101
|
Rhythmic Behavior Is Controlled by the SRm160 Splicing Factor in Drosophila melanogaster. Genetics 2017; 207:593-607. [PMID: 28801530 DOI: 10.1534/genetics.117.300139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
Circadian clocks organize the metabolism, physiology, and behavior of organisms throughout the day-night cycle by controlling daily rhythms in gene expression at the transcriptional and post-transcriptional levels. While many transcription factors underlying circadian oscillations are known, the splicing factors that modulate these rhythms remain largely unexplored. A genome-wide assessment of the alterations of gene expression in a null mutant of the alternative splicing regulator SR-related matrix protein of 160 kDa (SRm160) revealed the extent to which alternative splicing impacts on behavior-related genes. We show that SRm160 affects gene expression in pacemaker neurons of the Drosophila brain to ensure proper oscillations of the molecular clock. A reduced level of SRm160 in adult pacemaker neurons impairs circadian rhythms in locomotor behavior, and this phenotype is caused, at least in part, by a marked reduction in period (per) levels. Moreover, rhythmic accumulation of the neuropeptide PIGMENT DISPERSING FACTOR in the dorsal projections of these neurons is abolished after SRm160 depletion. The lack of rhythmicity in SRm160-downregulated flies is reversed by a fully spliced per construct, but not by an extra copy of the endogenous locus, showing that SRm160 positively regulates per levels in a splicing-dependent manner. Our findings highlight the significant effect of alternative splicing on the nervous system and particularly on brain function in an in vivo model.
Collapse
|
102
|
Selcho M, Millán C, Palacios-Muñoz A, Ruf F, Ubillo L, Chen J, Bergmann G, Ito C, Silva V, Wegener C, Ewer J. Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila. Nat Commun 2017; 8:15563. [PMID: 28555616 PMCID: PMC5459987 DOI: 10.1038/ncomms15563] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Animal circadian clocks consist of central and peripheral pacemakers, which are coordinated to produce daily rhythms in physiology and behaviour. Despite its importance for optimal performance and health, the mechanism of clock coordination is poorly understood. Here we dissect the pathway through which the circadian clock of Drosophila imposes daily rhythmicity to the pattern of adult emergence. Rhythmicity depends on the coupling between the brain clock and a peripheral clock in the prothoracic gland (PG), which produces the steroid hormone, ecdysone. Time information from the central clock is transmitted via the neuropeptide, sNPF, to non-clock neurons that produce the neuropeptide, PTTH. These secretory neurons then forward time information to the PG clock. We also show that the central clock exerts a dominant role on the peripheral clock. This use of two coupled clocks could serve as a paradigm to understand how daily steroid hormone rhythms are generated in animals.
Collapse
Affiliation(s)
- Mareike Selcho
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carola Millán
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Angelina Palacios-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Franziska Ruf
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lilian Ubillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Jiangtian Chen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Gregor Bergmann
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Chihiro Ito
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Valeria Silva
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| |
Collapse
|
103
|
Prakash P, Nambiar A, Sheeba V. Oscillating PDF in termini of circadian pacemaker neurons and synchronous molecular clocks in downstream neurons are not sufficient for sustenance of activity rhythms in constant darkness. PLoS One 2017; 12:e0175073. [PMID: 28558035 PMCID: PMC5448722 DOI: 10.1371/journal.pone.0175073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/19/2017] [Indexed: 12/14/2022] Open
Abstract
In Drosophila, neuropeptide Pigment Dispersing Factor (PDF) is expressed in small and large ventral Lateral Neurons (sLNv and lLNv), among which sLNv are critical for activity rhythms in constant darkness. Studies show that this is mediated by rhythmic accumulation and likely secretion of PDF from sLNv dorsal projections, which in turn synchronises molecular oscillations in downstream circadian neurons. Using targeted expression of a neurodegenerative protein Huntingtin in LNv, we evoke a selective loss of neuropeptide PDF and clock protein PERIOD from sLNv soma. However, PDF is not lost from sLNv dorsal projections and lLNv. These flies are behaviourally arrhythmic in constant darkness despite persistence of PDF oscillations in sLNv dorsal projections and synchronous PERIOD oscillations in downstream circadian neurons. We find that PDF oscillations in sLNv dorsal projections are not sufficient for sustenance of activity rhythms in constant darkness and this is suggestive of an additional component that is possibly dependent on sLNv molecular clock and PDF in sLNv soma. Additionally, despite loss of PERIOD in sLNv, their activity rhythms entrain to light/dark cycles indicating that sLNv molecular clocks are not necessary for entrainment. Under constant light, these flies lack PDF from both soma and dorsal projections of sLNv, and when subjected to light/dark cycles, show morning and evening anticipation and accurately phased morning and evening peaks. Thus, under light/dark cycles, PDF in sLNv is not necessary for morning anticipation.
Collapse
Affiliation(s)
- Pavitra Prakash
- Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Aishwarya Nambiar
- Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vasu Sheeba
- Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- * E-mail: ,
| |
Collapse
|
104
|
Genes and neural circuits for sleep of the fruit fly. Neurosci Res 2017; 118:82-91. [DOI: 10.1016/j.neures.2017.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023]
|
105
|
Menegazzi P, Dalla Benetta E, Beauchamp M, Schlichting M, Steffan-Dewenter I, Helfrich-Förster C. Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids. Curr Biol 2017; 27:833-839. [PMID: 28262491 DOI: 10.1016/j.cub.2017.01.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/14/2016] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
Abstract
The genus Drosophila contains over 2,000 species that, stemming from a common ancestor in the Old World Tropics, populate today very different environments [1, 2] (reviewed in [3]). We found significant differences in the activity pattern of Drosophila species belonging to the holarctic virilis group, i.e., D. ezoana and D. littoralis, collected in Northern Europe, compared to that of the cosmopolitan D. melanogaster, collected close to the equator. These behavioral differences might have been of adaptive significance for colonizing high-latitude habitats and hence adjust to long photoperiods. Most interestingly, the flies' locomotor activity correlates with the neurochemistry of their circadian clock network, which differs between low and high latitude for the expression pattern of the blue light photopigment cryptochrome (CRY) and the neuropeptide Pigment-dispersing factor (PDF) [4-6]. In D. melanogaster, CRY and PDF are known to modulate the timing of activity and to maintain robust rhythmicity under constant conditions [7-11]. We could partly simulate the rhythmic behavior of the high-latitude virilis group species by mimicking their CRY/PDF expression patterns in a laboratory strain of D. melanogaster. We therefore suggest that these alterations in the CRY/PDF clock neurochemistry might have allowed the virilis group species to colonize high-latitude environments.
Collapse
Affiliation(s)
- Pamela Menegazzi
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Elena Dalla Benetta
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Marta Beauchamp
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Matthias Schlichting
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany.
| |
Collapse
|
106
|
Abruzzi KC, Zadina A, Luo W, Wiyanto E, Rahman R, Guo F, Shafer O, Rosbash M. RNA-seq analysis of Drosophila clock and non-clock neurons reveals neuron-specific cycling and novel candidate neuropeptides. PLoS Genet 2017; 13:e1006613. [PMID: 28182648 PMCID: PMC5325595 DOI: 10.1371/journal.pgen.1006613] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/24/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022] Open
Abstract
Locomotor activity rhythms are controlled by a network of ~150 circadian neurons within the adult Drosophila brain. They are subdivided based on their anatomical locations and properties. We profiled transcripts “around the clock” from three key groups of circadian neurons with different functions. We also profiled a non-circadian outgroup, dopaminergic (TH) neurons. They have cycling transcripts but fewer than clock neurons as well as low expression and poor cycling of clock gene transcripts. This suggests that TH neurons do not have a canonical circadian clock and that their gene expression cycling is driven by brain systemic cues. The three circadian groups are surprisingly diverse in their cycling transcripts and overall gene expression patterns, which include known and putative novel neuropeptides. Even the overall phase distributions of cycling transcripts are distinct, indicating that different regulatory principles govern transcript oscillations. This surprising cell-type diversity parallels the functional heterogeneity of the different neurons. Organisms ranging from bacteria to humans contain circadian clocks. They keep internal time and also integrate environmental cues such as light to provide external time information for entrainment. In the fruit fly Drosophila melanogaster, ~150 brain neurons contain the circadian machinery and are critical for controlling behavior. Several subgroups of these clock neurons have been identified by their anatomical locations and specific functions. Our work aims to profile these neurons and to characterize their molecular contents: what to they contain and how do they differ? To this end, we have purified 3 important subgroups of clock neurons and identified their expressed genes at different times of day. Some are expressed at all times, whereas others are “cycling,” i.e., expressed more strongly at a particular time of day like the morning. Interestingly, each circadian subgroup is quite different. The data provide hints about what functions each group of neurons carries out and how they may work together to keep time. In addition, even a non-circadian group of neurons has cycling genes and has implications for the extent to which all cells have or do not have a functional circadian clock.
Collapse
Affiliation(s)
- Katharine C. Abruzzi
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Abigail Zadina
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Weifei Luo
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Evelyn Wiyanto
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Reazur Rahman
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Fang Guo
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Orie Shafer
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Michael Rosbash
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
- * E-mail:
| |
Collapse
|
107
|
Fluorescence circadian imaging reveals a PDF-dependent transcriptional regulation of the Drosophila molecular clock. Sci Rep 2017; 7:41560. [PMID: 28134281 PMCID: PMC5278502 DOI: 10.1038/srep41560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/21/2016] [Indexed: 01/17/2023] Open
Abstract
Circadian locomotor behaviour is controlled by a pacemaker circuit composed of clock-containing neurons. To interrogate the mechanistic relationship between the molecular clockwork and network communication critical to the operation of the Drosophila circadian pacemaker circuit, we established new fluorescent circadian reporters that permit single-cell recording of transcriptional and post-transcriptional rhythms in brain explants and cultured neurons. Live-imaging experiments combined with pharmacological and genetic manipulations demonstrate that the neuropeptide pigment-dispersing factor (PDF) amplifies the molecular rhythms via time-of-day- and activity-dependent upregulation of transcription from E-box-containing clock gene promoters within key pacemaker neurons. The effect of PDF on clock gene transcription and the known role of PDF in enhancing PER/TIM stability occur via independent pathways downstream of the PDF receptor, the former through a cAMP-independent mechanism and the latter through a cAMP-PKA dependent mechanism. These results confirm and extend the mechanistic understanding of the role of PDF in controlling the synchrony of the pacemaker neurons. More broadly, our results establish the utility of the new live-imaging tools for the study of molecular-neural interactions important for the operation of the circadian pacemaker circuit.
