kappaB, Akt, MAPK, p53, AR, and ER pathways. By modulating cell signaling pathways, these components, among other mechanisms, activate cell death signals and induce apoptosis in precancerous or cancer cells, resulting in the inhibition of cancer development and/or progression. This article reviews current studies regarding the effects of natural chemopreventive agents on cancer-related cell signaling pathways and provides comprehensive knowledge of the biological and molecular roles of chemopreventive agents in cancer cells.
Collapse
Affiliation(s)
- Fazlul H Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 715 Hudson Webber Cancer Research Center, 110 E Warren, Detroit, MI 48201, USA.
| | | |
Collapse
|
127
|
Koehler DR, Downey GP, Sweezey NB, Tanswell AK, Hu J. Lung inflammation as a therapeutic target in cystic fibrosis. Am J Respir Cell Mol Biol 2004; 31:377-81. [PMID: 15381503 DOI: 10.1165/rcmb.2004-0124tr] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by chronic neutrophilic inflammation and infection. Effective management of airway inflammation could complement other therapies for the treatment of CF. Recent progress has been made in understanding the signaling pathways regulating inflammatory cytokines in the lung. Here we examine the mechanisms responsible for inflammation in the CF lung, and discuss potential therapeutic strategies targeting inflammation.
Collapse
Affiliation(s)
- David R Koehler
- Programme in Lung Biology Research, Hospital for Sick Children, 555 University Ave., Toronto, ON, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
128
|
Yang G, Abate A, George AG, Weng YH, Dennery PA. Maturational differences in lung NF-kappaB activation and their role in tolerance to hyperoxia. J Clin Invest 2004; 114:669-78. [PMID: 15343385 PMCID: PMC514581 DOI: 10.1172/jci19300] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Accepted: 07/20/2004] [Indexed: 01/10/2023] Open
Abstract
Neonatal rodents are more tolerant to hyperoxia than adults. We determined whether maturational differences in lung NF-kappaB activation could account for the differences. After hyperoxic exposure (O2 > 95%), neonatal (<12 hours old) lung NF-kappaB binding was increased and reached a maximum between 8 and 16 hours, whereas in adults no changes were observed. Additionally, neonatal NF-kappaB/luciferase transgenic mice (incorporating 2 NF-kappaB consensus sequences driving luciferase gene expression) demonstrated enhanced in vivo NF-kappaB activation after hyperoxia in real time. In the lungs of neonates, there was a propensity toward NF-kappaB activation as evidenced by increased lung I-kappaB kinase protein levels, I-kappaBalpha phosphorylation, beta-transducin repeat-containing protein levels, and total I-kappaBalpha degradation. Increased lung p-JNK immunoreactive protein was observed only in the adult lung. Inhibition of pI-kappaBalpha by BAY 11-7085 resulted in decreased Bcl-2 protein levels in neonatal lung homogenates and decreased cell viability in lung primary cultures after hyperoxic exposure. Furthermore, neonatal p50-null mutant (p50(-/-)) mice showed increased lung DNA degradation and decreased survival in hyperoxia compared with WT mice. These data demonstrate that there are maturational differences in lung NF-kappaB activation and that enhanced NF-kappaB may serve to protect the neonatal lung from acute hyperoxic injury via inhibition of apoptosis.
Collapse
Affiliation(s)
- Guang Yang
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
129
|
Sadler TM, Achilleos M, Ragunathan S, Pitkin A, LaRocque J, Morin J, Annable R, Greenberger LM, Frost P, Zhang Y. Development and comparison of two nonradioactive kinase assays for I kappa B kinase. Anal Biochem 2004; 326:106-13. [PMID: 14769342 DOI: 10.1016/j.ab.2003.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Indexed: 11/17/2022]
Abstract
In response to diverse stimuli, the transcription factor NF-kappaB is activated by the IKK kinase complex containing two kinases (IKKalpha and IKKbeta) that phosphorylate IkappaB, an inhibitory protein of NF-kappaB. The phosphorylation of IkappaB results in ubiquitination and degradation of IkappaB, allowing NF-kappaB to translocate to the nucleus where it regulates its target genes. To elucidate the role of IKK in the NF-kappaB signaling pathway, we have developed and characterized two quantitative, sensitive, and nonradioactive assays for evaluating IKKbeta activity: a dissociation-enhanced lanthanide fluorescence immunoassay called DELFIA and a homogeneous time-resolved fluorescence resonance energy transfer assay called LANCE. We show that the two assays have similar sensitivity and Michaelis constants (Km) for adenosine 5'-triphosphate and substrate; however, the LANCE format was far more efficient and easier to perform. Additionally, the assays were validated with the known kinase inhibitor K252a and several other kinase inhibitors, which showed that the IC(50) values of the two assays were comparable. In summary, both assays are quantitative, sensitive, reproducible, and amenable to high-throughput screening with improved waste management over radioactive assays.