Collapse
|
108
|
Vaccaro A, Issa AR, Seugnet L, Birman S, Klarsfeld A. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function. PLoS Genet 2017; 13:e1006507. [PMID: 28072817 PMCID: PMC5224980 DOI: 10.1371/journal.pgen.1006507] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/23/2016] [Indexed: 02/05/2023] Open
Abstract
Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila.
Collapse
Affiliation(s)
- Alexandra Vaccaro
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, ESPCI Paris/CNRS, PSL Research University, Paris, France
| | - Abdul-Raouf Issa
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, ESPCI Paris/CNRS, PSL Research University, Paris, France
| | - Laurent Seugnet
- Integrated Physiology of the Brain Arousal Systems (WAKING), Lyon Neuroscience Research Centre, INSERM/CNRS/UCBL1, Lyon, France
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, ESPCI Paris/CNRS, PSL Research University, Paris, France
| | - André Klarsfeld
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, ESPCI Paris/CNRS, PSL Research University, Paris, France
| |
Collapse
|
109
|
Cloning and functional characterizations of an apoptogenic Hid gene in the Scuttle Fly, Megaselia scalaris (Diptera; Phoridae). Gene 2016; 604:9-21. [PMID: 27940109 DOI: 10.1016/j.gene.2016.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022]
Abstract
Although the mechanisms of apoptotic cell death have been well studied in the fruit fly, Drosophila melanogaster, it is unclear whether such mechanisms are conserved in other distantly related species. Using degenerate primers and PCR, we cloned a proapoptotic gene homologous to Head involution defective (Hid) from the Scuttle fly, Megaselia scalaris (MsHid). MsHid cDNA encodes a 197-amino acid-long polypeptide, which so far is the smallest HID protein. PCR analyses revealed that the MsHid gene consists of four exons and three introns. Ectopic expression of MsHid in various peptidergic neurons and non-neuronal tissues in Drosophila effectively induced apoptosis of these cells. However, deletion of either conserved domain, N-terminal IBM or C-terminal MTS, abolished the apoptogenic activity of MsHID, indicating that these two domains are indispensable. Expression of MsHid was found in all life stages, but more prominently in embryos and pupae. MsHid is actively expressed in the central nervous system (CNS), indicating its important role in CNS development. Together MsHID is likely to be an important cell death inducer during embryonic and post-embryonic development in this species. In addition, we found 2-fold induction of MsHid expression in UV-irradiated embryos, indicating a possible role for MsHid in UV-induced apoptosis.
Collapse
|
110
|
Song Q, Feng G, Huang Z, Chen X, Chen Z, Ping Y. Aberrant Axonal Arborization of PDF Neurons Induced by Aβ42-Mediated JNK Activation Underlies Sleep Disturbance in an Alzheimer's Model. Mol Neurobiol 2016; 54:6317-6328. [PMID: 27718103 DOI: 10.1007/s12035-016-0165-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
Abstract
Impaired sleep patterns are common symptoms of Alzheimer's disease (AD). Cellular mechanisms underlying sleep disturbance in AD remain largely unknown. Here, using a Drosophila Aβ42 AD model, we show that Aβ42 markedly decreases sleep in a large population, which is accompanied with postdevelopmental axonal arborization of wake-promoting pigment-dispersing factor (PDF) neurons. The arborization is mediated in part via JNK activation and can be reversed by decreasing JNK signaling activity. Axonal arborization and impaired sleep are correlated in Aβ42 and JNK kinase hemipterous mutant flies. Image reconstruction revealed that these aberrant fibers preferentially project to pars intercerebralis (PI), a fly brain region analogous to the mammalian hypothalamus. Moreover, PDF signaling in PI neurons was found to modulate sleep/wake activities, suggesting that excessive release of PDF by these aberrant fibers may lead to the impaired sleep in Aβ42 flies. Finally, inhibition of JNK activation in Aβ42 flies restores nighttime sleep loss, decreases Aβ42 accumulation, and attenuates neurodegeneration. These data provide a new mechanism by which sleep disturbance could be induced by Aβ42 burden, a key initiator of a complex pathogenic cascade in AD.
Collapse
Affiliation(s)
- Qian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ge Feng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehua Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaoman Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhaohuan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Institute of Systems Biomedicine, Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China. .,Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
111
|
Chen J, Reiher W, Hermann-Luibl C, Sellami A, Cognigni P, Kondo S, Helfrich-Förster C, Veenstra JA, Wegener C. Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is Modulated by PDF. PLoS Genet 2016; 12:e1006346. [PMID: 27689358 PMCID: PMC5045179 DOI: 10.1371/journal.pgen.1006346] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/07/2016] [Indexed: 11/19/2022] Open
Abstract
Feeding and sleep are fundamental behaviours with significant interconnections and cross-modulations. The circadian system and peptidergic signals are important components of this modulation, but still little is known about the mechanisms and networks by which they interact to regulate feeding and sleep. We show that specific thermogenetic activation of peptidergic Allatostatin A (AstA)-expressing PLP neurons and enteroendocrine cells reduces feeding and promotes sleep in the fruit fly Drosophila. The effects of AstA cell activation are mediated by AstA peptides with receptors homolog to galanin receptors subserving similar and apparently conserved functions in vertebrates. We further identify the PLP neurons as a downstream target of the neuropeptide pigment-dispersing factor (PDF), an output factor of the circadian clock. PLP neurons are contacted by PDF-expressing clock neurons, and express a functional PDF receptor demonstrated by cAMP imaging. Silencing of AstA signalling and continuous input to AstA cells by tethered PDF changes the sleep/activity ratio in opposite directions but does not affect rhythmicity. Taken together, our results suggest that pleiotropic AstA signalling by a distinct neuronal and enteroendocrine AstA cell subset adapts the fly to a digestive energy-saving state which can be modulated by PDF.
Collapse
Affiliation(s)
- Jiangtian Chen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Wencke Reiher
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christiane Hermann-Luibl
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Azza Sellami
- INCIA, UMR 5287 CNRS, University of Bordeaux, Talence, France
| | - Paola Cognigni
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Shizuoka, Japan
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan A. Veenstra
- INCIA, UMR 5287 CNRS, University of Bordeaux, Talence, France
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
112
|
Top D, Harms E, Syed S, Adams EL, Saez L. GSK-3 and CK2 Kinases Converge on Timeless to Regulate the Master Clock. Cell Rep 2016; 16:357-367. [PMID: 27346344 PMCID: PMC4945451 DOI: 10.1016/j.celrep.2016.06.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/27/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022] Open
Abstract
The molecular clock relies on a delayed negative feedback loop of transcriptional regulation to generate oscillating gene expression. Although the principal components of the clock are present in all circadian neurons, different neuronal clusters have varying effects on rhythmic behavior, suggesting that the clocks they house are differently regulated. Combining biochemical and genetic techniques in Drosophila, we identify a phosphorylation program native to the master pacemaker neurons that regulates the timing of nuclear accumulation of the Period/Timeless repressor complex. GSK-3/SGG binds and phosphorylates Period-bound Timeless, triggering a CK2-mediated phosphorylation cascade. Mutations that block the hierarchical phosphorylation of Timeless in vitro also delay nuclear accumulation in both tissue culture and in vivo and predictably change rhythmic behavior. This two-kinase phosphorylation cascade is anatomically restricted to the eight master pacemaker neurons, distinguishing the regulatory mechanism of the molecular clock within these neurons from the other clocks that cooperate to govern behavioral rhythmicity.
Collapse
Affiliation(s)
- Deniz Top
- Laboratory of Genetics, The Rockefeller University, 1230 York Avenue, Box 288, New York, NY 10065, USA.
| | - Emily Harms
- Laboratory of Genetics, The Rockefeller University, 1230 York Avenue, Box 288, New York, NY 10065, USA
| | - Sheyum Syed
- Department of Physics, The University of Miami, 1320 Campo Sano Avenue, Coral Gables, FL 33146, USA
| | - Eliza L Adams
- Laboratory of Genetics, The Rockefeller University, 1230 York Avenue, Box 288, New York, NY 10065, USA
| | - Lino Saez
- Laboratory of Genetics, The Rockefeller University, 1230 York Avenue, Box 288, New York, NY 10065, USA
| |
Collapse
|
113
|
Bae JE, Bang S, Min S, Lee SH, Kwon SH, Lee Y, Lee YH, Chung J, Chae KS. Positive geotactic behaviors induced by geomagnetic field in Drosophila. Mol Brain 2016; 9:55. [PMID: 27192976 PMCID: PMC4870802 DOI: 10.1186/s13041-016-0235-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/18/2022] Open
Abstract
Background Appropriate vertical movement is critical for the survival of flying animals. Although negative geotaxis (moving away from Earth) driven by gravity has been extensively studied, much less is understood concerning a static regulatory mechanism for inducing positive geotaxis (moving toward Earth). Results Using Drosophila melanogaster as a model organism, we showed that geomagnetic field (GMF) induces positive geotaxis and antagonizes negative gravitaxis. Remarkably, GMF acts as a sensory cue for an appetite-driven associative learning behavior through the GMF-induced positive geotaxis. This GMF-induced positive geotaxis requires the three geotaxis genes, such as cry, pyx and pdf, and the corresponding neurons residing in Johnston’s organ of the fly’s antennae. Conclusions These findings provide a novel concept with the neurogenetic basis on the regulation of vertical movement by GMF in the flying animals. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0235-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji-Eun Bae
- Department of Biology Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Korea.,Department of Nanoscience & Nanotechnology, Kyungpook National University, Daegu, Korea
| | - Sunhoe Bang
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics and School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | - Soohong Min
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics and School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | - Sang-Hyup Lee
- Department of Biology Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Korea
| | - Soon-Hwan Kwon
- Department of Biology Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Korea
| | - Yong-Ho Lee
- Brain and Cognition Measurement Laboratory, Korea Research Institute of Standards and Science, Daejeon, Korea
| | - Jongkyeong Chung
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics and School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea.
| | - Kwon-Seok Chae
- Department of Biology Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Korea. .,Department of Nanoscience & Nanotechnology, Kyungpook National University, Daegu, Korea. .,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
114
|
Klose M, Duvall L, Li W, Liang X, Ren C, Steinbach JH, Taghert PH. Functional PDF Signaling in the Drosophila Circadian Neural Circuit Is Gated by Ral A-Dependent Modulation. Neuron 2016; 90:781-794. [PMID: 27161526 DOI: 10.1016/j.neuron.2016.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 01/13/2016] [Accepted: 03/20/2016] [Indexed: 12/18/2022]
Abstract
The neuropeptide PDF promotes the normal sequencing of circadian behavioral rhythms in Drosophila, but its signaling mechanisms are not well understood. We report daily rhythmicity in responsiveness to PDF in critical pacemakers called small LNvs. There is a daily change in potency, as great as 10-fold higher, around dawn. The rhythm persists in constant darkness and does not require endogenous ligand (PDF) signaling or rhythmic receptor gene transcription. Furthermore, rhythmic responsiveness reflects the properties of the pacemaker cell type, not the receptor. Dopamine responsiveness also cycles, in phase with that of PDF, in the same pacemakers, but does not cycle in large LNv. The activity of RalA GTPase in s-LNv regulates PDF responsiveness and behavioral locomotor rhythms. Additionally, cell-autonomous PDF signaling reversed the circadian behavioral effects of lowered RalA activity. Thus, RalA activity confers high PDF responsiveness, providing a daily gate around the dawn hours to promote functional PDF signaling.
Collapse
Affiliation(s)
- Markus Klose
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Laura Duvall
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Weihua Li
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Xitong Liang
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Chi Ren
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Joe Henry Steinbach
- Dept. of Anesthesiology, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Paul H Taghert
- Dept. of Neuroscience, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| |
Collapse
|
115
|
Flourakis M, Kula-Eversole E, Hutchison AL, Han TH, Aranda K, Moose DL, White KP, Dinner AR, Lear BC, Ren D, Diekman CO, Raman IM, Allada R. A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability. Cell 2016; 162:836-48. [PMID: 26276633 DOI: 10.1016/j.cell.2015.07.036] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/17/2015] [Accepted: 07/06/2015] [Indexed: 01/04/2023]
Abstract
Circadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here, we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake.
Collapse
Affiliation(s)
- Matthieu Flourakis
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | | | - Alan L Hutchison
- Medical Scientist Training Program, James Franck Institute, Department of Chemistry, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Tae Hee Han
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Kimberly Aranda
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Devon L Moose
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Aaron R Dinner
- Medical Scientist Training Program, James Franck Institute, Department of Chemistry, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Bridget C Lear
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
116
|
Lazopulo A, Syed S. A mathematical model provides mechanistic links to temporal patterns in Drosophila daily activity. BMC Neurosci 2016; 17:14. [PMID: 27090880 PMCID: PMC4835852 DOI: 10.1186/s12868-016-0248-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Circadian clocks are endogenous biochemical oscillators that control daily behavioral rhythms in all living organisms. In fruit fly, the circadian rhythms are typically studied using power spectra of multiday behavioral recordings. Despite decades of study, a quantitative understanding of the temporal shape of Drosophila locomotor rhythms is missing. Locomotor recordings have been used mostly to extract the period of the circadian clock, leaving these data-rich time series largely underutilized. The power spectra of Drosophila and mouse locomotion often show multiple peaks in addition to the expected at T ~ 24 h. Several theoretical and experimental studies have previously used these data to examine interactions between the circadian and other endogenous rhythms, in some cases, attributing peaks in the T < 24 h regime to ultradian oscillators. However, the analysis of fly locomotion was typically performed without considering the shape of time series, while the shape of the signal plays important role in its power spectrum. To account for locomotion patterns in circadian studies we construct a mathematical model of fly activity. Our model allows careful analysis of the temporal shape of behavioral recordings and can provide important information about biochemical mechanisms that control fly activity. Results Here we propose a mathematical model with four exponential terms and a single period of oscillation that closely reproduces the shape of the locomotor data in both time and frequency domains. Using our model, we reexamine interactions between the circadian and other endogenous rhythms and show that the proposed single-period waveform is sufficient to explain the position and height of >88 % of spectral peaks in the locomotion of wild-type and circadian mutants of Drosophila. In the time domain, we find the timescales of the exponentials in our model to be ~1.5 h−1 on average. Conclusions Our results indicate that multiple spectral peaks from fly locomotion are simply harmonics of the circadian period rather than independent ultradian oscillators as previously reported. From timescales of the exponentials we hypothesize that model rates reflect activity of the neuropeptides that likely transduce signals of the circadian clock and the sleep–wake homeostat to shape behavioral outputs. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0248-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrey Lazopulo
- Department of Physics, University of Miami, 1320 Campo Sano Avenue, Coral Gables, FL, 33146, USA
| | - Sheyum Syed
- Department of Physics, University of Miami, 1320 Campo Sano Avenue, Coral Gables, FL, 33146, USA.
| |
Collapse
|
117
|
Cavey M, Collins B, Bertet C, Blau J. Circadian rhythms in neuronal activity propagate through output circuits. Nat Neurosci 2016; 19:587-95. [PMID: 26928065 PMCID: PMC5066395 DOI: 10.1038/nn.4263] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/04/2016] [Indexed: 12/14/2022]
Abstract
Twenty-four hour rhythms in behavior are organized by a network of circadian pacemaker neurons. Rhythmic activity in this network is generated by intrinsic rhythms in clock neuron physiology and communication between clock neurons. However, it is poorly understood how the activity of a small number of pacemaker neurons is translated into rhythmic behavior of the whole animal. To understand this, we screened for signals that could identify circadian output circuits in Drosophila melanogaster. We found that leucokinin neuropeptide (LK) and its receptor (LK-R) were required for normal behavioral rhythms. This LK/LK-R circuit connects pacemaker neurons to brain areas that regulate locomotor activity and sleep. Our experiments revealed that pacemaker neurons impose rhythmic activity and excitability on LK- and LK-R-expressing neurons. We also found pacemaker neuron-dependent activity rhythms in a second circadian output pathway controlled by DH44 neuropeptide-expressing neurons. We conclude that rhythmic clock neuron activity propagates to multiple downstream circuits to orchestrate behavioral rhythms.
Collapse
Affiliation(s)
- Matthieu Cavey
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics & Systems Biology, New York University Abu Dhabi Institute, Abu Dhabi, United Arab Emirates
| | - Ben Collins
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Claire Bertet
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics & Systems Biology, New York University Abu Dhabi Institute, Abu Dhabi, United Arab Emirates
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
118
|
Nikhil KL, Abhilash L, Sharma VK. Molecular Correlates of Circadian Clocks in Fruit Fly Drosophila melanogaster Populations Exhibiting early and late Emergence Chronotypes. J Biol Rhythms 2016; 31:125-41. [PMID: 26833082 DOI: 10.1177/0748730415627933] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although association of circadian clock properties with the timing of rhythmic behaviors (chronotype) has been extensively documented over several decades, recent studies on mice and Drosophila have failed to observe such associations. In addition, studies on human populations that examined effects of clock gene mutations/polymorphisms on chronotypes have revealed disparate and often contradictory results, thereby highlighting the need for a suitable model organism to study circadian clocks' role in chronotype regulation, the lack of which has hindered exploration of the underlying molecular-genetic bases. We used a laboratory selection approach to raise populations of Drosophila melanogaster that emerge in the morning (early) or in the evening (late), and over 14 years of continued selection, we report clear divergence of their circadian phenotypes. We also assessed the molecular correlates of early and late emergence chronotypes and report significant divergence in transcriptional regulation, including the mean phase, amplitude and levels of period (per), timeless (tim), clock (clk) and vrille (vri) messenger RNA (mRNA) expression. Corroborating some of the previously reported light-sensitivity and oscillator network coupling differences between the early and the late populations, we also report differences in mRNA expression of the circadian photoreceptor cryptochrome (cry) and in the mean phase, amplitude and levels of the neuropeptide pigment-dispersing factor (PDF). These results provide the first-ever direct evidence for divergent evolution of molecular circadian clocks in response to selection imposed on an overt rhythmic behavior and highlight early and late populations as potential models for chronotype studies by providing a preliminary groundwork for further exploration of molecular-genetic correlates underlying circadian clock-chronotype association.
Collapse
Affiliation(s)
| | - Lakshman Abhilash
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vijay Kumar Sharma
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India /
| |
Collapse
|
119
|
Zeller M, Held M, Bender J, Berz A, Heinloth T, Hellfritz T, Pfeiffer K. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input. PLoS One 2015; 10:e0143244. [PMID: 26630286 PMCID: PMC4667876 DOI: 10.1371/journal.pone.0143244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/02/2015] [Indexed: 01/27/2023] Open
Abstract
Honeybees are known for their ability to use the sun's azimuth and the sky's polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian clock.