Collapse
Affiliation(s)
- Tammy M Sadler
- Department of Oncology and ImmunoInflammatory Research, Wyeth Research, Pearl River, NY 10965, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Yang G, Abate A, George AG, Weng YH, Dennery PA. Maturational differences in lung NF-κB activation and their role in tolerance to hyperoxia. J Clin Invest 2004. [DOI: 10.1172/jci200419300] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
131
|
Mori N, Krensky AM, Ohshima K, Tomita M, Matsuda T, Ohta T, Yamada Y, Tomonaga M, Ikeda S, Yamamoto N. Elevated expression of CCL5/RANTES in adult T-cell leukemia cells: possible transactivation of the CCL5 gene by human T-cell leukemia virus type I tax. Int J Cancer 2004; 111:548-57. [PMID: 15239133 DOI: 10.1002/ijc.20266] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HTLV-I is the etiologic agent of ATL and of tropical spastic paraparesis/HTLV-I-associated myelopathy. Infiltration of various tissues by circulating leukemic cells and HTLV-I-infected T cells is a characteristic of ATL and HTLV-I-associated inflammatory diseases. Chemokines play important roles in migration and tissue localization of various lymphocyte subsets. Here, we report the highly frequent expression of CCL5 (RANTES) in ATL and HTLV-I-infected T-cell lines. Among various human T-cell lines, those infected with HTLV-I selectively expressed the CCL5 gene and secreted CCL5. Furthermore, CCL5 was expressed by leukemic cells in peripheral blood and lymph nodes from patients with ATL. Inducible expression of HTLV-I transcriptional activator Tax in a human T-cell line Jurkat, up-regulated CCL5 mRNA and induced CCL5 secretion. Analysis of the CCL5 promoter revealed that this gene is activated by Tax, via the activation of NF-kappaB, whose responsive element, R(A/B), is located at positions -71 to -43 relative to the putative transcription start site. Aberrant expression of CCL5 by HTLV-I-infected T cells may impact on the pathophysiology of HTLV-I-associated diseases.
Collapse
Affiliation(s)
- Naoki Mori
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Masamune A, Kikuta K, Suzuki N, Satoh M, Satoh K, Shimosegawa T. A c-Jun NH2-terminal kinase inhibitor SP600125 (anthra[1,9-cd]pyrazole-6 (2H)-one) blocks activation of pancreatic stellate cells. J Pharmacol Exp Ther 2004; 310:520-7. [PMID: 15056726 DOI: 10.1124/jpet.104.067280] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In response to pancreatic injury and in cell culture, pancreatic stellate cells (PSCs) are transformed ("activated") into highly proliferative myofibroblast-like cells that express alpha-smooth muscle actin and produce extracellular matrix components. Activated PSCs are implicated in the pathogenesis of pancreatic fibrosis and inflammation. We here evaluated the effects of SP600125 (anthra[1,9-cd]pyrazole-6 (2H)-one), an inhibitor of c-Jun NH(2)-terminal kinase (JNK), on the activation of PSCs. PSCs were isolated from rat pancreas tissue and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. Activation of JNK was determined by Western blotting using anti-phosphospecific JNK and c-Jun antibodies. Activation of transcription factors was determined by electrophoretic mobility shift assay. The effects of SP600125 on the key parameters of activation (chemokine production, collagen production, and proliferation) were examined. The effect of SP600125 on the activation of freshly isolated PSCs in culture also was examined. Interleukin-1beta activated both 46- and 54-kDa JNK, whereas platelet-derived growth factor-BB activated only 46-kDa JNK. SP600125 inhibited interleukin-1beta-induced JNK activity and activator protein-1 activation, but it did not affect the activation of extracellular-regulated kinase, p38 mitogen-activated protein kinase, and nuclear factor-kappaB. SP600125 inhibited platelet-derived growth factor-induced proliferation, inducible monocyte chemoattractant protein-1 production, and serum-induced type I collagen production. Although SP600125 did not inhibit the transformation, it attenuated the proliferation of freshly isolated PSCs in culture. Collectively, our results suggest a role of JNK in the activation of PSCs, and a potential application of JNK inhibitors for the treatment of pancreatic fibrosis and inflammation.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho, Aoba-ku, Sendai 980-8574 Japan.