Collapse
Affiliation(s)
- Maximilian Zeller
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Martina Held
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Julia Bender
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Annuska Berz
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Tanja Heinloth
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Timm Hellfritz
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Keram Pfeiffer
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
120
|
Tormey D, Colbourne JK, Mockaitis K, Choi JH, Lopez J, Burkhart J, Bradshaw W, Holzapfel C. Evolutionary divergence of core and post-translational circadian clock genes in the pitcher-plant mosquito, Wyeomyia smithii. BMC Genomics 2015; 16:754. [PMID: 26444857 PMCID: PMC4594641 DOI: 10.1186/s12864-015-1937-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/19/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Internal circadian (circa, about; dies, day) clocks enable organisms to maintain adaptive timing of their daily behavioral activities and physiological functions. Eukaryotic clocks consist of core transcription-translation feedback loops that generate a cycle and post-translational modifiers that maintain that cycle at about 24 h. We use the pitcher-plant mosquito, Wyeomyia smithii (subfamily Culicini, tribe Sabethini), to test whether evolutionary divergence of the circadian clock genes in this species, relative to other insects, has involved primarily genes in the core feedback loops or the post-translational modifiers. Heretofore, there is no reference transcriptome or genome sequence for any mosquito in the tribe Sabethini, which includes over 375 mainly circumtropical species. METHODS We sequenced, assembled and annotated the transcriptome of W. smithii containing nearly 95 % of conserved single-copy orthologs in animal genomes. We used the translated contigs and singletons to determine the average rates of circadian clock-gene divergence in W. smithii relative to three other mosquito genera, to Drosophila, to the butterfly, Danaus, and to the wasp, Nasonia. RESULTS Over 1.08 million cDNA sequence reads were obtained consisting of 432.5 million nucleotides. Their assembly produced 25,904 contigs and 54,418 singletons of which 62 % and 28 % are annotated as protein-coding genes, respectively, sharing homology with other animal proteomes. DISCUSSION The W. smithii transcriptome includes all nine circadian transcription-translation feedback-loop genes and all eight post-translational modifier genes we sought to identify (Fig. 1). After aligning translated W. smithii contigs and singletons from this transcriptome with other insects, we determined that there was no significant difference in the average divergence of W. smithii from the six other taxa between the core feedback-loop genes and post-translational modifiers. CONCLUSIONS The characterized transcriptome is sufficiently complete and of sufficient quality to have uncovered all of the insect circadian clock genes we sought to identify (Fig. 1). Relative divergence does not differ between core feedback-loop genes and post-translational modifiers of those genes in a Sabethine species (W. smithii) that has experienced a continual northward dispersal into temperate regions of progressively longer summer day lengths as compared with six other insect taxa. An associated microarray platform derived from this work will enable the investigation of functional genomics of circadian rhythmicity, photoperiodic time measurement, and diapause along a photic and seasonal geographic gradient.
Collapse
Affiliation(s)
- Duncan Tormey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.,Stowers Institute for Medical Research, Kansas City, MO, USA
| | - John K Colbourne
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA.,School of Biosciences, University of Birmingham, Birmingham, UK
| | - Keithanne Mockaitis
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA.,Pervasive Technology Institute, Indiana University, Bloomington, IN, USA
| | - Jeong-Hyeon Choi
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA.,GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Jacqueline Lopez
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA.,Department of Biological Sciences, Notre Dame University, Notre Dame, IN, USA
| | - Joshua Burkhart
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.,Burke E. Porter Machinery, Grand Rapids, MI, USA
| | - William Bradshaw
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
| | | |
Collapse
|
121
|
Petsakou A, Sapsis TP, Blau J. Circadian Rhythms in Rho1 Activity Regulate Neuronal Plasticity and Network Hierarchy. Cell 2015; 162:823-35. [PMID: 26234154 DOI: 10.1016/j.cell.2015.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 03/19/2015] [Accepted: 06/13/2015] [Indexed: 01/02/2023]
Abstract
Neuronal plasticity helps animals learn from their environment. However, it is challenging to link specific changes in defined neurons to altered behavior. Here, we focus on circadian rhythms in the structure of the principal s-LNv clock neurons in Drosophila. By quantifying neuronal architecture, we observed that s-LNv structural plasticity changes the amount of axonal material in addition to cycles of fasciculation and defasciculation. We found that this is controlled by rhythmic Rho1 activity that retracts s-LNv axonal termini by increasing myosin phosphorylation and simultaneously changes the balance of pre-synaptic and dendritic markers. This plasticity is required to change clock network hierarchy and allow seasonal adaptation. Rhythms in Rho1 activity are controlled by clock-regulated transcription of Puratrophin-1-like (Pura), a Rho1 GEF. Since spinocerebellar ataxia is associated with mutations in human Puratrophin-1, our data support the idea that defective actin-related plasticity underlies this ataxia.
Collapse
Affiliation(s)
- Afroditi Petsakou
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Themistoklis P Sapsis
- Courant Institute for Applied Mathematics, New York University, New York, NY 10003, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA; Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
122
|
Herrero A, Romanowski A, Meelkop E, Caldart CS, Schoofs L, Golombek DA. Pigment-dispersing factor signaling in the circadian system ofCaenorhabditis elegans. GENES BRAIN AND BEHAVIOR 2015; 14:493-501. [DOI: 10.1111/gbb.12231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022]
Affiliation(s)
- A. Herrero
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| | - A. Romanowski
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| | - E. Meelkop
- Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven; Leuven Belgium
| | - C. S. Caldart
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| | - L. Schoofs
- Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven; Leuven Belgium
| | - D. A. Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| |
Collapse
|
123
|
Bosler O, Girardet C, Franc JL, Becquet D, François-Bellan AM. Structural plasticity of the circadian timing system. An overview from flies to mammals. Front Neuroendocrinol 2015; 38:50-64. [PMID: 25703789 DOI: 10.1016/j.yfrne.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/22/2022]
Abstract
The circadian timing system orchestrates daily variations in physiology and behavior through coordination of multioscillatory cell networks that are highly plastic in responding to environmental changes. Over the last decade, it has become clear that this plasticity involves structural changes and that the changes may be observed not only in central brain regions where the master clock cells reside but also in clock-controlled structures. This review considers experimental data in invertebrate and vertebrate model systems, mainly flies and mammals, illustrating various forms of structural circadian plasticity from cellular to circuit-based levels. It highlights the importance of these plastic events in the functional adaptation of the clock to the changing environment.
Collapse
Affiliation(s)
- Olivier Bosler
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France.
| | - Clémence Girardet
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France.
| | - Jean-Louis Franc
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| | - Denis Becquet
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| | - Anne-Marie François-Bellan
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| |
Collapse
|
124
|
Lerner I, Bartok O, Wolfson V, Menet JS, Weissbein U, Afik S, Haimovich D, Gafni C, Friedman N, Rosbash M, Kadener S. Clk post-transcriptional control denoises circadian transcription both temporally and spatially. Nat Commun 2015; 6:7056. [PMID: 25952406 DOI: 10.1038/ncomms8056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/26/2015] [Indexed: 02/08/2023] Open
Abstract
The transcription factor CLOCK (CLK) is essential for the development and maintenance of circadian rhythms in Drosophila. However, little is known about how CLK levels are controlled. Here we show that Clk mRNA is strongly regulated post-transcriptionally through its 3' UTR. Flies expressing Clk transgenes without normal 3' UTR exhibit variable CLK-driven transcription and circadian behaviour as well as ectopic expression of CLK-target genes in the brain. In these flies, the number of the key circadian neurons differs stochastically between individuals and within the two hemispheres of the same brain. Moreover, flies carrying Clk transgenes with deletions in the binding sites for the miRNA bantam have stochastic number of pacemaker neurons, suggesting that this miRNA mediates the deterministic expression of CLK. Overall our results demonstrate a key role of Clk post-transcriptional control in stabilizing circadian transcription, which is essential for proper development and maintenance of circadian rhythms in Drosophila.
Collapse
Affiliation(s)
- Immanuel Lerner
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Osnat Bartok
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Victoria Wolfson
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Jerome S Menet
- Howard Hughes Medical Institute, Biology Department, Brandeis University, 415 South Street, Waltham, Massachusetts 02451, USA
| | - Uri Weissbein
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Shaked Afik
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Daniel Haimovich
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel.,School of Computer Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Chen Gafni
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Nir Friedman
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel.,School of Computer Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Michael Rosbash
- Howard Hughes Medical Institute, Biology Department, Brandeis University, 415 South Street, Waltham, Massachusetts 02451, USA
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
125
|
Jang AR, Moravcevic K, Saez L, Young MW, Sehgal A. Drosophila TIM binds importin α1, and acts as an adapter to transport PER to the nucleus. PLoS Genet 2015; 11:e1004974. [PMID: 25674790 PMCID: PMC4335507 DOI: 10.1371/journal.pgen.1004974] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/23/2014] [Indexed: 02/07/2023] Open
Abstract
Regulated nuclear entry of clock proteins is a conserved feature of eukaryotic circadian clocks and serves to separate the phase of mRNA activation from mRNA repression in the molecular feedback loop. In Drosophila, nuclear entry of the clock proteins, PERIOD (PER) and TIMELESS (TIM), is tightly controlled, and impairments of this process produce profound behavioral phenotypes. We report here that nuclear entry of PER-TIM in clock cells, and consequently behavioral rhythms, require a specific member of a classic nuclear import pathway, Importin α1 (IMPα1). In addition to IMPα1, rhythmic behavior and nuclear expression of PER-TIM require a specific nuclear pore protein, Nup153, and Ran-GTPase. IMPα1 can also drive rapid and efficient nuclear expression of TIM and PER in cultured cells, although the effect on PER is mediated by TIM. Mapping of interaction domains between IMPα1 and TIM/PER suggests that TIM is the primary cargo for the importin machinery. This is supported by attenuated interaction of IMPα1 with TIM carrying a mutation previously shown to prevent nuclear entry of TIM and PER. TIM is detected at the nuclear envelope, and computational modeling suggests that it contains HEAT-ARM repeats typically found in karyopherins, consistent with its role as a co-transporter for PER. These findings suggest that although PER is the major timekeeper of the clock, TIM is the primary target of nuclear import mechanisms. Thus, the circadian clock uses specific components of the importin pathway with a novel twist in that TIM serves a karyopherin-like role for PER. In Drosophila, circadian rhythms are driven by a negative feedback loop that includes the key regulators, period (per) and timeless (tim). To generate this feedback loop, PER and TIM proteins first accumulate in the cytoplasm and then translocate to the nucleus where PER represses transcription. Thus, the nuclear import of PER-TIM proteins is a critical step to separate the phases of activation and repression of mRNA synthesis. In this study, we discovered that a member of the nuclear import machinery, importin α1 is an essential component of this feedback loop. Flies lacking importin α1 (IMPα1) display arrhythmic behavior and cytoplasmic expression of both PER and TIM at all times. In cultured S2 cells, IMPα1 expression directly facilitates nuclear import of TIM, but the effect on PER appears to be indirect. TIM expression is detected at the nuclear envelope and it interacts with other components of the nuclear transport machinery, which we show are also required for nuclear expression of TIM-PER and for behavioral rhythms. Our results thus suggest that TIM functions to link PER to the nuclear import machinery through IMPα1. Altogether, this study provides the mechanistic basis of a crucial step in the circadian clock mechanism.
Collapse
Affiliation(s)
- A. Reum Jang
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katarina Moravcevic
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lino Saez
- Laboratory of Genetics, The Rockefeller University, New York, New York, United States of America
| | - Michael W. Young
- Laboratory of Genetics, The Rockefeller University, New York, New York, United States of America
| | - Amita Sehgal
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
126
|
Hermann-Luibl C, Helfrich-Förster C. Clock network in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2015; 7:65-70. [PMID: 32846682 DOI: 10.1016/j.cois.2014.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 06/11/2023]
Abstract
The circadian clock consists of a network of peptidergic neurons in the brain of all animals. The function of this peptidergic network has been largely revealed in the fruit fly Drosophila melanogaster due to the relatively few well characterized clock neurons and because these neurons can be genetically manipulated. Here we review the neuronal organization of the circadian network and the role of individual clock neurons and neuropeptides in it.
Collapse
Affiliation(s)
- Christiane Hermann-Luibl
- Department of Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Department of Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Germany.
| |
Collapse
|
127
|
Górska-Andrzejak J, Damulewicz M, Pyza E. Circadian changes in neuronal networks. CURRENT OPINION IN INSECT SCIENCE 2015; 7:76-81. [PMID: 32846686 DOI: 10.1016/j.cois.2015.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/10/2015] [Accepted: 01/13/2015] [Indexed: 06/11/2023]
Abstract
The circadian clock generates circadian plasticity in some of the clock and non-clock neurons leading to the daily changes in their structure and in the number of synaptic contacts. This plasticity affects neuronal networks in the brain. The two best known examples of circadian changes in neuronal networks are those observed in the first optic neuropil (lamina) of the fly's visual system and between one group of clock neurons, the small ventral lateral neurons (s-LNvs), and their target cells in the dorsal part of the Drosophila brain. Both of these networks are remodeled in the course of the day by the circadian clock and they are further affected by external stimuli.
Collapse
Affiliation(s)
- Jolanta Górska-Andrzejak
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
128
|
Flourakis M, Allada R. Patch-clamp electrophysiology in Drosophila circadian pacemaker neurons. Methods Enzymol 2014; 552:23-44. [PMID: 25707271 DOI: 10.1016/bs.mie.2014.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Circadian clocks modulate the action potential firing frequency of pacemaker neurons. This daily variation in membrane excitability has been described in multiple species: from mollusks to fruit flies and mammals. Here, we provide an overview of the Drosophila pacemaker neural network, how circadian clocks drive neuronal activity within this network and we will present electrophysiological methods that we have applied to directly measure neuronal activity and reveal signal transduction pathways.
Collapse
Affiliation(s)
- Matthieu Flourakis
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA.
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
129
|
Risau-Gusman S, Gleiser PM. A mathematical model of communication between groups of circadian neurons in Drosophila melanogaster. J Biol Rhythms 2014; 29:401-10. [PMID: 25416595 DOI: 10.1177/0748730414557865] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the fruit fly, circadian behavior is controlled by a small number of specialized neurons, whose molecular clocks are relatively well known. However, much less is known about how these neurons communicate among themselves. In particular, only 1 circadian neuropeptide, pigment-dispersing factor (PDF), has been identified, and most aspects of its interaction with the molecular clock remain to be elucidated. Furthermore, it is speculated that many other peptides should contribute to circadian communication. We have developed a relatively detailed model of the 2 main groups of circadian pacemaker neurons (sLNvs and LNds) to investigate these issues. We have proposed many possible mechanisms for the interaction between the synchronization factors and the molecular clock, and we have compared the outputs with the experimental results reported in the literature both for the wild-type and PDF-null mutant. We have studied how different the properties of each neuron should be to account for the observations reported for the sLNvs in the mutant. We have found that only a few mechanisms, mostly related to the slowing down of nuclear entry of a circadian protein, can synchronize neurons that present these differences. Detailed immunofluorescent recordings have suggested that, whereas in the mutant, LNd neurons are synchronized, in the wild-type, a subset of the LNds oscillate faster than the rest. With our model, we find that a more likely explanation for the same observations is that this subset is being driven outside its synchronization range and displays therefore a complex pattern of oscillation.
Collapse
|
130
|
Kunst M, Tso MCF, Ghosh DD, Herzog ED, Nitabach MN. Rhythmic control of activity and sleep by class B1 GPCRs. Crit Rev Biochem Mol Biol 2014; 50:18-30. [PMID: 25410535 DOI: 10.3109/10409238.2014.985815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Members of the class B1 family of G-protein coupled receptors (GPCRs) whose ligands are neuropeptides have been implicated in regulation of circadian rhythms and sleep in diverse metazoan clades. This review discusses the cellular and molecular mechanisms by which class B1 GPCRs, especially the mammalian VPAC2 receptor and its functional homologue PDFR in Drosophila and C. elegans, regulate arousal and daily rhythms of sleep and wake. There are remarkable parallels in the cellular and molecular roles played by class B1 intercellular signaling pathways in coordinating arousal and circadian timekeeping across multiple cells and tissues in these very different genetic model organisms.
Collapse
Affiliation(s)
- Michael Kunst
- Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, CT , USA and
| | | | | | | | | |
Collapse
|
131
|
Depetris-Chauvin A, Fernández-Gamba Á, Gorostiza EA, Herrero A, Castaño EM, Ceriani MF. Mmp1 processing of the PDF neuropeptide regulates circadian structural plasticity of pacemaker neurons. PLoS Genet 2014; 10:e1004700. [PMID: 25356918 PMCID: PMC4214601 DOI: 10.1371/journal.pgen.1004700] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 08/22/2014] [Indexed: 11/19/2022] Open
Abstract
In the Drosophila brain, the neuropeptide PIGMENT DISPERSING FACTOR (PDF) is expressed in the small and large Lateral ventral neurons (LNvs) and regulates circadian locomotor behavior. Interestingly, PDF immunoreactivity at the dorsal terminals changes across the day as synaptic contacts do as a result of a remarkable remodeling of sLNv projections. Despite the relevance of this phenomenon to circuit plasticity and behavior, the underlying mechanisms remain poorly understood. In this work we provide evidence that PDF along with matrix metalloproteinases (Mmp1 and 2) are key in the control of circadian structural remodeling. Adult-specific downregulation of PDF levels per se hampers circadian axonal remodeling, as it does altering Mmp1 or Mmp2 levels within PDF neurons post-developmentally. However, only Mmp1 affects PDF immunoreactivity at the dorsal terminals and exerts a clear effect on overt behavior. In vitro analysis demonstrated that PDF is hydrolyzed by Mmp1, thereby suggesting that Mmp1 could directly terminate its biological activity. These data demonstrate that Mmp1 modulates PDF processing, which leads to daily structural remodeling and circadian behavior. Circadian clocks have evolved as mechanisms that allow organisms to adapt to the day/night cyclical changes, a direct consequence of the rotation of the Earth. In the last two decades, and due to its amazing repertoire of genetic tools, Drosophila has been at the leading front in the discovery of genes that account for how the clock operates at a single cell level, which are conserved throughout the animal kingdom. Although the biochemical components underlying these molecular clocks have been characterized in certain detail, the mechanisms used by clock neurons to convey information to downstream pathways controlling behavior remain elusive. In the fruit fly, a subset of circadian neurons called the small ventral lateral neurons (sLNvs) are capable of synchronizing other clock cells relying on a neuropeptide named pigment dispersing factor (PDF). In addition, a number of years ago we described another mechanism as a possible candidate for contributing to the transmission of information downstream of the sLNvs, involving adult-specific remodeling of the axonal terminals of these circadian neurons. In this manuscript we describe some of the molecular events that lead to this striking form of structural plasticity on a daily basis.
Collapse
Affiliation(s)
- Ana Depetris-Chauvin
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), Buenos Aires, Argentina
| | - Ágata Fernández-Gamba
- Laboratorio de Amiloidosis y Neurodegeneración, Fundación Instituto Leloir, IIB-BA-CONICET, Buenos Aires, Argentina
| | - E. Axel Gorostiza
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), Buenos Aires, Argentina
| | - Anastasia Herrero
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), Buenos Aires, Argentina
| | - Eduardo M. Castaño
- Laboratorio de Amiloidosis y Neurodegeneración, Fundación Instituto Leloir, IIB-BA-CONICET, Buenos Aires, Argentina
| | - M. Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
132
|
Collins B, Kaplan HS, Cavey M, Lelito KR, Bahle AH, Zhu Z, Macara AM, Roman G, Shafer OT, Blau J. Differentially timed extracellular signals synchronize pacemaker neuron clocks. PLoS Biol 2014; 12:e1001959. [PMID: 25268747 PMCID: PMC4181961 DOI: 10.1371/journal.pbio.1001959] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/20/2014] [Indexed: 12/22/2022] Open
Abstract
Circadian pacemaker neurons in Drosophila are regulated by two synchronizing signals that are released at opposite times of day, generating a rhythm in intracellular cyclic AMP. Synchronized neuronal activity is vital for complex processes like behavior. Circadian pacemaker neurons offer an unusual opportunity to study synchrony as their molecular clocks oscillate in phase over an extended timeframe (24 h). To identify where, when, and how synchronizing signals are perceived, we first studied the minimal clock neural circuit in Drosophila larvae, manipulating either the four master pacemaker neurons (LNvs) or two dorsal clock neurons (DN1s). Unexpectedly, we found that the PDF Receptor (PdfR) is required in both LNvs and DN1s to maintain synchronized LNv clocks. We also found that glutamate is a second synchronizing signal that is released from DN1s and perceived in LNvs via the metabotropic glutamate receptor (mGluRA). Because simultaneously reducing Pdfr and mGluRA expression in LNvs severely dampened Timeless clock protein oscillations, we conclude that the master pacemaker LNvs require extracellular signals to function normally. These two synchronizing signals are released at opposite times of day and drive cAMP oscillations in LNvs. Finally we found that PdfR and mGluRA also help synchronize Timeless oscillations in adult s-LNvs. We propose that differentially timed signals that drive cAMP oscillations and synchronize pacemaker neurons in circadian neural circuits will be conserved across species. Circadian molecular clocks are essential for daily cycles in animal behavior and we have a good understanding of how these clocks work in individual pacemaker neurons. However, the accuracy of these individual clocks is meaningless unless they are synchronized with one another. In this study we show that synchronizing the principal pacemaker LNv neurons in Drosophila larvae require two extracellular signals that are received at opposite times of day: namely, the neuropeptide PDF released from LNvs themselves at dawn and glutamate released from dorsal clock neurons at dusk. LNvs perceive both PDF and glutamate via G-protein coupled receptors that increase or decrease intracellular cAMP, respectively. The alternating phases of PDF and glutamate release generate oscillations in intracellular cyclic AMP. In addition to maintaining synchrony between LNvs, this rhythm is also required for molecular clock oscillations in individual larval LNvs. We show that disruption of PDF and glutamate signaling also reduces synchrony in adult LNvs. This impairs the oscillations of clock proteins and flies have delayed onset of sleep. Our data highlight the importance of intercellular signaling in ensuring synchrony between clock neurons within the circadian network. Our findings help extend the conservation of clock properties between Drosophila and mammals beyond clock genes to include clock circuitry.