| | | | | | | | | | | |
Collapse
|
133
|
Calfee-Mason KG, Spear BT, Glauert HP. Effects of vitamin E on the NF-κB pathway in rats treated with the peroxisome proliferator, ciprofibrate. Toxicol Appl Pharmacol 2004; 199:1-9. [PMID: 15289085 DOI: 10.1016/j.taap.2004.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Accepted: 03/08/2004] [Indexed: 10/26/2022]
Abstract
Peroxisome proliferators (PPs) are a diverse group of nongenotoxic compounds, which induce hepatic tumors in rodents. The mechanisms leading to hepatic tumors have not been elucidated, but oxidative stress may play a role in the process. Previous studies in our laboratory have shown that peroxisome proliferators activate the transcription factor nuclear factor-kappa B (NF-kappaB) and that this activation is mediated at least in part by oxidative stress. We therefore hypothesized that increased dietary vitamin E would decrease NF-kappaB DNA binding in rodents treated with ciprofibrate (CIP). In this study, 36 male Sprague-Dawley rats were fed a purified diet containing varying levels of vitamin E (10, 50, 250 ppm alpha-tocopherol acetate). After 28 days on the purified diet, seven animals per vitamin E group received 0.01% CIP in the diet for 10 days. Electrophoretic mobility shift assays (EMSAs) showed that CIP treatment increased DNA binding of NF-kappaB. Increased dietary alpha-tocopherol acetate inhibited CIP-induced NF-kappaB DNA binding. Because NF-kappaB translocates to the nucleus upon the phosphorylation and degradation of inhibitor of IkappaB, we also used Western blots to measure cytosolic protein levels of IkappaBalpha and IkappaBbeta, and the IkappaB kinases, IKKalpha and IKKbeta. IkappaBalpha protein levels were decreased in all three CIP-treated groups, with the 10 ppm vitamin E diet also decreasing IkappaBalpha levels in control rats. No difference in IkappaBbeta protein levels was observed among any of the groups. The CIP-treated rats generally had lower protein levels of IKKalpha and IKKbeta. This study supports our working hypothesis that an increased antioxidant environment can inhibit CIP-mediated NF-kappaB induction.
Collapse
Affiliation(s)
- Karen G Calfee-Mason
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40506-0054, USA
| | | | | |
Collapse
|
134
|
Takada Y, Fang X, Jamaluddin MS, Boyd DD, Aggarwal BB. Genetic deletion of glycogen synthase kinase-3beta abrogates activation of IkappaBalpha kinase, JNK, Akt, and p44/p42 MAPK but potentiates apoptosis induced by tumor necrosis factor. J Biol Chem 2004; 279:39541-54. [PMID: 15252041 DOI: 10.1074/jbc.m403449200] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glycogen synthase kinase (GSK)-3beta is a constitutively active, proline-directed serine/threonine kinase that controls growth modulation and tumorigenesis through multiple intracellular signaling pathways. How GSK-3beta regulates signaling pathways induced by cytokines such as tumor necrosis factor (TNF) is poorly understood. In this study, we used fibroblasts derived from GSK-3beta gene-deleted mice to understand the role of this kinase in TNF signaling. TNF induced NF-kappaB activation as measured by DNA binding in wild-type mouse embryonic fibroblasts, but deletion of GSK-3beta abolished this activation. This inhibition was due to suppression of IkappaBalpha kinase activation and IkappaBalpha phosphorylation, ubiquitination, and degradation. TNF-induced NF-kappaB reporter gene transcription was also suppressed in GSK-3beta gene-deleted cells. NF-kappaB activation induced by lipopolysaccharide, interleukin-1beta, or cigarette smoke condensate was completely suppressed in GSK-3beta(-/-) cells. Deletion of GSK-3beta also abolished TNF-induced c-Jun N-terminal kinase and p44/p42 mitogen-activated kinase activation. Most surprisingly, TNF-induced Akt activation also required the presence of GSK-3beta. TNF induced expression of the NF-kappaB-regulated gene products cyclin D1, COX-2, MMP-9, survivin, IAP 1, IAP 2, Bcl-x(L), Bfl-1/A1, TRAF1, and FLIP in wild-type mouse embryonic fibroblasts but not in GSK-3beta(-/-) cells, and this correlated with potentiation of TNF-induced apoptosis as indicated by cell viability, annexin V staining, and caspase activation. Overall, our results indicate that GSK-3beta plays a critical role in TNF signaling and in the signaling of other inflammatory stimuli and that its suppression can be exploited as a potential target to inhibit angiogenesis, proliferation, and survival of tumor cells.
Collapse
Affiliation(s)
- Yasunari Takada
- Cytokine Research Laboratory, Department of Bioimmunotherapy, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
135
|
Nho CW, O'Dwyer PJ. NF-kappaB activation by the chemopreventive dithiolethione oltipraz is exerted through stimulation of MEKK3 signaling. J Biol Chem 2004; 279:26019-27. [PMID: 15047705 DOI: 10.1074/jbc.m309022200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chemoprevention by the dithiolethione analogue oltipraz (4-methyl-5-(2-pyrazinyl)-1,2-dithiole-3-thione) may occur through several mechanisms, among them stimulation of detoxication activity. The phase II detoxication enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1; EC 1.6.99.2) also known as quinone reductase (QR) is well established to undergo transcriptional activation following oltipraz treatment of colon cancer cells in culture. Promoter analysis of the QR gene in oltipraztreated cells reveals the involvement of both the AP-1 and NF-kappaB elements in the response. The emerging role of NF-kappaB in cell survival prompted a fuller analysis of effects of oltipraz on this pathway. Oltipraz treatment of both HCT116 and HT29 cells results in the induction of proteins involved in both pathways of NF-kappaB activation, including p65, IkappaB kinase alpha (IKKalpha), IkappaB kinase beta (IKKbeta), and NF-kappaB-inducing kinase (NIK). IkappaBalpha total protein levels were unchanged, but phosphorylation of the inhibitor was also induced in both lines. Electrophoretic mobility shift assay (EMSA) analysis confirmed induction of protein binding to a consensus NF-kappaB element, and transcriptional activation was further confirmed using a reporter construct. Transcriptional activation of QR was decreased in a dose-dependent manner by dominant-negative NF-kappaB in both cell lines. The molecular mechanism that triggers IKK activation in response to oltipraz was also examined using inhibitory constructs of NIK and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 3 (MEKK3). We found that both MEKK3 and NIK exert effects on IKKalpha/beta activation, but through different pathways. Furthermore, the receptor-interacting protein (RIP) was found to interact strongly with MEKK3 during oltipraz-induced NF-kappaB signaling, implying a role for tumor necrosis factor receptor signaling in the action of oltipraz. These results implicate a novel signaling pathway for the action of oltipraz in QR gene regulation.
Collapse
Affiliation(s)
- Chu Won Nho
- Division of Hematology-Oncology, School of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
136
|
Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kappaB: its role in health and disease. J Mol Med (Berl) 2004; 82:434-48. [PMID: 15175863 DOI: 10.1007/s00109-004-0555-y] [Citation(s) in RCA: 712] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 04/12/2004] [Indexed: 01/04/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a major transcription factor that plays an essential role in several aspects of human health including the development of innate and adaptive immunity. The dysregulation of NF-kappaB is associated with many disease states such as AIDS, atherosclerosis, asthma, arthritis, cancer, diabetes, inflammatory bowel disease, muscular dystrophy, stroke, and viral infections. Recent evidence also suggests that the dysfunction of NF-kappaB is a major mediator of some human genetic disorders. Appropriate regulation and control of NF-kappaB activity, which can be achieved by gene modification or pharmacological strategies, would provide a potential approach for the management of NF-kappaB related human diseases. This review summarizes the current knowledge of the physiological and pathophysiological functions of NF-kappaB and its possible role as a target of therapeutic intervention
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
137
|
Russo MP, Schwabe RF, Sartor RB, Jobin C. NF-kappaB-inducing kinase restores defective IkappaB kinase activity and NF-kappaB signaling in intestinal epithelial cells. Cell Signal 2004; 16:741-50. [PMID: 15093615 DOI: 10.1016/j.cellsig.2003.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 11/27/2003] [Accepted: 11/27/2003] [Indexed: 11/25/2022]
Abstract
Cytokine-stimulated IkappaBalpha degradation is impaired in HT-29 and primary intestinal epithelial cells. To gain more insight into the mechanism of this defect, we dissected cytokine-induced NF-kappaB signaling pathway in HT-29 cells. IL-1beta and TNF, alone or in combination with IFNgamma, failed to induce IkappaBalpha or IkappaBbeta degradation in HT-29 cells. Despite similar 125I-IL-1beta binding, HT-29 cells displayed no IRAK degradation, a 75% reduction of IKK activity, and decreased IkappaBalpha phosphorylation, NF-kappaB DNA binding activity and IL-8 mRNA accumulation in response to IL-1beta compared to Caco-2 cells. Selective activation of NF-kappaB pathway by adenoviral delivery of NF-kappaB-inducing kinase (Ad5NIK) or IKKbeta (Ad5IKKbeta) strongly activated IKK activity (>20 fold) in HT-29 cells with concomitant endogenous IkappaBalpha serine 32 phosphorylation and total IkappaBalpha degradation. In addition, NF-kappaB DNA binding activity and IL-8 secretion is higher in Ad5NIK-infected than in IL-1beta-stimulated HT-29 cells. These data show that altered NF-kappaB signaling is associated with impaired stimulation of an upstream IKK activator.