Collapse
Affiliation(s)
- Ben Collins
- Department of Biology, New York University, New York, New York, United States of America
| | - Harris S. Kaplan
- Department of Biology, New York University, New York, New York, United States of America
| | - Matthieu Cavey
- Department of Biology, New York University, New York, New York, United States of America
| | - Katherine R. Lelito
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew H. Bahle
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zhonghua Zhu
- Department of Biology, New York University, New York, New York, United States of America
| | - Ann Marie Macara
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gregg Roman
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Orie T. Shafer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Justin Blau
- Department of Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi Institute, Abu Dhabi, United Arab Emirates
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- * E-mail:
| |
Collapse
|
133
|
Shafer OT, Yao Z. Pigment-Dispersing Factor Signaling and Circadian Rhythms in Insect Locomotor Activity. CURRENT OPINION IN INSECT SCIENCE 2014; 1:73-80. [PMID: 25386391 PMCID: PMC4224320 DOI: 10.1016/j.cois.2014.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Though expressed in relatively few neurons in insect nervous systems, pigment-dispersing factor (PDF) plays many roles in the control of behavior and physiology. PDF's role in circadian timekeeping is its best-understood function and the focus of this review. Here we recount the isolation and characterization of insect PDFs, review the evidence that PDF acts as a circadian clock output factor, and discuss emerging models of how PDF functions within circadian clock neuron network of Drosophila, the species in which this peptide's circadian roles are best understood.
Collapse
|
134
|
Helfrich-Förster C. From neurogenetic studies in the fly brain to a concept in circadian biology. J Neurogenet 2014; 28:329-47. [PMID: 24655073 DOI: 10.3109/01677063.2014.905556] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This paper is dedicated to Karl-Friedrich Fischbach, who has always shared with me the interest in the function of the fly brain, especially that of its optic lobes. He has accompanied me during my first steps in scientific research. The paper tells the story how our first common attempts to localize the circadian clock in the fly brain finally helped in phrasing the two-oscillator principle of circadian clocks that seems to be valid far beyond the fly circadian system. I hope that Karl-Friedrich will take this story as praise for his generosity in supporting younger scientists outside his own lab, even without the reward of a common paper.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Biocenter, Theodor-Boveri Institute, University of Würzburg , Würzburg , Germany
| |
Collapse
|
135
|
Gmeiner F, Kołodziejczyk A, Yoshii T, Rieger D, Nässel DR, Helfrich-Förster C. GABA(B) receptors play an essential role in maintaining sleep during the second half of the night in Drosophila melanogaster. ACTA ACUST UNITED AC 2014; 216:3837-43. [PMID: 24068350 DOI: 10.1242/jeb.085563] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
GABAergic signalling is important for normal sleep in humans and flies. Here we advance the current understanding of GABAergic modulation of daily sleep patterns by focusing on the role of slow metabotropic GABAB receptors in the fruit fly Drosophila melanogaster. We asked whether GABAB-R2 receptors are regulatory elements in sleep regulation in addition to the already identified fast ionotropic Rdl GABAA receptors. By immunocytochemical and reporter-based techniques we show that the pigment dispersing factor (PDF)-positive ventrolateral clock neurons (LNv) express GABAB-R2 receptors. Downregulation of GABAB-R2 receptors in the large PDF neurons (l-LNv) by RNAi reduced sleep maintenance in the second half of the night, whereas sleep latency at the beginning of the night that was previously shown to depend on ionotropic Rdl GABAA receptors remained unaltered. Our results confirm the role of the l-LNv neurons as an important part of the sleep circuit in D. melanogaster and also identify the GABAB-R2 receptors as the thus far missing component in GABA-signalling that is essential for sleep maintenance. Despite the significant effects on sleep, we did not observe any changes in circadian behaviour in flies with downregulated GABAB-R2 receptors, indicating that the regulation of sleep maintenance via l-LNv neurons is independent of their function in the circadian clock circuit.
Collapse
Affiliation(s)
- Florian Gmeiner
- Department of Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | | | | | | | | | | |
Collapse
|
136
|
Synergistic interactions between the molecular and neuronal circadian networks drive robust behavioral circadian rhythms in Drosophila melanogaster. PLoS Genet 2014; 10:e1004252. [PMID: 24698952 PMCID: PMC3974645 DOI: 10.1371/journal.pgen.1004252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/05/2014] [Indexed: 01/04/2023] Open
Abstract
Most organisms use 24-hr circadian clocks to keep temporal order and anticipate daily environmental changes. In Drosophila melanogaster CLOCK (CLK) and CYCLE (CYC) initiates the circadian system by promoting rhythmic transcription of hundreds of genes. However, it is still not clear whether high amplitude transcriptional oscillations are essential for circadian timekeeping. In order to address this issue, we generated flies in which the amplitude of CLK-driven transcription can be reduced partially (approx. 60%) or strongly (90%) without affecting the average levels of CLK-target genes. The impaired transcriptional oscillations lead to low amplitude protein oscillations that were not sufficient to drive outputs of peripheral oscillators. However, circadian rhythms in locomotor activity were resistant to partial reduction in transcriptional and protein oscillations. We found that the resilience of the brain oscillator is depending on the neuronal communication among circadian neurons in the brain. Indeed, the capacity of the brain oscillator to overcome low amplitude transcriptional oscillations depends on the action of the neuropeptide PDF and on the pdf-expressing cells having equal or higher amplitude of molecular rhythms than the rest of the circadian neuronal groups in the fly brain. Therefore, our work reveals the importance of high amplitude transcriptional oscillations for cell-autonomous circadian timekeeping. Moreover, we demonstrate that the circadian neuronal network is an essential buffering system that protects against changes in circadian transcription in the brain. Circadian clocks allow organisms to predict daily environmental changes. These clocks time the sleep/wake cycles and many other physiological and cellular pathways to 24hs rhythms. The current model states that circadian clocks keep time by the use of biochemical feedback loops. These feedback loops are responsible for the generation of high amplitude oscillations in gene expression. Abolishment of circadian transcriptional oscillations has been shown to abolish circadian function. Previous studies addressing this issue utilize manipulations in which the abolishment of the transcriptional oscillations is very dramatic and involves strong up or down-regulation of circadian genes. In this study we generated fruit flies in which we diminished the amplitude of circadian oscillations in a controlled way. We found that a decrease of more than 50% in the amplitude of circadian oscillations leads to impaired function of circadian physiological outputs in the periphery but does not significantly affect circadian behavior. This suggests that the clock in the brain has a specific compensatory mechanism. Moreover, we found that flies with reduced oscillation and impaired circadian neuronal communication display aberrant circadian rhythms. These finding support the idea of network buffering mechanisms that allows the brain to produce circadian rhythms even with low amplitude molecular oscillations.
Collapse
|
137
|
Seluzicki A, Flourakis M, Kula-Eversole E, Zhang L, Kilman V, Allada R. Dual PDF signaling pathways reset clocks via TIMELESS and acutely excite target neurons to control circadian behavior. PLoS Biol 2014; 12:e1001810. [PMID: 24643294 PMCID: PMC3958333 DOI: 10.1371/journal.pbio.1001810] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/05/2014] [Indexed: 12/20/2022] Open
Abstract
Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(-) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(-) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per⁰¹ mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per⁰¹ flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output.
Collapse
Affiliation(s)
- Adam Seluzicki
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Matthieu Flourakis
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Elzbieta Kula-Eversole
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Luoying Zhang
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Valerie Kilman
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
138
|
PDF and cAMP enhance PER stability in Drosophila clock neurons. Proc Natl Acad Sci U S A 2014; 111:E1284-90. [PMID: 24707054 DOI: 10.1073/pnas.1402562111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The neuropeptide PDF is important for Drosophila circadian rhythms: pdf(01) (pdf-null) animals are mostly arrhythmic or short period in constant darkness and have an advanced activity peak in light-dark conditions. PDF contributes to the amplitude, synchrony, as well as the pace of circadian rhythms within clock neurons. PDF is known to increase cAMP levels in PDR receptor (PDFR)-containing neurons. However, there is no known connection of PDF or of cAMP with the Drosophila molecular clockworks. We discovered that the mutant period gene per(S) ameliorates the phenotypes of pdf-null flies. The period protein (PER) is a well-studied repressor of clock gene transcription, and the per(S) protein (PERS) has a markedly short half-life. The result therefore suggests that the PDF-mediated increase in cAMP might lengthen circadian period by directly enhancing PER stability. Indeed, increasing cAMP levels and cAMP-mediated protein kinase A (PKA) activity stabilizes PER, in S2 tissue culture cells and in fly circadian neurons. Adding PDF to fly brains in vitro has a similar effect. Consistent with these relationships, a light pulse causes more prominent PER degradation in pdf(01) circadian neurons than in wild-type neurons. The results indicate that PDF contributes to clock neuron synchrony by increasing cAMP and PKA, which enhance PER stability and decrease clock speed in intrinsically fast-paced PDFR-containing clock neurons. We further suggest that the more rapid degradation of PERS bypasses PKA regulation and makes the pace of clock neurons more uniform, allowing them to avoid much of the asynchrony caused by the absence of PDF.