Collapse
Affiliation(s)
- Maria Pia Russo
- Department of Medicine, Division of Gastroenterology and Hepatology, CB #7032, Medical Biomolecular Research Building, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7080, USA
| | | | | | | |
Collapse
|
138
|
Page JL, Wang X, Sordillo LM, Johnson SE. MEKK1 signaling through p38 leads to transcriptional inactivation of E47 and repression of skeletal myogenesis. J Biol Chem 2004; 279:30966-72. [PMID: 15159407 DOI: 10.1074/jbc.m402224200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of the Raf kinase signal transduction pathway in skeletal myoblasts causes a complete cessation of myofiber formation and muscle gene expression. The negative impacts of the signaling pathway are realized through downstream activation of mitogen and extracellular kinase (MEK) phosphorylation-dependent events and MEK-independent signal transmission. MEKK1, a kinase that can physically associate with Raf, may contribute to the MEK-independent signaling in response to elevated Raf activity. Myogenic cells overexpressing activated Raf and kinase-defective MEKK1 remain differentiation-defective, suggesting that MEKK1 does not contribute to the inhibitory actions of Raf. However, constitutive activation of MEKK1 dramatically inhibits biochemical and morphological measures of muscle formation. MEKK1 inhibits MyoD-directed transcriptional activity without altering the ability of the protein to form heterodimers with E2A proteins or bind DNA. By contrast, the transcriptional activity of E47, the preferred dimer partner of the myogenic regulatory factors, is severely compromised by MEKK1-initiated signaling. Inhibition of MEK1/2 and JNK1/2 function did not reinstate E47-directed transcription, indicating that these two downstream kinases likely are not involved in the MEKK1-controlled transcriptional block. Inhibition of p38 signaling overcame the negative effects exerted by MEKK1 on the amino terminus of E47. Closer examination indicates that E47 is phosphorylated in vitro by p38, and deletion analysis predicts that the critical amino acid(s) phosphorylated by p38 lie outside of the minimal transcriptional activation domains. Thus, modification of E47 by p38 likely disrupts higher order protein complex formation that is necessary for muscle gene transcription.
Collapse
Affiliation(s)
- Jeanine L Page
- Department of Poultry Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
139
|
Makino K, Day CP, Wang SC, Li YM, Hung MC. Upregulation of IKKalpha/IKKbeta by integrin-linked kinase is required for HER2/neu-induced NF-kappaB antiapoptotic pathway. Oncogene 2004; 23:3883-7. [PMID: 15021910 DOI: 10.1038/sj.onc.1207485] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Constitutively active HER2/neu activates nuclear factor kappa-B (NF-kappaB) in cells and induces their resistance to apoptotic stimuli such as tumor necrosis factor-alpha (TNF-alpha). Here, we show that integrin-linked kinase (ILK), the crucial signal transducer in the integrin pathway, is involved in HER2/neu-mediated activation of NF-kappaB. Expression of HER2/neu increases ILK activity. Blocking ILK activity with a kinase-deficient mutant ILK (ILK-KD) inhibits NF-kappaB activation and sensitizes HER2/neu-transformed cells to TNF-alpha-induced apoptosis. Stable expression of ILK-KD in HER2/neu-transformed cells suppressed Akt phosphorylation and the expression of IkappaB kinase alpha and beta (IKKalpha and beta) at both the protein and mRNA levels, preventing IkappaB-alpha degradation and NF-kappaB activation. Furthermore, HER2/neu stimulated the transcriptional activity of the putative IKKbeta promoter through ILK and Akt. Our results demonstrate that upregulation of IKKalpha and IKKbeta by the ILK/Akt pathway is required for the HER2/neu-mediated NF-kappaB antiapoptotic pathway.
Collapse
Affiliation(s)
- Keishi Makino
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
140
|
Wurzer WJ, Ehrhardt C, Pleschka S, Berberich-Siebelt F, Wolff T, Walczak H, Planz O, Ludwig S. NF-kappaB-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas/FasL is crucial for efficient influenza virus propagation. J Biol Chem 2004; 279:30931-7. [PMID: 15143063 DOI: 10.1074/jbc.m403258200] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the transcription factor NF-kappaB is a hallmark of infections by viral pathogens including influenza viruses. Because gene expression of many proinflammatory and antiviral cytokines is controlled by this factor, the concept emerged that NF-kappaB and its upstream regulator IkappaB kinase are essential components of the innate antiviral immune response to infectious pathogens. In contrast to this common view we report here that NF-kappaB activity promotes efficient influenza virus production. On a molecular level this is due to NF-kappaB-dependent viral induction of the proapoptotic factors tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and FasL, which enhance virus propagation in an autocrine and paracrine fashion. Thus, NF-kappaB acts both proapoptotically and provirally in the context of an influenza virus infection.
Collapse
Affiliation(s)
- Walter J Wurzer
- Institute of Molecular Medicine, Heinrich-Heine Universität, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Kandouz M, Nie D, Pidgeon GP, Krishnamoorthy S, Maddipati KR, Honn KV. Platelet-type 12-lipoxygenase activates NF-kappaB in prostate cancer cells. Prostaglandins Other Lipid Mediat 2004; 71:189-204. [PMID: 14518561 DOI: 10.1016/s1098-8823(03)00042-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Platelet-type arachidonate 12-lipoxygenase (12-LOX) is highly expressed in many types of cancers and plays an important role in cancer pathophysiology. Arachidonic acid metabolism by 12-LOX results in the stable end product 12(S)-hydroxy eicosatetraenoic acid (12(S)-HETE), which is a signaling molecule with effects on cell proliferation, motility, invasiveness, angiogenesis, and inhibition of apoptosis. The myriad biological activities manifested by 12(S)-HETE appear to be mediated, at least in part, by the activation of NF-kappaB. Overexpression of the 12-LOX in PC-3 prostate cancer cells resulted in the constitutive activation of the transcription factor. The enzymatic product of arachidonic acid metabolism, 12(S)-HETE, mediates the activation of NF-kappaB by the 12-LOX. 12(S)-HETE treatment of PC-3 cells induced the degradation of IkappaB by the S6 proteasomal pathway and the activated NF-kappaB translocated to the nucleus causing kappaB-induced transcription. Specificity of the NF-kappaB activation by 12(S)-HETE was established by the use of a 12-LOX-specific inhibitor and 13(S)-HODE, a known 12(S)-HETE antagonist. Considering the known involvement of MAP kinase pathway in NF-kappaB activation and that of 12(S)-HETE in MAP kinase pathway, 12-LOX present in prostate cancer tissues may contribute to the constitutive activation of NF-kappaB in prostate cancer cells.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Radiation Oncology, Wayne State University, 431 Chemistry Bldg., Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
142
|
Kwon D, Fuller AC, Palma JP, Choi I, Kim BS. Induction of chemokines in human astrocytes by picornavirus infection requires activation of both AP-1 and NF-kappa B. Glia 2004; 45:287-96. [PMID: 14730702 PMCID: PMC7165560 DOI: 10.1002/glia.10331] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Infection with different picornaviruses can cause meningitis/encephalitis in humans and experimental animals. To investigate the mechanisms of such inflammatory diseases, potential chemokine gene activation in human astrocytes was investigated following infection with Theiler's murine encephalomyelitis virus (TMEV), coxsackievirus B3 (CVB3), or coxsackievirus B4 (CVB4). We report that all these viruses are potent inducers for the expression of interleukin‐8 (IL‐8) and monocyte chemoattractant protein‐1 (MCP‐1) genes in primary human astrocytes, as well as in an established astrocyte cell line (U‐373MG). Further studies indicated that both activator protein‐1 (AP‐1) and NF‐κB transcription factors are required in the activation of chemokine genes in human astrocytes infected with various picornaviruses. Interestingly, the pattern of activated chemokine genes in human astrocytes is quite restricted compared to that in mouse astrocytes infected with the same viruses, suggesting species differences in gene activation. This may result in potential differences in the pathogenic outcome in each species. © 2003 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Daeho Kwon
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois
| | - Alyson C. Fuller
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois
| | - Joann P. Palma
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois
| | - In‐Hong Choi
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Byung S. Kim
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois
| |
Collapse
|
143
|
Abstract
More than a half a century ago, interferons (IFN) were identified as antiviral cytokines. Since that discovery, IFN have been in the forefront of basic and clinical cytokine research. The pleiotropic nature of these cytokines continues to engage a large number of investigators to define their actions further. IFN paved the way for discovery of Janus tyrosine kinase (JAK)-signal transducing activators of transcription (STAT) pathways. A number of important tumor suppressive pathways are controlled by IFN. Several infectious pathogens counteract IFN-induced signaling pathways. Recent studies indicate that IFN activate several new protein kinases, including the MAP kinase family, and downstream transcription factors. This review not only details the established IFN signaling paradigms but also provides insights into emerging alternate signaling pathways and mechanisms of pathogen-induced signaling interference.