Collapse
|
139
|
Tataroglu O, Emery P. Studying circadian rhythms in Drosophila melanogaster. Methods 2014; 68:140-50. [PMID: 24412370 DOI: 10.1016/j.ymeth.2014.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/02/2014] [Indexed: 11/25/2022] Open
Abstract
Circadian rhythms have a profound influence on most bodily functions: from metabolism to complex behaviors. They ensure that all these biological processes are optimized with the time-of-day. They are generated by endogenous molecular oscillators that have a period that closely, but not exactly, matches day length. These molecular clocks are synchronized by environmental cycles such as light intensity and temperature. Drosophila melanogaster has been a model organism of choice to understand genetically, molecularly and at the level of neural circuits how circadian rhythms are generated, how they are synchronized by environmental cues, and how they drive behavioral cycles such as locomotor rhythms. This review will cover a wide range of techniques that have been instrumental to our understanding of Drosophila circadian rhythms, and that are essential for current and future research.
Collapse
Affiliation(s)
- Ozgur Tataroglu
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, United States
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, United States.
| |
Collapse
|
140
|
Salisbury JP, Boggio KJ, Hsu YWA, Quijada J, Sivachenko A, Gloeckner G, Kowalski PJ, Easterling ML, Rosbash M, Agar JN. A rapid MALDI-TOF mass spectrometry workflow for Drosophila melanogaster differential neuropeptidomics. Mol Brain 2013; 6:60. [PMID: 24373546 PMCID: PMC4022047 DOI: 10.1186/1756-6606-6-60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/20/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Neuropeptides are a diverse category of signaling molecules in the nervous system regulating a variety of processes including food intake, social behavior, circadian rhythms, learning, and memory. Both the identification and functional characterization of specific neuropeptides are ongoing fields of research. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of nervous tissues from a variety of organisms allows direct detection and identification of neuropeptides. Here, we demonstrate an analysis workflow that allows for the detection of differences in specific neuropeptides amongst a variety of neuropeptides being simultaneously measured. For sample preparation, we describe a straight-forward and rapid (minutes) method where individual adult Drosophila melanogaster brains are analyzed. Using a MATLAB-based data analysis workflow, also compatible with MALDI-TOF mass spectra obtained from other sample preparations and instrumentation, we demonstrate how changes in neuropeptides levels can be detected with this method. RESULTS Over fifty isotopically resolved ion signals in the peptide mass range are reproducibly observed across experiments. MALDI-TOF MS profile spectra were used to statistically identify distinct relative differences in organ-wide endogenous levels of detected neuropeptides between biological conditions. In particular, three distinct levels of a particular neuropeptide, pigment dispersing factor, were detected by comparing groups of preprocessed spectra obtained from individual brains across three different D. melanogaster strains, each of which express different amounts of this neuropeptide. Using the same sample preparation, MALDI-TOF/TOF tandem mass spectrometry confirmed that at least 14 ion signals observed across experiments are indeed neuropeptides. Among the identified neuropeptides were three products of the neuropeptide-like precursor 1 gene previously not identified in the literature. CONCLUSIONS Using MALDI-TOF MS and preprocessing/statistical analysis, changes in relative levels of a particular neuropeptide in D. melanogaster tissue can be statistically detected amongst a variety of neuropeptides. While the data analysis methods should be compatible with other sample preparations, the presented sample preparation method was sufficient to identify previously unconfirmed D. melanogaster neuropeptides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jeffrey N Agar
- Depts of Chemistry and Chemical Biology and Pharmaceutical Sciences and Barnett Institute of Chemical and Biological Analysis, Northeastern University, 140 The Fenway, Boston, MA 02115, USA.
| |
Collapse
|
141
|
Luo J, Liu Y, Nässel DR. Insulin/IGF-regulated size scaling of neuroendocrine cells expressing the bHLH transcription factor Dimmed in Drosophila. PLoS Genet 2013; 9:e1004052. [PMID: 24385933 PMCID: PMC3873260 DOI: 10.1371/journal.pgen.1004052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/08/2013] [Indexed: 01/06/2023] Open
Abstract
Neurons and other cells display a large variation in size in an organism. Thus, a fundamental question is how growth of individual cells and their organelles is regulated. Is size scaling of individual neurons regulated post-mitotically, independent of growth of the entire CNS? Although the role of insulin/IGF-signaling (IIS) in growth of tissues and whole organisms is well established, it is not known whether it regulates the size of individual neurons. We therefore studied the role of IIS in the size scaling of neurons in the Drosophila CNS. By targeted genetic manipulations of insulin receptor (dInR) expression in a variety of neuron types we demonstrate that the cell size is affected only in neuroendocrine cells specified by the bHLH transcription factor DIMMED (DIMM). Several populations of DIMM-positive neurons tested displayed enlarged cell bodies after overexpression of the dInR, as well as PI3 kinase and Akt1 (protein kinase B), whereas DIMM-negative neurons did not respond to dInR manipulations. Knockdown of these components produce the opposite phenotype. Increased growth can also be induced by targeted overexpression of nutrient-dependent TOR (target of rapamycin) signaling components, such as Rheb (small GTPase), TOR and S6K (S6 kinase). After Dimm-knockdown in neuroendocrine cells manipulations of dInR expression have significantly less effects on cell size. We also show that dInR expression in neuroendocrine cells can be altered by up or down-regulation of Dimm. This novel dInR-regulated size scaling is seen during postembryonic development, continues in the aging adult and is diet dependent. The increase in cell size includes cell body, axon terminations, nucleus and Golgi apparatus. We suggest that the dInR-mediated scaling of neuroendocrine cells is part of a plasticity that adapts the secretory capacity to changing physiological conditions and nutrient-dependent organismal growth. Nerve cells display a large variation in size in an organism. Thus, a fundamental question is how growth of individual cells and their organelles is regulated. We ask if there is a regulatory mechanism for scaling the size of individual nerve cells, independent of the growth of the entire central nervous system (CNS). Growth of tissues and whole organisms depends on insulin/insulin-like growth factor signaling (IIS), but it is not known whether IIS regulates the size of individual nerve cells. We therefore studied the role of IIS in the size scaling of neurons in the CNS of the fruitfly Drosophila. By targeted genetic manipulations of insulin receptor (dInR) expression in a variety of neuron types we demonstrate that the cell size is affected only in neuroendocrine cells specified by the transcription factor DIMMED (DIMM). DIMM-positive neurons displayed enlarged cell bodies after overexpression of the dInR and downstream signaling components, whereas DIMM-negative neurons did not. Knockdown of these components results in smaller neurons. This novel dInR-regulated size scaling is seen during postembryonic development, continues in the aging adult and is diet dependent. We suggest that the dInR-mediated scaling of neuroendocrine cells is part of a plasticity that adapts the secretory capacity (neurohormone production) to changing physiological conditions and nutrient-dependent organismal growth.
Collapse
Affiliation(s)
- Jiangnan Luo
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Yiting Liu
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
142
|
Lee Y. Contribution of Drosophila TRPA1-expressing neurons to circadian locomotor activity patterns. PLoS One 2013; 8:e85189. [PMID: 24367706 PMCID: PMC3867552 DOI: 10.1371/journal.pone.0085189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/02/2013] [Indexed: 01/04/2023] Open
Abstract
In both vertebrates and invertebrates, Transient Receptor Potential (TRP) channels are expressed in sensory neurons and mediate environmental stimuli such as light, sound, temperature, and taste. Some of these channels, however, are expressed only in the brain and their functions remain incompletely understood. Using the GAL4/UAS binary system with a line in which the GAL4 had been knocked into the trpA1 locus in Drosophila, we recently reported new insights into TRPA1 localization and function, including its expression in approximately 15% of all circadian neurons. TRPA1 is expressed in lateral posterior neurons (LPNs), which are known to be highly sensitive to entrainment by temperature cycles. Here, I used the bacterial sodium channel, NaChBac, to examine the effects of altering the electrical properties of trpA1 neurons on circadian rhythms. My results indicate that circadian activity of the flies in the morning, daytime, and evening was affected in a temperature-dependent manner following TRPA1 neuronal activation. Remarkably, TRPA1 neuron activation in flies kept at 18°C impacted the morning peak of circadian activity even though TRPA1 is not expressed in morning cells. Taken together, these results suggest that the activation of TRPA1-expressing neurons may differentially coordinate light/dark circadian entrainment, depending on the temperature.
Collapse
Affiliation(s)
- Youngseok Lee
- Departments of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Korea
- * E-mail:
| |
Collapse
|
143
|
Ikeno T, Numata H, Goto SG, Shiga S. Involvement of the brain region containing pigment-dispersing factor-immunoreactive neurons in the photoperiodic response of the bean bug, Riptortus pedestris. ACTA ACUST UNITED AC 2013; 217:453-62. [PMID: 24198258 DOI: 10.1242/jeb.091801] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The concept of insect photoperiodism based on a circadian clock has been supported by many studies demonstrating that the behavioural circadian rhythm and the photoperiodic response are driven by the same circadian clock genes. However, the neuronal mechanism of the circadian clock underlying photoperiodism is poorly understood. To examine whether circadian rhythm and photoperiodism share a neuronal mechanism, we focused on the neurons that express neuropeptide pigment-dispersing factor (PDF) in the bean bug, Riptortus pedestris. PDF has been identified as an important regulator of the insect circadian rhythm and is expressed in circadian clock neurons of various insect species. In R. pedestris, PDF immunoreactivity was detected in some clusters of cells and their fibres in the optic lobe and the protocerebrum. cDNA encoding a PDF precursor protein was highly conserved between R. pedestris and many other insects. Differences between day and night were not observed in the immunolabelling intensity in cell bodies of PDF-immunoreactive neurons and pdf mRNA expression levels in the head. Surgical removal of the region containing PDF-immunoreactive cell bodies at the medulla disrupted the photoperiodic regulation of diapause. However, gene suppression of pdf by RNA interference did not affect the photoperiodic response. These results suggest that the region containing PDF-immunoreactive somata is important for the photoperiodic response in R. pedestris, but pdf mRNA expression is probably not required for the response.