Collapse
Affiliation(s)
- Dhananjaya V Kalvakolanu
- Molecular and Cellular Biology Graduate Program, Greenebaum Cancer Center, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
144
|
Sclabas GM, Fujioka S, Schmidt C, Evans DB, Chiao PJ. NF-kappaB in pancreatic cancer. INTERNATIONAL JOURNAL OF GASTROINTESTINAL CANCER 2004; 33:15-26. [PMID: 12909735 DOI: 10.1385/ijgc:33:1:15] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the genetic profile of pancreatic cancer is emerging as a result of much research, the role of specific genetic alterations that initiate tumorigenesis and produce its cardinal clinical features of locally aggressive growth, metastasis, and chemotherapy resistance remains unresolved. Recently, a number of studies have shown that the inhibition of constitutive NF-kappaB activation, one of the frequent molecular alterations in pancreatic cancer, inhibits tumorigenesis and metastasis. It also sensitizes pancreatic cancer cell lines to anticancer agent-induced apoptosis. Therefore because of the crucial role of NF-kappaB in pancreatic cancer, it is a potential target for developing novel therapeutic strategies for the disease. In vivo and in vitro models that mimic the tumorigenic phenotypes in the appropriate histological and molecular concert would be very useful for confirming the suspected role of the pancreatic cancer signature genetic lesions and better understanding the molecular basis of this disease.
Collapse
Affiliation(s)
- Guido M Sclabas
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
145
|
Abstract
The nuclear factor (NF)-kappaB pathway is important for the expression of a wide variety of genes that are involved in the control of the host immune and inflammatory response, and in the regulation of cellular proliferation and survival. The constitutive activation of this pathway is associated with inflammatory and autoimmune diseases, such as asthma, rheumatoid arthritis and inflammatory bowel disease, in addition to atherosclerosis, Alzheimer's disease, cancer and diabetes. One of the key steps in activating the NF-kappaB pathway is the stimulation of the IkappaB (inhibitor of kappaB) kinases. Recent data indicate that these kinases activate the NF-kappaB pathway through distinct steps that are operative in both the cytoplasm and the nucleus. A better understanding of the mechanisms that activate this pathway provides the potential for defining new therapeutic targets that might prevent the aberrant activation of NF-kappaB in a variety of human diseases.
Collapse
Affiliation(s)
- Yumi Yamamoto
- Division of Hematology-Oncology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
146
|
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) or Apo2L is a ligand of the TNF family interacting with five different receptors of the TNF receptor superfamily, including two death receptors. It has attracted wide interest as a potential anticancer therapy because some recombinant soluble forms of TRAIL induce cell death predominantly in transformed cells. The nuclear factor-kappaB (NFkappaB)?Rel family of proteins are composed of a group of dimeric transcription factors that have an outstanding role in the regulation of inflammation and immunity. Control of transcription by NFkappaB proteins can be of relevance to the function of TRAIL in three ways. First, induction of antiapoptotic NFkappaB dependent genes critically determines cellular susceptibility toward apoptosis induction by TRAIL-R1, TRAIL-R2, and other death receptors. Each of the multiple of known NFkappaB inducers therefore has the potential to interfere with TRAIL-induced cell death. Second, TRAIL and some of its receptors are inducible by NFkappaB, disclosing the possibility of autoamplifying TRAIL signaling loops. Third, the TRAIL death receptors can activate the NFkappaB pathway. This chapter summarizes basic knowledge regarding the understanding of the NFkappaB pathway and focuses on its multiple roles in TRAIL signaling.
Collapse
Affiliation(s)
- Harald Wajant
- Department of Molecular Internal Medicine Medical Polyclinic, University of Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
147
|
McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, Maniatis T. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci U S A 2003; 101:233-8. [PMID: 14679297 PMCID: PMC314168 DOI: 10.1073/pnas.2237236100] [Citation(s) in RCA: 450] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Virus infection, double-stranded RNA, and lipopolysaccharide each induce the expression of genes encoding IFN-alpha and -beta and chemokines, such as RANTES (regulated on activation, normal T cell expressed and secreted) and IP-10 (IFN-gamma inducible protein 10). This induction requires the coordinate activation of several transcription factors, including IFN-regulatory factor 3 (IRF3). The signaling pathways leading to IRF3 activation are triggered by the binding of pathogen-specific products to Toll-like receptors and culminate in the phosphorylation of specific serine residues in the C terminus of IRF3. Recent studies of human cell lines in culture have implicated two noncanonical IkappaB kinase (IKK)-related kinases, IKK-epsilon and Traf family member-associated NF-kappaB activator (TANK)-binding kinase 1 (TBK1), in the phosphorylation of IRF3. Here, we show that purified recombinant IKK-epsilon and TBK1 directly phosphorylate the critical serine residues in IRF3. We have also examined the expression of IRF3-dependent genes in mouse embryonic fibroblasts (MEFs) derived from Tbk1(-/-) mice, and we show that TBK1 is required for the activation and nuclear translocation of IRF3 in these cells. Moreover, Tbk1(-/-) MEFs show marked defects in IFN-alpha and -beta, IP-10, and RANTES gene expression after infection with either Sendai or Newcastle disease viruses or after engagement of the Toll-like receptors 3 and 4 by double-stranded RNA and lipopolysaccharide, respectively. Finally, TRIF (TIR domain-containing adapter-inducing IFN-beta), fails to activate IRF3-dependent genes in Tbk1(-/-) MEFs. We conclude that TBK1 is essential for IRF3-dependent antiviral gene expression.
Collapse
Affiliation(s)
- Sarah M McWhirter
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
148
|
Abstract
Epidemiological studies have shown a significant difference in cancer incidence among different ethnic groups, which is believed to be partly attributed to dietary habits. The incidences of breast and prostate cancers are much higher in the United States and European countries compared with Asian countries such as Japan and China. One of the major differences in diet between these populations is that the Japanese and the Chinese consume a traditional diet high in soy products. Soy isoflavones have been identified as dietary components having an important role in reducing the incidence of breast and prostate cancers. Genistein, the predominant isoflavones found in soy, has been shown to inhibit the carcinogenesis in animal models. There are growing body of experimental evidence that show the inhibition of human cancer cells by genistein through the modulation of genes that are related to the control of cell cycle and apoptosis. Moreover, it has been shown that genistein inhibits the activation of NF-kappa B and Akt signaling pathways, both of which are known to maintain a homeostatic balance between cell survival and apoptosis. Genistein is commonly known as phytoestrogen, which targets estrogen- and androgen-mediated signaling pathways in the processes of carcinogenesis. Furthermore, genistein has been found to have antioxidant property, and shown to be a potent inhibitor of angiogenesis and metastasis. Taken together, both in vivo and in vitro studies have clearly shown that genistein, one of the major soy isoflavones, is a promising reagent for cancer chemoprevention and/or treatment. In this article, we attempt to provide evidence for these effects of genistein in a succinct manner to provide comprehensive state-of-the-art knowledge of the biological and molecular effects of the isoflavone genistein in cancer cells.
Collapse
Affiliation(s)
- Fazlul H Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 715 Hudson Webber Cancer Center, 110 E. Warren, Detroit, MI 48201, USA.
| | | |
Collapse
|
149
|
Fujita F, Taniguchi Y, Kato T, Narita Y, Furuya A, Ogawa T, Sakurai H, Joh T, Itoh M, Delhase M, Karin M, Nakanishi M. Identification of NAP1, a regulatory subunit of IkappaB kinase-related kinases that potentiates NF-kappaB signaling. Mol Cell Biol 2003; 23:7780-93. [PMID: 14560022 PMCID: PMC207563 DOI: 10.1128/mcb.23.21.7780-7793.2003] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IkappaB kinase (IKK)-related kinase NAK (also known as TBK or T2K) contributes to the activation of NF-kappaB-dependent gene expression. Here we identify NAP1 (for NAK-associated protein 1), a protein that interacts with NAK and its relative IKK epsilon (also known as IKKi). NAP1 activates NAK and facilitates its oligomerization. Interestingly, the NAK-NAP1 complex itself effectively phosphorylated serine 536 of the p65/RelA subunit of NF-kappaB, and this activity was stimulated by tumor necrosis factor alpha (TNF-alpha). Overexpression of NAP1 specifically enhanced cytokine induction of an NF-kappaB-dependent, but not an AP-1-dependent, reporter. Depletion of NAP1 reduced NF-kappaB-dependent reporter gene expression and sensitized cells to TNF-alpha-induced apoptosis. These results define NAP1 as an activator of IKK-related kinases and suggest that the NAK-NAP1 complex may protect cells from TNF-alpha-induced apoptosis by promoting NF-kappaB activation.
Collapse
Affiliation(s)
- Fumitaka Fujita
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
MAPK/ERK kinase kinase 1 (MEKK1) is a mitogenactivated protein kinase kinase kinase (MAP3K) of the stress-induced JNK pathway. Once activated, MEKK1 phosphorylates the MAP2K MKK4, which in turn phosphorylates JNK. MEKK1 also has the capacity to activate IKK, the central protein kinase of the NF-kappa B pathway. The molecular determinants responsible for the ability of MEKK1 to recognize specific substrates are poorly understood. We report here that select point mutations in subdomain VIII of the protein kinase domain of MEKK1 (MEKK1 Delta) differentially affect its ability to activate MKK4 and IKK, and consequently AP1 and NF-kappa B reporter genes. Moreover, binding of MKK4 to MEKK1 Delta protects the latter from cleavage at an engineered protease target site in subdomain VIII. Collectively these results provide evidence that subdomain VIII of MEKK1 is involved not only in binding to, but also in discrimination of, protein substrates.
Collapse
Affiliation(s)
- Zheng Tu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|