Collapse
Affiliation(s)
- Tomoko Ikeno
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
144
|
Rakshit K, Giebultowicz JM. Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila. Aging Cell 2013; 12:752-62. [PMID: 23692507 DOI: 10.1111/acel.12100] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 12/13/2022] Open
Abstract
Circadian clocks generate daily rhythms in molecular, cellular, and physiological functions providing temporal dimension to organismal homeostasis. Recent evidence suggests two-way relationship between circadian clocks and aging. While disruption of the circadian clock leads to premature aging in animals, there is also age-related dampening of output rhythms such as sleep/wake cycles and hormonal fluctuations. Decay in the oscillations of several clock genes was recently reported in aged fruit flies, but mechanisms underlying these age-related changes are not understood. We report that the circadian light-sensitive protein CRYPTOCHROME (CRY) is significantly reduced at both mRNA and protein levels in heads of old Drosophila melanogaster. Restoration of CRY using the binary GAL4/UAS system in old flies significantly enhanced the mRNA oscillatory amplitude of several genes involved in the clock mechanism. Flies with CRY overexpressed in all clock cells maintained strong rest/activity rhythms in constant darkness late in life when rhythms were disrupted in most control flies. We also observed a remarkable extension of healthspan in flies with elevated CRY. Conversely, CRY-deficient mutants showed accelerated functional decline and accumulated greater oxidative damage. Interestingly, overexpression of CRY in central clock neurons alone was not sufficient to restore rest/activity rhythms or extend healthspan. Together, these data suggest novel anti-aging functions of CRY and indicate that peripheral clocks play an active role in delaying behavioral and physiological aging.
Collapse
Affiliation(s)
- Kuntol Rakshit
- Department of Zoology; Center for Healthy Aging Research; Oregon State University; 3029 Cordley Hall; Corvallis; OR; 97331; USA
| | - Jadwiga M. Giebultowicz
- Department of Zoology; Center for Healthy Aging Research; Oregon State University; 3029 Cordley Hall; Corvallis; OR; 97331; USA
| |
Collapse
|
145
|
Krupp JJ, Billeter JC, Wong A, Choi C, Nitabach MN, Levine JD. Pigment-dispersing factor modulates pheromone production in clock cells that influence mating in drosophila. Neuron 2013; 79:54-68. [PMID: 23849197 DOI: 10.1016/j.neuron.2013.05.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
Social cues contribute to the circadian entrainment of physiological and behavioral rhythms. These cues supplement the influence of daily and seasonal cycles in light and temperature. In Drosophila, the social environment modulates circadian mechanisms that regulate sex pheromone production and mating behavior. Here we demonstrate that a neuroendocrine pathway, defined by the neuropeptide Pigment-Dispersing Factor (PDF), couples the CNS to the physiological output of peripheral clock cells that produce pheromones, the oenocytes. PDF signaling from the CNS modulates the phase of the oenocyte clock. Despite its requirement for sustaining free-running locomoter activity rhythms, PDF is not necessary to sustain molecular rhythms in the oenocytes. Interestingly, disruption of the PDF signaling pathway reduces male sex pheromones and results in sex-specific differences in mating behavior. Our findings highlight the role of neuropeptide signaling and the circadian system in synchronizing the physiological and behavioral processes that govern social interactions.
Collapse
Affiliation(s)
- Joshua J Krupp
- Department of Biology, University of Toronto at Mississauga, Mississauga, ON L5L1C6, Canada
| | | | | | | | | | | |
Collapse
|
146
|
He C, Cong X, Zhang R, Wu D, An C, Zhao Z. Regulation of circadian locomotor rhythm by neuropeptide Y-like system in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2013; 22:376-388. [PMID: 23614491 DOI: 10.1111/imb.12027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Circadian rhythms in behaviour and physiology exist widely in animals, plants, fungi and cyanobacteria. Although much work has been carried out to characterize the endogenous clock circuit, the output signals coupling the circadian pacemaker to behaviour and physiology remain elusive. Here, we show that neuropeptide F (NPF), a homologue of mammalian neuropeptide Y, and its G protein-coupled receptor NPFR1 regulate the locomotor rhythm in Drosophila melanogaster. Flies with loss of function in NPF or NPFR1 were unable to ramp up their activity before lights off under light : dark (LD) cycles, and oscillations in npf/NPF and npfr1/NPFR1 were found to correlate temporally with the locomotor rhythm. Furthermore, NPF is expressed in clock neurones including dorsolateral neurones (LNd s) and ventrolateral neurones (LNv s), whereas NPFR1 is expressed in dorsal neurone 1 (DN1) and LNd s. These results show that NPF signalling is involved in the circadian locomotor rhythm in LD cycles.
Collapse
Affiliation(s)
- C He
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
147
|
Sivachenko A, Li Y, Abruzzi KC, Rosbash M. The transcription factor Mef2 links the Drosophila core clock to Fas2, neuronal morphology, and circadian behavior. Neuron 2013; 79:281-92. [PMID: 23889933 PMCID: PMC3859024 DOI: 10.1016/j.neuron.2013.05.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2013] [Indexed: 12/01/2022]
Abstract
The transcription factor Mef2 regulates activity-dependent neuronal plasticity and morphology in mammals, and clock neurons are reported to experience activity-dependent circadian remodeling in Drosophila. We show here that Mef2 is required for this daily fasciculation-defasciculation cycle. Moreover, the master circadian transcription complex CLK/CYC directly regulates Mef2 transcription. ChIP-Chip analysis identified numerous Mef2 target genes implicated in neuronal plasticity, including the cell-adhesion gene Fas2. Genetic epistasis experiments support this transcriptional regulatory hierarchy, CLK/CYC- > Mef2- > Fas2, indicate that it influences the circadian fasciculation cycle within pacemaker neurons, and suggest that this cycle also contributes to circadian behavior. Mef2 therefore transmits clock information to machinery involved in neuronal remodeling, which contributes to locomotor activity rhythms.
Collapse
Affiliation(s)
- Anna Sivachenko
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | - Yue Li
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | - Katharine C. Abruzzi
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| |
Collapse
|
148
|
|
149
|
Muraro NI, Pírez N, Ceriani MF. The circadian system: plasticity at many levels. Neuroscience 2013; 247:280-93. [PMID: 23727010 DOI: 10.1016/j.neuroscience.2013.05.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/16/2022]
Abstract
Over the years it has become crystal clear that a variety of processes encode time-of-day information, ranging from gene expression, protein stability, or subcellular localization of key proteins, to the fine tuning of network properties and modulation of input signals, ultimately ensuring that physiology and behavior are properly synchronized to a changing environment. The purpose of this review is to put forward examples (as opposed to generate a comprehensive revision of all the available literature) in which the circadian system displays a remarkable degree of plasticity, from cell autonomous to circuit-based levels. In the literature, the term circadian plasticity has been used to refer to different concepts. The obvious one, more literally, refers to any change that follows a circadian (circa=around, diem=day) pattern, i.e. a daily change of a given parameter. The discovery of daily remodeling of neuronal structures will be referred herein as structural circadian plasticity, and represents an additional and novel phenomenon modified daily. Finally, any plasticity that has to do with a circadian parameter would represent a type of circadian plasticity; as an example, adjustments that allow organisms to adapt their daily behavior to the annual changes in photoperiod is a form of circadian plasticity at a higher organizational level, which is an emergent property of the whole circadian system. Throughout this work we will revisit these types of changes by reviewing recent literature delving around circadian control of clock outputs, from the most immediate ones within pacemaker neurons to the circadian modulation of rest-activity cycles.
Collapse
Affiliation(s)
- N I Muraro
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIB-BA-CONICET, Buenos Aires, Argentina
| | | | | |
Collapse
|
150
|
Pírez N, Christmann BL, Griffith LC. Daily rhythms in locomotor circuits in Drosophila involve PDF. J Neurophysiol 2013; 110:700-8. [PMID: 23678016 DOI: 10.1152/jn.00126.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The neuropeptide pigment-dispersing factor (PDF) has been studied extensively in Drosophila, and its role in circadian time-keeping has been firmly established. The role of PDF outside of the clock circuit, however, is poorly understood. A recent study suggested that PDF may act on the ellipsoid body (EB) to link the clock and sleep/activity circuits. We performed whole brain optical imaging with the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps expressed under control of the pdfR promoter to address how the clock and sleep deprivation affect the physiology of these cells. Basal cAMP levels in EB were regulated both by PDF and synaptic inputs that are controlled by the circadian clock. Acute application of PDF to the brain caused a significant, and PDF-receptor-dependent, increase in cAMP in EB cells. Application of TTX to block circuit-mediated effects of PDF increased the morning response but not the response at night, implying the existence of a temporally regulated, PDF-stimulated input that blocks cAMP generation. ACh produced both direct (TTX-insensitive) and indirect (TTX-sensitive) increases in cAMP during the day but was totally TTX-insensitive at night, indicating that ACh-stimulated inputs to the EB are suppressed at night. Sleep deprivation did not affect the cAMP responses of these cells to either PDF or ACh. These results suggest a novel role for PDF as a modulator of activity outside of the clock circuit. By elucidating the mechanisms by which the neuropeptide PDF act on its target cells, our work contributes to our understating of how the central clock coordinates activity and sleep.
Collapse
Affiliation(s)
- Nicolás Pírez
- Volen Center for Complex Systems and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | |
Collapse
|